Как работает импульсный лабораторный блок питания. Какие преимущества дает использование ШИМ-регулирования. Какие основные узлы входят в схему импульсного лабораторного БП. Как обеспечивается стабилизация напряжения и тока.
Принцип работы импульсного лабораторного блока питания
Импульсный лабораторный блок питания (ЛБП) представляет собой источник питания с широтно-импульсной модуляцией (ШИМ), обеспечивающий регулируемое стабилизированное выходное напряжение и ток. Основные преимущества такого решения:
- Высокий КПД (до 80-90%) за счет импульсного режима работы
- Малые габариты и вес благодаря отсутствию громоздких трансформаторов
- Возможность получения широкого диапазона выходных напряжений
- Высокая стабильность выходных параметров
Рассмотрим основные функциональные узлы и принцип работы импульсного ЛБП.
Функциональная схема импульсного лабораторного блока питания
В состав импульсного ЛБП обычно входят следующие основные узлы:

- Входной выпрямитель и фильтр
- ШИМ-контроллер
- Силовой ключ (транзистор)
- Выходной LC-фильтр
- Схема обратной связи
- Линейный стабилизатор напряжения
- Схема ограничения тока
Принцип работы заключается в преобразовании входного постоянного напряжения в импульсное с помощью ШИМ, его последующей фильтрации и стабилизации. Рассмотрим работу основных узлов подробнее.
ШИМ-контроллер и силовой ключ
Ключевым элементом импульсного ЛБП является ШИМ-контроллер. Он формирует импульсы управления силовым ключом — транзистором. Изменяя скважность импульсов, контроллер регулирует среднее значение выходного напряжения.
В качестве силового ключа обычно используется MOSFET или IGBT транзистор. Он коммутирует ток через первичную обмотку импульсного трансформатора или дросселя.
Выходной LC-фильтр
LC-фильтр сглаживает пульсации напряжения на выходе силового ключа. Он состоит из дросселя и конденсатора большой емкости. Дроссель накапливает энергию в магнитном поле во время открытого состояния транзистора и отдает ее в нагрузку, когда транзистор закрыт.

Схема обратной связи
Для стабилизации выходного напряжения используется отрицательная обратная связь. Напряжение с выхода через делитель поступает на вход ШИМ-контроллера, который корректирует скважность импульсов управления.
Линейный стабилизатор напряжения
Для дополнительной фильтрации и точной стабилизации после LC-фильтра часто устанавливают линейный стабилизатор напряжения. Он обеспечивает малый уровень пульсаций и шумов на выходе.
Схема ограничения тока
Для защиты от перегрузки и короткого замыкания в ЛБП применяется схема ограничения выходного тока. Она контролирует падение напряжения на токоизмерительном резисторе и при превышении порога ограничивает ток.
Преимущества импульсного лабораторного блока питания
Основные достоинства импульсного ЛБП по сравнению с линейными источниками:
- Высокий КПД (80-90% против 50-60% у линейных)
- Малые габариты и вес
- Широкий диапазон входных напряжений
- Возможность получения напряжений выше входного
- Высокая удельная мощность
Эти преимущества делают импульсные ЛБП очень популярными в современной радиолюбительской практике.

Особенности конструкции импульсного лабораторного блока питания
При разработке импульсного ЛБП необходимо учитывать некоторые важные моменты:
- Правильный выбор частоты преобразования (обычно 50-200 кГц)
- Использование быстродействующих силовых транзисторов
- Применение высокочастотных импульсных трансформаторов
- Тщательная фильтрация высокочастотных помех
- Экранирование для снижения электромагнитных излучений
При соблюдении этих требований можно получить надежный и эффективный источник питания для радиолюбительской лаборатории.
Регулировка выходных параметров импульсного ЛБП
Современные импульсные лабораторные блоки питания обеспечивают возможность плавной регулировки выходного напряжения и тока в широких пределах. Как это реализуется?
- Регулировка напряжения осуществляется изменением опорного напряжения в цепи обратной связи ШИМ-контроллера
- Ограничение тока задается регулировкой порога срабатывания схемы ограничения
- Для удобства регулировки применяются многооборотные потенциометры
- Часто используются цифровые регуляторы на основе микроконтроллеров
Это позволяет точно задавать требуемые выходные параметры ЛБП для различных применений.

Измерение и индикация выходных параметров
Важной особенностью лабораторных блоков питания является наличие средств измерения и индикации выходного напряжения и тока. В современных моделях для этого применяются:
- Цифровые вольтметры и амперметры на светодиодных или ЖК-индикаторах
- Микроконтроллеры с АЦП для измерения параметров
- Графические дисплеи для отображения информации
- Интерфейсы для подключения к компьютеру и удаленного управления
Это обеспечивает удобство использования ЛБП и высокую точность установки выходных параметров.
Импульсный Лабораторный Блок Питания — Блоки питания (импульсные) — Источники питания
Вот Финальная схема и печатка, расчеты трансформаторов + некоторые вспомогательные данные…
Копирайты:
1. Автор силовой схемы — Старичок
2. Автор схемы управления — Старичок + Falanger
3. Автор схемы управления куллером — Владимир65
P.S 1. В схеме так же не указан выходной LC фильтр для дополнительного подавления пульсаций — он состоит из дросселя от комп БП индуктивностью 10мкГн на ферритовом стержне + конденсатора 220мкФ х35V
2. Принципиальная схема в целом правильная, но некоторые номиналы деталей изменены, к примеру диод Шотки на выходе 20100 стоит, ибо указанный на схеме при 30В пробъет (номинал остался от 5В схемы Старичка)), в общем подходите творчески, сверяйтесь с печатной платой, на ней почти все номиналы деталей подписаны.
3. Везде, где на деталях написано FB, это ферритовая бусина, предназначена для снижения импульсных помех, при отсутствии таковых, можно просто впаять перемычки.
Напряжение регулируется очень плавно от 30В и до 23 милливольт (предварительно подстоечником установил верхний предел в 30В). Тишина стоит во всем диапазоне регулировки…
Вот, посадил плату в корпус БП… На штатные болты… Под болты (со стороны печатных дорожек) положил изолирующие шайбы, на всякий случай, что бы не было замыкания печатных дорожек на корпус… Проверил пробником, замыкания нет… На неделе буду думать, про лицевую стенку и прочие украшения…
Решил с корпусом сильно не изгаляться… Просто из пластика выпилил переднюю панель и покрасил коробку… Временно все собрал, что бы поглядеть, что получилось…
Не… чета крутилки какие то массивные… Может так лучше?
АРХИВ:Скачать
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.
Схема регулируемого лабораторного БП из ATX
Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.
Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.
Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.
Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.
На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.
Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.
Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.
Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).
Испытания блока питания
Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.
Форум по АТХ БП
Форум по обсуждению материала ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
| |||
|
Принцип работы импульсных блоков питания. Схема импульсного блока питания
Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.
Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.
Устройство блока питания
Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.
Работа современных блоков
Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.
При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.
Особенности лабораторных блоков
Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.
Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.
Как осуществлять ремонт устройств?
Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.
Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.
Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.
Сетевые блоки питания
Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.
Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.
Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.
Применение микросхем
Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.
Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.
Преимущества регулируемых блоков питания
Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.
Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.
Работа блоков на 12 вольт
Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.
Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.
Как работает блок для телевизора
Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.
Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.
Модели устройств на 24 вольта
В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.
Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.
Боки питания на схеме DA1
Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.
Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.
Модели устройств с микросхемами DA2
Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.
Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.
Блоки с установленными микросхемами DA3
Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.
Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.
Как работает блок на диодах VD1
Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.
Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.
Лабораторный блок питания | Все своими руками
Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный блок питания. Цены на такие устройства довольно внушительны и поэтому придется собирать лабораторный блок питания своими руками. Из того что у меня есть в закромах получится неплохой прибор с выходом до 18В и током до 2.5А, для индикации подойдет только что пришедший с Китая цифровой вольтметр, но обо всем по порядку.
Во первых максимальные выходные параметры были выбраны в связи с имеющимся свободным трансформатором от стерео колонок 2*17В 2А. обмотки подключены параллельно. После диодного моста с конденсаторами напряжение подрастет примерно до 24В. Надо учитывать, что напряжение должно быть с запасом. Падение на транзисторах несколько вольт плюс под нагрузкой еще просядет на несколько вольт, чистыми останется 19В поэтому 18В это стабильный максимум, что можно выжать. Нагрузка в 2,5А выбрана так, что бы сильно не нагружать обмотки трансформатора, в таком режиме трансформатор будет себя лучше чувствовать, потому что нагружен будет на 70-80%. Чем питать разобрался, теперь что что питать
Теперь пора выбрать схему для лабораторного блока питания. Схема была выбрана, собрана и опробована, это простой и доступный лабораторный блок питания (ПИДБП) V14.Схема была взята с форума Паяльника и немного переделана под свои выходные напряжения и токи
На DA1.3 собран индикатор перегрузки по току. Когда идет ограничение по току, этот индикатор указывает об этом
Для измерения тока нагрузки на DA1.4 собран усилитель напряжения пересчитанный на усиление в 5 раз. Когда нагрузка максимальна на резисторе R20 падение 0,5В, это напряжение усиливается и на выходе ОУ напряжение, равное по значению току потребления.
Ну и на первых двух компараторах собрано сердце схемы. Это стабилизатор тока управляющий стабилизатором напряжения. Я собирал нечто похожее, только в схеме управление током и напряжением было независимо. Подробно описывать как работает последовательное включение стабилизаторов не буду, можете почитать о параллельном в статье простое зарядное устройство своими руками, принцип работы схож.
В схеме были пересчитаны R12R14 для выходного напряжения в 18В, а R11 для регулировки напряжения был заменен на 5к. R20 пересчитан на ток 2,5А, при максимальном токе на R20 должно быть падение 0,5В. R20 рассчитывается по простой формуле из закона Ома R20=0.5(В)\Iмакс(А)
Что бы схемку сделать немного практичней добавил схемку защиты от короткого замыкания и переполюсовки. Эта схема хорошо себя зарекомендовала и леплю её куда попало))
Короче определился, что где буду использовать. Собрал все компоненты в кучу, развел печатную плату и все распаял
Как видно выходные транзисторы использовал КТ803А в параллельном включении. Общая рассеиваемая мощность 120Вт, максимальный ток 20А напряжение пробоя 60В. Оба транзисторы выведены проводами на общий радиатор за пределы корпуса. Кстати корпус использовал от старой пластиковой музыкальной колонки
Печатная плата готова, корпус есть. транзисторы на радиаторе. Пришло время окончательно определиться какие задачи будут выполняться лабораторным блоком питания и развести переднюю панель. Панель буду рисовать в SPL6.
На панеле размещу вольтметр, регулятор напряжения и тока.
Переключатель измерение вольт и ампер.
Два индикатора перегрузка и защита от КЗ
Переключатель между выходом с диодного моста и выходом ЛБП
Переключатель между ЛБП и зарядным. Минусовой выход либо с ЛБП либо с защиты от переполюсовки и кз
Теперь зная что где будет, можно сложить общую схему лабораторного блока питания и раскидывать косы проводов от платы к передней панеле. Вот что вышло
Думаю пора собирать все в корпус
Вот фото платы собранной окончательно
А вот так все выглядит в корпусе.
После сборки всего в корпус можно попробовать включить лабораторный питальник в розетку. На выходе 18,5В
Первое включение лабораторного блока питания под нагрузкой 50% в качестве нагрузки двигатель от шуруповерта 12В. Кстати по индикатору перегрузка видно, что блок питания в режиме ограничения тока. На индикаторе ток потребления 1,28А
Вот такой лабораторный блок питания у меня получился
В качестве индикатора использовал вольтметр из Китая, предварительно его переделав. Вольтметр указывал тоже напряжения от которого питался, я решил разделить эти каналы, что бы была возможность измерять от 0В до 20В. Я убрал резистор соединяющий контакты питания и измерения напряжения, он помечен красным на фото. Запитал индикатор от опорного напряжения схемы 12В
Такой вольтметр можно заказать на AliExpress. вот ссылка
Если нужны результаты испытаний этого блока, пожалуйста напишите в комментариях.
С ув. Эдуард
Похожие материалы: Загрузка…Импульсный лабораторный блок питания в радиолюбительской
Импульсный лабораторный блок питания в радиолюбительской литературе опубликовано множество описаний лабораторных блоков питания. Предлагаемый источник отличается широкими функциональными возможностями, простотой, высоким КПД. На рисунке показана его функциональная схема.
Основа устройства — понижающий стабилизатор напряжения с широтноимпульсным регулированием на коммутирующем транзисторе VT1. После накопительных элементов — дросселя L1 и конденсатора С1 — включены последовательно регулируемые линейные ограничитель тока А1 и стабилизатор напряжения АЗ. Диод VD1 обеспечивает протекание тока дросселя L1 в конденсатор С1 и нагрузку, когда закрыт коммутирующий транзистор VT1.
Ток нагрузки ограничен сверху узлом А1 от 10 мА до 5 А. Стабилизатор напряжения АЗ позволяет регулировать выходное напряжение от 0 до 30 В. Дифференциальные усилители А2 и А4 с коэффициентом усиления около 5 контролируют падение напряжения на блоках А1 и АЗ. Когда хотя бы одно из них слишком велико, коммутирующий транзистор VT1 закрывается по сигналу широтноимпульсного регулятора А5. Этим достигаются высокий КПД и стабилизация не только выходного напряжения, но и тока. Небольшая рассеиваемая мощность на регулирующих элементах повышает надежность устройства, позволяет снизить его массу и габариты за счет уменьшения размеров теплоотводов по сравнению с линейным регулированием. На рисунке показана принципиальная схема импульсный лабораторный блок питания.
Компоненты VT4, VD5, L1, С8 соответствуют VT1, VD1, L1, С1 на рис. 1. На элементах VT1—VT3, С1, VD3, HL1, R3—R8 собран широтноимпульсный регулятор А5. Ограничитель тока А1 собран по схеме стабилизатора тока на транзисторах VT6 и VT7, диодах VD6—VD10 и резисторах R10— R20, один из которых подключается переключателем SA2. Регулируемый стабилизатор напряжения АЗ собран на микросхеме DA4. Дифференциальный усилитель А2 (см. рис. 1) — высоковольтный ОУ КР1408УД1 (DA3) с резисторами R21, R23, R25, R26. Аналогичный дифференциальный усилитель А4 — DA5, R28, R31, R33, R34
Пониженное до 30В трансформатором Т1 сетевое напряжение с обмотки II выпрямляет диодный мост VD4 и сглаживает конденсатор С4. Это напряжение (около 40 В) — входное для импульсного стабилизатора. Резистор R1 и стабилитрон VD1 образуют параметрический стабилизатор напряжения питания задающего генератора, выполненного на однопереходном транзисторе VT2. Транзистор VT3 — усилитель тока задающего генератора. Выбор транзистора КТ825Г в качестве коммутирующего (VT4) обусловлен его высокой надежностью и широкой доступностью. Частота генерации 40 кГц выбрана в соответствии с частотными свойствами транзистора КТ825Г. На резисторе R2 и светодиоде HL1 собран параметрический стабилизатор напряжения около 2 В для фиксации уровня напряжения на эмиттере регулирующего транзистора VT1. Диод VD3 препятствует подаче обратного напряжения на эмиттерный переход этого транзистора. Открываясь, коммутирующий транзистор VT4 подключает дроссель L1 к выходу выпрямителя на диодном мосте VD4. Протекающим через дроссель L1 током заряжается накопительный конденсатор С8. Изменяя напряжение на базе транзистора VT1, можно регулировать ширину импульсов, открывающих транзистор VT4, и соответственно напряжение на накопительном конденсаторе С8.
Ограничитель тока А1 выполнен на дискретных элементах. Отказ от использования микросхемы LT1084 обусловлен ее недостаточно высоким максимальным входным напряжением (37 В) Кроме того, применение дискретных элементов увеличивает КПД. Падение напряжения на токозадающем резисторе интегрального стабилизатора равно 1,25 В, при токе 5 А на этом резисторе рассеивается мощность 6,25 Вт В примененном ограничителе тока падение напряжения на токозадающем резисторе UR равно разности падения напряжения на диодной цепи VD6— VD10 и напряжения база—-эмиттер составного транзистора VT6VT7 В данном случае UR примерно равно 0,6 В. Мощность, рассеиваемая на резисторе R20 (на пределе 5 А), примерно равна 3 Вт. Сопротивление токозадающего резистора R рассчитывают по формуле R = UR/I, где I — требуемый ток ограничения В экземпляре автора реализованы 11 пределов ограничения тока: 10, 50, 100, 250, 500, 750 мА; 1, 2, 3, 4, 5 А им соответствуют резисторы R10—R20.
Поскольку напряжение на конденсаторе С8 изменяется в широких пределах, ток через стабистор, составленный из диодов VD6—VD10, определяет стабилизатор на транзисторе VT5 и светодиоде HL2. Резистором R22 в цепи эмиттера транзистора VT5 устанавливают ток через цепь VD6—VD10 в пределах 10…12 мА. Регулируемый стабилизатор напряжения АЗ выполнен на микросхеме DA4 Диоды VD13, VD14 способствуют повышению его надежности. Через эти диоды при отключении блока питания от сети разряжаются конденсаторы С12 и С13, устраняющие самовозбуждение стабилизатора. Для получения нулевого выходного напряжения в цепь управляющего электрода через делитель R27R30 подано напряжение отрицательной полярности от стабилизатора DA2. Выпрямитель на диодном мосте VD2 и интегральных стабилизаторах DA1, DA2 питает также цифровой вольтметр на микросхеме КР572ПВ2А, собранный по типовой схеме.
Выходные сигналы операционных усилителей DA3 и DA5 через диоды VD11 и VD12 поступают на общую нагрузку — резисторный делитель R3R4. Светодиод HL3 выведен на лицевую панель и сигнализирует о переходе блока питания в режим ограничения стабилизации тока. Увеличение падения напряжения на ограничителе тока или стабилизаторе напряжения вызывает рост напряжения на резисторе R4. Когда оно превысит пороговое значение (около 3 В), откроется транзистор VT1, укорачивая импульсы генератора на транзисторе VT2. Конструкция и детали импульсный лабораторный блок питания. Блок питания смонтирован в корпусе размерами 90x170x270 мм Транзистор VT4 и диод VD5 установлены без изолирующих прокладок на одном теплоотводе площадью 200 см2. На теплоотводе площадью 400 см2 смонтированы транзистор VT6 (через изолирующую прокладку) и стабилизатор DA4. Для повышения температурной стабильности диоды VD6—VD10 целесообразно установить на теплоотводе возможно ближе к транзистору VT6. Импульсный лабораторный блок питания собран на универсальной макетной плате, печатная плата не была разработана.
Трансформатор Т1 изготовлен из сетевого трансформатора лампового телевизора. Магнитопровод разбирают, снимают катушки. Сматывают накальные обмотки (они расположены в верхнем слое и намотаны проводом наибольшего диаметра), подсчитывая витки. Умножив это число витков на 5, получаем число витков обмотки II. Далее полностью сматывают анодные обмотки с обеих катушек на одну шпулю. Затем на каждую катушку наматывают внавал половинное число витков обмотки II в два провода анодной обмотки. Диаметр провода анодной обмотки 0,8 мм соответствует сечению 0,5 мм2. Намотка в два провода дает эквивалентное сечение 1 мм2, что позволяет получить ток нагрузки 5 А. Умножив число витков накальной обмотки на 3, получаем число витков обмотки III. Эту обмотку также в два провода можно намотать на одну из двух катушек. В связи с малым потреблением тока от обмотки III асимметрия магнитного поля трансформатора получается несущественной. После сборки магнитопровода полуобмотки III соединяют последовательно с учетом фазировки, начало одной полуобмотки III соединяют с концом другой, образуя отвод от середины.
Дроссель L1 наматывают на магнитопроводе Б48 из феррита 1500НМ1 внавал в два провода анодной обмотки до заполнения каркаса. Для создания немагнитного зазора между чашками вложена текстолитовая шайба толщиной 1 мм. После стягивания болтом М6 готовый дроссель пропитывают клеем БФ-2. Сушка и полимеризация клея проводились в духовке при температуре 100 °С. При самостоятельном изготовлении дросселя на другом магнитопроводе следует иметь в виду, что ток через дроссель имеет треугольную форму. Среднему потребляемому току 5 А соответствует амплитуда 10 А, при этом токе магнитопровод не должен входить в насыщение. Стабилизатор LT1084 (DA4) можно заменить отечественным аналогом КР142ЕН22А. Переменный резистор R29 для большей долговечности использован проволочный ППБ. Учитывая, что через переключатель SA2 протекает значительный ток, для повышения стабильности и долговечности применен керамический галетный переключатель 11ПЗН, его контакты соединены параллельно. Светодиод АЛ307КМ (HL3) можно заменить зарубежным L-543SRC-E.
Налаживание импульсный лабораторный блок питания. Подбором резистора R30 устанавливают нулевое выходное напряжение на выходе блока питания при нижнем по схеме положении движка переменного резистора R29, а подбором резистора R32 — напряжение 30 В при верхнем по схеме положении движка R29. Подключают вольтметр к выводам 2 и 3 стабилизатора DA4 и подбором резистора R4 устанавливают напряжение 1,5 В. На время налаживания возможно применение подстроечных резисторов. Но их использование для постоянной эксплуатации не рекомендуется из-за нестабильности сопротивления подвижной контактной системы. Затем подключают к выходным клеммам нагрузку через амперметр. Изменяя резистором R29 выходное напряжение, по амперметру и встроенному вольтметру контролируют выходные параметры. На слаботочных пределах из-за наличия токов управления стабилизатора DA4 потребуется корректировка сопротивления резисторов R10— R12 по сравнению с расчетным. По включению светодиода HL3 необходимо проверить ограничение тока и его стабильность на всех пределах.
Предлагаемый импульсный лабораторный блок питания очень удобен в работе, в том числе для зарядки аккумуляторов и батарей — от 7Д-0.1 до стартерных автомобильных. По встроенному цифровому вольтметру устанавливают конечное напряжение зарядки, переключателем SA2 выбирают необходимый ток зарядки и подключают аккумулятор (батарею). Зарядка идет стабильным током, при достижении заданного напряжения на аккумуляторе зарядка прекращается. За три года эксплуатации предлагаемого устройства отказов в его работе не было.
Надежный лабораторный блок питания
У меня есть регулируемый блок питания. Регулируется только напряжение, соответственно регулировка тока отсутствует. Для некоторых целей его хватает. Решил собрать блок с регулировкой тока и напряжения. Лабораторный блок питания, далее ЛБП, очень нужная вещь.
Схема ЛБП очень простая, так как использовать буду модуль DC-DC преобразователя из Китая.
Характеристики
Основные характеристики модуля:
- Входное напряжение 5 — 40 Вольт;
- Выходное напряжение 1.2 — 35 Вольт;
- Выходной ток (мах) 9 Ампер, желательно установить кулер.
Схема блока питания
Как уже говорил, схема простая. Сетевое напряжение поступает на трансформатор. Имеется сетевой выключатель и предохранитель. Напряжение понижается трансформатором. Верхняя честь схемы силовая. Переменное напряжение поступает на диодный мост и сглаживающий конденсатор. Далее поступает на DC-DC преобразователь. С преобразователя напряжение поступает на выходные клеммы. Минус схемы разрывается приборчиком. Для удобства, регулировочные резисторы вынесены с платы.
Нижняя предназначена для питания вольтамперметра. Трансформатор имеет отдельную обмотку. Как и с силовой обмоткой, переменное напряжение поступает на диодный мост и фильтрующий конденсатор. Далее установил линейный стабилизатор на 5 Вольт.
Компоненты
Со схемой разобрались. Теперь переходим к компонентам.
Корпусом ЛБП будет служить старый корпус от регулятора паяльника. Регулятор паяльника еще времен СССР. Очень добротный.
Передняя панель будет из композитного пластика. Состоит пластик из двух пластин алюминия и пластика между ним. С одной стороны, он белый, с второй черный. Черная сторона будет лицевой.
Понижающий трансформатор от старого оборудования, уже не помню какого. Его пришлось слегка доработать. Сделал отвод на 22 Вольта, полная обмотка на 27 Вольт. Если оставить, то после диодного моста напряжение более 30 Вольт. Это много для стабилизатора 7805, установленного на [leech=http://]DC-DC преобразователе[/leech]. Он питает операционный усилитель схемы. Хоть и заявлено 40 Вольт, при учете максимального для 7805 в 30 Вольт.
Понижающий преобразователь постоянного тока.
Вольтамперметр на 3 сегмента. Для более точного отображения выходных параметров, нужно применить на 4-е сегмента. У меня какой был, такой и применил.
Клеммы времен СССР. Крепкие и надежные.
Конденсатор на 4700 мкф*63 Вольта. Из расчета 1000 мкф на 1 Ампер. На модуле установлены еще 2*470 мкф.
Диодный мост можно взять и единый, но у меня остался от старого проекта. Собран на 4-х диодах Д242.
Изготовление
На дне корпуса размечаем, сверлим отверстия под: трансформатор, диодный мост, модуль. Все спаиваем соответственно схемы. С модуля выпаял два подстроечных резистора. Вместо них припаял провода. На токовый 3 провода, на напряжение два.
Питать Вольтамперметр буду через линейный стабилизатор на 5 Вольт. Диодный мост КЦ402 и конденсатор небольшой емкости.
На задней панели делаю разметку под сетевой разъем и предохранитель. Все аккуратно выпиливаю и устанавливаю.
На передней панели размечаю и вырезаю все отверстия. Тут будут: выходные клеммы, сетевой выключатель, резисторы тока и напряжения, Вольтамперметр.
Распаял все элементы устанавливаемые изнутри. Сетевой выключатель коммутирует оба сетевых провода. Первоначально хотел применить другой.
Устанавливаем все элементы передней панели. Плюсовая клемма отмечена красной краской. Ручки резисторов разного цвета. Красная по цвету отображения Вольт. Желтая по току. Пока что не подписывал где ток и напряжение. Позже буду менять резисторы на многооборотные, ручки возможно тоже поменяю.
Верхнюю крышку покрасил. Между передней панелью и крышкой была слишком большая щель, ее закрыл небольшим уголком. При проверке блок выдал 9 Ампер на коротком, при 28 Вольтах, что составило чуть больше 250 Ватт.
Такой вот Лабораторный Блок Питания получился. Им можно как питать разного рода устройства, также заряжать аккумуляторы. Первоначально хотел применить импульсный источник на 24 Вольта, но попался трансформатор нужных габаритов. Так же, стараюсь собирать устройство из того что есть. Всем спасибо за внимание!
Смотрите видео
Лабораторный блок питания 5…100 Вольт
категория
Схемы источников питания
материалы в категории
С. БИРЮКОВ, г. Москва
Радио, 2002 год, № 7
В радиолюбительской практике часто возникают ситуации когда требуются напряжения выходящие за пределы «любительского диапазона» 5…25 Вольт. Для какой-нибудь конструкции может потребоваться, к примеру, 70 Вольт, для другой и все 100…
Чтобы не собирать несколько источников напряжений предлагается схема лабораторного блока питания, который может работать в двух режимах регулировок- в привычном всем нам диапазоне 5…50 Вольт и одновременно в диапазоне 50…100 Вольт (режим регулировки выбирается при помощи переключателя).
Другие параметры блока питания:
Максимальный выходной ток, мА ………………..200
Уровень ограничения выходного тока, мА…………….250
Пульсации выходного напряжения, мВ, не более……..10
Нестабильность выходного напряжения при изменении напряжения сети в пределах 190…240 В и выходного тока 0…200 мА, %, не более ………………..0,1
Высокая стабильность обеспечена применением в качестве источника образцового напряжения и усилителя сигнала рассогласования микросхемы КР142ЕН19А[1].
Схема источника питания
Выпрямитель собран по схеме с удвоением напряжения на диодах VD1 и VD2, которые для снижения уровня коммутационных помех зашунтированы конденсаторами С1 и С2. Чтобы уменьшить мощность, рассеиваемую на транзисторах стабилизатора, при работе в интервале 5…55 В отключают часть вторичной обмотки трансформатора Т1 переключателем SA2.
Транзистор VT2 служит генератором тока. Напряжение на его базе стабилизировано светодиодом HL1, значение тока коллектора (8…9 мА) задает резистор R2. Через делитель из резисторов R4—R8 часть выходного напряжения стабилизатора поступает на управляющий вход микросхемы DA1. Если напряжение здесь менее 2,5 В, анодный ток микросхемы и коллекторный ток транзистора VT1 не превышают 0,4 мА. Благодаря этому транзистору, включенному по схеме с общей базой, напряжение на аноде микросхемы DA1 не превышает 3,3 В, а рассеиваемая ею мощность не выходит за допустимое значение.
В этом режиме почти весь коллекторный ток транзистора VT2 поступает в базу транзистора VT4, открывая последний. Напряжение на выходе стабилизатора и на входе управления микросхемы DA1 растет. Когда последнее достигнет 2,5 В, анодный ток DA1, а с ним и коллекторный ток транзистора VT1 резко возрастет, ток базы транзистора VT4 уменьшится и напряжение на выходе источника будет стабилизировано на уровне, определяемом соотношением сопротивлений резисторов R4—R8. Плавно регулируют выходное напряжение переменным резистором R5, интервал регулировки выбирают с помощью переключателя SA2.
Транзистор VT3 нормально закрыт. Но при увеличении тока нагрузки и коллекторного тока транзистора VT4 примерно до 250 мА падение напряжения на резисторе R10 достигает значения, при котором транзистор VT3 открывается, шунтируя светодиод HL1. Это приводит к уменьшению коллекторных токов транзисторов VT2 и VT4. В результате выходной ток стабилизатора оказывается ограниченным указанным выше значением. О срабатывании ограничителя тока можно судить по уменьшению яркости свечения светодиода.
Когда в результате действия ограничителя напряжение на выходе стабилизатора снизится примерно до 2,7 В, текущий по цепи HL1R1 ток пойдет в нагрузку через открывшийся диод VD4, несколько увеличивая суммарный протекающий через нее ток. Если бы диода VD4 не было, в результате изменения полярности приложенного напряжения открылся бы коллекторный переход транзистора VT1 и ток, текущий через R1, направился бы в базу транзистора VT4. В результате усиления транзистором VT4 приращение тока нагрузки было бы гораздо большим.
Имеется возможность полностью устранить эффект увеличения тока с помощью диода, включенного в разрыв цепи, соединяющей коллектор транзистора VT1 с базой транзистора VT4 и коллектором транзистора VT2. Но в таком случае транзисторы VT1 и VT2 нельзя будет устанавливать на общий теплоотвод без изолирующих прокладок.
Следует рассказать о назначении диодов VD5 и VD6. Предположим, переключатель SA2 находится в положении «50…100 В», а на выходе установлено минимальное напряжение (движок переменного резистора R5 — в верхнем по схеме положении). После перевода переключателя SA2 в положение «5…55 В» напряжение 50 В, до которого заряжен конденсатор С7, оказывается приложенным к резисторам R6—R9, причем более его половины (около 30 В) — к управляющему входу микросхемы DA1. Последняя из строя не выйдет, но по внутренним цепям микросхемы это напряжение попадет на ее анод и на эмиттер транзистора VT1, закрывая последний. В результате весь коллекторный ток транзистора VT2 потечет в базу транзистора VT4 и на выходе стабилизатора появится максимально возможное напряжение. К сожалению, это состояние устойчиво и самостоятельно стабилизатор выйти из него не сможет.
Диод VD5 служит для исключения подобной критической ситуации. Открываясь, он ограничивает напряжение на входе микросхемы DA1 допустимым значением. Правильный выбор напряжения стабилизации стабилитрона VD3 и номиналов резисторов R7 и R8 гарантирует, что в нормальном рабочем режиме диод VD5 остается закрытым и не влияет на работу стабилизатора.
При резком изменении положения органов управления в сторону уменьшения выходного напряжения возможна ситуация, когда за счет медленной разрядки конденсатора С7 напряжение на эмиттере транзистора VT4 «не поспевает» за напряжением на его базе. Возникает опасность пробоя эмиттер-ного перехода транзистора напряжением, приложенным к нему в обратном направлении. Диод VD6 предотвращает этот обратимый, но нежелательный пробой. Конденсатор С7 разряжается по цепи VD6, VT1, R3, DA1. Благодаря резистору R3 ток разрядки не превышает 100 мА.
В блоке питания применен унифицированный трансформатор ТПП271-127/220-50 [2] с габаритной мощностью 60 Вт. Подобные трансформаторы меньшей мощности имеют слишком большие для работы в предлагаемом устройстве активные сопротивления обмоток. Для некоторого уменьшения напряжения на вторичных обмотках трансформатора выводы его первичных обмоток соединены нестандартным образом. При самостоятельном изготовлении трансформатора следует ориентироваться на указанные на рис. 1 напряжения холостого хода вторичных обмоток. Сечения обмоточных проводов должны быть достаточно большими, чтобы сопротивления обмоток были примерно такими же, как у указанного трансформатора: 1-9 — 56 Ом, 13-16 —2,3 Ом, 17-18 —1,3 Ом.
Все постоянные резисторы в устройстве — С2-23 или МЛТ соответствующей мощности, R5 — ППЗ-40. Конденсаторы С1 и С2 — керамические на напряжение не менее 160 В, например, КМ-5 группы ТКЕ не хуже М1500. СЗ, С4, С7 — импортные аналоги К50-35, С6 — КМ-5 или КМ-6, С5 и С8 — К73-17 на напряжение 250 В. Диоды 1N4007 имеют отечественный аналог — КД243Ж, можно использовать любые диоды на напряжение не менее 200 В и ток 300 мА. Вместо КД509А можно установить любые диоды с допустимым импульсным током не менее 300 мА.
Коэффициенты передачи тока h21э у всех мощных транзисторов должны быть не менее 30, причем этот параметр транзистора VT4 следует проверять при токе коллектора 200 мА. Замену транзисторам VT1, VT2 и VT4 нужно подбирать с предельным напряжением коллектор—эмиттер не менее 160 В и допустимым током коллектора не менее 100 мА (VT1 и VT2) и 1 A (VT4). Транзистор VT3 — любой кремниевый маломощный структуры р-п-р. Светодиод HL1 — любой видимого свечения. Чтобы сохранить неизменным коллекторный ток транзистора VT2 при установке светодиода HL1 зеленого или желтого цвета, придется, возможно, немного увеличить номинал резистора R2. Микросхему КР142ЕН19А можно заменить импортным аналогом TL431.
Основная часть деталей источника питания размещена на печатной плате размерами 50×75 мм из стеклотекстолита толщиной 1,5 мм (вид со стороны печатных проводников)
На ней же находится общий ребристый теплоотвод транзисторов VT1 и VT2 размерами 20x24x38 мм. Транзистор VT4 устанавливают на отдельном ребристом теплоотводе размерами 36x100x140 мм. Диод VD6 припаивают непосредственно к выводам этого транзистора.
Подключать собранное устройство к сети в первый раз желательно через лабораторный регулируемый автотрансформатор, на выходе которого предварительно установлено нулевое напряжение. Движок переменного резистора R5 должен находиться в положении минимального сопротивления, переключатель SA2 — в положении «5…55 В». К выходу источника подключают вольтметр и убеждаются, что по мере вращения рукоятки автотрансформатора в сторону увеличения напряжения показания вольтметра растут, но, дойдя приблизительно до 5 В, остаются на этом уровне. Если это так, можно довести входное напряжение до номинальных 220 В и проверить напряжение на некоторых элементах устройства. На катоде стабилитрона VD3 оно должно быть близким к напряжению его стабилизации (3,9 В), на верхнем по схеме выводе резистора R7 — приблизительно 3,3 В. Падение напряжения на резисторе R2 должно составлять около 1,1 В, если оно больше, следует увеличить номинал указанного резистора таким образом, чтобы текущий через него ток был в пределах 8…9 мА.
Резисторы R4, R6, R8 подбирают в следующем порядке. При переключателе SA2, находящемся в положении «5…55 В», устанавливают с помощью переменного резистора R5 максимальное напряжение на выходе источника. Подбирают резистор R8 таким образом, чтобы оно было немного больше 55 В. Переводят движок резистора R5 в другое крайнее положение и, подбирая резистор R6, добиваются выходного напряжения немного меньше 5 В. Затем переводят переключатель SA2 в положение «50… 100 В» и подбирают резистор R4, добиваясь указанных пределов регулировки выходного напряжения резистором R5.
Следует обязательно проверить работу источника питания с максимальной нагрузкой. Если на каком-либо диапазоне при максимальном выходном напряжении увеличение тока нагрузки приводит к снижению этого напряжения, дело в недостаточном напряжении на соответствующей вторичной обмотке или слишком большом сопротивлении обмоток.
Миллиамперметр для контроля выходного тока можно включить в разрыв провода, идущего от эмиттера транзистора VT4 к другим элементам схемы (кроме диода VD6). Так как через прибор в этом случае, кроме тока нагрузки, будет течь и ток делителя R4—R8, стрелку миллиамперметра следует установить на ноль корректирующим винтом при включенном, но работающем без нагрузки источнике. Устройство можно дополнить переключателем уровня ограничения выходного тока (рис. 3). Сопротивление введенной части цепи резисторов R10—R13 должно быть таким, чтобы при предельном токе на ней падало напряжение около 0,6 В.
Стабилизатор напряжения по приведенной схеме нетрудно рассчитать на любой интервал регулировки выходного напряжения с верхним пределом 50…500 В. Транзисторы (кроме VT3) следует выбрать примерно с полуторакратным запасом по напряжению относительно максимального выходного. Генератор тока на транзисторе VT1 должен выдавать ток примерно в 1,2 раза больше максимального выходного тока стабилизатора, деленного на коэффициент h21э транзистора VT4. При расчетном выходном токе более 1 А в качестве VT4 необходим составной транзистор. Токи через резистор R1 и делитель R4—R8 могут быть выбраны в пределах 4…10 мА. Если стабилизатор проектируют на фиксированное или регулируемое в небольших пределах выходное напряжение, диоды VD4 и VD6 можно не устанавливать.
ЛИТЕРАТУРА
1. Янушенко Е. Микросхема КР142ЕН19. — Радио, 1994, № 4, с. 45, 46.
2. Сидоров И. Н., Мукосеев В. В., Христинин А. А. Малогабаритные трансформаторы и дроссели. Справочник. — М.: Радио и связь, 1985, 416 с.
0-30V 0-3A Регулируемый импульсный лабораторный источник питания — Electronics Projects Circuits
Лабораторный источник питания DC-DC 0-30V 0-3A LT1074 — понижающий (понижающий) импульсный стабилизатор с максимальным током 5 А. Может работать со значением входного напряжения до 60 В версия (HV ) и выход … Electronics Projects, Регулируемый импульсный лабораторный источник питания 0-30V 0-3A «Проект avr, схема преобразователя постоянного тока в постоянный ток, проекты микроконтроллеров, проекты силовой электроники, схема питания, проект источника питания», Дата 2019/08/04
Лабораторный источник питания DC-DC 0-30V 0-3A LT1074 — понижающий (понижающий) импульсный стабилизатор с максимальным током 5 А.Может работать со значением входного напряжения до 60 В версии (HV), а выходное напряжение может быть установлено в диапазоне 2,5 В — 50 В. Без изменения схемы работает схема с частотой 100 кГц.
Схема лабораторного источника питания
Стабилизированный источник питания с регулируемым выходным напряжением 0 — 30 В и регулируемым ограничением тока 0 — 3 А. Источник сочетает в себе использование трансформатора, импульсного регулятора и последующее применение линейного регулятора для улучшения выходных характеристик.Также реализовано измерение выходного напряжения и тока микроконтроллера atmega644.
LT6105 Использование этой схемы устраняет необходимость сканирования тока на чувствительном резисторе с нормальным значением (часто 1 Ом), на котором возникает большое падение напряжения и, следовательно, большие потери мощности, включая увеличение внутреннего сопротивления. источника. При использовании этой схемы ток, измеряемый дифференциальным усилителем на прецизионном резисторе небольшой величины (например, 0.01 Ом), который можно подключить в любую ветвь источников. Поскольку это значение сопротивления невелико, в нем возникает даже небольшая потеря мощности (определяемая произведением сопротивления на квадрат тока). LT6105
Схема источника питания для лаборатории Switchmode 0-30 В Схема pcb все файлы альтернативные ссылки:
СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-25661.zip
0-30V 0-3A ИСТОЧНИК ПИТАНИЯ ДЛЯ ЛАБОРАТОРИИ РЕГУЛИРУЕМОГО ПЕРЕКЛЮЧЕНИЯ
Лабораторный источник питания DC-DC 0-30V 0-3A LT1074 — понижающий (понижающий) импульсный стабилизатор с максимальным током 5 А.Может работать со значением входного напряжения до 60 В… Electronics Projects, 0-30V 0-3A Регулируемый импульсный лабораторный источник питания «avr project, dc dc преобразователь, проекты микроконтроллеров, проекты силовой электроники, схемы источника питания, проект электроснабжения, «
»Лабораторный источник питания DC-DC 0-30V 0-3A LT1074 — импульсный стабилизатор понижающего (понижающего) типа с максимальным током 5 А. Может работать со значением входного напряжения до 60 В. версия (HV) и выходное напряжение можно установить в диапазоне 2.5 В — 50 дюймов. Без изменения схемы работает схема с частотой 100 кГц.
СХЕМА ПИТАНИЯ ЛАБОРАТОРИИ
Стабилизированный источник питания с регулируемым выходным напряжением 0 — 30 В и регулируемым ограничением тока 0 — 3 А. Источник сочетает в себе использование трансформатора, импульсного регулятора и последующее применение линейного регулятора для улучшения выходных характеристик. Также реализовано измерение выходного напряжения и тока микроконтроллера atmega644.
LT6105 Использование этой схемы устраняет необходимость сканировать ток на чувствительном резисторе с нормальным значением (часто 1 Ом), на котором возникает большое падение напряжения и, следовательно, большие потери мощности, включая увеличение внутреннего сопротивления. источника. При использовании этой схемы ток, измеряемый дифференциальным усилителем, поступает на прецизионный резистор небольшой величины (например, 0,01 Ом), который может быть подключен к любой ветви источников. Поскольку это значение сопротивления невелико, в нем возникает даже небольшая потеря мощности (определяемая произведением сопротивления на квадрат тока).LT6105
Источник: 0-30В 0-3А ИСТОЧНИК ПИТАНИЯ ДЛЯ ЛАБОРАТОРИИ РЕГУЛИРУЕМОГО ПЕРЕКЛЮЧЕНИЯ
Схема импульсного источника питания 0-30 В для лаборатории Схема печатной платы все файлы альтернативные ссылки: 0-30 В-0-3a-Adjust-Switching-lab-power-supply.rar альтернативная ссылка 2
Высокопроизводительный портативный настольный источник питания постоянного тока: сэкономьте деньги и освободите место на скамейке, построив свой собственный
Настольный источник питания, а также паяльник и портативный мультиметр, необходимый элемент любой электроники набор инструментов лаборатории.Некоторым проектам требуется только один постоянный напряжение питания, но чаще правильно тестировать и отладка проекта требует различных напряжений и токи. Значительное время на отладку можно сэкономить за счет с помощью высокоэффективного регулируемого настольного питания для по желанию набирайте напряжение и ток. К сожалению, типичный универсальные настольные регулируемые блоки питания громоздки и дорогие — по крайней мере, более эффективные версии — и имеют ряд ограничений. Нет действительно портативных (портативный) из-за необходимых структур отвода тепла.Более того, даже дорогостоящие расходные материалы не поддерживают нулевое ток или напряжение, и не может соответствовать переходным и короткая производительность, демонстрируемая представленной здесь поставкой.
Демонстрационная схема DC2132A компанииLinear Technology — это высокопроизводительный, компактный и эффективный настольный источник постоянного тока
Сэкономьте деньги и освободите место на столе, создав собственный высококачественный настольный источник питания. Ключевым компонентом этого источника питания является линейный регулятор LT3081, окруженный коротким списком простых в использовании компонентов (см. Рисунок 1).Уникальный источник опорного тока LT3081 и выходной усилитель с повторителем напряжения позволяют подключать два линейных регулятора параллельно для регулирования выходного тока и напряжения до 3 А и более 24 В. Линейные регуляторы на выходе подавляют пульсации на выходе, не требуя больших выходных конденсаторов, что приводит к действительно плоскому выходу постоянного тока и небольшому размеру.
Рис. 1. Структурная схема стендового источника постоянного тока в смешанном режиме. Центральными компонентами являются параллельные LT3081, которые обеспечивают низкий уровень пульсаций на выходе и устанавливают ограничения по напряжению и току.
В показанном здесь источнике питания параллельным LT3081 предшествует высокопроизводительный синхронный понижающий преобразователь, в данном случае 40 В, 6 А LT8612. Не требуется ни радиатора, ни вентилятора, в отличие от линейных настольных источников питания с силовыми транзисторами, которым требуются радиаторы и принудительный воздушный поток (вентиляторы) для достаточного рассеивания тепла.
LT8612 эффективно понижает от 10 В до 40 В при высоком или низком токе до динамически адаптируемого выходного напряжения, которое остается чуть выше выходного напряжения настольного источника питания (выход линейного регулятора LT3081).Выходной сигнал LT8612 имеет низкий уровень пульсаций, а преобразование эффективно во всем диапазоне настольного питания. Потери мощности в устройствах LT3081 сводятся к минимуму за счет того, что их входной сигнал остается чуть выше пропадания. Этот настольный комплект включает необычную возможность регулировки предельного напряжения и тока до нуля. Полная схема этого настольного источника постоянного тока в смешанном режиме показана на рисунке 2.
Рис. 2. Полный комплект настольного источника питания постоянного тока 0–24 В, 0–3 А.
Линейные регуляторы обычно используются на выходе понижающих преобразователей для подавления пульсаций импульсного источника питания с минимальным снижением эффективности.Параллельные линейные стабилизаторы LT3081, показанные на рисунках 1 и 2, снижают пульсации на выходе LT8612 и точно регулируют постоянное напряжение и постоянный ток на выходе источника питания. LT3081 обладает уникальной способностью (для линейных регуляторов) легко подключаться параллельно для более высоких выходных токов.
На рисунках 1 и 2 показано, как два параллельных LT3081 удваивают поддерживаемый ток одного LT3081 (1,5 А) до 3 А. Несколько параллельных соединений и два небольших балластных резистора 10 мОм — все, что необходимо для точного распределения тока между ними без потери точности выходного напряжения.Легкодоступные высококачественные потенциометры 10 кОм и 5 кОм обеспечивают управление в диапазоне от 0 В до 24 В и от 0 В до 3 А при подключении к контактам SET и ILIM. Потенциометры с большим количеством оборотов и большей точностью, безусловно, могут быть использованы для создания настольного питания.
Минимальный предел тока настольного источника питания 0А. LT3081 гарантирует выходной ток 0 А, пока сопротивление резистора ILIM меньше 200 Ом. Небольшой резистор 100 Ом включен последовательно с потенциометром ILIMIT, чтобы максимально увеличить диапазон поворота и по-прежнему гарантировать нулевой ток, когда два регулятора используются параллельно.
Минимальное выходное напряжение стендового блока питания 0В. LT3081 гарантирует выход 0 В до тех пор, пока на выходе подается 4 мА. Лучший способ сделать это — использовать отрицательный источник питания для получения 8 мА для двух LT3081. Стабилизатор LTC3632 –5 В легко создает эту отрицательную нагрузку, рассеивает мало энергии и занимает лишь крохотное пространство на плате.
После точного набора целевого напряжения вы не хотите видеть дрейф напряжения питания на стенде при добавлении, увеличении или уменьшении нагрузки.В идеале он должен поддерживать плоский профиль регулирования во всем диапазоне токов нагрузки вплоть до предельного значения тока (рисунки 3 и 4).
Рис. 3. График V-I для стендового источника постоянного тока показывает регулирование нагрузки <50 мВ от 0 до 3 А, падение с обрыва выше 3,1 А.
Рис. 4. Регулируемый предел тока смещает границу, показанную на рис. 3, до любого значения от 3,1 А до 0,0 А.
Показанный здесь источник питания удовлетворяет этому требованию. Выходной сигнал LT3081 остается практически неизменным от 0А до 1.5А. Минимальный нагрев ИС помогает поддерживать регулировку нагрузки стендового источника питания ниже 50 мВ для любого выходного напряжения, как показано на Рисунке 3, даже при 15 мВ из-за балластных резисторов 10 мОм. Падение 1,7 В на линейных регуляторах при токе 1,5 А вызывает повышение температуры всего на 30 ° C с корпусом DD, как показано на рисунке 5.
Рис. 5. Термосканы настольного источника питания в условиях высокой мощности и короткого замыкания показывают, что компоненты стендового источника постоянного тока остаются холодными без использования радиатора или вентилятора.
Установка ручки ограничения тока должна быть такой же детерминистической, как и ручка напряжения. Если ограничение тока установлено на 3,0 А, стендовый источник питания должен ввести ограничение тока ровно на 3,0 А и никогда не обеспечивать более высокий ток. Высокопроизводительный стендовый источник питания должен демонстрировать кривую регулирования напряжения по отношению к току, которая остается плоской до тех пор, пока не упадет со скалы до 0 В при достижении предела тока. На рис. 4 показано, что стендовый источник питания работает должным образом, независимо от того, где установлен предел тока.
Портативный настольный источник питания постоянного тока может выдавать ток 0–3 А при любом напряжении от 0 до 24 В при входном напряжении от 10 до 40 В, а входное напряжение как минимум на 5 В выше желаемого выходного напряжения. Вход может поступать от входного преобразователя переменного / постоянного тока, доступного при напряжениях 19 В, 28 В и 36 В. Это также может быть простой трансформатор на 24 В переменного тока, выпрямительный мост и конденсатор 10 мФ, который дает примерно 34 В с пульсацией 1–2 В.
Понижающий импульсный преобразователь LT8612 блока питания понижает входное напряжение переменного / постоянного тока (от 10 В до 40 В) до любого напряжения в диапазоне от 0 В до чуть ниже его входного напряжения.Низкая пульсация на выходе преобразователя на основе LT8612 дополнительно снижается на 1,7 В на параллельном линейном стабилизаторе LT3081 до конечного стабилизированного напряжения, при этом пульсации на выходе почти не возникает.
Высокая эффективность сохраняет прохладу
Синхронный понижающий преобразователь LT8612 легко поддерживает 3 А и эффективно понижает выходное напряжение до 1,7 В от входов до 40 В даже при относительно высокой частоте переключения, 700 кГц, из-за низкого минимального времени включения 40 нс. КПД показан на рисунке 6.Высокий КПД при высокой частоте переключения позволяет реализовать преобразователь с несколькими небольшими компонентами, которые остаются холодными при высокой мощности.
Рисунок 6. КПД и потери мощности стендового источника постоянного тока для различных входных и выходных условий.
Дифференциальная обратная связь
LT8612 использует схему дифференциальной обратной связи, показанную на рисунках 1 и 2, для регулирования своего выхода (вход пары LT3081) на 1,7 В выше выходного напряжения настольного источника питания (выход пары LT3081).LT3081 работает лучше всего, когда его входное напряжение как минимум на 1,5 В выше его выхода, при этом 1,7 В используется здесь в качестве запаса для переходных процессов.
Дифференциальная обратная связь продолжает работать во время переходных процессов на выходе и коротких замыканий, как показано на рисунках 7 и 8. Когда выход закорочен на GND, выход LT8612 следует за ним на GND. Когда выходной сигнал внезапно увеличивается при срабатывании короткого замыкания или изменении потенциометра, LT8612 следует за возрастающим выходным сигналом LT3081, стремясь оставаться на 1,7 В выше быстро меняющегося выходного сигнала.Выходного конденсатора разумного размера 100 мкФ достаточно, чтобы обеспечить стабильность LT8612 в широком диапазоне условий, сохраняя при этом относительно быструю переходную характеристику, хотя он никогда не будет двигаться так быстро, как линейные регуляторы.
Рис. 7. Переходная характеристика выходного сигнала 5 В, от 1 А до 3 А показывает (а) низкие пульсации на выходе и (б) выходной сигнал LT8612 отслеживает переходный процесс LT3081 V OUT .
Рис. 8. Переходный процесс при перегрузке (a) и переходный процесс короткого замыкания (b) на выходе 5V хорошо переносятся стендовым источником постоянного тока.
Эта установка может быть расширена для поддержки выходного тока 4,5 А с помощью трех параллельных линейных регуляторов LT3081. Импульсный стабилизатор не требует изменений, так как LT8612 поддерживает пиковый ток переключения 6 А.
Выходное напряжение настольного источника питания легко регулируется вручную с помощью потенциометра, подключенного к контактам SET пары LT3081. Кажется достаточно простым, что SET выводит на каждый источник 50 мкА и что их суммарный ток, умноженный на регулируемый резистор, может генерировать правильное выходное напряжение без дополнительных компонентов.Тем не менее, этого тока может быть недостаточно для надежного настольного источника питания, поскольку он может немного дрейфовать в зависимости от температуры LT3081.
Одним из способов борьбы с дрейфом тока является использование источника более высокого тока для управления потенциометром вывода SET. LT3092 — это точный источник тока, который работает до 40 В и используется для управления точным током 2,4 мА для выхода 24 В с резистором 10 кОм. Его выходной ток легко отрегулировать, изменив установленное значение резистора, когда требуется другое максимальное выходное напряжение.Максимальное выходное напряжение должно составлять 5,5 В при использовании источника 12 В, 15 В при использовании источника 24 В и 24 В при использовании источника 36 В. Входной переключатель используется в схеме для отключения питания LT3092, когда переключатель питания выключен. Отсоединение этой ИС от V IN , когда переключатель выключен, предотвращает ее постоянный ток от зарядки ненагруженного выхода настольного источника питания, спасая инженеров от потенциально опасных обстоятельств.
Функции выводов LT3081 SET и ILIM позволяют легко программировать выходное напряжение и ток на любом уровне с помощью простого поворота потенциометра.Параллельные LT3081 имеют одинаковое соединение контактов SET и напряжение, а также те же контакты контактов ILIM + и ILIM –. Потенциометры 10 кОм и 5 кОм выбраны для получения диапазонов выходного сигнала от 0 В до 24 В и от 0 А до 3 А (или немного выше для небольшого запаса мощности). Потенциометры легко получить, и их можно выбрать из ряда параметров производительности и стоимости.
Стендовая поставка, показанная на фотографии на странице 12, включает однооборотные потенциометры с легко поворачиваемыми валами и прямоугольными соединениями печатной платы.Их можно установить на боковом отверстии коробки, если вы решите заключить печатную плату в защитный чехол. Металлокерамический элемент предотвращает временной и температурный дрейф с рейтингом 150 ppm / ºC по сравнению с номиналом 1000 ppm / ºC аналогичных версий пластиковых элементов. Менее дорогие пластмассовые потенциометры по-прежнему отлично подходят для использования со стандартными настольными приборами, или десятиоборотные прецизионные потенциометры могут использоваться для очень точной подстройки как пределов напряжения, так и тока.
Если дрейф V OUT из-за температурного коэффициента I SET не является проблемой, источник тока LT3092 можно удалить, а потенциометр 10k можно заменить потенциометром 250k с аналогичным качеством.
Хотя установить потенциометр SET на 0 В с помощью короткого замыкания на GND — тривиально, для того, чтобы напряжение снизилось до 0 В., на LT3081 необходимо вытащить 4 мА. Резистивная предварительная нагрузка от V OUT к GND вытягивает ток только тогда, когда V OUT не равно нулю, поэтому вместо этого используется отрицательный источник питания для поглощения тока с выхода 0 В. Отрицательный стабилизатор LTC3632 представляет собой небольшой источник −5 В, который потребляет −8 мА через небольшой резистор через −5 В и V BE под землей (−0,6 В). Хотя LTC3632 выключается при выключении переключателя питания, он продолжает работать при включенном питании, даже если выходное напряжение выше 0 В.Следует проявлять осторожность при выборе транзистора с отрицательным током, поскольку -8 мА • Падение 24,6 В может быть значительным источником тепла, если тепловое сопротивление транзистора превышает 250 ° C / Вт или отрицательный ток увеличивается до более -10 мА.
LT3081 также обеспечивает контроль ограничения тока 0А независимо от настройки выходного напряжения. С ручкой тока, повернутой до упора вверх, настольный источник питания обеспечивает резкое ограничение тока примерно на уровне 3,1 А. Если нагрузка увеличивается выше этой точки, напряжение падает с обрыва.Простой поворот ручки перемещает этот резкий скачок ограничения тока вниз до любого другого значения вплоть до 0 А, как показано на Рисунке 4.
Самым экстремальным состоянием перегрузки является короткое замыкание, которое не только толкает выход через обрыв, но и полностью опускает его на землю. Настольный источник питания аккуратно поддерживает свой предел тока при коротком замыкании и регулирует выход LT8612 до 1,7 В, обеспечивая источник ограниченного тока через LT3081 и в короткое замыкание.
Результаты переходного короткого замыкания показаны на рисунке 8, демонстрируя регулирование короткого замыкания ИС и короткоживущего выброса разряда выходного конденсатора.Всплеск короткого замыкания <10 мкс составляет 1/500 длительности обычно используемого лабораторного настольного источника питания в смешанном режиме большой мощности (с аналогичными настройками), как показано на рисунке 9. Длительный всплеск разряда, показанный на рисунке 9, может потенциально повредить испытанию. недостатком дорогих, широко используемых универсальных настольных источников питания из-за низкой скорости транзистора мощности и / или более высокой выходной емкости.
Рис. 9. Результаты переходных процессов для дорогостоящего настольного источника питания Xh200-10 в смешанном режиме, который демонстрирует медленные переходные процессы и отклик на короткое замыкание по сравнению с настольным источником постоянного тока, описанным в этой статье, с аналогичными настройками (рис. 8).
Подключите к выходу мультиметр или простой аналоговый дисплей для получения точных показаний напряжения. Добавьте еще один мультиметр или дисплей последовательно с выходом для точного считывания тока. Если вы хотите избежать добавления дополнительного измерительного оборудования последовательно с выходом, клемму IMON можно также использовать для преобразования напряжения в ток.
Блок питания лабораторного стола Sorenson XHR100-10 при коротком замыкании с ограничением 1,5 А
Рис. 10. Настольный источник питания постоянного тока имеет низкую пульсацию на выходе для смешанного источника питания с малыми 60 мкФ C OUT .
Этот источник питания постоянного тока представляет собой удобный инструмент для генерации постоянного напряжения или тока на лету в лаборатории. Просто включите питание 10–40 В постоянного тока, включите переключатель и поверните ручки. Поскольку они небольшие и недорогие, некоторые из этих портативных настольных источников питания могут питаться от одного и того же источника постоянного тока, когда требуются несколько выходов и токов цепи.
Создать полностью автономный стендовый источник питания просто, добавив простой преобразователь переменного тока в постоянный на передней панели.На рисунке 11 показан простой трансформатор от 120 до 24 В переменного тока (5: 1), выпрямительный мост и выходной конденсатор 10 мФ, которые в совокупности дают 34 В постоянного тока с небольшой пульсацией. Этот простой преобразователь переменного тока в постоянный можно использовать для получения максимального выходного напряжения настольного источника питания 22 В.
Рис. 11. Простая комбинация трансформатора 24 ВА, выпрямительного моста и конденсатора обеспечивает входное напряжение 34 В переменного / постоянного тока для полного решения.
Выпрямительный мост должен иметь диоды Шоттки с номиналом 3 А или выше.Если они сильно нагреваются, вы все равно можете избежать добавления радиатора, заменив Schottkys на контроллер идеального диодного моста LT4320 и четыре полевых МОП-транзистора для уменьшения нагрева моста. Размер выходного конденсатора 10 мФ можно изменить, чтобы отрегулировать выходную пульсацию. При полной мощности конденсатор 10 мФ будет создавать пульсации около ± 1 В на входе 34 В постоянного тока.
Вы также можете собрать универсальный настольный источник питания, подключив любой универсальный преобразователь переменного тока в постоянный черный ящик с номиналом 12 В – 36 В, 3 А. Любой преобразователь переменного тока в постоянный, снятый со старого ноутбука или купленный в магазине электроники, должен работать.Единственным ограничением является то, что максимальное выходное напряжение настольного источника питания должно оставаться примерно на 5 В ниже минимального номинального значения источника входного напряжения.
Создайте свой собственный высокопроизводительный стенд постоянного тока для регулирования постоянного напряжения и тока 0–24 В и 0–3 А, используя пару параллельных линейных стабилизаторов LT3081, синхронный понижающий LT8612, источник тока LT3092 и крошечный отрицательный источник питания LTC3632. Настольный источник питания отличается низкой пульсацией на выходе с низкой выходной емкостью, отличной переходной характеристикой, регулируется до 0 В и 0 А, остается в режиме регулирования во время короткого замыкания и остается холодным без громоздких радиаторов.Его можно легко подключить к преобразователю переменного тока в постоянный или запитать от источника постоянного тока. Готовое решение для поставки стендов отличается низкой стоимостью, небольшими размерами и простотой сборки, несмотря на его высочайшие эксплуатационные характеристики.
Лабораторные импульсные источники питания
Источник питания постоянного тока «PeakTech® P 6227» 0-60 В / 0-6 А с 2 портами USBЭтот недавно разработанный лабораторный источник питания предлагает управляемый 0…60 В или основной выход 0 … 6 А постоянного тока с максимальной продолжительной мощностью 150 Вт. Для разработчиков этот лабораторный источник питания предлагает два переключаемых выхода USB с собственным ЖК-дисплеем для значений напряжения и тока. Если вы используете нагрузку до 2,5 А, вы можете установить выходное напряжение до 60 В. Если вы хотите использовать более высокий ток до 6А, установите максимальную нагрузку 25 В. Конечно, все ступени также можно регулировать между ними, например 30 В / 5 А, 40 В / 3,7 А или 50 В / 3 А. Настройка тока и напряжения также может производиться при выключенном выходе.Нажав ручку регулировки тока или напряжения, можно точно / грубо переключить разрешение настройки с 1 мА на 100 мА или с 10 мВ на 1 В. Благодаря широкому спектру функций и простоте эксплуатации с наилучшим соотношением цены и качества этот лабораторный источник питания идеально подходит для сферы образования, хобби, развития и обслуживания.
TOAUTO DC Power Supply Variable 30V 10A , Регулируемый импульсный регулируемый лабораторный источник питания с 4-значным большим дисплеем, курсом и точной регулировкой (0.01V-0.001A) , Вентилятор с регулируемой температурой и низким уровнем шума: Amazon.com: Industrial & Scientific
5.0 из 5 звезд Хороший источник питания по цене, точность в пределах +/- 0,002 В, бесшумная работа при низких нагрузках
Автор Роб, 6 сентября 2021 г.
Плюсы:
Он делает то, что должен, обеспечивает питание при указанном напряжении до 30 В (+ несколько мВ) и до 6 А с максимальным током, устанавливаемым пользователем.
У меня не было каких-либо значительных высоких нагрузок, которые я мог бы включить в устройство во время тестирования, но у меня был неисправный блок питания для ноутбука, который я отсек и подключил к источнику питания 20 В при 3,5-4 А. (3-е изображение) Я отключил ноутбук от этого источника питания некоторое время, и вентилятор не работал ни в какой момент.
В руководстве заявлена эффективность 70% или выше — я еще не проверял это, но сделаю это, когда найду свой ваттметр.
Качество сборки на аппарате неплохое, за исключением следующих мелких недочетов …
Очень хотелось бы, чтобы на заглушках клемм были «зубцы».
(4-е изображение) Не большая проблема, и я уверен, что могу заказать замену, если я действительно хочу, чтобы они были честными, я бы никогда не использовал их, если бы устройство поставлялось с проводом с банановыми вилками вместо вилок для подключения к источнику питания поставка
Хотелось бы иметь клемму заземления.Я заметил, что на боковой стороне корпуса есть странный винт, отличный от всех других винтов, который, как мне кажется, является винтом заземления, но, вероятно, предназначен для заземления корпуса, но в крайнем случае я мог бы его вставить. При написании обзора мне пришло в голову, что блок может быть заземлен изнутри. Я постараюсь в ближайшее время это проверить.
Наконец, кнопка включения / выключения не кажется «правильной»: при нажатии на кнопку слышен щелчок, но не щелчок при отпускании кнопки. Я не совсем уверен, какой тип переключателя здесь используется, но очень странно не получить тактильную реакцию второго щелчка при нажатии кнопки.
Вот и вся моя критика в адрес этого замечательного устройства. Если бы я не упоминал об этом раньше, кажется, что он сделан хорошо, выглядит красиво и занимает очень мало места. По цене я очень рекомендую это.
Как собрать лабораторный блок питания за 10 простых шагов | reichelt.com
В этом практическом руководстве мы покажем вам, как легко собрать лабораторный источник питания. Мы решили использовать модуль программируемого управляющего напряжения с постоянным напряжением и постоянным током и установить его в подходящий корпус.
Проект
Подходит для: Начинающих с базовыми знаниями
Требуемое время: Прибл. два часа
Бюджет: Около 80 фунтов стерлингов
Что вам потребуется: JOY-IT DPS 5015 Лабораторный источник питания и соответствующий корпус: JOY-IT DPS CASE, термоусадочная трубка для сборки корпуса
Может быть расширен за счет: Модуль Micro-USB для настройки лабораторного источника питания с компьютером или модуль Bluetooth для управления устройством со смартфоном.
Вам также понадобятся: Базовое оборудование электронных инструментов, паяльная станция и т. Д.
1. Подготовьте небольшую печатную плату
Начиная с небольшой печатной платы, припаяйте к ней вентилятор для корпуса. Затем установите тумблер и проложите кабель к основной плате. Поскольку на этой плате нет подключения для вентилятора, вентилятор для корпуса необходимо припаять к маленькой плате.
Затем необходимо перерезать кабель прилагаемого вентилятора. Теперь вы должны осторожно удалить изоляцию с двух проводов так, чтобы провода были прибл.4 мм бесплатно.
Припаяйте красный кабель (+) к отметке «+», а черный кабель к отметке «-». Проденьте в отверстия предварительно зачищенные концы и припаяйте их с двух сторон.
Внимание: Обрежьте эти провода на задней стороне боковым ножом, чтобы в дальнейшем они не могли вызвать короткое замыкание!
2. Припаиваем кнопку
Далее нужно припаять кнопку, чтобы можно было включать и выключать лабораторный блок питания. Используйте красный и черный кабель меньшего диаметра.Припаяйте их к тумблеру, как показано на картинке.
Контакты изолированы термоусадочной трубкой для предотвращения короткого замыкания.
3. Установите соединение между маленькой платой и основной платой
Теперь подготовьте и припаяйте линию питания от маленькой платы к основной плате.
Используйте кабели (красный кабель «+» и черный кабель «-») с большим диаметром для этой линии питания. Отрежьте их примерно через 30 см. 9см.
Внимание: не обрезайте слишком много кабелей, иначе в дальнейшем они могут закоротить выходы.
Обе стороны должны быть зачищены до прим. 5 мм и вилочный кабельный наконечник должны быть прикреплены к одному концу двух кабелей. Эти концы также изолированы термоусадочной трубкой для предотвращения короткого замыкания.
Другой конец двух кабелей должен быть припаян к небольшой печатной плате корпуса.
Обратите внимание на полярность. Красный = «+» и черный = «-».
4. Припаиваем тумблер
Теперь можно паять тумблер. Убедитесь, что вы пропустили кабель переключателя через корпус или прикрепили тумблер к корпусу.Припаяйте концы кабеля переключателя к контактным площадкам «KEY» на небольшой печатной плате. Припаяйте красный кабель к прямоугольной контактной площадке, а черный кабель к круглой контактной площадке.
5. Установите основную плату
Теперь вы можете закрепить главную плату четырьмя винтами на нижней стороне корпуса и установить соединения входов и выходов блока питания. Два разъема спереди и два сзади.
Прикрутите красные разъемы вверху и черные разъемы внизу.Подключите соединения следующим образом:
6. Подготовьте кабель для выходного напряжения
Следующим шагом будет изготовление кабеля для выходного напряжения. Вам нужно будет повторно использовать кабели большего диаметра. Зачистите оба конца прибл. 5мм. Прикрепите вилочные кабельные наконечники с обеих сторон.
7. Установите вентилятор
Теперь вы можете закрепить вентилятор изнутри, вставив четыре гайки сзади в вентилятор и прикрутив четыре винта снаружи к вентилятору.
8.Подключите печатную плату и переключатель
Теперь прикрепите небольшую печатную плату к задней части корпуса двумя гайками.
Зафиксируйте небольшую плату, затем смонтируйте все кабели. Сначала подключите кабель входного напряжения («IN +» и «IN-»).
Затем вы можете подключить кабель выходного напряжения («OUT +» и «OUT-»).
Подключите конец кабеля выходного напряжения к передним клеммам.
9. Подключаем дисплей
Последнее, что нужно подключить, это дисплей с двумя кабелями на материнской плате.Один кабель предназначен для дисплея («LCD») и один кабель для кнопок («KEY»). Разъемы для кабелей обозначены как на плате, так и на дисплее. После подключения кабелей все, что вам нужно сделать, это прикрепить дисплей к корпусу.
10. Окончательная сборка
После того, как вы соединили все кабели, прикрутили печатные платы, защелкнули дисплей и тумблер и прикрутили вентилятор, корпус готов.
Теперь вы можете прикрутить корпус четырьмя винтами с обеих сторон.
Фотографии: JOY-IT
Разница между линейным источником питания и SMPS (со сравнительной таблицей)
Линейный источник питания и Импульсный источник питания подает питание постоянного тока на электрические и электронные схемы, но на этом сходство заканчивается. Решающим фактором, который отличает линейный источник питания от SMPS, является порядок работы. Линейный источник питания преобразует высокое напряжение переменного тока в низкое с помощью трансформатора, а затем преобразует его в постоянное напряжение, в то время как импульсный источник питания сначала преобразует переменный ток в постоянный ток, а затем преобразует это постоянное напряжение в желаемое напряжение.
Импульсный источник питания также сокращенно называют SMPS. SMPS чаще всего используется в мобильных зарядных устройствах , двигателях постоянного тока и т. Д. Напротив, линейный источник питания используется в высокочастотных приложениях, таких как радиочастотное приложение и т. Д.
Еще одним важным фактором, который создает разницу между этими линейными источниками питания и SMPS, является размер. Линейный источник питания громоздкий, а ИИП — легкий. Это делает SMPS портативным и может быть легко использован где угодно, в то время как линейный источник питания может использоваться только для лаборатории или больших электрических и электронных схем.
Мы обсудим некоторые более существенные различия между линейными и импульсными источниками питания в сравнительной таблице, но перед этим давайте осветим дорожную карту в этой статье.
Содержание: Линейный источник питания и ИИП
- Сравнительная таблица
- Определение
- Ключевые отличия
- Заключение
Сравнительная таблица
Параметры | Линейный источник питания | Импульсный источник питания (SMPS) |
---|---|---|
Определение | Сначала он завершает понижение напряжения переменного тока, а затем преобразует его в постоянный ток. | Сначала он преобразует входной сигнал в постоянный ток, а затем понижает напряжение до желаемого уровня. |
КПД | Низкий КПД, то есть около 20-25% | Высокий КПД, то есть около 60-65% |
Регулировка напряжения | Регулировка напряжения осуществляется регулятором напряжения. | Регулировка напряжения осуществляется по цепи обратной связи. |
Используемый магнитный материал | Используется сердечник из стали или CRGO | Используется ферритовый сердечник |
Вес | Он громоздкий. | Он менее громоздкий по сравнению с линейным блоком питания. |
Надежность | Более надежен по сравнению с SMPS. | его надежность зависит от транзисторов, используемых для переключения |
Сложность | Менее сложен, чем SMPS. | Более сложный, чем линейный источник питания. |
Переходный отклик | Обладает более быстрым откликом. | Обладает более медленным откликом. |
РЧ помехи | Нет РЧ помех | Экранирование РЧ требуется, поскольку переключение создает больше РЧ помех. |
Шум и электромагнитные помехи | Он невосприимчив к шуму и электромагнитным помехам. | Влияние шума и электромагнитных помех достаточно велико, поэтому требуются фильтры электромагнитных помех. |
Приложения | Используется в приложениях звуковой частоты и радиочастотах. | Используется в зарядных устройствах мобильных телефонов, двигателях постоянного тока и т. Д. |
Определение
Линейный источник питания
Линейный источник питания представляет собой схему источника питания, которая используется в электрических и электронных схемах для подачи питания постоянного тока на схему.Он состоит из понижающего трансформатора, выпрямителя, цепи фильтра и регулятора напряжения.
На переменный ток всегда подается высокое напряжение, потому что подавать переменный ток высокого напряжения экономично. Частота сигнала переменного тока очень низкая, т.е. 50 Гц или 60 Гц. Для понижения напряжения переменного тока используется понижающий трансформатор. Размер трансформатора большой для линейного источника питания.
Трансформатор, который используется для понижения низкочастотного сигнала переменного тока, будет громоздким.Если частота сигнала переменного тока высока, можно использовать небольшой трансформатор, но в этом приложении сигнал переменного тока состоит из низкочастотного переменного тока, поэтому для схемы требуется большой и громоздкий трансформатор.
Понижающее напряжение затем передается в схему выпрямителя, чтобы преобразовать его в постоянный ток. Напряжение постоянного тока, получаемое от выпрямителя, состоит из импульсов переменного тока. Таким образом, схема фильтра используется для удаления пульсаций переменного тока.
Полученное постоянное напряжение не остается постоянным; он изменяется с изменением входного напряжения или номинала нагрузочного резистора.Такое изменение выходного напряжения нежелательно. Поэтому после фильтрации сигнала используется регулятор напряжения.
Регулятор напряжения состоит из переменного резистора, значение которого изменяется в зависимости от требуемой мощности. Этот переменный резистор вызывает падение напряжения, когда требуемое выходное напряжение низкое.
Недостаток линейного блока питания
Недостатком линейного источника питания является то, что для использования регулятора напряжения требуется сток, который увеличивает размер источника питания.Регулятор напряжения рассеивает мощность, из-за чего происходит омических потерь с, это увеличивает температуру, и, следовательно, требуется радиатор.
Вследствие использования радиатора и трансформатора большого размера размер линейного блока питания становится больше, что делает блок питания громоздким в использовании. Кроме того, рассеяние, вызванное переменным резистором, снижает КПД линейного источника питания до 25-50%.
Импульсный источник питания
Импульсный источник питания работает по принципу переключения с использованием полевого МОП-транзистора . Он состоит из схемы выпрямителя, схемы фильтра, прерывателя, контроллера прерывателя, выходного трансформатора и цепи фильтра.
Принцип работы импульсного источника питания основан на коммутационной технике. Низкочастотный переменный ток сначала преобразуется в сигнал постоянного тока. Затем этот сигнал постоянного тока прерывается с помощью схемы прерывателя. Схема прерывателя состоит из переключающего транзистора MOSFET, который включается или выключается с помощью схемы контроллера прерывателя.
Выходной сигнал, полученный Chopper, представляет собой высокочастотный сигнал постоянного тока.Теперь снова используется понижающий трансформатор, чтобы преобразовать этот высокочастотный сигнал высокого напряжения в сигнал низкого напряжения. Понижающий трансформатор, используемый в этом случае, будет иметь небольшие размеры, потому что трансформатор, используемый для работы в высокочастотном режиме, имеет небольшие размеры.
Это преимущество использования схемы SMPS (импульсный источник питания). Блок питания такой конфигурации не является громоздким и, следовательно, портативным. Регулировка напряжения в SMPS осуществляется цепью обратной связи. Схема обратной связи принимает входное значение от выходного постоянного напряжения и выдает выходной сигнал на контроллер прерывателя.Контроллер прерывателя генерирует стробирующий импульс в соответствии с выходным постоянным током.
Следовательно, регулирование напряжения в SMPS не рассеивает мощность и, следовательно, не требует стока. Это увеличивает эффективность источника питания SMPS, поскольку отсутствуют омические потери, а размер также невелик. КПД SMP
S находится в диапазоне 65-75%.
Ключевые различия между линейным источником питания и импульсным источником питания
- Основное различие между линейным источником питания и SMPS заключается в том, что линейный источник питания сначала преобразует высокое напряжение переменного тока в низкое напряжение переменного тока, а затем выполняется процедура выпрямления.Напротив, SMPS сначала преобразует сигнал переменного тока в сигнал постоянного тока, а затем происходит понижение сигнала напряжения.
- Линейный источник питания использует регулятор напряжения для регулирования напряжения выходного напряжения, в то время как SMPS использует цепь обратной связи для регулирования напряжения.
- Рассеиваемая мощность также играет ключевую роль в дифференциации линейных источников питания и SMPS. Линейный источник питания также рассеивает мощность и, следовательно, требует радиатора, но SMPS не требует радиатора , поскольку нет рассеивания мощности.
- Понижающий трансформатор, используемый в линейном источнике питания , громоздкий , в то время как в SMPS понижающий трансформатор легкий.
- Уровень шума больше в SMPS из-за переключающего действия; это делает SMPS непригодным для аудио- и радиочастотных приложений. Линейный источник питания невосприимчив к шумовым помехам и поэтому используется в звуковых и радиочастотных приложениях.
- Существует основное различие между КПД линейного источника питания и ИИП.Эффективность линейного источника питания низкая, около 20-25% из-за омических потерь, в то время как эффективность SMPS высока, то есть около 65-75%.
Заключение
Линейный источник питания сначала понижает напряжение переменного тока, затем преобразует его в постоянный ток, в то время как SMPS сначала преобразует в постоянный ток, а затем использует понижающий трансформатор для получения желаемого напряжения. У SMPS есть недостаток, заключающийся в том, что он создает шумовые помехи из-за переключения. Кроме того, коммутация также создает электромагнитных помех и RF помех , таким образом, EMI фильтры и RF экранирование также используется вместе со схемой SMPS.
.