Как выбрать оптимальный источник питания для встраиваемой системы. Какие бывают виды источников питания. На что обратить внимание при выборе. Особенности применения разных типов источников питания в различных устройствах.
Основные виды источников питания для встраиваемых систем
При разработке встраиваемой системы выбор источника питания является одной из ключевых задач. От правильного выбора зависит надежность, производительность и автономность устройства. Рассмотрим основные виды источников питания, используемых во встраиваемых системах:
- Сетевое питание (220 В)
- Перезаряжаемые аккумуляторы (например, литий-ионные)
- Питание через интерфейсы (USB, PoE и др.)
- Неперезаряжаемые батареи
- Источники бесперебойного питания (ИБП)
- Резервные источники питания
Выбор конкретного типа источника зависит от требований к устройству и условий его эксплуатации.
Как выбрать оптимальный источник питания для встраиваемой системы
При выборе источника питания для встраиваемой системы необходимо учитывать следующие факторы:
- Требуемая мощность и напряжение питания
- Условия эксплуатации (температура, влажность и др.)
- Требования к автономности работы
- Габаритные ограничения
- Стоимость
- Необходимость резервирования питания
Рассмотрим эти факторы подробнее.
Требуемая мощность и напряжение питания
Это один из ключевых параметров при выборе источника питания. Необходимо тщательно рассчитать энергопотребление всех компонентов системы и выбрать источник с запасом по мощности. Также важно учесть требуемые уровни напряжений для питания различных узлов.
Условия эксплуатации
Температура, влажность, вибрации и другие факторы окружающей среды могут существенно влиять на работу источника питания. Например, литий-ионные аккумуляторы плохо работают при высоких температурах. В жестких условиях эксплуатации может потребоваться специализированный защищенный источник питания.
Требования к автономности
Если устройство должно работать длительное время без подзарядки, оптимальным выбором будут аккумуляторы большой емкости или неперезаряжаемые батареи с длительным сроком службы. Для стационарных устройств этот фактор менее критичен.
Габаритные ограничения
В компактных устройствах размер источника питания может быть критичным фактором. В этом случае предпочтение отдается миниатюрным аккумуляторам или специализированным компактным импульсным преобразователям.
Стоимость
Выбор источника питания может существенно влиять на конечную стоимость устройства. Необходимо найти баланс между ценой и требуемыми характеристиками.
Необходимость резервирования питания
Для ответственных систем часто требуется резервный источник питания на случай отказа основного. Это может быть дополнительный аккумулятор, ИБП или неперезаряжаемая батарея для сохранения критичных данных.
Особенности применения различных типов источников питания
Рассмотрим подробнее особенности и области применения основных типов источников питания для встраиваемых систем.
Сетевое питание (220 В)
Сетевое питание является оптимальным выбором для стационарных устройств, не требующих автономной работы. Преимущества:
- Неограниченное время работы
- Высокая доступная мощность
- Низкая стоимость
Недостатки:
- Необходимость преобразования напряжения
- Зависимость от наличия электросети
- Подверженность помехам и скачкам напряжения
Для питания от сети обычно используются линейные или импульсные источники питания. Импульсные источники обеспечивают более высокий КПД, но могут создавать высокочастотные помехи.
Перезаряжаемые аккумуляторы
Перезаряжаемые аккумуляторы широко применяются в портативных устройствах. Наиболее распространены литий-ионные аккумуляторы. Их преимущества:
- Высокая плотность энергии
- Возможность многократной перезарядки
- Отсутствие эффекта памяти
Недостатки:
- Ограниченное время работы
- Деградация емкости со временем
- Чувствительность к температуре
Литий-ионные аккумуляторы требуют специальных схем заряда и защиты от переразряда. Их применение оптимально в мобильных устройствах с регулярной подзарядкой.
Питание через интерфейсы
Питание через USB или PoE удобно для сетевых устройств. Преимущества:
- Совмещение питания и передачи данных
- Стандартизация разъемов
- Простота подключения
Недостатки:
- Ограничение по мощности
- Зависимость от наличия сети
Такой способ питания оптимален для маломощных сетевых устройств — сенсоров, камер, VoIP-телефонов и т.п.
Неперезаряжаемые батареи
Неперезаряжаемые литиевые батареи применяются в устройствах с низким энергопотреблением и длительным сроком автономной работы. Преимущества:
- Очень большой срок хранения
- Высокая плотность энергии
- Работа при низких температурах
Недостатки:
- Высокая стоимость
- Невозможность перезарядки
Такие батареи оптимальны для автономных датчиков, устанавливаемых в труднодоступных местах.
Стратегии снижения энергопотребления встраиваемых систем
При разработке встраиваемых систем с батарейным питанием критически важно минимизировать энергопотребление для увеличения времени автономной работы. Рассмотрим основные стратегии снижения энергопотребления:
Выбор энергоэффективных компонентов
Использование микроконтроллеров и других компонентов с низким энергопотреблением позволяет существенно увеличить время работы от батареи. При выборе компонентов следует обращать внимание на:
- Ток потребления в активном режиме
- Ток потребления в режиме сна
- Время пробуждения из режима сна
- Наличие энергосберегающих режимов
Оптимизация программного обеспечения
Правильно написанное ПО может значительно снизить энергопотребление системы. Основные приемы:
- Использование режимов сна процессора
- Отключение неиспользуемой периферии
- Оптимизация алгоритмов для снижения времени активной работы
- Снижение частоты тактирования при низкой нагрузке
Применение энергоэффективных схемотехнических решений
На уровне схемотехники можно применить следующие решения для снижения энергопотребления:
- Использование импульсных преобразователей напряжения вместо линейных стабилизаторов
- Применение схем отключения питания неиспользуемых узлов
- Использование схем накопления энергии для питания импульсных нагрузок
Оптимизация режимов работы устройства
На системном уровне можно оптимизировать режимы работы устройства:
- Использование режима глубокого сна с пробуждением по прерыванию
- Снижение частоты опроса датчиков и обновления данных
- Буферизация данных для пакетной передачи
Комплексное применение этих стратегий позволяет значительно увеличить время автономной работы встраиваемых систем с батарейным питанием.
Современные тенденции в области источников питания для встраиваемых систем
В области источников питания для встраиваемых систем можно выделить следующие современные тенденции:
Повышение энергоэффективности
Разрабатываются все более эффективные преобразователи напряжения с КПД более 95%. Это позволяет снизить потери энергии и тепловыделение.
Миниатюризация
Уменьшаются габариты источников питания за счет повышения рабочих частот преобразования и применения новых технологий корпусирования компонентов.
Интеллектуальное управление питанием
Внедряются системы интеллектуального управления питанием, оптимизирующие энергопотребление в зависимости от режима работы устройства.
Беспроводная зарядка
Развиваются технологии беспроводной зарядки аккумуляторов, позволяющие упростить процесс зарядки портативных устройств.
Использование альтернативных источников энергии
Все шире применяются системы сбора энергии из окружающей среды (энергия вибраций, солнечная энергия и т.п.) для подзарядки автономных устройств.
Учет этих тенденций позволяет разрабатывать современные энергоэффективные встраиваемые системы с оптимальными характеристиками.
Заключение
Выбор источника питания — ответственный этап разработки встраиваемой системы, во многом определяющий ее характеристики и функциональность. Правильный выбор типа источника питания и применение современных энергоэффективных решений позволяют создавать надежные и долговечные устройства с оптимальными параметрами.
При проектировании системы питания необходимо тщательно проанализировать требования к устройству, условия его эксплуатации и выбрать оптимальное решение с учетом всех факторов. Комплексный подход к оптимизации энергопотребления на уровне компонентов, схемотехники и программного обеспечения позволяет значительно увеличить время автономной работы устройств с батарейным питанием.
Современные тенденции в области источников питания открывают новые возможности для создания энергоэффективных встраиваемых систем. Постоянное развитие технологий в этой области позволяет ожидать появления еще более совершенных решений в будущем.

Схемотехника современных мощных источников питания
Введение
В последние годы на российском рынке силовой электроники появилось большое количество модульных вторичных источников питания как зарубежного, так и отечественного производства, которые позиционируются для применения в высоконадежных системах, таких как телекоммуникационное оборудование и аппаратура промышленной автоматики. Однако на практике зачастую оказывается, что эти изделия не отвечают современным требованиям надежности, а уровень схемотехнических решений находится на рубеже конца 80-х годов прошлого века. Это во многом объясняется спецификой нашего рынка: потребителю часто трудно понять, почему казалось бы похожие по электрическим характеристикам изделия разных фирм отличаются по цене в 2-4 раза. Ответ на это вопрос он получает в первый год эксплуатации, когда появляется первая статистика отказов оборудования. В данной статье мы рассмотрим основные схемотехнические решения и сравним их эффективность с точки зрения минимизации потерь и увеличения надежности.
Структурная схема вторичных источников питания
Обобщенная структурная схема вторичных источников питания мощностью 500-2500 Вт, включающая в себя стандартный набор функциональных узлов, приведена на рис. 1. Каждый из этих узлов может быть реализован на основе различных схемных решений, что в итоге и будет определять как эффективность устройства, так и его надежность.
Рис. 1.
Вторичный источник питания содержит следующие основные узлы: входной сетевой фильтр, корректор коэффициента мощности (ККМ), инвертор, преобразующий постоянное напряжение с выхода ККМ в переменное на частоте преобразования, силовой трансформатор, выпрямитель, выходной фильтр, схему управления и дежурный источник питания, вырабатывающий ряд напряжений для питания остальных элементов схемы. Некоторые производители с целью экономии не используют отдельный источник для питания внутренних цепей, вместо этого реализуют схему питания от дополнительных обмоток дросселя ККМ или силового трансформатора. Несмотря на кажущееся усложнение вторичных источников питания при питании его узлов от дополнительного источника, такое решение повышает надежность, поскольку система сохраняет управляемость в случае аварийных ситуаций в нагрузке или ККМ.
Хотя каждый из узлов вторичных источников питания, приведенных на рис. 1, вносит свой вклад в общие потери мощности, схемотехническое повышение эффективности возможно лишь в трех из них: ККМ, инвертор, выпрямитель. Снижение потерь в фильтрах и силовом трансформаторе относится больше к конструктивным решениям.
Рассмотрим варианты построения указанных узлов вторичных источников питания и проанализируем их эффективность с точки зрения потерь, стоимости и габаритов. В расчетах для примера будем рассматривать устройство со следующими параметрами:
- мощность нагрузки 1000 Вт;
- выходное напряжение 50 В;
- ток нагрузки до 20 А;
- первичное питание — однофазная сеть 220 В ±20%.
Корректор коэффициента мощности
Современные требования к уровню электромагнитных помех и гармоническому составу тока первичной сети требуют использования активной коррекции коэффициента мощности в источниках питания с преобразованием частоты.
Наибольшее распространение получили ККМ по схеме повышающего ШИМ-преобразователя (рис. 2) благодаря относительно низким потерям и простоте обеспечения постоянного потребления тока. Управление широтноимпульсным модулятором осуществляется сигналом, формируемым схемой управления таким образом, чтобы потребляемый ток по форме совпадал с выпрямленным напряжением.
Рис. 2.
Различают три основных метода управления ККМ: метод разрывных токов и его разновидность — «граничное» управление; метод управления по пиковому значению тока и управление по среднему значению тока [1]. Первые два метода применяются в ККМ малой и средней мощности (до 300 Вт) из-за большой амплитуды пульсаций тока, значительных электромагнитных помех, необходимости установки громоздких сетевых фильтров и невысокой точности коррекции [2]. Корректоры коэффициента мощности с управлением по среднему току свободны от указанных недостатков. Как правило, пиковое значение пульсаций тока дросселя выбирают в пределах 20% от среднего значения, а схема обратной связи по току имеет низкое усиление на частоте преобразования, что значительно повышает помехоустойчивость ККМ и точность отслеживания формы сигнала.
Существует три принципиальных подхода к реализации ККМ с управлением по среднему току: использование классической схемы, использование схемы с переключением транзистора при нулевом напряжении (квазирезонансный ККМ, рис. 3) и применение карбид-кремниевого или арсенид-галлиевого диода Шоттки в классической схеме. Методика расчета потерь в каждом из вариантов схем ККМ приведена в одной из предыдущих публикаций автора [3]. На рис. 4 показана типовая диаграмма распределения потерь в активных компонентах схемы. Как видно из рисунка, наибольшая рассеиваемая мощность приходится на ключевой транзистор и диод. Потери в сетевом мостовом выпрямителе трудно поддаются снижению, уменьшение их за счет применения более мощных диодов не всегда оправдано, так как влечет за собой неадекватное увеличение габаритов и стоимости.
Рис. 3.
Рис. 4.
В классической схеме ККМ от 70 до 90% мощности рассеивания на ключевом транзисторе и кремниевом бустерном диоде приходится на динамические потери, из них почти 50% обусловлены эффектом обратного восстановления диода [3].
В отличие от кремниевых p-n диодов, выключение p-i-n диодов Шоттки не сопровождается процессом рассасывания заряда в n-области и ток обратного восстановления отсутствует. Существует лишь незначительный ток заряда емкости перехода, который не зависит от температуры и di/dt [3].
На рис. 5 показаны диаграммы распределения полной мощности потерь в диодах и ключевом транзисторе для трех типов полупроводников. Как следует из рисунка, простая замена кремниевого Ultra Fast диода на SiC-диод Шоттки Zero Recovery (Cree) позволяет снизить тепловую нагрузку почти вдвое. Применение GaAs диодов Шоттки дает выигрыш менее 20%. Это обусловлено тем, что GaAs не является полупроводником с большой шириной энергетической запрещенной зоны, поэтому максимальное напряжение, на которое может быть рассчитан диод, не превышает 300 В. Для получения 600-вольтовых приборов производители соединяют внутри корпуса последовательно два кристалла, что является причиной чрезвычайно большого прямого падения напряжения. Вследствие этого динамические потери снижаются, а статические резко возрастают.
Рис. 5.
Рис. 6.
Альтернативным решением является применение схемы с переключением транзистора при нулевом напряжении, упрощенная структурная схема которой показана на рис. 3. Управление такой схемой может быть реализовано на базе стандартного контроллера, например, UC2855A. У схемы имеется ряд существенных недостатков, один из которых — возникновение переходного процесса с удвоенной амплитудой отрицательной полярности, что приводит к трехкратному перенапряжению на VD3. Для устранения выбросов применяют одну из снабберных цепей — либо последовательную VD4-Rсн, как показано на рис. 3, либо последовательно с L2 включают насыщающийся дроссель. В последнем случае в сердечнике дросселя выделяется значительная мощность, что заставляет либо отводить от него тепло, либо использовать сердечник больших размеров. Это значительно снижает эффективность такой схемы.
На рис. 6 приведена диаграмма суммарных потерь и ориентировочная стоимость основных активных компонентов для трех рассмотренных вариантов ККМ. Наименьшие потери обеспечивает классическая схема корректора с SiC-диодом Шоттки Zero Recovery (Cree). Квазирезонансная схема имеет на 30% больше потерь, при этом содержит в три раза больше активных компонентов, является наиболее дорогой и наименее надежной.
Таким образом, использование качественных стандартных контроллеров с управлением по среднему току в сочетании с SiC-диодом Шоттки и современным MOSFET с малым Rds on позволяет строить недорогие надежные и эффективные ККМ для рассматриваемого класса вторичных источников питания.
2.2. Преобразователь напряжения
Как и в случае с ККМ, существует три принципиальных подхода к реализации преобразователя напряжения: классический ШИМ с жестким переключением, квазирезонансный с фазовым управлением и резонансный с частотным регулированием.
Классический ШИМ-преобразователь (рис. 7) является наиболее простым и наименее эффективным. Транзисторы переключаются в жестком режиме, а при емкостном характере нагрузки выпрямителя — еще и при максимальном токе. Поскольку в схеме всегда присутствует паразитная последовательная индуктивность, включающая в себя индуктивность рассеивания силового трансформатора и монтажа, заряд выходной емкости транзисторов сопровождается выбросами напряжения, что требует установки снабберных цепей и приводит к дополнительным потерям. Если энергия, запасаемая в паразитных реактивностях, достаточно велика, существует опасность отпирания встроенных антипараллельных диодов ключевых MOSFET, что приводит к дополнительным потерям при их обратном восстановлении [4]. В общем случае, суммарные потери в ключах определяются выражением:
где Isw — ток, протекающий через транзистор, Ron — сопротивление MOSFET в открытом состоянии, tr, tf— время нарастания и спада тока через транзистор, fs — частота преобразования, C22 — выходная емкость транзистора, V0 — напряжение питания, Qrr— заряд обратного восстановления антипараллельного диода.
Рис. 7.
Использование схемотехники квазирезонансного (рис. 8) или резонансного (рис. 9) переключения направлено на устранение в формуле (1) всех слагаемых, начиная со второго. Это достигается за счет уменьшения напряжения на ключевом транзисторе до нуля к моменту его открывания. Принципиальная разница состоит в том, что в квазирезонансном инверторе контур, формирующий траекторию переключения транзисторов, напрямую не участвует в процессе передачи энергии в нагрузку. В резонансном преобразователе формирующий контур является аккумулятором энергии, часть которой передается в нагрузку, а часть свободно циркулирует. Необходимым условием реализации режима резонансного переключения является наличие достаточной энергии, запасаемой в индуктивности формирующего контура к моменту переключения транзисторов инвертора:
Рис. 8.
Рис. 9.
Ток isw в квазирезонансном преобразователе прямо пропорционален току нагрузки вторичного источника питания, поэтому, начиная с некоторого минимального значения тока, условие (2) перестает выполняться и преобразователь переходит в режим жесткого переключения. В резонансном преобразователе ток isw равен контурному току и практически не зависит от величины нагрузки, что позволяет сохранить режим «мягкого» переключения даже на холостом ходу [5].
Принципиально отличаются и способы регулировки выходного напряжения вторичных источников питания. В квазирезонансном источнике питания применимо фазовое управление ключами [6], что позволяет осуществить регулировку методом ШИМ. В резонансном инверторе возможна только частотная регулировка. На рис. 10, 11 показаны графики типовых АЧХ и ФЧХ резонансного преобразователя. Из графиков можно сделать два принципиальных вывода: во-первых, для реализации резонансного переключения необходима работа на частоте выше резонансной, поскольку формирующий контур должен иметь индуктивное сопротивление; во-вторых, минимальная частота должна быть ограничена точкой максимума АЧХ (точка A рис. 10), поскольку ниже этой частоты теряется управляемость инвертором. На практике рабочую точку выбирают ниже максимума АЧХ, исходя из фиксированного коэффициента передачи контура (пунктирная линия, точка B).
Рис. 10.
Рис. 11.
Недостатком резонансного метода является снижение КПД при уменьшении нагрузки, поскольку потери в инверторе обусловлены контурным током, который практически не зависит от нагрузки. В квазирезонансном преобразователе КПД на холостом ходу тоже уменьшается, но из-за перехода инвертора в жесткий режим переключения. Поэтому по величине потерь оба варианта почти эквивалентны, однако по надежности, управляемости, простоте реализации и уровню электромагнитных помех резонансный преобразователь оказывается значительно эффективнее, чем ШИМ-ZVS. На рис. 12 показана диаграмма потерь в ключах при максимальной нагрузке для трех рассмотренных вариантов построения инверторов. Резонансный метод имеет несколько большие статические потери, чем ШИМ-ZVS. Они обусловлены большей величиной контурного тока, протекающего через транзисторы. В то же время оба метода позволяют снизить потери в ключах по сравнению с традиционным ШИМ почти на порядок.
Рис. 12.
Для реализации всех рассмотренных методов производятся стандартные контроллеры, обеспечивающие все необходимые функции управления.
Выходной выпрямитель
При разработке этой части схемы можно рассматривать два варианта: стандартный двухполупериодный выпрямитель на диодах Шоттки и синхронный выпрямитель на MOSFET с малым Rds on. В рассматриваемых вторичных источниках питания с относительно низкими выходными напряжениями (до 80 В) и большими токами определяющую роль играют статические потери. В таблице приведены типовые характеристики прямой проводимости современных диодов Шоттки и низковольтных MOSFET, а также максимальное выходное напряжение источника питания при использовании схемы выпрямления со средней точкой. На рис. 13 приведены зависимости прямых потерь в выпрямителях на диодах Шоттки и низковольтных MOSFET от тока нагрузки для различных выходных напряжений вторичных источников питания. Как следует из рисунка, при выходном напряжении 80 В выигрыш от применения синхронного выпрямления наблюдается при токе до 30 А, а при выходном напряжении до 16 В — более 100 А.
Рис. 13.
Таблица.
Реализация схем синхронного выпрямления зависит от типа инвертора. В случае инверторов ШИМ и ШИМ-ZVS достаточно обеспечить подачу импульсов управления на затворы транзисторов выпрямителя, по длительности и фазе синхронизированных с импульсами на затворах соответствующих транзисторов инвертора. Такой принцип реализован в стандартных контроллерах, совмещающих в себе ШИМ-ZVS и схему управления синхронным выпрямителем, например ISL6752 (Intersil).
Синхронное выпрямление в источниках питания с резонансным преобразователем реализуется несколько сложнее. Это связано с тем, что между моментами переключения транзисторов инвертора и синусоидальным выходным напряжением существует значительный фазовый сдвиг (рис. 11), который зависит от нагрузки (точнее, от частоты преобразования, которая изменяется при изменении нагрузки или при регулировке напряжения). Поэтому требуется синхронизировать схему выпрямления непосредственно от выходного напряжения вторичной обмотки силового трансформатора. Один из вариантов принципиальной схемы такого синхронного выпрямителя показан на рис. 14. Поскольку схема питается от собственного выхода, она может быть использована в источниках питания с выходным напряжением более 15 В, что обусловлено необходимостью обеспечения требуемого уровня сигнала на затворах силовых транзисторов VT4, VT5. Напряжения питания обеспечивают линейные стабилизаторы на элементах VT1, VD1, R1, C1 (+15 В) и микросхеме DA1 (+5 В). На компараторах DA2, DA3 выполнены формирователи сигналов управления ключами. Для устранения гистерезиса в момент перехода напряжения через ноль в качестве опорного используется сигнал, отличный от нуля. Он формируется цепью R4, VD6, VD7. Величина опорного напряжения должна быть ниже прямого падения на встроенных диодах транзисторов VT4, VT5, чтобы не допускать их отпирания. На транзисторах VT2, VT3 собрана схема блокировки, предотвращающая одновременное открывание силовых транзисторов. Управление затворами VT4, VT5 осуществляется с помощью драйверов DA4, DA5. В источниках питания с выходным напряжением 60 В и током 20 А схема обеспечивает снижение потерь почти в 4 раза по сравнению с выпрямителем на диодах Шоттки, при этом занимает на печатной плате менее 9 см2 (рис. 15, транзисторы VT4, VT5 расположены на другой стороне платы под схемой управления).
Рис. 14.
Рис. 15.
Результаты
У читателя возникает резонный вопрос: «Что же можно в итоге получить от схемотехнических «ухищрений», и на сколько возрастет стоимость конечного изделия?». Попробуем на него ответить.
Корректор коэффициента мощности
Как следует из рис. 6, оптимальным вариантом можно считать классическую схему с SiC-диодом Шоттки Zero Recovery (Cree). Во-первых, можно использовать стандартный контроллер с управлением по среднему току. Во-вторых, значительное снижение тепловой нагрузки на силовые компоненты повышает надежность ККМ, что особенно важно в необслуживаемой аппаратуре. Следовательно, увеличение стоимости в основном определяется SiC-диодом Шоттки. Например, если вместо 15ETH06 (IR, ~$1) использовать CSD10060A (Cree, ~$9), то разница в стоимости составит всего $8.
Преобразователь
Возможность использования стандартного контроллера с частотным управлением для реализации резонансного преобразователя позволяет утверждать, что его стоимость практически эквивалентна стоимости классического ШИМ, также выполненного на базе стандартного контроллера. Дополнительные компоненты формирующего контура компенсируются отсутствием элементов снабберных цепей. При этом радикальное снижение тепловой нагрузки и отсутствие стрессовых коммутационных переходных процессов значительно повышают надежность этого узла вторичного источника питания.
Выпрямитель
Выбор схемы выпрямления в первую очередь определяется выходными параметрами вторичных источников питания. Если при требуемых напряжении и токе возможен значительный выигрыш при использовании синхронного выпрямления (рис. 13), то следует отдать предпочтение ему.
Стоимость компонентов схемы, приведенной на рис. 14, составляет около $20, диода Шоттки — около $3, а соотношение потерь — 1:4.
Рис. 16.
В заключение приведем графики зависимости КПД от мощности вторичного источника питания с выходным напряжением 60 В (рис. 16), построенных с использованием различных схемотехнических решений (без учета потерь в силовом трансформаторе и дросселе ККМ). Как видно из рисунка, хорошая схемотехника дает выигрыш 7-10%, а это около 80 Вт тепла на 1 кВт полезной мощности. Воспользоваться им можно по-разному: уменьшить габариты, отказаться от принудительного охлаждения, снизить тепловую нагрузку на силовые приборы для увеличения надежности и т. п. Цена такого увеличения эффективности ничтожна по сравнению с преимуществами, которые оно дает.
Выбор источника питания — Control Engineering Russia
Выбор источника питания для встроенной системы напоминает заказ блюда из китайского меню: «Одно из колонки A, другое — из колонки B и третье — из колонки C». Разница только в том, что колонки названы не «закуски», «первые блюда» и «основное блюдо», а «основной источник», «подзаряжаемый» и «резервный».
Выбор основного источника питания для встроенной системы занимает немало времени. Для большинства встроенных устройств основной источник — сеть 220 В. Второй вариант — перезаряжаемая батарея, например литий-ионная (Li-ion). Растущее число сетевых приложений позволяет подавать основное питание непосредственно через сеть (например, используя USB). Количество встраиваемых систем, работающих на простых не перезаряжаемых батареях, очень быстро уменьшается.
Использование подзарядки говорит о том, что источник должен обеспечивать непрерывное питание системы. Многие устройства, от которых требуется высокая надежность, такие как системы наблюдения за состоянием пациента, имеют встроенные источники бесперебойного питания (ИБП). Система питания любого транспортного средства содержит основную батарею, заряжаемую от генератора при работе двигателя.
Резервные источники питания подключаются при отказе всех других источников. Как правило, такие источники рассчитаны на обеспечение работы минимально необходимого числа функций, таких как сохранение содержимого энергонезависимой памяти мобильных устройств при замене батареи. Большинство персональных компьютеров, например, имеет не перезаряжаемую литиевую батарею (в отличие от заряжаемой литий-ионной), для сохранения BIOS при отключении компьютера от сети питания.
Выбор подходящего источника питания для каждой категории целиком зависит от характеристик приложения. Например, беспроводные датчики, установленные в удаленных или труднодоступных местах, являются одним из немногих примеров, где долговечные, но не перезаряжаемые литиевые батареи являются лучшим выбором. Жаркие климатические условия ограничивают использование литий-ионных батарей, так как высокая температура очень сильно сокращает срок их службы.
Питание от батареи
Приложения, для которых лучшим решением является батарейное питание, делятся на три категории: с низкой потребляемой мощностью, с высокой потребляемой мощностью и с резервным питанием. Удаленные беспроводные датчики требуют минимального энергопотребления. Гибридные транспортные средства потребляют много электроэнергии, но аккумулятор должен быть основным источником питания по другим причинам. Медицинская аппаратура контроля является примером, когда для обеспечения высокой надежности системы устанавливаются резервные батареи, хотя основным источником остается электросеть.
При наличии ограничений по мощности разработчик системы должен включать в нее такие возможности, которые сводят потребляемую мощность к минимуму и увеличивают эффективность ее использования.
Рис. В типовой схеме сетевого линейного источника питания встраиваемой системы используются серийные трансформаторы и выпрямители. RC-фильтр устраняет оставшиеся пульсации напряжения. Недорогая ИС линейного регулятора стабилизирует выходное напряжение. Добавление делителя в обратную связь выводит напряжение на нужный уровень. Показана схема источника питания на 15 В с одним выходом и плавающим заземлением, и биполярного источника питания ±15 В
Выбор надлежащих устройств и видов схем — первый шаг к уменьшению потребляемой мощности. Например, тактовая частота микропроцессора оказывает очень сильное влияние, при этом энергопотребление одного и того же процессора растет нелинейно с ростом частоты. Точно так же «более широкие» микропроцессоры (32-разрядный по сравнению с 16-разрядным) требуют больше мощности, чем «узкие». Некоторые виды схем по своей сути более эффективны, чем другие. Например, импульсные источники питания намного эффективнее линейных. Разумеется, работа напрямую от батареи более экономична. Таким образом, лучшее решение для снижения энергопотребления — снижение тактовой частоты, уменьшение разрядности процессора и использование более эффективных видов схем, подходящих для процесса.
Рис. Импульсный блок питания обеспечивает регулирование постоянного напряжения с гораздо большей эффективностью, чем линейный блок питания. Недостаток — более сложная схема
Следующая после оптимизации схемы наиболее эффективная стратегия уменьшения потребляемой мощности связана с добавлением режима ожидания и сторожевого таймера. В режиме ожидания все второстепенные функции отключаются на длительный срок, и питание подается только на отдельную схему синхронизации. Назначение таймера — включить систему при вспышке активности.
Рис. Широтно-импульсный модулятор главный элемент каждого импульсного источника питания, использует технологию цифровой коммутации для управления выходным напряжение с минимальными диссипативными потерями
В задачах, требующих большой мощности, батареи сравнительно редко применяются в качестве основного источника питания. Проблема не в том, что аккумуляторы не в состоянии обеспечить большие токи, а в том, что они не могут делать это достаточно долго. Обычно инженеры выбирают батареи для основного источника питания в случае, когда другого выбора у них просто нет.
Например, мне часто приходилось создавать небольшие приборы для кратковременных экспериментов. Несколько лет назад я разработал генератор очень низкой частоты на базе сдвоенного ОУ a741 для проверки в дорожных условиях цифрового запоминающего осциллографа. Предполагаемое время работы не превышало двух часов, а у меня не было подходящего настольного источника питания.
У меня была пара батарей на 9 В и кассеты для их крепления. Итак, я припаял положительный вывод одной кассеты к отрицательному выводу другой и подключил оба вывода к общему проводу схемы. После этого я припаял свободный положительный контакт к положительной клемме ОУ, свободный отрицательный контакт кассеты — к отрицательной клемме. Выходное напряжение блока ±9 В находилось в рабочем диапазоне операционного усилителя, и вся схема практически ничего не стоила.
Более распространенным применением аккумуляторной батареи в качестве основного источника питания является двигатель транспортного средства, когда требуется несколько источников энергии. В гибридных и полностью электрифицированных транспортных средствах обычно устанавливаются работающие от батареи электрические приводные двигатели и дополнительный источник для подзарядки батарей.
Относительно новый элемент таких систем — суперконденсаторы. Стандартные батареи аккумулируют энергию, используя химические связи, и высвобождают ее посредством химических реакций. Максимальный выходной ток батареи в основном ограничивается скоростью протекания этих реакций. В отличие от этого суперконденсаторы накапливают энергию в виде электрического поля, и их пиковый ток ограничен только нагревом обкладок и внутренних проводников. Они также выдерживают больше циклов зарядки/разрядки.
Встроенные системы, использующие аккумуляторы для резервирования, содержат внутренний источник бесперебойного питания (ИБП). Я уже упоминал медицинское оборудование для наблюдения за состоянием пациента, в котором данная технология применяется для поддержания непрерывной работы при исчезновении питания. Это также позволяет обеспечивать непрерывное наблюдение при перемещении пациента: персонал просто вынимает вилку и монитор перемещается вместе с пациентом без выключения. Оборудование работает в основном от аккумуляторной батареи, в то время как сеть обеспечивает ее подзаряд небольшим током.
Питание от сети
Практически вся бытовая техника питается от сети 220 В. Поскольку использование встроенных систем управления в этих приборах растет, число систем, работающих непосредственно от сети, также выросло.
В отличие от стандартных релейных систем управления заменяющие их микропроцессорные системы не работают от переменного напряжения частотой 50 Гц. В них используется высокостабильное напряжение сравнительно низкого уровня (в большинстве случаев 5 В).
Существуют два основных класса схем источников питания, осуществляющих преобразование сетевого переменного напряжения в низкоуровневое постоянное: линейные и импульсные.
Схемы линейных источников питания начинаются с трансформатора, снижающего сетевое напряжение до необходимого уровня. Затем мостовой выпрямитель преобразует низковольтный переменный ток в пульсирующий постоянный. В фильтрующей части схемы для снижения пульсаций устанавливается большой электролитический конденсатор, за которым следует относительно низкоомный резистор.
В этой точке схемы мы получаем постоянное напряжение, которое зависит от напряжения сети, коэффициента трансформации, потребляемого тока и сопротивления. На это напряжение накладываются пульсации частотой 50 Гц, амплитуда которых зависит как от постоянной времени фильтра, так и от тока нагрузки. Другими словами, выходной ток и напряжение принимают какое угодно значение, только не то, что нужно!
Для улучшения качества постоянного тока разработчики источников питания добавляют линейный регулятор. Линейный регулятор представляет собой линейный усилитель мощности, запитываемый с выхода фильтра и усиливающий небольшое опорное напряжение до необходимого уровня. Элементы обратной связи позволяют изменять результирующее выходное напряжение или регулировать выходной ток.
Линейные источники питания очень неэффективны, т.к. рассеивают практически столько же энергии, сколько выдают. Очень часто этих потерь, зачастую очень дорогих, можно избежать, используя импульсный источник питания.
Импульсный источник питания имеет такие же трансформатор, выпрямитель и фильтр, как и линейный источник питания. Улучшения достигаются за счет замены линейного регулятора импульсным. Вместо использования линейного усилителя, где транзисторы никогда полностью не включаются или не выключаются, транзисторы в широтно-импульсном модуляторе попеременно переводятся в состояние насыщения (фактически короткого замыкания) и в состояние отсечки (бесконечного сопротивления). В том или ином состоянии рассеяние мощности минимально.
Рис. Программируемые источники питания поставляются в компактном, относительно недорогом корпусе промышленного исполнения
ШИМ выдает последовательность импульсов переменной скважности. Система обратной связи изменяет коэффициент заполнения импульсной последовательности для поддержания точного значения выходного напряжения на заданной нагрузке. Регенерирующий фильтр (фактически большая индуктивность) усредняет ток для сглаживания импульсов.
Спроектировать и создать импульсный источник питания достаточно сложно. К счастью, есть производители, выпускающие эти устройства в больших количествах по очень низкой цене, поэтому вряд ли вам придется разрабатывать его самому для своего приложения. В настоящее время разработчики встроенных систем рассматривают источники питания как черные ящики, берущие некачественное входное питание и выдающие «чистое» постоянное напряжение. Просто откройте каталог, выберете нужный блок питания по необходимому напряжению и току и закажите его. Самая сложная часть — выделить место в вашей системе для монтажа.
Питание системы
Часто питание для работы встраиваемых систем подается не от сети или аккумуляторов. Электропитание автомобиля, например, поступает от вращаемого двигателем генератора и регулятора напряжения, которые обеспечивают напряжение 12 В и сравнительно большой ток. Поезда, корабли, автомобили, космические корабли, ветряки и солнечные электростанции имеют отдельные источники питания. В большинстве случаев эти источники выдают несколько напряжений стандартного уровня, имеющих высокое качество.
Для работы встраиваемых электронных систем в такой ситуации разработчикам обычно приходится изменять напряжение и регулировать выход источника. Единственно возможный вариант — преобразователь DC-DC.
Преобразователь DC-DC использует подаваемое на него постоянное напряжение для генерации прямоугольных импульсов. Трансформатор повышает или понижает это переменное напряжение до необходимого уровня. После этого двухполупериодный мостовой выпрямитель восстанавливает постоянный ток и поскольку коэффициент заполнения равен 100%, на выходе выпрямителя получается относительно чистое постоянное напряжение с высокочастотными фильтруемыми помехами. Если необходима дальнейшая подстройка, импульсный регулятор выполняет эту задачу достаточно эффективно.
Другие системы позволяют передать требуемое электроникой питание по умолчанию. Так, в частности, устройства, подключенные к порту USB, получают питание 5 В через кабельUSB. Аналогично, пункт 33 стандарта Ethernet IEEE 802.3-2005 (IEEE 802.3af, часто называемый как «питание через Ehternet») рекомендует передавать постоянное напряжения 48 В по двум из четырех пар кабеля CAT-3 или CAT-5e для питания оборудования. В стандарте также оговаривается и максимальная величина тока — 400 мА.
Комбинирование и подбор доступных источников питания для использования в качестве основного, подзаряжаемого и резервного дает разработчикам встраиваемых систем большую свободу выбора. Выбор лучшей схемы — результат сравнения возможностей каждой из схем питания с требованиями вашей задачи.
Вконтакте
Google+
Источники питания
Электрические цепи можно разбить на два типа: активные и пассивные. Примерами активных цепей являются усилители и генераторы. Резистивные цепи (состоящие из резисторов), аттенюаторы и трансформаторы — это пассивные цепи. В отличие от пассивных цепей, которые начинают работать просто при их включении в электронную схему, активные цепи требуют подвода энергии постоянного тока. Эту энергию можно получить от батареи или сетевого источника питания.
Источник питания постоянного тока — это устройство, которое преобразует энергию переменного тока в энергию постоянного тока. Он обычно используется для преобразования напряжения электросети в напряжение постоянного тока различной величины.
В этой главе представлены только блок-схемы различных типов выпрямителей и дана их краткая характеристика. Более подробное изложение приведено в гл. 29.
Блок-схема
На рис. 10.1 показаны блок-схемы источников постоянного тока на основе однополупериодного (а) и двухполупериодного (б) выпрямителей. В качестве входного напряжения переменного тока обычно используется напряжение электросети. В обоих случаях первый каскад представляет собой выпрямитель (однополупериодный или двухполупериодный). Выходное напряжение выпрямителя состоит из двух составляющих: постоянной и довольно значительной переменной. Такое выходное напряжение называется пульсирующим, и оно, вообще говоря, непригодно для питания электронных схем постоянным током. Чтобы исключить переменную составляющую, применяется сглаживающий фильтр (фильтр нижних частот), который подавляет эту составляющую до уровня очень малых пульсаций и полностью пропускает постоянную составляющую. Частота пульсаций определяется типом используемого выпрямителя. В однополупериодном выпрямителе пульсации имеют ту же частоту, что и входное напряжение, на выходе двухполупериодного выпрямителя — вдвое выше.
Во многих источниках постоянного тока перед выпрямителем устанавливается трансформатор, преобразующий сетевое напряжение к требуемому уровню входного напряжения выпрямителя (рис. 10.2). Коэффициент трансформации используемого трансформатора определяет уровень выходного напряжения источника питания.
Рис. 10.1. Источники питания постоянного тока.
Рис. 10.2. Источник питания постоянного тока с трансформатором.
Нагрузочная характеристика
Выходное напряжение на выводах любого источника питания постоянного тока, включая и батареи, максимально в отсутствие нагрузки (напряжение холостого хода), то есть когда от источника не потребляется ток. При подаче тока в нагрузку это напряжение уменьшается из-за влияния внутреннего сопротивления источника питания. Зависимости величины выходного напряжения источника питания от величины тока нагрузки называется нагрузочной характеристикой (кривой) источника питания. Типичная нагрузочная характеристика показана на рис. 10.3.
Для улучшения нагрузочной характеристики источника питания, т. е. для поддержания выходного напряжения на постоянном уровне при увеличении тока нагрузки, применяются стабилизаторы, включаемые на выходе источника питания. Блок-схема стабилизированного источника питания показана на рис. 10.4.
Рис. 10.3. Нагрузочная характеристика
Рис. 10.4. Стабилизированный источник питания.
Инверторы и конверторы
Инвертор — это источник питания, который преобразует напряжение постоянного тока в напряжение переменного тока (рис. 10.5), а конвертор обеспечивает преобразование уровней напряжения постоянного тока. По
Рис. 10.5.
По существу, конвертор — это инвертор с выпрямителем на выходе; последний преобразует выходное переменное напряжение генератора обратно в напряжение постоянного тока (рис. 10.6).
Рис. 10.6.
В видео рассказывается о типах выпрямительных схем в радиотехнике:
Добавить комментарий
ИСТОЧНИК ПИТАНИЯ
Занимаясь радиоконструированием, мне надоедало постоянно подбирать батарейки на нужное напряжение. И я решил заиметь источник питания с регулировкой напряжения, но покупать промышленный блок очень дорого, а делать сложный источник питания пока не хватает опыта, да и мое трехмесячное пребывание в деревне тоже этому мешало. Прочитав несколько статей про источники питания и стабилизаторы, решился сделать простейший блок питания. Много времени и сил на него не потратил. Пару вечеров — и готово. Закрепил все это дело на небольшую дощечку. Теперь часто пользуюсь своим творением.Форум по источникам питания
Форум по обсуждению материала ИСТОЧНИК ПИТАНИЯ
Схемы источников питания
Добавлено 14 января 2019 в 03:24
Сохранить или поделиться
Существует три основных типа источников питания: нестабилизированные источники питания, источники питания с линейными стабилизаторами и импульсные источники питания. Четвертый тип схем источников питания называется источник питания с импульсным стабилизатором, представляет собой гибрид между нестабилизированной и импульсной схемами и заслуживает отдельного подраздела сам по себе.
Нестабилизированные источники питания
Нестабилизированный источник питания – это самый простой тип, состоящий из трансформатора, выпрямителя и фильтра нижних частот. Эти источники питания обычно имеют большие пульсации напряжения (то есть быстро изменяющуюся нестабильность) и другой «шум» переменного напряжения, накладываемые на выходное постоянное напряжение питания. Если входное напряжение меняется, выходное напряжение будет меняться пропорционально. Преимущество нестабилизированного источника питания заключается в том, что он дешевый, простой и эффективный.
Источники питания с линейными стабилизаторами
Источник питания с линейным стабилизатором – это просто нестабилизированный источник питания, за которым следует транзисторная схема, работающая в своем «активном», или «линейном» режиме, отсюда и название линейный стабилизатор. Типовой линейный стабилизатор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и на нем просто падает любое избыточное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузке. Это падение избыточного напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, схема утратит стабилизацию, что означает, что она не сможет поддерживать неизменное напряжение. Она может только отбрасывать избыточное напряжение, но не может восполнять недостаток напряжения в секции нестабилизированного источника. Поэтому необходимо поддерживать входное напряжение выше требуемого выходного напряжения как минимум на 1–3 вольта в зависимости от типа стабилизатора. Это означает, что мощность, эквивалентная, по крайней мере, 1–3 вольтам, умноженным на полный ток нагрузки, будет рассеиваться схемой стабилизатора, выделяя много тепла. Это делает источники питания с линейными стабилизаторами довольно неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.
Импульсные источники питания
Импульсный источник питания («импульсник») – это попытка реализовать преимущества как нестабилизированной, так и линейной стабилизированной конструкций источников питания (небольшой, эффективный и дешевый, но при этом с «чистым», стабильным выходным напряжением). Импульсные источники питания работают по принципу выпрямления входного переменного напряжения в постоянное напряжение, повторного преобразования его в высокочастотное прямоугольное переменное напряжение с помощью транзисторов, работающих как ключи (открыт/закрыт), затем понижения или повышения этого переменного напряжения с помощью небольшого трансформатора, а затем выпрямления выходного переменного напряжения трансформатора в постоянное напряжение и фильтрации до конечного выходного напряжения. Стабилизация напряжения достигается путем изменения скважности («коэффициента заполнения») преобразования постоянного напряжения в переменное на первичной обмотке трансформатора. В дополнение к меньшему весу трансформатора из-за меньшего сердечника, «ипульсники» имеют еще одно огромное преимущество по сравнению с предыдущими двумя конструкциями: этот тип источника питания может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в мире; эти источники питания называются «универсальными».
Недостатком импульсных источников питания является то, что они являются более сложными, и из-за своего принципа действия они имеют тенденцию генерировать много высокочастотного «шума» на линии питания. Большинство «импульсников» также имеет на выходе значительные пульсации напряжения. У более дешевых типов эти шум и пульсации могут быть такими же плохими, как и у нестабилизированного источника питания; такие низкобюджетные «импульсники» не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение и обладают возможностями «универсального» входа.
На выходе дорогих импульсных источников питания пульсаций нет, а шум почти такой же низкий, как у некоторых линейных стабилизаторов; эти «импульсники», как правило, стоят также дорого, как и источники питания с линейными стабилизаторами. Причиной использования дорогого «импульсника» вместо хорошего источника с линейным стабилизатором является необходимость универсальной совместимости с системами электроснабжения или высокая эффективность. Высокая эффективность, малый вес и малые размеры – вот причины, по которым импульсные источники питания практически повсеместно используются для питания цифровых компьютерных схем.
Источники питания с импульсными стабилизаторами
Источник питания с импульсным стабилизатором – это альтернатива схеме с линейным стабилизатором: нестабилизированный источник питания (трансформатор, выпрямитель, фильтр) представляет собой «начало» схемы, а транзистор, работающий строго в режимах открыт/закрыт (насыщение/отсечка), передает питание постоянным напряжением на большой конденсатор так, чтобы поддерживать выходное напряжение между верхним и нижним установленными значениями. Как и в импульсных источниках питания, транзистор в импульсном стабилизаторе никогда не пропускает ток, находясь в своем «активном», или «линейном», режиме в течение какого-либо существенного промежутка времени, что означает, что в таком стабилизаторе будет теряться очень мало энергии в виде тепла. Однако самым большим недостатком этой схемы стабилизации является вынужденное наличие некоторых пульсаций напряжения на выходе, так как постоянное напряжение изменяется между двумя контрольными значениями напряжения. Кроме того, эти пульсации напряжения изменяются по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию выходного напряжения питания.
Схемы импульсных стабилизаторов, как правило, немного проще схем импульсных источников питания, и им не нужно работать с большими мощностями.
Оригинал статьи:
Теги
Импульсный источник питанияИмпульсный стабилизаторИсточник питанияЛинейный стабилизаторОбучениеЭлектроникаСохранить или поделиться
Как обозначается источник питания на схеме
Полярность цилиндрической батарейки Условное графическое обозначение
и условное графическое обозначение. батарейки на схеме в соответствии с ГОСТ.
Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.
Примеры использования обозначения батареек в схемах.
Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс. ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.
Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.
Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.
При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.
Подключение батареек к пульту дистанционного управления телевизором.
Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.
Параллельное включение батареек.
Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
| Номер ГОСТа | Краткое описание |
| 2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
| 2.747 68 | Требования к размерам отображения элементов в графическом виде. |
| 21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
| 2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
| 2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
| 2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
| 21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D – Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В – ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. Обозначение напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 1, G1). Знаки полярности на схемах можно не указывать.
Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.
Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.
На основе символа электрохимического элемента строятся обозначения так называемых солнечных фотоэлементов и батарей. Отличительные признаки обозначения этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 1, G2, GB4), На месте буквы п в обозначении солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. Обозначение напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 2, FU1). Рядом с обозначением предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.
В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют обозначение, показанное на рис. 2 под позиционным обозначением F2. Обозначение вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).
Электронные схемы — Источники питания
Эта глава дает новый старт относительно другого раздела диодных цепей. Это дает представление о цепях электропитания, с которыми мы сталкиваемся в нашей повседневной жизни. Любое электронное устройство состоит из блока питания, который обеспечивает необходимое количество источника переменного или постоянного тока для различных секций этого электронного устройства.
Потребность в источниках питания
В электронных устройствах присутствует множество небольших секций, таких как компьютер, телевизор, катодно-лучевой осциллограф и т. Д., Но для всех этих секций не требуется питание 230 В переменного тока, которое мы получаем.
Вместо этого одной или нескольким секциям может потребоваться 12 В постоянного тока, в то время как некоторым другим может потребоваться 30 В постоянного тока. Чтобы обеспечить необходимое напряжение постоянного тока, входящий источник питания 230 В переменного тока должен быть преобразован в чистый постоянный ток для использования. Блоки питания служат для той же цели.
Практичный блок питания выглядит следующим образом.
Давайте теперь рассмотрим различные части, которые составляют блок питания.
Части источника питания
Типичный блок питания состоит из следующего.
-
Трансформатор — входной трансформатор для отключения источника питания 230 В переменного тока.
-
Выпрямитель — схема выпрямителя для преобразования компонентов переменного тока, присутствующих в сигнале, в компоненты постоянного тока.
-
Сглаживание — схема фильтрации для сглаживания изменений, присутствующих в выпрямленном выходе.
-
Регулятор — цепь регулятора напряжения для управления напряжением до желаемого уровня на выходе.
-
Нагрузка — нагрузка, которая использует чистый вывод постоянного тока от регулируемого выхода.
Трансформатор — входной трансформатор для отключения источника питания 230 В переменного тока.
Выпрямитель — схема выпрямителя для преобразования компонентов переменного тока, присутствующих в сигнале, в компоненты постоянного тока.
Сглаживание — схема фильтрации для сглаживания изменений, присутствующих в выпрямленном выходе.
Регулятор — цепь регулятора напряжения для управления напряжением до желаемого уровня на выходе.
Нагрузка — нагрузка, которая использует чистый вывод постоянного тока от регулируемого выхода.
Блок-схема блока питания
Блок-схема регулируемого блока питания приведена ниже.
Из приведенной выше схемы видно, что трансформатор присутствует на начальной стадии. Хотя мы уже рассмотрели концепцию, касающуюся трансформаторов, в руководстве по базовой электронике, давайте взглянем на нее.
Трансформатор
Трансформатор имеет первичную катушку, на которую подается вход, и вторичную катушку, с которой выводится выход . Обе эти катушки намотаны на материал сердечника. Обычно изолятор образует сердечник трансформатора.
На следующем рисунке показан практичный трансформатор.
Из приведенного выше рисунка видно, что несколько обозначений являются общими. Они заключаются в следующем —
-
Np = число витков в первичной обмотке
-
Ns = Количество витков во вторичной обмотке
-
Ip = ток, протекающий в первичной обмотке трансформатора
-
Is = ток, протекающий во вторичной обмотке трансформатора
-
Vp = Напряжение на первичной обмотке трансформатора
-
Vs = Напряжение на вторичной обмотке трансформатора
-
phi = Магнитный поток присутствует вокруг сердечника трансформатора
Np = число витков в первичной обмотке
Ns = Количество витков во вторичной обмотке
Ip = ток, протекающий в первичной обмотке трансформатора
Is = ток, протекающий во вторичной обмотке трансформатора
Vp = Напряжение на первичной обмотке трансформатора
Vs = Напряжение на вторичной обмотке трансформатора
phi = Магнитный поток присутствует вокруг сердечника трансформатора
Трансформатор в цепи
На следующем рисунке показано, как трансформатор представлен в цепи. Первичная обмотка, вторичная обмотка и сердечник трансформатора также представлены на следующем рисунке.
Следовательно, когда трансформатор подключен к цепи, входная мощность подается на первичную катушку, так что он генерирует переменный магнитный поток с этим источником питания, и этот поток индуцируется во вторичной катушке трансформатора, что создает переменную ЭДС переменный поток. Поскольку поток должен изменяться, для передачи ЭДС от первичной к вторичной обмотке трансформатор всегда работает от переменного тока переменного тока.
В зависимости от количества витков во вторичной обмотке трансформатор может быть классифицирован как повышающий или понижающий .
Повышающий трансформатор
Когда вторичная обмотка имеет большее число витков, чем первичная обмотка, то считается, что трансформатор является повышающим трансформатором. Здесь наведенная ЭДС больше, чем входной сигнал.
На рисунке ниже показан символ повышающего трансформатора.
Понижающий трансформатор
Когда вторичная обмотка имеет меньшее число витков, чем первичная обмотка, то считается, что трансформатор является понижающим трансформатором. Здесь наведенная ЭДС меньше, чем входной сигнал.
На рисунке ниже показан символ понижающего трансформатора.
В наших цепях электропитания мы используем понижающий трансформатор , поскольку нам нужно уменьшить мощность переменного тока до постоянного тока. Выход этого понижающего трансформатора будет меньше по мощности, и он будет указан как вход в следующий раздел, называемый выпрямителем . Мы поговорим о выпрямителях в следующей главе.
Блок-схема источника питания(процесс преобразования переменного тока в постоянный)
Многим электронным схемам требуется источник напряжения постоянного тока (DC), но обычно мы находим источники напряжения переменного тока (AC). Чтобы получить источник напряжения постоянного тока, вход переменного тока должен следовать процессу преобразования, подобному показанному на блок-схеме источника питания ниже.
На изображении показаны основные компоненты базовой схемы источника питания и формы сигналов в начале (вход переменного тока), в конце (выход постоянного тока) и между блоками.
Входной сигнал, который поступает на первичную обмотку трансформатора, представляет собой синусоидальную волну, амплитуда которой зависит от системы распределения электроэнергии в стране (110/220 В переменного тока или другой). См. Основные единицы измерения в электронике.
Блок-схема блока питания
Электрический трансформатор
Электрический трансформатор получает на первичную обмотку переменное напряжение и подает на вторичную обмотку другое переменное напряжение (более низкое). Это выходное напряжение переменного тока должно соответствовать напряжению постоянного тока, которое мы хотим получить в конце.
Например: если нам нужен выход 12 В постоянного тока, вторичная обмотка трансформатора должна иметь переменное напряжение не менее 9 вольт.
Электротрансформатор
Пиковое значение на вторичной обмотке трансформатора составляет Vp = 1,41 x 9 = 12,69 вольт. Несмотря на то, что это значение очень близко к тому, которое мы хотели получить, это не рекомендуется, потому что нам нужно учитывать падения напряжения на разных этапах (блоках) источника питания.
В этом случае мы можем выбрать трансформатор с вторичной обмоткой 12 В переменного тока.С этим напряжением переменного тока мы можем получить пиковое напряжение: Vp = 12 x 1,41 = 16,92 вольт.
Примечание: Vpeak = Vrms x 1,41
Выпрямительный мост (выпрямительные диоды)
Выпрямительный мост преобразует переменное напряжение вторичной обмотки в пульсирующее постоянное напряжение. (смотрите схему). В нашем случае мы используем ½ волновой выпрямитель, затем мы устраняем отрицательную часть волны.
Выпрямительный диод
Фильтр (конденсаторы)
Фильтр — это один или несколько параллельно включенных электролитических конденсаторов, которые сглаживают или сглаживают предыдущую волну, устраняя составляющую переменного тока, подаваемую выпрямителем.
Эти конденсаторы заряжаются до максимального значения напряжения, которое может выдать выпрямитель, и разряжаются, когда пульсирующий сигнал исчезает. Посмотрите на картинку выше.
Электролитический конденсатор
Регулятор напряжения
Регулятор напряжения принимает сигнал от фильтра и выдает постоянное напряжение (скажем, 12 вольт постоянного тока) независимо от изменений нагрузки или напряжения питания.
Регулятор напряжения может быть реализован несколькими способами.Это может быть транзисторный регулятор напряжения или монолитный регулятор напряжения.
На изображении ниже показан регулятор напряжения LM7805 (выход 5 В постоянного тока). Вы также можете найти стабилизатор напряжения LM7812 (выход 12 В постоянного тока).
LM7805 Регулятор напряжения
Источник питания: определение, функции и компоненты
Определение : Источник питания — это электронная схема, предназначенная для обеспечения различных напряжений переменного и постоянного тока для работы оборудования.
Для правильной работы электронного оборудования требуется определенное количество источников напряжения.Для работы ИС и транзисторов необходимы низкие напряжения постоянного тока. Высокое напряжение необходимо для работы ЭЛТ и других устройств. Батареи могут обеспечить все эти напряжения.
Однако электричество для электрических и электронных устройств обычно поставляет местная энергетическая компания. Эта мощность поступает из розетки на 115 В переменного тока с частотой 60 Гц. Для работы некоторого оборудования требуются разные напряжения.
Функции источника питания
Полная схема источника питания может выполнять следующие функции:
- Повышение или понижение напряжения с помощью трансформатора до требуемого напряжения сети переменного тока.
- Обеспечьте некоторый метод разделения напряжения для удовлетворения потребностей оборудования.
- Преобразование переменного напряжения в пульсирующее постоянное с помощью полуволнового или двухполупериодного выпрямления.
- Фильтрация пульсирующего постоянного напряжения до чистого постоянного постоянного напряжения для использования в оборудовании.
- Отрегулируйте выходную мощность источника питания пропорционально приложенной нагрузке.
Компоненты источника питания
Блок-схема, иллюстрирующая эти функции, показана на рисунке 1. Обратите внимание, что определенные функции есть не в каждом источнике питания.См. Рисунок 2 для типичных компонентов коммерческого блока питания.
Рисунок 1. Блок-схема компонентов источника питания. Входное напряжение 117 вольт переменного тока. Под блоками показаны процессы, используемые в типичном источнике питания. Выход блока питания может быть постоянным или переменным током. Выход этого источника питания составляет пять вольт постоянного тока.
Рисунок 2. Регулируемый источник питания постоянного тока. (Knight Electronics)
Силовые трансформаторы Диоды
Первым устройством в источнике питания является трансформатор.Его цель — повышать или понижать переменное напряжение источника до значений, необходимых для использования в радио, телевидении, компьютере или других электронных схемах.
Большинство трансформаторов не имеют электрического соединения между вторичной и первичной обмотками. См. Рисунок 3. Это означает, что трансформатор изолирует цепь, подключенную к первичной обмотке, от цепи, подключенной во вторичной обмотке.
Изоляция — это термин, который означает отсутствие электрических соединений между первичной и вторичной обмотками трансформатора.
Рисунок 3 . Изоляция в трансформаторе.
Изолирующий трансформатор — это трансформатор, предназначенный для изоляции первичной цепи от вторичной цепи.
Использование изолирующего трансформатора является мерой безопасности, поскольку он помогает предотвратить удары во вторичной обмотке. Наше тело или руки должны быть соединены через оба вывода вторичных соединений, чтобы получить электрический ток.
Описанное выше условие безопасности не выполняется в первичной цепи с коммерческим переменным током, предоставляемым энергетической компанией. Одно соединение горячее , что означает, что соединение находится под напряжением. Другой заземлен или нейтраль. Если стоять на земле и прикасаться к горячему контакту, это приведет к поражению электрическим током. Простое прикосновение к заземлению не приведет к поражению электрическим током.
Вторичные обмотки можно отводить для получения различных напряжений. Отвод, расположенный посередине между двумя концами вторичной обмотки, называется центральным отводом .
Во многих источниках питания используется вторичная обмотка трансформатора с центральным отводом.Напряжения на ответвлениях, показанные на рис. 4, сдвинуты по фазе на 180 градусов по отношению к центральному ответвлению.
Различные трансформаторы можно найти почти во всех электронных устройствах. Вы должны понимать основную теорию и назначение трансформатора. При необходимости просмотрите главу 12.
Урок по безопасности
Трансформаторы вырабатывают высокое напряжение, которое может быть очень опасным. При работе с высоким напряжением или измерении высокого напряжения следует всегда проявлять должное уважение и особую осторожность.
Рис. 4. Трансформатор с центральным ответвлением.
Полупериодное и полноволновое выпрямление
После того, как напряжение прошло через трансформатор источника питания, следующим шагом является выпрямление.
Процесс преобразования переменного тока в пульсирующий постоянный называется выпрямлением.
При изменении сигнала переменного тока на постоянный существует два типа выпрямления: полуволновое выпрямление и двухполупериодное выпрямление.
При использовании однополупериодного выпрямителя только половина входного сигнала проходит через выпрямитель. Двухполупериодный выпрямитель пропускает всю входную волну.
Полупериодное выпрямление
На рис. 5 выход трансформатора соединен последовательно с диодом и нагрузочным резистором. Входное напряжение трансформатора выглядит как синусоидальная волна.
Полярность волны меняется на частоту приложенного напряжения.Выходное напряжение вторичной обмотки трансформатора также выглядит как синусоидальная волна. Величина волны зависит от коэффициента трансформации трансформатора. Выходной сигнал на 180 градусов не совпадает по фазе с первичной обмоткой.
Верх трансформатора (точка A) соединен с анодом диода. Обратите внимание, что сторона B трансформатора подключена к земле.
В течение первого полуцикла точка A положительна. Диод проводит, создавая падение напряжения на резисторе R, равное IR.Во время второго полуцикла точка A отрицательна. Анод диода также отрицательный. Отсутствие проводимости и отсутствие падения ИК-излучения через R.
Рис. 5 . Принципиальная схема диодного выпрямителя.
Осциллограф , подключенный через R, выдает сигнал, показанный справа на рис. 6 . Выход этой схемы состоит из импульсов тока, протекающего только в одном направлении, и имеет ту же частоту, что и входное напряжение.Выходной сигнал — пульсирующий постоянный ток.
Рисунок 6. Формы входных и выходных сигналов диодного выпрямителя.
Только половина входной волны переменного тока используется для создания выходного напряжения. Этот тип выпрямителя называется однополупериодным выпрямителем .
Посмотрите на полярность выходного напряжения на Рисунок 6 . Один конец резистора R заземлен. Ток течет от земли к катоду. Это соединение делает конец R подключенным к катоду положительно, как показано на рисунке 5.
Отрицательный выпрямитель можно сделать, переставив диод в цепи, Рисунок 7 . Диод проводит, когда катод становится отрицательным, в результате чего анод становится положительным.
Ток через R будет проходить от анода к земле, делая анодный конец R отрицательным, а заземляющий конец R — более положительным.
Напряжения, снятые на выходе R, будут отрицательными по отношению к земле. Эта схема называется перевернутым диодом .Используется, когда требуется отрицательное напряжение питания.
Рисунок 7. Инвертированный диод создает отрицательное напряжение.
Возможно использование источника питания, обеспечивающего однополупериодное выпрямление, без использования трансформатора. Эта цепь не изолирована . Нет никакого повышения или понижения текущего напряжения. Эта схема имеет более простую и менее дорогостоящую конструкцию, и поскольку в ней нет трансформатора, ее можно использовать в небольших помещениях, Рисунок 8 .
Рисунок 8. Полупериодное выпрямление без трансформатора.
Полнополупериодное выпрямление
Пульсирующее постоянное напряжение на выходе полуволнового выпрямителя может быть отфильтровано до чистого постоянного напряжения. Однако однополупериодный выпрямитель использует только половину входной волны переменного тока.
Лучшее фильтрующее действие достигается при использовании двух диодов. При такой настройке можно использовать оба полупериода входной волны.
Оба полупериода на выходе имеют одинаковую полярность в этом двухполупериодном выпрямителе. Рисунок 9 следует за первой половиной цикла. Рисунок 10 следует за вторым полупериодом.
Рисунок 9. Стрелки показывают ток двухполупериодного выпрямителя в течение первого полупериода.
Рисунок 10. Направление тока во втором полупериоде.
Чтобы произвести это двухполупериодное выпрямление, на вторичной обмотке делается центральный отвод. Этот кран крепится к земле.
В Рис. 9 , точка A положительная, а анод диода D1 — положительный.Электронный поток показан стрелками. Во второй половине входного цикла точка B положительна, анод диода D2 положителен, и ток течет, как показано на , рис. 10, .
Независимо от того, какой диод является проводящим, ток через нагрузочный резистор R всегда в одном направлении. Как положительные, так и отрицательные полупериоды входного напряжения вызывают ток через резистор R в одном и том же направлении.
Выходное напряжение этого двухполупериодного выпрямителя снимается через резистор R.Он состоит из импульсов постоянного тока с удвоенной частотой входного напряжения, Рисунок 11 . Чтобы произвести это двухполупериодное выпрямление в этой цепи, вторичное напряжение было уменьшено вдвое центральным отводом.
Рисунок 11. Формы сигналов на входе и выходе двухполупериодного диодного выпрямителя.
Диоды D 1 и D 2 , используемые на рисунках 9 и 10, упакованы как по отдельности, так и попарно. На рисунке 12 показан блок с двумя выпрямителями.Центральный вывод используется как соединение для катодов. Катоды соединены вместе.
Рис. 12. Двойные диоды с центральным отводом.
Мостовые выпрямители
Не всегда необходимо использовать трансформатор с центральным отводом для двухполупериодного выпрямления. Полное вторичное напряжение может быть выпрямлено с помощью четырех диодов в цепи, называемой мостовым выпрямителем , рис. 13 и 14 . Показаны две схемы, так что ток можно наблюдать в каждом полупериоде.
Рис. 13. Ток в мостовом выпрямителе в течение первого полупериода.
Рисунок 14. Ток в мостовом выпрямителе во время второго полупериода.
В Рисунок 13 , точка A вторичной обмотки трансформатора положительная. Ток течет в направлении стрелок. Когда точка B положительна, ток течет, как на рис. 14 .
Опять же, обратите внимание, что ток через R всегда в одном направлении.Обе половины входного напряжения выпрямляются, и используется полное напряжение трансформатора.
Мостовые выпрямители могут использоваться в схемах без трансформаторов . Без трансформаторов напряжение или ток не будут повышаться или понижаться. Не будет изоляции. Эти схемы также называются мостовыми схемами с линейным управлением, Рисунок 15 .
Осторожно
Подключение осциллографа напрямую к мостовому выпрямителю с линейным приводом приведет к мертвому заземлению, когда заземление осциллографа подключено к мосту линейного напряжения.Изолирующий трансформатор с соотношением 1: 1 должен использоваться, чтобы предотвратить соединение заземляющего провода на прицеле с проводом под напряжением.
Рисунок 15. Схема мостового выпрямителя с линейным управлением.
Выход полуволнового или двухполупериодного выпрямителя представляет собой пульсирующее напряжение. Прежде чем его можно будет применить к другим схемам, пульсации необходимо уменьшить. Требуется более устойчивый постоянный ток. Его можно получить с помощью сети фильтров .
На рис. 16 линия E avg показывает среднее напряжение пульсирующей волны постоянного тока.Оно равно 0,637 × пиковое напряжение. Заштрихованный участок волны над средней линией равен по площади заштрихованному участку под линией.
Движение выше и ниже среднего напряжения называется пульсацией переменного тока. Именно эта пульсация требует фильтрации.
Процент пульсаций по сравнению с выходным напряжением должен быть небольшим. Процент пульсации можно найти по формуле:
\ [Percentage \ text {} Ripple = \ frac {{{E} _ {rms}} \ text {} of \ text {} Ripple \ text {} Voltage} { {{E} _ {avg}} \ text {} of \ text {} Total \ text {} Output \ text {} Voltage} \ times 100% \]
Рисунок 16. Среднее значение на выходе двухполупериодного выпрямителя.
Конденсаторные фильтры
Конденсатор, подключенный к выходу выпрямителя, обеспечивает некоторую фильтрацию, Рисунок 17 . Конденсатор способен накапливать электроны.
Когда диод или выпрямитель проводит, конденсатор быстро заряжается до напряжения, близкого к пиковому напряжению волны. Он ограничен только сопротивлением выпрямителя и реактивным сопротивлением обмоток трансформатора.
Между пульсациями в волне падает напряжение на выпрямителе.Затем конденсатор разряжается через сопротивление нагрузки.
Конденсатор, по сути, является камерой хранения электронов. Он хранит электроны при пиковом напряжении, а затем подает электроны на нагрузку, когда выход выпрямителя низкий. См. Рисунок 18 .
Рисунок 17. Фильтрующее действие конденсатора.
Рис. 18. Вход и выход конденсаторного фильтра, показывающий изменение формы сигнала.
Конденсаторы, используемые для этой цели, относятся к электролитическим типам , потому что большие емкости необходимы в ограниченном пространстве.Общие значения для конденсаторов колеблются от 4 до 2000 мкФ. Рабочие напряжения конденсаторов должны превышать пиковое напряжение выпрямителя.
LC Filters
Фильтрующее действие можно улучшить, добавив дроссель последовательно с нагрузкой. Эта схема LC-фильтра представлена на рис. 19 . Дроссель фильтра состоит из множества витков проволоки, намотанной на многослойном железном сердечнике.
Рисунок 19. Дальнейшая фильтрация производится дросселем последовательно с нагрузкой.
Напомним, что индуктивность была тем свойством схемы, которая сопротивлялась изменению тока. Повышение тока вызывало противо-ЭДС, препятствующую повышению. Уменьшение тока вызывало противоэдс, препятствующее уменьшению. В результате дроссель постоянно препятствует изменению тока. Тем не менее, он предлагает очень небольшую оппозицию постоянному току.
Дроссели, используемые в радиоприемниках, имеют номинал от 8 до 30 генри. Номинальный ток составляет от 50 до 200 миллиампер.
Дроссели большего размера могут использоваться в передатчиках и других электронных устройствах.Фильтрующее действие в результате заслонки фильтра показано на Рис. 20 .
Рис. 20. Осциллограммы показывают фильтрующее действие конденсатора и дросселя вместе.
Второй конденсатор можно использовать в секции фильтра после дросселя, чтобы обеспечить большее действие фильтра. См. Рисунок 21 . Действие этого конденсатора аналогично работе первого конденсатора. Конфигурация схемы обозначается греческой буквой π. Фильтр называется фильтром сечением пи (π) .
Рисунок 21. Секционный фильтр Pi (π).
Когда первым фильтрующим компонентом является конденсатор, схема называется конденсаторным входным фильтром . Когда дроссель является первым фильтрующим элементом, он называется входным фильтром дросселя, Рисунок 22 . Входной фильтр дросселя выглядит как перевернутая L, поэтому его также называют фильтром L-секции. Некоторые из этих секций фильтра можно использовать последовательно, чтобы обеспечить дополнительную фильтрацию.
Рисунок 22. Фильтр L на входе дросселя
Во входном фильтре конденсатора конденсатор заряжается до пикового напряжения выпрямленной волны. На входе дросселя ток зарядки конденсатора ограничивается дросселем. Конденсатор не заряжается до пикового напряжения. В результате, выходное напряжение источника питания с конденсаторным входным фильтром выше, чем с входным дроссельным фильтром.
Принципиальная схема блока питания представлена ниже.
Контекст 1
… На этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через выводы. В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении. Поскольку ток нагрузки в обоих полупериодах имеет одинаковое направление, на выводах появляется сигнал двухполупериодного выпрямителя…
Контекст 2
… Блок-схема состоит из 4 ступеней для выпрямления напряжения питания 240 В переменного тока на 12 В постоянного тока, батарейного питания и релейного переключателя. Описание каждой ступени приведено ниже: Эта ступень состоит из понижающего трансформатора 240 В / 18 В. Он преобразует подачу напряжения 240 В (AC) из сети в 18 В (AC), предохранитель 1A (F1) был встроен в первичную обмотку трансформатора, чтобы защитить его от избыточного тока. Затем напряжение 18 В (перем. Ток) передается на выпрямительный каскад.Был выбран понижающий трансформатор 220/18 В, поскольку для работы используемого регулятора требуется более 12 В. На этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через выводы. В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении.Поскольку ток нагрузки в обоих полупериодах имеет одинаковое направление, на выводах появляется сигнал двухполупериодного выпрямителя [13]. Пульсирующее постоянное напряжение, выходящее из каскада выпрямителя, преобразуется в постоянное постоянное напряжение с помощью фильтрующего конденсатора (C1). Этот конденсатор представляет собой электролитический конденсатор большой емкости. Он заряжается (то есть накапливает энергию) в течение полупериода проводимости, тем самым препятствуя любым изменениям напряжения. Таким образом, ступень фильтра отфильтровывает пульсации (или пульсации) напряжения.Выходной сигнал каскада фильтра немного изменяется при изменении тока нагрузки или выходного напряжения, и это напряжение питания 18 В постоянного тока, что превышает требования схемы. По этим причинам регулятор LM 7312 использовался для стабилизации напряжения, а также для снижения его с 18 В до постоянного постоянного тока 12 В.
ИСТОЧНИК ПИТАНИЯ ATX для ПК, 200 Вт
Введение
Предлагаю вашему вниманию электрические схемы блока питания компьютеров компании ДТК. Этот блок питания имеет дизайн ATX и производительность 200 Вт. Нарисовали схему, когда я ремонтировал этот блок питания.
Принципиальная схема
Описание схемы
В этой схеме питания используется микросхема TL494. Подобная схема используется в большинстве блоков питания с выходной мощностью около 200 Вт. В устройстве используется двухтактная транзисторная схема с регулировкой выходного напряжения.
Входная часть резервного питания
Сетевое напряжение проходит через цепь входного фильтра (C1, R1, T1, C4, T5) на мостовой выпрямитель. При переключении напряжения с 230 В на 115 В выпрямитель работает как дублер.Варисторы Z1 и Z2 имеют функцию защиты от перенапряжения. на линейном входе. Термистор NTCR1 ограничивает входной ток до конденсаторов C5. и C6 заряжены. R2 и R3 предназначены только для разрядных конденсаторов после отключение питания. Когда источник питания подключен к линейному напряжению, затем сначала заряжаются конденсаторы C5 и C6 вместе примерно на 300 В. Затем включите вторичный источник питания, управляемый транзистором Q12 и на его на выходе будет напряжение. За регулятором напряжения IC3 будет напряжение 5В, который входит в материнскую плату и необходим для логики включения и для Функция «Просыпаться по чему-нибудь».Следующее нестабилизированное напряжение проходит через диод D30. к основной управляющей микросхеме IC1 и управляющим транзисторам Q3 и Q4. Когда основная мощность питание подается, то это напряжение идет с выхода +12 В через диод D.
Дежурный режим
В режиме ожидания основной источник питания заблокирован положительным напряжением на PS-ON. вывод через резистор R23 от вторичного источника питания. Из-за этого напряжения открывается транзистор Q10, который открывает Q1, на который подается опорное напряжение + 5В. от контакта 14 IO1 к контакту 4 IO1.Коммутируемая цепь полностью заблокирована. Транзисторы Q3 и Q4 являются как разомкнутыми, так и короткозамкнутыми обмотками вспомогательного трансформатора T2. Из-за короткого замыкания в силовой цепи отсутствует напряжение. По напряжению на выводе 4 мы можем установить максимальную ширину импульса на выходе IO1. Нулевое напряжение означает самая высокая ширина импульса. + 5В означает, что пульс пропал.
Начало поставки
Кто-то нажимает кнопку питания на компьютере. Логика материнской платы заземлена входной контакт PS-ON. Транзистор Q10 закрывается, а следующий Q1 закрывается.Конденсатор С15 начинает свою зарядку через R15 и на выводе 4 начинается IC1. снизить напряжение до нуля благодаря R17. Благодаря этому напряжение максимально ширина импульса постоянно увеличивается, и основной источник питания плавно работает.
Нормальный режим работы
В нормальном режиме питание контролируется IC1. Когда транзисторы Q1 и Q2 закрываются, затем Q3 и Q4 открываются. Когда мы хотим открыть один из силовых транзисторов (Q1, Q2), мы должны закрыть его возбуждающий транзистор (Q3, Q4).Ток идет через R46 и D14 и одну обмотку. Т2. Этот ток возбуждает напряжение на базе силового транзистора и из-за положительного Транзистор обратной связи быстро переходит в насыщение. По окончании импульса оба возбуждающих транзистора открываются. Положительная обратная связь исчезает и быстро выходит за пределы возбуждающей обмотки закрывает силовой транзистор. После этого процесс повторяется со вторым транзистором. Транзисторы Q1 и Q2 поочередно подключают один конец первичной обмотки к положительное или отрицательное напряжение.Силовая ветвь идет от эмиттера Q1 (коллектора Q2) через третью обмотку возбуждающий трансформатор Т2. Далее через первичную обмотку главного трансформатора Т3 и конденсатор С7 к виртуальному центру напряжения питания.
Регулировка выходного напряжения
Выходные напряжения + 5В и + 12В измеряются R25 и R26, и их выход к IC1. Остальные напряжения не стабилизируются и оправдываются обмоткой. номер и полярность диода. На выходе необходима катушка реактивного сопротивления из-за высокочастотные помехи.Это напряжение рассчитывается исходя из напряжения перед катушкой, длительности импульса и продолжительности цикла. На выходе за выпрямительными диодами находится общая катушка для всех напряжений. Когда мы сохраняем направление обмоток и номер обмотки, соответствующие выходу напряжения, тогда катушка работает как трансформатор, и у нас есть компенсация неравномерная нагрузка отдельных напряжений. Обычной практикой являются отклонения напряжения до 10% от номинального значения. От внутреннего регулятора опорного напряжения 5 В (вывод 14 IC1) идет опорное напряжение. через делитель напряжения R24 / R19 на инвертирующий вход (вывод 2) ошибки усилитель звука.С выхода блока питания через делитель поступает напряжение. R25, R26 / R20, R21 на неинвертирующий вход (контакт 1). Обратная связь C1, R18 обеспечивает стабильность регулятора. Напряжение от усилителя ошибки сравнивается с линейным нарастанием. напряжение на конденсаторе C11. Когда выходное напряжение уменьшается, тогда напряжение на усилителе ошибки слишком велико. уменьшилось. Возбуждающий импульс длиннее, силовые транзисторы Q1 и Q2 длиннее разомкнут, ширина импульса перед выходной катушкой больше, выходная мощность повысился. Второй усилитель ошибки блокируется напряжением на выводе 15 IC1.
PowerGood
Системной плате необходим сигнал PowerGood. Когда все выходные напряжения станут стабильными, тогда сигнал PowerGood переходит на + 5В (логическая единица). Сигнал PowerGood обычно подключен к сигналу СБРОС.
+ 3.3V Регулировка напряжения
Посмотрите на схему, подключенную к выходному напряжению +3,3 В. Эта схема делает дополнительные стабилизация напряжения из-за пропадания напряжения на кабелях. Есть один вспомогательный провод от разъема для измерения напряжения 3,3 В. на материнской плате.
Цепь повышенного напряжения
Эта схема состоит из Q5, Q6 и множества дискретных компонентов.
Схема защищает все выходные напряжения, и при превышении некоторого предела мощность
поставка остановлена.
Например, когда я по ошибке закорачиваю -5В на + 5В, тогда положительное напряжение
проходит через D10, R28, D9 до базового Q6. Этот транзистор теперь открыт и открывается
Q5. + 5В с вывода 14 IC1 через диод D11 на вывод 4 IC1 и источник питания
заблокирован. После этого напряжение снова поступает на базу Q6.Блок питания по-прежнему
заблокирован, пока он не будет отключен от входа линии питания.
Ссылки
Разъем питания ATX
| Штифт | Сигнал | Цвет 1 | Цвет 2 | Штырь | Сигнал | Цвет 1 | Цвет 2 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3.3V 69570 | оранжевый | Vоранжевый | фиолетовый | ||||||||||
| 2 | 3.3V | оранжевый | фиолетовый | 12 | -12V | синий | синий | |||||||
| 3 | GND | черный | черный | 13ND | черный13ND | черный | 13ND | черный 45V | красный | красный | 14 | PS_ON | зеленый | серый |
| 5 | GND | черный | черный | черный | черный | 1570 | черный | 1570 черный | GND | |||||
| 6 | 5V | красный | красный | 16 | GND | черный | черный | |||||||
| 7 | GND | черный | черный | черный | ||||||||||
| 8 | PW_OK | серый | оранжевый | 18 | -5V | белый | белый | |||||||
| 9 | 5V_SB | фиолетовый | коричневый | 19 | 5V | 905 905 красный5V | 905 красныйкрасный | желтый | желтый | 20 | 5V | красный | красный |
Проектирование нерегулируемого источника питания и руководство
Практически всем электронным устройствам и схемам требуется источник постоянного тока в той или иной форме для работы от батареи, солнечного элемента или в качестве источника питания от сети.
Несмотря на то, что батареи имеют то преимущество, что они компактны, портативны и не имеют пульсаций, они нуждаются в частой замене (или подзарядке) и также дороги по сравнению с обычным источником питания постоянного тока.
Поскольку в наших домах, школах и на рабочих местах у нас есть удобный, надежный и экономичный источник электроэнергии, для питания наших цепей имеет смысл использовать источник переменного тока от бытовой сети. Однако напряжение в сети переменного тока намного выше (обычно 220–250 В среднеквадратического значения), чем гораздо меньшее напряжение постоянного тока, обеспечиваемое батареей.Процесс преобразования этого более высокого напряжения переменного тока в гораздо более низкое напряжение постоянного тока называется выпрямлением .
Выпрямление — это процесс преобразования мощности переменного тока в мощность постоянного тока. В обучающих материалах по диодам мы видели, что диод проводит ток только в одном направлении (от анода к катоду), а не в обратном направлении. Способность диодов переключать ток только в одном направлении делает его идеальным для преобразования двухстороннего переменного тока в постоянный постоянный ток или источник постоянного тока, как показано.
Диодный выпрямитель
Мы можем видеть, что вход переменного тока на диод представляет собой синусоиду, которая чередуется между положительными и отрицательными полупериодами, в то время как на выходе диода выпрямляется постоянный ток, имеющий форму волны, которая идет только от положительного до нуля вольт, а отрицательные полупериоды блокируются. . Этот тип выходного сигнала называется «полуволновой пульсирующий постоянный ток».
Полуволновой нерегулируемый источник питания
Назначение источника питания — обеспечить необходимое количество электроэнергии при заданном уровне напряжения и тока, например +9 В при 500 мА.Электрические характеристики любого источника питания будут зависеть от цепи или цепей, на которые подается питание, но, как правило, все нерегулируемые источники питания состоят из трансформатора для понижения сетевого напряжения переменного тока до требуемого уровня, а также обеспечения гальванической развязки и диодного выпрямителя для обеспечения нестабилизированное выходное напряжение.
Рассмотрим схему полуволнового нерегулируемого источника питания ниже.
Полуволновой нерегулируемый источник питания
Вход сети подается на первичную обмотку сетевого трансформатора Т1, а вторичная обмотка трансформатора подает переменный ток низкого напряжения на выпрямительный диод D1.Результирующая форма выходного сигнала содержит уровень постоянного напряжения, который приблизительно равен 1 / π или 0,318 пикового напряжения.
Так, например, если синусоидальное пиковое напряжение составляет 10 вольт, эквивалентный выход постоянного тока будет таким: 0,318 x 10 = 3,18 вольт. Тогда важно правильно выбрать трансформатор напряжения для вашего нерегулируемого источника питания.
Как мы видели выше, выходной сигнал диода представляет собой пульсирующий постоянный ток. Очевидно, что это пульсирующее напряжение постоянного тока не подходит для питания большинства электронных схем, поскольку не только напряжение питания изменяется значительно и быстро по сравнению с идеальным источником питания постоянного тока, но и отсутствует напряжение питания в течение 50% времени в течение отрицательного полупериода. .
Очень часто, выпрямляя переменное напряжение, мы хотим создать постоянное постоянное напряжение, такое, какое мы получаем от батарейного источника питания, и свободное от изменений формы волны, упомянутых выше. Один из способов решить эту проблему — добавить сглаживающий конденсатор на выходные клеммы, эффективно подключив его параллельно нагрузке.
Мы знаем, что конденсатор обладает способностью накапливать электрический заряд на своих пластинах, и мы можем использовать эту способность, чтобы помочь сгладить некоторые пульсирующие формы волны.Конденсатор C1, обычно называемый сглаживающим конденсатором или накопительным конденсатором, заряжается током, протекающим через диод с прямым смещением во время положительного полупериода. Количество заряда на пластинах конденсатора зависит от пикового положительного выходного напряжения трансформатора T1 и величины заряда конденсатора Q равняется V x C (вольт x емкость).
Когда выходное напряжение от T1 начинает уменьшаться до нуля, заряженный конденсатор теперь берет на себя подачу тока на нагрузку.В какой-то момент выходное напряжение от T1 пересекает ноль и обеспечивает отрицательный полупериод, который смещает диод в обратном направлении до отсечки. В течение этого полупериода конденсатор C1 подает весь ток на нагрузку и разряжается со скоростью, определяемой постоянной времени нагрузки.
В следующем положительном полупериоде трансформатор T1 снова берет на себя управление, подавая питание на нагрузку, и продолжает делать это до тех пор, пока выходное напряжение с T1 снова не вернется к своему положительному пиковому значению.В течение этого периода C1 снова перезаряжается и подает выходной ток на нагрузку, когда напряжение от T1 снова падает до следующего положительного пикового напряжения от T1, как показано.
Форма сигналов полуволнового выпрямителя
Поскольку конденсатор C1 не может иметь бесконечное значение, он не может обеспечить идеально плавное выходное напряжение постоянного тока, которое в некоторых случаях может принимать форму пилообразного сигнала. Вариации формы выходного сигнала из-за неспособности конденсаторов поддерживать стабильный выходной сигнал называются «пульсацией», и пульсация возникает для каждого полного цикла входа переменного тока.Другими словами, для схемы полуволнового выпрямления величина пульсирующей частоты пульсаций постоянного тока будет равна входной частоте переменного тока.
Количество пульсаций, присутствующих в выходном сигнале, зависит от характеристик нагрузки, но для данного номинала конденсатора больший ток нагрузки (меньшее сопротивление нагрузки) разряжает конденсатор сильнее и, таким образом, увеличивает содержание пульсаций в выходном сигнале.
Вы можете подумать, почему бы не использовать конденсатор большей емкости для уменьшения содержания пульсаций, но есть ограничения на использование больших сглаживающих конденсаторов (обычно электролитических) в отношении стоимости, размера и увеличение их значения сверх точки не приведет к значительному снижению пульсаций.Также при использовании сглаживающих конденсаторов большой емкости могут потребоваться очень большие зарядные токи, подаваемые через диодный мост. Тем не менее, можно улучшить содержание пульсаций, присутствующих в выходном напряжении, подаваемом нерегулируемым источником питания, путем добавления дополнительных конденсаторов различных номиналов, параллельно подключенных к выходным клеммам.
Полноволновой нерегулируемый источник питания
Мы видели, что выходное напряжение полуволнового нерегулируемого источника питания может быть трудно отфильтровать до сглаженного уровня постоянного тока, потому что выходное напряжение и ток прикладываются к нагрузке только в течение половины каждого входного цикла.Еще одним недостатком полуволнового нерегулируемого источника питания являются относительно длинные периоды между импульсами зарядки конденсаторов, подаваемых трансформатором, что требует использования сглаживающего конденсатора электролитического типа сравнительно большой емкости.
Однако, если мы добавим в схему второй выпрямительный диод, чтобы каждый полупериод входа, а не каждый второй полупериод вносил вклад в выпрямленную форму выходного сигнала, количество пульсаций будет значительно уменьшено, и это может быть достигнуто. при использовании полноволнового нерегулируемого источника питания
Двухполупериодный нерегулируемый источник питания отличается от своего полуволнового родственника за счет использования сетевого трансформатора с центральной вторичной обмоткой и двумя выпрямительными диодами, как показано на рисунке.
Полноволновой нерегулируемый источник питания
Мы можем видеть, что две половины вторичной обмотки эффективно подаются на отдельные схемы полуволнового выпрямления описанного выше типа, при этом два выхода объединяются и сглаживаются общим сглаживающим конденсатором C1.
Два диода, D1 и D2, работают по схеме двухтактного типа, поскольку вторичная обмотка трансформатора заземлена (0 В), создавая разность фаз 180 — фаз между верхней и нижней половинами вторичной обмотки.Затем верхняя половина обеспечивает положительное напряжение, а нижняя — отрицательное.
Когда входной сигнал переменного тока является положительным, положительное напряжение создается на верхней половине вторичного диода прямого смещения T1, D1 включает его, в то время как соответствующее отрицательное напряжение возникает на нижней обмотке вторичного диода обратного смещения T1, D2 выключив его. Тогда ток на нагрузку подается только через диод D1.
Когда форма входного переменного тока меняется на отрицательную, отрицательное напряжение создается в верхней половине вторичного диода T1, переключающем D1, в положение «ВЫКЛ», в то время как положительное напряжение создается в нижней половине вторичного прямого смещения T1 и включается диод, D2.Тогда ток на нагрузку подается только через диод D2.
Затем два диода и трансформатор с центральным отводом переключают двух направленный переменный ток, возникающий во вторичной обмотке, попеременно через нагрузку. Результирующая форма выходного сигнала содержит уровень постоянного напряжения, который приблизительно равен 2 / π или 0,636 пикового напряжения.
Так, например, если синусоидальное пиковое напряжение составляет 10 вольт, эквивалентный выход постоянного тока будет таким: 0,636 x 10 = 6.36 вольт, вдвое больше, чем для полуволнового выпрямителя, как показано.
Формы сигналов полнополупериодного выпрямителя
Преимущество этой двухполупериодной нерегулируемой схемы источника питания состоит в том, что для нее требуется сглаживающий конденсатор примерно вдвое меньшего номинала, чем тот, который требуется для полуволновой схемы, потому что он заряжается в два раза чаще в двухполупериодной цепи, чем в двухполупериодной. полуволновая схема, поэтому величина разряда для данного тока нагрузки меньше.
Кроме того, поскольку два полупериода появляются на сглаживающем конденсаторе для каждого одного цикла на входе, содержание пульсаций будет ниже, а частота пульсаций будет вдвое больше, чем входная частота.Например, если синусоидальная входная частота составляет 50 Гц, тогда частота пульсаций будет 100 Гц. В результате более высокая частота пульсаций легче сглаживает любые колебания.
Краткое описание нерегулируемого источника питания
Одним из основных недостатков нерегулируемого источника питания является то, что на его выходное напряжение существенно влияют изменения напряжения сети, а также изменения тока нагрузки. По мере того, как нагрузка потребляет больше тока, напряжение на клеммах постоянного тока уменьшается.
Также выходной сигнал, создаваемый полуволновым нерегулируемым источником питания, имеет уровень постоянного тока приблизительно 0.318 x Vpeak вместе с большим изменением переменного тока, напоминающим пилообразную форму волны. Эта форма выходного сигнала обычно известна как пульсирующее напряжение постоянного тока.
Чтобы удалить часть содержимого переменного тока, используется сглаживающий конденсатор, позволяющий проходить содержимому постоянного тока и уменьшающий переменный ток до небольшой пульсации. Полуволновой выпрямитель генерирует пульсации с частотой, равной входной частоте.
Одним из способов увеличения выходного напряжения постоянного тока, уменьшения содержания пульсаций формы волны и повышения эффективности является использование двухполупериодного выпрямителя, который состоит из двух диодов и трансформатора с центральным отводом, для генерации двух одинаковых и противоположных сигналов на каждой половине вторичной обмотки. .Основным недостатком двухполупериодного нерегулируемого источника питания является то, что для данной выходной мощности требуется трансформатор большего размера.
Полуволновые нерегулируемые источники питания дешевы и просты в конструкции, они преобразуют мощность переменного тока в пульсирующую мощность постоянного тока. Мы видели, что сглаживающие конденсаторы могут использоваться для изменения этого пульсирующего постоянного тока от выпрямителя либо полуволны полной волны на достаточно плавный и свободный от пульсаций источник постоянного тока для питания электронных схем или для зарядки аккумуляторов.
Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций
Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций
Администрация — Военнослужащие. Навыки, процедуры, обязанности и т. Д.
Продвижение — Военное продвижение по службе книги и др.
Аэрограф / Метеорология
— Метеорология
основы, физика атмосферы, атмосферные явления и др.
Руководство по аэрографии и метеорологии ВМФ
Автомобили / Механика — Руководства по обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным запчастям, руководства по запчастям дизельных двигателей, руководства по запчастям для бензиновых двигателей и т. Д.
Автомобильные аксессуары |
Перевозчик, Персонал |
Дизельные генераторы |
Механика двигателя |
Фильтры |
Пожарные машины и оборудование |
Топливные насосы и хранилище |
Газотурбинные генераторы |
Генераторы |
Обогреватели |
HMMWV (Хаммер / Хаммер) |
и т.п…
Авиация — Принципы полета,
авиастроение, авиационная техника, авиационные силовые установки, руководства по авиационным деталям, руководства по деталям самолетов и т. д.
Руководства по авиации ВМФ |
Авиационные аксессуары |
Общее техническое обслуживание авиации |
Руководства по эксплуатации вертолетов AH-Apache |
Руководства по эксплуатации вертолетов серии CH |
Руководства по эксплуатации вертолетов Chinook |
и т.д …
Боевые —
Служебная винтовка, пистолет
меткая стрельба, боевые маневры, органическое вспомогательное оружие и т. д.
Химико-биологические, маски и оборудование |
Одежда и индивидуальное снаряжение |
Инженерная машина |
и т.д …
Строительство —
Техническое администрирование,
планирование, оценка, календарное планирование, планирование проекта, бетон, кладка, тяжелые
строительство и пр.
Руководства по строительству военно-морского флота |
Агрегат |
Асфальт |
Битуминозный распределитель кузова |
Мосты |
Ведро, раскладушка |
Бульдозеры |
Компрессоры |
Обработчик контейнеров |
Дробилка |
Самосвалы |
Земляные двигатели |
Экскаваторы |
и т.п…
Дайвинг — Руководства по дайвингу и утилизации разного оборудования.
Чертежник — Основы, приемы, составление проекций, эскизов и др.
Электроника —
Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. Д.
Кондиционер |
Усилители |
Антенны и мачты |
Аудио |
Аккумуляторы |
Компьютерное оборудование |
Электротехника (NEETS) (самая популярная) |
Техник по электронике |
Электрооборудование |
Электронное общее испытательное оборудование |
Электронные счетчики |
и т.п…
Инженерное дело —
Основы и приемы черчения, черчение проекций и эскизов, деревянное и легкое каркасное строительство и т. Д.
Военно-морское дело |
Программа исследования прибрежных заливных отверстий в армии |
так далее…
Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.
Логистика — Логистические данные для миллионов различных деталей.
Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.
Медицинские книги —
Анатомия, физиология, пациент
уход, оборудование для оказания первой помощи, аптека, токсикология и др.
Медицинские руководства военно-морского флота |
Агентство регистрации токсичных веществ и заболеваний
MIL-SPEC — Правительственные MIL-Specs и другие сопутствующие материалы
Музыка — мажор и минор масштабные действия, диатонические и недиатонические мелодии, ритм биения, пр.
Ядерные основы —
Теории ядерной энергии,
химия, физика и др.
Справочники DOE
Фотография и журналистика
— Теория света,
оптические принципы, светочувствительные материалы, фотографические фильтры, копия
редактирование, написание статей и т. д.
Руководства по фотографии и журналистике военно-морского флота |
Армейская фотография Полиграфия и пособия по журналистике
Религия — Основные религии мира, функции поддержки поклонения, венчания в часовне и т. д.
Блок-схема, характеристики и приложения
Мы знаем, что существуют различные типы электрических и электронных схем, в которых используется источник постоянного тока.Обычно мы не можем использовать батареи постоянного тока из-за их дороговизны и необходимости замены в разряженном состоянии. В этой ситуации нам нужна схема, которая может переключать подачу переменного тока на подачу постоянного тока. Схема фильтра выпрямителя включает в себя обычный источник питания постоянного тока . Нормальный источник питания постоянного тока o / p остается стабильным, если нагрузка контрастная. Хотя в некоторых электронных схемах чрезвычайно важно поддерживать постоянный источник питания постоянным независимо от альтернативного источника переменного тока. В противном случае схема будет повреждена.Чтобы решить эту проблему, можно использовать устройства регулирования напряжения. Таким образом, сочетание устройств регулирования напряжения с обычным источником питания постоянного тока называется Источник питания постоянного тока . Это электрическое устройство, используемое для создания постоянного источника постоянного тока независимо от альтернативного источника переменного тока.
Что такое регулируемый источник питания?
IC Регулируемый источник питания (RPS) — это один из видов электронных схем, предназначенный для обеспечения стабильного постоянного напряжения фиксированного значения на клеммах нагрузки независимо от колебаний нагрузки.Основная функция регулируемого источника питания — преобразование нерегулируемого переменного тока (AC) в устойчивый постоянный ток (DC). RPS используется для подтверждения того, что при изменении входа выход будет стабильным. Этот источник питания также называется линейным источником питания, и он позволяет вводить переменный ток, а также обеспечивает стабильный выход постоянного тока. Пожалуйста, перейдите по ссылке, чтобы узнать больше о — Классификация источников питания и ее различные типы
Схема регулируемого источника питанияБлок-схема регулируемого источника питания
Блок-схема стабилизированного источника питания в основном включает в себя понижающий трансформатор , выпрямитель, фильтр постоянного тока и регулятор.Модель Конструкция и работа регулируемого источника питания обсуждается ниже.
Блок-схема регулируемого источника питанияТрансформатор и источник переменного тока
Источник питания может использоваться для обеспечения необходимого количества энергии при точном напряжении от основного источника, такого как батарея. Трансформатор изменяет напряжение сети переменного тока до необходимого значения, и его основная функция заключается в повышении и понижении напряжения. Например, понижающий трансформатор используется в транзисторном радиоприемнике, а повышающий трансформатор используется в CRT .Трансформатор обеспечивает отделение от линии питания, и его следует использовать, даже если не требуется никаких изменений в напряжении.
Выпрямитель
Выпрямитель — это электрическое устройство, используемое для преобразования переменного тока в постоянный. Это может быть двухполупериодный выпрямитель, а также однополупериодный выпрямитель с помощью трансформатора или мостового выпрямителя, в противном случае вторичная обмотка с отводом по центру. Однако выходное напряжение выпрямителя может быть переменным.
Фильтр
Фильтр в регулируемом источнике питания в основном используется для выравнивания отклонений переменного тока от скорректированного напряжения.Выпрямители подразделяются на четыре типа, а именно: конденсаторный фильтр, индуктивный фильтр, LC-фильтр и RC-фильтр.
Регулятор напряжения
Регулятор напряжения в регулируемом источнике питания необходим для поддержания постоянного выходного напряжения постоянного тока, обеспечивая регулирование нагрузки, а также линейное регулирование. По этой причине мы можем использовать стабилизаторы, такие как стабилитроны, транзисторные или трехконтактные встроенные стабилизаторы. Импульсный источник питания с импульсным переключением может использоваться для подачи большого тока нагрузки за счет небольшого рассеивания мощности в последовательном транзисторе.
Характеристики регулируемого источника питания
Качество источника питания может определяться несколькими факторами, а именно током нагрузки, напряжением, источником и регулировкой напряжения, подавлением пульсаций, импедансом o / p и т. Д. Некоторые из факторов объясняются ниже.
Регулирование нагрузки
Регулировка нагрузки также известна как эффект нагрузки. Это можно определить так, что всякий раз, когда ток нагрузки изменяется от наименьшего к наибольшему значению, выход регулируемого напряжения будет изменяться.Это можно рассчитать с помощью следующего уравнения.
Регулировка нагрузки = V без нагрузки — V полная нагрузка
Из приведенного выше уравнения регулирования нагрузки можно сделать вывод, что всякий раз, когда возникает напряжение холостого хода, сопротивление нагрузки будет неограниченным. Точно так же всякий раз, когда возникает напряжение полной нагрузки, сопротивление нагрузки будет наименьшим значением. Таким образом, регулирование напряжения будет потеряно.
% регулирования нагрузки = (V без нагрузки — V полная нагрузка) / (V полная нагрузка) X 100
Наименьшее сопротивление нагрузки
Сопротивление нагрузки, на которое источник тока подает свой заряженный ток полной нагрузки номинальным напряжением, можно назвать наименьшим сопротивлением нагрузки.
Минимальное сопротивление нагрузки = Напряжение полной нагрузки / Ток полной нагрузки
Постановление о линии или источнике
На блок-схеме источника питания входное напряжение составляет 230 В, однако на практике; есть существенные различия в напряжении питающей сети переменного тока. Поскольку это сетевое напряжение питания i / p относительно нормального источника питания, отфильтрованное o / p мостового выпрямителя приблизительно прямо пропорционально сетевому напряжению переменного тока. Регулировку источника можно определить как изменение регулируемого опорного напряжения для определенного диапазона низкого напряжения.
Выходное сопротивление
Выходное сопротивление регулируемого источника питания очень мало. Несмотря на то, что внешнее сопротивление нагрузки может быть изменено, в пределах напряжения нагрузки изменений не наблюдается. Импеданс идеального источника напряжения равен нулю.
Подавление пульсации
Стабилизаторы напряжения фиксируют напряжение включения / выключения в зависимости от колебаний входного напряжения. Пульсация равна периодической разнице между напряжением i / p.Таким образом, стабилизатор напряжения удовлетворяет пульсации, которые приближаются к нерегулируемому напряжению i / p. Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение можно уменьшить с коэффициентом, аналогичным коэффициенту усиления.
Применение регулируемого источника питания
Применения регулируемого источника питания включают следующее.
Стабилизированный источник питания (RPS) — это встроенная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток с помощью выпрямителя.Основная функция этого состоит в том, чтобы подавать постоянное напряжение в цепь, которая должна работать с определенным пределом источника питания.
- Зарядные устройства для мобильных телефонов
- Регулируемые блоки питания в различных приборах
- Различные генераторы и усилители
Таким образом, это все про регулируемый источник питания (RPS) .
