Как обозначается реле на схемах: Условное обозначение реле

Содержание

Условное обозначение реле

Как известно, что если через катушку индуктивности пропустить постоянный электрический ток, то вокруг нее образуется магнитное поле, которое начинает притягивать металлические предметы. Если около такого соленоида расположить одну или несколько подпружиненных контактных групп и их подвижные части жестко соединить с пластиной, изготовленной из металлического сплава, расположенной около одного из полюсов катушки, то получится электромагнитное коммутирующее устройство, которое называется «реле» от французского «relais».

При подключении катушки к источнику тока стальная пластинка начинает, притягивается к катушке и тем самым приводит в движение контакты, замыкающие или размыкающие электрическую цепь. Чтобы пластина реле вернулась в первоначальное положение, катушку необходимо обесточить.

Обозначение реле

 

 

На электрических схемах условное обозначение реле наносится в виде прямоугольника, от наибольших сторон которого отведены линии выводов питания соленоида.

Номера контактной группы К2.1 и К2.2

 

Контакты электромагнитного реле изображают аналогично, контактам выключателей и переключателей. Условное графическое обозначение реле, контакты которого расположены рядом с катушкой, соединяют штриховой линией, а если контакты расположены в различных местах, то около прямоугольного знака соленоида, ставят символ «К» и его порядковый номер, как и в первом случае, и около контактов реле помимо его номера, через точку пишут номер контактной группы.

Поляризованное реле

 

Работа обычных электромагнитных реле не требует полярности подключения источника напряжения, приложенного к концам катушки. Но есть реле, для которых обязательно нужно соблюдать это условие. Такие реле называют поляризованными.

При подаче напряжения на обмотку зависимого от полярности реле, его контакты приводятся в движение и могут быть зафиксированы в таком положении даже при разрыве цепи обмотки. Чтобы изменить положение контактов, необходимо поменять полярность подачи напряжения на обмотке.

Условное обозначение полярного реле, на электрической принципиальной схеме, наносится в виде прямоугольника с двумя выводами и жирной точкой у одного из разъёмов. Этот знак, в виде жирной точки, ставится так же у одного из неподвижного контакта, говорящего о том, что в данном положении состояние коммутирующего элемента будет зафиксировано при срабатывании реле. Латинский символ «Р» наносимый в прямоугольнике указывает на то, что это реле поляризованное.

по ГОСТу, контактов реле, промежуточного и реле тока

На чтение 9 мин Просмотров 14.1к. Опубликовано Обновлено

Для полноты информации об изделии и особенностях его работы используются электрические схемы. Пользователь не может запутаться при сборке благодаря внесению буквенно-графических маркировок в ЕСКД. Обозначение реле на схеме подчиняется ГОСТ 2.702-2011, где подробно описываются элементы устройства и расшифровываются значения.

Маркировка релейной защиты

Электромагнитное реле постоянного тока

Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.

Принципиальные схемы

Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.

Сложные соединения сопровождаются надписями с указанием функционала отдельных узлов.

Монтажная схема

Пример монтажной схемы

Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.

Монтажная схема также называется исполнительной.

Структурные схемы

Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.

Условное обозначение

На электрической схеме реле принято обозначать прямоугольником, от больших сторон которого отходят линии соленоидных выводов питания.

Графические маркеры

Условное обозначение реле на схемах

Графический способ изображения элементов реализуется посредством геометрических фигур:

Контакты реле могут подписываться.

Буквенное обозначение

УГО реле бывает недостаточно для правильного прочтения схемы. В этом случае используется буквенный способ маркировки. Код реле – английская литера К. Для наглядного понимания, что может обозначать буква на релейной схеме, стоит обратиться к таблице.

БуквыРасшифровка
AKБлок-реле/защитный комплекс
AKZКомплект реле сопротивления
KAРеле тока
KATР. тока с БНТ
KAWР. тока с торможением
KAZТоковое реле с функциями фильтра
KBР. блокировки
KFР. частоты
KHУказательное
KLПромежуточное
FПлавкий предохранитель
XNНеразборное соединение
XTРазборное соединение
KQCРеле «вкл»
KQTРеле «откл»
KTР. времени
KSGТепловое
KVР. напряжения
K 2.1, K 2.2, K 2.3Контактные группы
XTКлеммы
EЭлементы, к которым подключается реле
NOНормально разомкнутые контакты
NCНормально замкнутые контакты
COMОбщие (переключающиеся) контакты
mWМощность потребления
mVЧувствительность
ΩСопротивление обмотки
VНоминал напряжения
mAНоминальный ток

Буквы можно использовать на графической схеме.

Обозначения в зависимости от типов реле

В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

Тепловые модели реле

Реле тепловой защиты применяются с целью обеспечения нормального режима работы потребителей. Приборы выключают электродвигатель мгновенно или через некоторое время, предотвращая повреждения изоляционной поверхности или отдельных узлов.

На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

Стоимость теплового реле

Реле времени

Обозначение реле времени

Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

  • дуга вниз – задержка после подачи напряжения;
  • дуга вниз – контакт, срабатывающий при возврате;
  • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

Импульсные замыкающие контакты обозначаются так:

  • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
  • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
  • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

Стоимость реле времени

Реле тока

Реле тока на схеме

Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

Стоимость реле тока

Особенности обозначения электромагнитных реле на схемах

Конструктивно электромагнитное реле является электромагнитом с одной или несколькими контактными группами. Их символы и формируют УГО прибора. Обмотка электромагнита отрисовывается как прямоугольник с линиями выводов по обеим сторонам. Маркеры контактов К находятся напротив узкой стороны обмотки и соединяются пунктиром (механическая связь).

Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

Геркон, управляемый магнитом постоянного типа и не входящий в конструкцию релейной защиты, имеет кодировку автовыключателя – SF.

Стоимость электромагнитного реле

Промежуточное реле

Промежуточное реле на схеме

Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

На схемах контакты изображаются в состоянии без подачи напряжения.

Стоимость промежуточного реле

Виды и обозначения релейных контактов

Обозначения релейных контактов

В зависимости от конструкции реле существует три типа контактов:

  • Нормально-разомкнутые. Размыкаются до подачи тока через катушку реле. Буквенное обозначение – НР или NO.
  • Нормально-замкнутые. Находятся в замкнутом положении до момента протекания тока через релейную катушку. Обозначаются буквами НЗ или NC.
  • Перекидные/переключающиеся/общие. Представляют собой комбинацию из контактов нормально-разомкнутого или нормально-замкнутого типа. Оснащаются общим приводом переключения. Буквенная символика – COM.

На сегодняшний день распространены реле с перекидными контактами.

Досконально изучать особенности маркировки не обязательно. Буквенно-графические символы можно выписать или распечатать, а затем использовать для сборки. Если геометрические фигуры покажутся сложными, всегда можно обратиться к буквенной маркировке.

Обозначение Реле На Электрической Схеме

Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. К этому сухому контакту подключаются управляющие проводники контактора или пускателя , функция которого коммутировать или разъединять фазные провода, защищая систему от опасных перепадов напряжения.



Таким образом, получается, что при выключенном реле контакты замкнуты. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Примеры УГО в функциональных схемах Ниже представлен рисунок с изображением основных узлов систем автоматизации. Разберёмся с этим поподробнее.
Как читать электрические схемы

Сам же пружинящий контакт закреплён на ярме.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1.

Каждое из обозначений можно применять в определенных случаях.

В большинстве случаев реле монтируется в защитном корпусе. D — контакты коммутационных приборов:.

Читаем принципиальные электрические схемы

Виды электрических схем

Такие реле называют поляризованными. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BSC.

Условные графические обозначения светильников и прожекторов Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Сам же пружинящий контакт закреплён на ярме. Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления Шкаф, панель двухстороннего обслуживания Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания Щит открытый Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.


А нормально-замкнутые контакты N.

Условные графические обозначения на электрических схемах и схемах автоматизации: ГОСТ 2.

Обозначение условное графическое и буквенный код элементов электрических схем Наименование элемента схемы Буквенный код Машина электрическая.

Условное обозначение полярного реле, на электрической принципиальной схеме, наносится в виде прямоугольника с двумя выводами и жирной точкой у одного из разъёмов. Как проверить реле?
Как читать электрические схемы. Радиодетали маркировка обозначение

В трехфазной сети

Об этом свидетельствует надпись 10A 28VDC. Нормально замкнутые контакты Нормально замкнутые контакты — это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток.

Допускается применять следующее обозначение 4. Характерная особенность такой схемы — минимальная детализация. Катушка электромеханического устройства с двумя встречными одинаковыми обмотками бифилярная обмотка 7.


Понятно, что мощность контактов реле может быть разная.

Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена. Катушка электромеханического устройства, работающего с механическим резонансом Примечание. Допускается применять следующее обозначение 8.

Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах. Она обозначается в виде прямоугольника с двумя выводами. Нагрузкой может быть, например, электрическая лампа или электродвигатель. H — Соединение в месте пересечения.


Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом А нормально-замкнутые контакты N.

Таблица 1. Как работает реле? Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для изображения основных базовых функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении: 1 замыкающих 3 переключающих 4 переключающих с нейтральным центральным положением 1.

В качестве примера, рассмотрим импортное реле Bestar BSC. Такие контакты на схемах изображают следующим образом.
Элементы вторичной схемы РЗА. Реле

Виды и типы электрических схем

Катушка электромеханического устройства, работающего с ускорением при срабатывании и отпускании

Около прямоугольника или в прямоугольнике допускается указывать величины, характеризующие обмотку, например, катушка с двумя обмотками, сопротивление каждой Ом 2. Дополнительные знаки позволяют найти на схеме контакты кнопок управления , реле времени, путевых выключателей и т.

Чтобы изменить положение контактов, необходимо поменять полярность подачи напряжения на обмотке. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник.

Это были силовые характеристики реле, точнее его контактов. E — Электрическая связь с корпусом прибора. Одна часть К1 — это условное обозначение электромагнитной катушки. На его корпусе нанесены следующие надписи.

Рекомендуем: Как ремониторовать электрику

Принцип работы реле наглядно иллюстрирует следующая схема. Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. Вместе со стержнем и якорем ярмо образует магнитопровод.

Параметры электромагнитных реле. Катушка электромеханического устройства с двумя встречными одинаковыми обмотками бифилярная обмотка 7. Виды и типы. Катушка электромеханического устройства трехфазного тока 9.

Реле сработает, и его контакты K1. Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков. При отсутствии дополнительной информации в основном поле допускается в этом поле указывать уточняющие данные, например, катушка электромеханического устройства с обмоткой минимального тока Он может быть как металлическим, так и пластмассовым.

Его основой является катушка, состоящая из большого количества витков изолированного провода. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы.
Как читать электрические схемы

6. Реле и соединители — Условные графические обозначения на электрических схемах — Компоненты — Инструкции

 Наряду с выключателями и переключателями в радиоэлектронной технике для дистанционного управления и различных развязок широко применяют электромагнитные реле (от французского слова relais). Электромагнитное реле состоит из электромагнита и одной или нескольких контактных групп. Символы этих обязательных элементов конструкции реле и образуют его условное графическое обозначение [4].

 
 Электромагнит (точнее, его обмотку) изображают на схемах в виде прямоугольника с присоединенными к нему линиями электрической связи, символизирующими выводы. Условное графическое обозначение контактов располагают напротив одной из узких сторон символа обмотки и соединяют с ним линией механической связи (пунктирной линией). Буквенный код реле — буква K (K1 на рис.6.1)

 

 Выводы обмотки для удобства допускается изображать с одной стороны (см. рис. 6.1, К2), а символы контактов — в разных частях схемы (рядом с УГО коммутируемых элементов). В этом случае принадлежность контактов тому или иному реле указывают обычным образом в позиционном обозначении условным номером контактной группы (К2.1, К2.2, K2.3).

 
 Внутри условного графического обозначения обмотки стандарт допускает указывать ее параметры (см. рис. 6.1, КЗ) или конструктивные особенности. Например, две наклонные линии в символе обмотки реле К4 означают, что она состоит из двух обмоток.

 

 Поляризованные реле (они обычно управляются изменением направления тока в одной или двух обмотках) выделяют на схемах латинской буквой Р, вписываемой в дополнительное графическое поле УГО и двумя жирными точками (см. рис. 6.1, К5). Эти точки возле одного из выводов обмотки и одного из контактов такого реле означают следующее: контакт, отмеченный точкой, замыкается при подаче напряжения, положительный полюс которого приложен к выделенному таким же образом выводу обмотки. Если необходимо показать, что контакты поляризованного реле остаются замкнутыми и после снятия управляющего напряжения, поступают так же, как и в случае с кнопочными переключателями (см. разд. 5): на символе замыкающего (или размыкающего) контакта изображают небольшой кружок. Существуют так же реле, в которых магнитное поле, создаваемое управляющим током обмотки, воздействует непосредственно на чувствительные к нему (магнитоуправляемые) контакты, заключенные в герметичный корпус (отсюда и название геркон — ГЕРметизированный КОНтакт). Чтобы отличить контакты геркона от других коммутационных изделий в его УГО иногда вводят символ герметичного корпуса — окружность. Принадлежность к конкретному реле указывают в позиционном обозначении (см. рис. 6.1, К6.1). Если же геркон не является частью реле, а управляется постоянным магнитом, его обозначают кодом автоматического выключателя — буквами SF (рис. 6.1, SF1).

 
 Большую группу коммутационных изделий образуют всевозможные соединители. Наиболее широко используют разъемные соединители (штепсельные разъемы, см. рис. 6.2). Код разъемного соединителя — латинская буква X. При изображении штырей и гнезд в разных частях схемы в позиционное обозначение первых вводят букву Р (см. рис. 6.2, ХР1), вторых — S (XS1).

 

 Высокочастотные (коаксиальные) соединители и их части обозначают буквами XW (см. рис. 6.2, соединитель XW1, гнезда XW2, ХW3). Отличительный признак высокочастотного соединителя — окружность с отрезком касательной линии, параллельной линии электрической связи и направленной в сторону соединения (XW1). Если же с другими элементами устройства штырь или гнездо’ соединены коаксиальным кабелем, касательную продляют и в другую сторону (XW2, XW3). Соединение корпуса соединителя и оплетки коаксиального кабеля с общим проводом (корпусом) устройства показывают присоединением к касательной (без точки!) линии электрической связи со знаком корпуса на конце (XW3).

 
 Разборные соединения (с помощью винта или шпильки с гайкой и т. п.) обозначают на схемах буквами XT, а изображают — небольшим кружком (см. рис. 6.2; ХТ1, ХТ2, диаметр окружности — 2 мм). Это же условное графическое обозначение используют и в том случае, если необходимо показать контрольную точку.

 
 Передача сигналов на подвижные узлы механизмов часто осуществляется с помощью соединения, состоящего из подвижного контакта (его изображают в виде стрелки) и токопроводящей поверхности, по которой он скользит. Если эта поверхность линейная, ее показывают отрезком прямой линии с выводом в виде ответвления у одного из концов (см. рис. 6.2, X1), а если кольцевая или цилиндрическая — окружностью {X2).

 

 Принадлежность штырей или гнезд к одному многоконтактному соединителю показывают на схемах линией механической связи и нумерацией в соответствии с нумерацией на самих соединителях (рис. 6.3, XS1, ХР1). При изображении разнесенным способом условное буквенно-цифровое позиционное обозначение контакта составляют из обозначения, присвоенного соответствующей части соединителя и его номера (XS1.1 — первое гнездо розетки XS1; ХР5,4 — четвертый штырь вилки ХР6 и т. д.).

 
 Для упрощения графических работ стандарт допускает заменять условное графическое обозначение контактов розеток и вилок многоконтактных соединителей небольшими пронумерованными прямоугольниками с соответствующими символами (гнезда или штыря) над ними (см. рис. 6.3, XS2, ХР2). Расположение контактов в символах разъемных соединителей может быть любым — здесь все определяется начертанием схемы; неиспользуемые контакты на схемах обычно не показывают.
Аналогично строятся условные графические обозначения многоконтактных разъемных соединителей, изображаемых в состыкованном виде (рис. 6.4). На схемах разъемные соединители в таком виде независимо от числа контактов обозначают одной буквой X (исключение — высокочастотные соединители). В целях еще большего упрощения  графики стандарт допускает обозначать многоконтактный соединитель одним прямоугольником с соответствующими числом линий электрической связи и нумерацией (см. рис. 6.4, X4).

 
 Для коммутации редко переключаемых цепей (делителей напряжения с подборными элементами, первичных обмоток трансформаторов сетевого питания и т. п.) в электронных устройствах применяют перемычки и вставки. Перемычку, предназначенную для замыкания или размыкания цепи, обозначают отрезком линии электрической связи с символами разъемного соединения на концах (рис. 6.5, X1), для переключения — П-образной скобой (X3). Наличие на перемычке контрольного гнезда (или штыря) показывают соответствующим символом {X2).

 
 При обозначении вставок-переключателей, обеспечивающих более сложную коммутацию, используют способ для изображения переключателей. Например, вставка на рис. 6.5, состоящая из розетки XS1 и вилки XP1, работает следующим образом: в положении 1 замыкатели вилки соединяют гнезда 1 и 2, 3 и 4, в положении 2 — гнезда 2 и 3, 1 и 4, в положении 3 — гнезда 2 и 4. 1 и 3.

 

 

 

Реле напряжения на однолинейной схеме – RozetkaOnline.COM

Реле напряжения, это пример модульных аппаратов защиты, которые еще 5-7 лет назад устанавливалась лишь в электрощитах промышленных предприятий, а сейчас всё чаще встречаются в бытовых электроустановках квартир и частных домов.

О том, как правильно они обозначаются на однолинейных схемах говорится в ГОСТ 2.767-89 «Единая система конструкторской документации. Обозначения условные графические в электрических схемах. Реле защиты».

Это специализированный государственный стандарт по модульным аппаратам защиты, работа которых основана на действии реле, в котором для реле напряжения принято следующее схематическое обозначение:

Оно складывается из нескольких символов:

– Общий графический знак всех реле – прямоугольник

– Измеряемой величины – «U» Напряжения

– Знаков больше «>» и меньше «<», которые показывают диапазон работы

Для более полных, детальных электрических схем, стандартом допускается добавлять численные единицы диапазона регулировки при превышении/понижении которого устройство сработает.

В качестве примера, на изображении ниже, показан модульный аппарат, который срабатывает при превышении напряжения в сети выше 250 Вольт или понижении уровня меньше 180 Вольт.

Обозначение трехфазной модификации устройства , внешне немногим отличается от однофазного, а вот в принципе работы и подключения у них есть существенные различия.

В однофазной сети

Реле напряжения для однофазной сети само коммутирует фазный проводник. Пока параметры напряжения в сети находятся в допустимом диапазоне, контакты замкнуты и ток поступает к потребителям – электрическим розеткам, освещению и т.д. В случае, когда оно становится выше или ниже установленных величин, внутренним механизмом автоматически разрывается фазный проводник и потребители обесточиваются.

Однолинейная схема электрического щита с однофазным реле напряжения выглядит следующим образом:

В трехфазной сети

Трехфазное реле напряжения, чаще не разрывает фазы, которые контролирует, а лишь даёт сухой контакт – нормально замкнутый или разомкнутый и изменяет его состояние.

К этому сухому контакту подключаются управляющие проводники контактора (или пускателя), функция которого коммутировать или разъединять фазные провода, защищая систему от опасных перепадов напряжения.

Однолинейная схема электрощита с трехфазным реле контроля напряжения и управляемым ей контактором показана ниже:

Буквенное обозначение реле напряжения

 

Правильное буквенное обозначение, которыми маркируются реле напряжения – KV.

Об этом сказано в действующем ГОСТ 2.710-81 «Единая система конструкторской документации (ЕСКД). Обозначения буквенно-цифровые в электрических схемах» (ЧИТАТЬ В PDF) , где выделен персональный двухзначный код для них.

Обозначения на реле как читать

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное)Сопротивление обмотки (Ω ±10%)Номинальный ток (mA)Потребляемая мощность (mW)
325120360
57072
610060
922540
1240030
24160015
4864007,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Преобразование электрических сигналов в соответствующую физическую величину — движение, сила, звук и т. д., осуществляется с помощью приводов. Классифицировать привод следует как преобразователь, поскольку это устройство изменяет один тип физической величины в другой.

Привод обычно активируется или управляется командным сигналом низкого напряжения. Классифицируется дополнительно как двоичное или непрерывное устройство исходя из числа стабильных состояний. Так, электромагнитное реле является двоичным приводом, учитывая два имеющихся стабильных состояния: включено — отключено.

В представленной статье подробно разобраны принципы работы электромагнитного реле и сфера использования приборов.

Основы исполнения привода

Термин «реле» является характерным для устройств, которыми обеспечивается электрическое соединение между двумя и более точками посредством управляющего сигнала.

Наиболее распространенным и широко используемым типом электромагнитного реле (ЭМР) является электромеханическая конструкция.

Схема фундаментального контроля над любым оборудованием всегда предусматривает возможность включения и отключения. Самый простой способ выполнить эти действия — использовать переключатели блокировки подачи питания.

Переключатели ручного действия могут использоваться для управления, но имеют недостатки. Явный их недостаток – установка состояний «включено» или «отключено» физическим путем, то есть вручную.

Устройства ручного переключения, как правило, крупногабаритные, замедленного действия, способные коммутировать небольшие токи.

Между тем электромагнитные реле представлены в основном переключателями с электрическим управлением. Приборы имеют разные формы, габариты и разделяются по уровню номинальных мощностей. Возможности их применения обширны.

Такие приборы, оснащенные одной или несколькими парами контактов, могут входить в единую конструкцию более крупных силовых исполнительных механизмов — контакторов, что используются для коммутации сетевого напряжения или высоковольтных устройств.

Основополагающие принципы работы ЭМР

Традиционно реле электромагнитного типа используются в составе электрических (электронных) схем управления коммутацией. При этом устанавливаются они либо непосредственно на печатных платах, либо в свободном положении.

Общее строение прибора

Токи нагрузки используемых изделий обычно измеряются от долей ампера до 20 А и более. Релейные цепи широко распространены в электронной практике.

Конструкция электромагнитного реле преобразует магнитный поток, создаваемый приложенным напряжением переменного/постоянного тока, в механическое усилие. Благодаря полученному механическому усилию, выполняется управление контактной группой.

Наиболее распространенной конструкцией является форма изделия, включающая следующие компоненты:

  • возбуждающую катушку;
  • стальной сердечник;
  • опорное шасси;
  • контактную группу.

Стальной сердечник имеет фиксированную часть, называемую коромысло, и подвижную подпружиненную деталь, именуемую якорем.

По сути, якорь дополняет цепь магнитного поля, закрывая воздушный зазор между неподвижной электрической катушкой и подвижной арматурой.

Арматура движется на шарнирах или поворачивается свободно под действием генерируемого магнитного поля. При этом замыкаются электрические контакты, прикрепленные к арматуре.

Как правило, расположенная между коромыслом и якорем пружина (пружины) обратного хода возвращает контакты в исходное положение, когда катушка реле находится в обесточенном состоянии.

Действие релейной электромагнитной системы

Простая классическая конструкция ЭМР имеет две совокупности электропроводящих контактов.

Исходя из этого, реализуются два состояния контактной группы:

  1. Нормально разомкнутый контакт.
  2. Нормально замкнутый контакт.

Соответственно пара контактов классифицируется нормально открытыми (NO) или, будучи в ином состоянии, нормально закрытыми (NC).

Для реле с нормально разомкнутым положением контактов, состояние «замкнуто» достигается, только когда ток возбуждения проходит через индуктивную катушку.

В другом варианте — нормально закрытое положение контактов остается постоянным, когда ток возбуждения отсутствует в контуре катушки. То есть контакты переключателя возвращаются в их нормальное замкнутое положение.

Поэтому термины «нормально открытый» и «нормально закрытый» следует относить к состоянию электрических контактов, когда катушка реле обесточена, то есть напряжение питания реле отключено.

Электрические контактные группы реле

Релейные контакты представлены обычно электропроводящими металлическими элементами, которые соприкасаются друг с другом, замыкают цепь, действуя аналогично простому выключателю.

Когда контакты разомкнуты, сопротивление между нормально открытыми контактами измеряется высоким значением в мегаомах. Так создается условие разомкнутой цепи, когда прохождение тока в контуре катушки исключается.

Если же контакты замкнуты, контактное сопротивление теоретически должно равняться нулю — результат короткого замыкания.

Однако подобное состояние отмечается не всегда. Контактная группа каждого отдельного реле обладает определенным контактным сопротивлением в состоянии «замкнуто». Такое сопротивление называется устойчивым.

Особенности прохождения токов нагрузки

Для практики установки нового электромагнитного реле, контактное сопротивление включения отмечается малой величиной, обычно менее 0,2 Ом.

Объясняется это просто: новые наконечники остаются пока что чистыми, но со временем сопротивление наконечника неизбежно будет увеличиваться.

Например, для контактов под током 10 А, падение напряжения составит 0,2х10 = 2 вольта (закон Ома). Отсюда получается — если подводимое на контактную группу напряжение питания составляет 12 вольт, тогда напряжение для нагрузки составит 10 вольт (12-2).

Когда контактные металлические наконечники изнашиваются, будучи не защищенными должным образом от высоких индуктивных или емкостных нагрузок, становится неизбежным появление повреждений от эффекта электрической дуги.

Электрическая дуга — искрообразование на контактах — приводит к возрастанию контактного сопротивления наконечников и как следствие к физическим повреждениям.

Если продолжать использовать реле в таком состоянии, контактные наконечники могут полностью утратить физическое свойство контакта.

Но есть более серьезный фактор, когда в результате повреждения дугой контакты в конечном итоге свариваются, создавая условия короткого замыкания.

В таких ситуациях не исключается риск повреждения цепи, которую контролирует ЭМР.

Так, если сопротивление контакта увеличилось от влияния электрической дуги на 1 Ом, падение напряжения на контактах для одного и того же тока нагрузки увеличивается до 1×10=10 вольт постоянного тока.

Здесь величина падения напряжения на контактах может быть неприемлема для схемы нагрузки, особенно при работе с напряжениями питания 12-24 В.

Тип материала контактов реле

С целью уменьшения влияния электрической дуги и высоких сопротивлений, контактные наконечники современных электромеханических реле изготавливают или покрывают различными сплавами на основе серебра.

Таким способом удается существенно продлить срок службы контактной группы.

На практике отмечается использование следующих материалов, коими обрабатываются наконечники контактных групп электромагнитных (электромеханических) реле:

  • Ag — серебро;
  • AgCu — серебро-медь;
  • AgCdO — серебро-оксид кадмия;
  • AgW — серебро-вольфрам;
  • AgNi — серебро-никель;
  • AgPd — серебро-палладий.

Увеличение срока службы наконечников контактных групп реле за счет уменьшения количества формирований электрической дуги, достигается путем подключения резистивно-конденсаторных фильтров, называемых также RC-демпферы.

Эти электронные цепочки включают параллельно с контактными группами электромеханических реле. Пик напряжения, который отмечается в момент открытия контактов, при таком решении видится безопасно коротким.

Применением RC-демпферов удается подавлять электрическую дугу, что образуется на контактных наконечниках.

Типичное исполнение контактов ЭМР

Помимо классических нормально открытых (NO) и нормально закрытых (NC) контактов, механика релейной коммутации также предполагает классификацию с учетом действия.

Особенности исполнения соединительных элементов

Конструкции реле электромагнитного типа в этом варианте допускают наличие одного или нескольких отдельных контактов переключателя.

Исполнение контактов характеризуется следующим набором аббревиатуры:

  • SPST (Single Pole Single Throw) – однополюсный однонаправленный;
  • SPDT (Single Pole Double Throw) – однополюсный двунаправленный;
  • DPST (Double Pole Single Throw) – двухполюсный однонаправленный;
  • DPDT (Double Pole Double Throw) – двухполюсный двунаправленный.

Каждый такой соединительный элемент обозначается, как «полюс». Любые из них могут подключаться или сбрасываться, одновременно активируя катушку реле.

Тонкости применения приборов

При всей простоте конструкции коммутаторов электромагнитного действия, существуют некоторые тонкости практики использования этих приборов.

Так, специалисты категорически не рекомендуют подключать в параллель все контакты реле, чтобы таким способом коммутировать цепь нагрузки с высоким током.

Например, подключать нагрузку на 10 А путем параллельного соединения двух контактов, каждый из которых рассчитан на ток 5 А.

Эти тонкости монтажа обусловлены тем, что контакты механических реле никогда не замыкаются и не размыкаются в единый момент времени.

В результате один из контактов в любом случае будет перегружен. И даже с учетом кратковременной перегрузки, преждевременный отказ прибора в таком подключении неизбежен.

Электромагнитные изделия допустимо использовать в составе электрических или электронных схем с низким энергопотреблением как переключатели относительно высоких токов и напряжений.

Однако категорически не рекомендуется пропускать разные напряжения нагрузки через соседние контакты одного прибора.

Например, коммутировать напряжение переменного тока 220 В и постоянного тока 24 В. Всегда следует применять отдельные изделия для каждого из вариантов в целях обеспечения безопасности.

Приемы защиты от обратного напряжения

Значимой деталью любого электромеханического реле является катушка. Эта деталь относится к разряду нагрузки с высокой индуктивностью, поскольку имеет проводную намотку.

Любая намотанная проводом катушка обладает некоторым импедансом, состоящим из индуктивности L и сопротивления R, образуя, таким образом, последовательную цепь LR.

По мере протекания тока через катушку, создается внешнее магнитное поле. Когда течение тока в катушке прекращается в режиме «отключено», увеличивается магнитный поток (теория трансформации) и возникает высокое обратное напряжение ЭДС (электродвижущей силы).

Это индуцированное значение обратного напряжения может в несколько раз превосходить по величине коммутационное напряжение.

Соответственно, появляется риск повреждения любых полупроводниковых компонентов, размещенных рядом с реле. Например, биполярный или полевой транзистор, используемый для подачи напряжения на катушку реле.

Одним из способов предотвращения повреждения транзистора или любого переключающего полупроводникового устройства, включая микроконтроллеры, является вариант подключения обратно смещенного диода в цепь катушки реле.

Когда ток, протекающий через катушку сразу после отключения, генерирует индуцированную обратную ЭДС, это обратное напряжение открывает обратно смещенный диод.

Через полупроводник накопленная энергия рассеивается, чем предотвращается повреждение управляющего полупроводника – транзистора, тиристора, микроконтроллера.

Часто включаемый в цепь катушки полупроводник называют также:

  • диод-маховик;
  • шунтирующий диод;
  • обращенный диод.

Однако большой разницы между элементами нет. Все они выполняют одну функцию. Помимо использования диодов с обратным смещением, для защиты полупроводниковых компонентов применяются и другие устройства.

Те же цепочки RC-демпферов, металло-оксидные варисторы (MOV), стабилитроны.

Маркировка электромагнитных релейных приборов

Технические обозначения, несущие частичную информацию о приборах, обычно указываются непосредственно на шасси электромагнитного коммутационного прибора.

Выглядит такое обозначение в виде сокращенной аббревиатуры и числового набора.

Пример корпусной маркировки электромеханических реле:

РЭС32 РФ4.500.335-01

Эта запись расшифровывается так: реле электромагнитное слаботочное, 32 серии, соответствующее исполнению по паспорту РФ4.500.335-01.

Однако подобные обозначения редкость. Чаще встречаются сокращенные варианты без явного указания ГОСТ:

РЭС32 335-01

Также не шасси (на корпусе) прибора отмечается дата изготовления и номер партии. Подробные сведения содержатся в техническом паспорте на изделие. Паспортом комплектуется каждый прибор или партия.

Выводы и полезное видео по теме

Видеоролик популярно рассказывает о том, как действует электромеханическая электроника коммутации. Наглядно отмечаются тонкости конструкций, особенности подключений и прочие детали:

Электромеханические реле уже довольно долгое время применяются в качестве электронных компонентов. Однако этот тип коммутационных приборов можно считать морально устаревшим. На смену механическим устройствам все чаще приходят более современные приборы – чисто электронные. Один из таких примеров – твердотельные реле.

Появились вопросы, нашли недочеты или есть интересные факты по теме стать которыми вы можете поделиться с посетителями нашего сайте? Пожалуйста, оставляйте свои комментарии, задавайте вопросы, делитесь опытом в блоке для связи под статьей.

Добрый день. Можете подсказать – какие существуют способы подавления помех от работы реле?

Добрый день, Roma. Борьба с помехами – отдельная история, практически не затрагиваемая ПУЭ.

Реле генерирует электромагнитные волны при замыкании/размыкании контактов. Распространяющиеся волны наводят ЭДС в проводах, металлических конструкциях, через которые проходят. Напомню, что сработавшее реле, запускает цепочку «событий», завершающихся пуском силового оборудования, пусковые токи, которого также генерируют электромагнитные волны.

Защититься, подавить помехи такого характера можно сосредоточением реле в отдельные щиты, удаленные от приборов, оборудования, которому волны могут навредить. Кожухи щитов требуется заземлять. Контрольные кабели, кабели оперативных цепей, которым грозят наводки, должны иметь защитную оболочку, оплетку, броню, которые заземляются. Силовые и контрольные кабели, прокладываемые в сооружениях – разносят.

Проектные организации, занимающиеся электроснабжением, имеют отделы, прорабатывающие вопросы электромагнитной совместимости электрических сетей, сетей связи, автоматики и др.

Приложил скриншот пунктов ПУЭ, связанных с наводками и перечень ГОСТ, содержащих вопросы борьбы с помехами.

Для полноты информации об изделии и особенностях его работы используются электрические схемы. Пользователь не может запутаться при сборке благодаря внесению буквенно-графических маркировок в ЕСКД. Обозначение реле на схеме подчиняется ГОСТ 2.702-2011, где подробно описываются элементы устройства и расшифровываются значения.

Маркировка релейной защиты

Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.

Принципиальные схемы

Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.

Сложные соединения сопровождаются надписями с указанием функционала отдельных узлов.

Монтажная схема

Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.

Монтажная схема также называется исполнительной.

Структурные схемы

Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.

Условное обозначение

На электрической схеме реле принято обозначать прямоугольником, от больших сторон которого отходят линии соленоидных выводов питания.

Графические маркеры

Графический способ изображения элементов реализуется посредством геометрических фигур:

  • контакты – аналогично контактам переключателей;
  • устройства с контактами около катушки – соединение штриховой линии;
  • контакты в различных местах – порядковый номер рядом с прямоугольником;
  • полярное реле – прямоугольник с двумя выводами и точкой около разъема;

Контакты реле могут подписываться.

Буквенное обозначение

УГО реле бывает недостаточно для правильного прочтения схемы. В этом случае используется буквенный способ маркировки. Код реле – английская литера К. Для наглядного понимания, что может обозначать буква на релейной схеме, стоит обратиться к таблице.

БуквыРасшифровка
AKБлок-реле/защитный комплекс
AKZКомплект реле сопротивления
KAРеле тока
KATР. тока с БНТ
KAWР. тока с торможением
KAZТоковое реле с функциями фильтра
KBР. блокировки
KFР. частоты
KHУказательное
KLПромежуточное
FПлавкий предохранитель
XNНеразборное соединение
XTРазборное соединение
KQCРеле «вкл»
KQTРеле «откл»
KTР. времени
KSGТепловое
KVР. напряжения
K 2.1, K 2.2, K 2.3Контактные группы
XTКлеммы
EЭлементы, к которым подключается реле
NOНормально разомкнутые контакты
NCНормально замкнутые контакты
COMОбщие (переключающиеся) контакты
mWМощность потребления
mVЧувствительность
ΩСопротивление обмотки
VНоминал напряжения
mAНоминальный ток

Буквы можно использовать на графической схеме.

Обозначения в зависимости от типов реле

В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

Тепловые модели реле

Реле тепловой защиты применяются с целью обеспечения нормального режима работы потребителей. Приборы выключают электродвигатель мгновенно или через некоторое время, предотвращая повреждения изоляционной поверхности или отдельных узлов.

На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

Реле времени

Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

  • дуга вниз – задержка после подачи напряжения;
  • дуга вниз – контакт, срабатывающий при возврате;
  • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

Импульсные замыкающие контакты обозначаются так:

  • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
  • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
  • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

Реле тока

Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

Особенности обозначения электромагнитных реле на схемах

Конструктивно электромагнитное реле является электромагнитом с одной или несколькими контактными группами. Их символы и формируют УГО прибора. Обмотка электромагнита отрисовывается как прямоугольник с линиями выводов по обеим сторонам. Маркеры контактов К находятся напротив узкой стороны обмотки и соединяются пунктиром (механическая связь).

Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

Геркон, управляемый магнитом постоянного типа и не входящий в конструкцию релейной защиты, имеет кодировку автовыключателя – SF.

Промежуточное реле

Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

На схемах контакты изображаются в состоянии без подачи напряжения.

Виды и обозначения релейных контактов

В зависимости от конструкции реле существует три типа контактов:

  • Нормально-разомкнутые. Размыкаются до подачи тока через катушку реле. Буквенное обозначение – НР или NO.
  • Нормально-замкнутые. Находятся в замкнутом положении до момента протекания тока через релейную катушку. Обозначаются буквами НЗ или NC.
  • Перекидные/переключающиеся/общие. Представляют собой комбинацию из контактов нормально-разомкнутого или нормально-замкнутого типа. Оснащаются общим приводом переключения. Буквенная символика – COM.

На сегодняшний день распространены реле с перекидными контактами.

Досконально изучать особенности маркировки не обязательно. Буквенно-графические символы можно выписать или распечатать, а затем использовать для сборки. Если геометрические фигуры покажутся сложными, всегда можно обратиться к буквенной маркировке.

Релейные обозначения

Группа видов элементов и вид элементаБуквенный  кодСтарое обознач.
РелеК 
Реле токаКАРТ
Реле тока с насыщеным трансформаторомКАТРНТ
Реле тока с торможен.,баланс .КАWРТТ
Фильтр реле токаKAZРТФ,РНФ
Реле блокировкиКВРВН
Реле блокировки от многократного включенияКВSРБМ
Реле команды включитьКССРКВ
Реле команды отключитьКСТРКО
Реле частоты,разности частот  
Реле указательноеКНРУ
Реле импульсной сигнализацииКНА 
Реле промежуточноеKLРП
Реле сигнализации повторительKL 
Реле ускорения защитыKLРПУ
Реле давления повторительноеKLPРПД
Контактор пускательКМ 
Пускатель для электр.исполн.механизмовKMS 
Реле фиксации положения выключателяKQРФ
Реле положения выключателя включеноKQСРПВ
Реле положения выключателя отключеноKQTРПО
Реле фиксации команды включенияKQQРФК
Реле положения разъеденителя повтор.KQSРПВ
Реле контроляKSРК
Реле контроля синхронизацииKSSРКС
Реле контроля цепи напряженияKSVРКЦ
Элементы и аппараты контакт. с релейной характеристикой  
Реле расходаKSF 
Реле газовоеKSGРГ
Реле струи / напора/KSH 
Реле уровня жидкостиKSL 
Реле появления дыма / пламени/KSN 
Реле давленияKSP 
Реле состава веществаKSQ 
Реле скоростиKSR 
ТерморелеKST 
Реле времениKTРВ
Реле напряженияKVРН
Реле мощностиKWРМ
Реле сопротивленияKZРС
ДиодVD 
Релейные цепи и лестничные диаграммы

| Системы Релейного Управления

Электромеханические реле могут быть соединены вместе для выполнения логических и управляющих функций, действуя как логические элементы, похожие на цифровые вентили (И, ИЛИ и т. Д.). Очень распространенная форма схематической диаграммы, показывающей соединение реле для выполнения этих функций, называется лестничной диаграммой . На «лестничной» диаграмме два полюса источника питания изображены как вертикальные рельсы лестницы с горизонтальными «ступеньками», показывающими контакты переключателя, контакты реле, катушки реле и конечные элементы управления (лампы, катушки соленоидов, двигатели. ) протянутый между силовыми шинами.

Лестничные диаграммы отличаются от обычных принципиальных схем, типичных для техников-электронщиков, прежде всего строгой ориентацией проводки: вертикальные «рельсы» питания и горизонтальные управляющие «ступеньки». Символы также немного отличаются от обычных обозначений в электронике: катушки реле изображены в виде кружков, а контакты реле изображены в виде конденсаторов:

В отличие от схематических диаграмм, на которых связь между катушками реле и контактами реле представлена ​​пунктирными линиями, на лестничных диаграммах катушки и контакты обозначаются меткой .Иногда вы можете встретить контакты реле, помеченные идентично катушке (например, катушка с меткой CR5 и все контакты для этого реле также с меткой CR5), в то время как в других случаях вы найдете суффиксные номера, используемые для различения отдельных контактов внутри каждого реле друг от друга (например, катушка с меткой CR5 и его три контакта, обозначенные CR5-1, CR5-2 и CR5-3).

Еще одно примечательное соглашение в релейных схемах и их релейных диаграммах заключается в том, что каждый провод в цепи помечен номером, соответствующим общим точкам подключения.То есть соединенные вместе провода всегда имеют один и тот же номер: общий номер обозначает состояние электрической общности (все точки с одинаковым номером эквипотенциально друг к другу). Номера проводов меняются только тогда, когда соединение проходит через переключатель или другое устройство, способное понижать напряжение.

Фактическая лестничная диаграмма релейной системы управления двигателем показана здесь, вместе с красной линией правок, показывающих изменения в схеме, сделанные промышленным электриком:

Возможно, самый запутанный аспект цепей управления реле для учащихся — это значение нормального применительно к состоянию контактов реле.Как обсуждалось ранее, слово «нормальный» в этом контексте — будь то состояние ручных переключателей, переключателей процесса или контактов переключателя внутри управляющих реле — означает «в состоянии покоя» или без стимуляции. Другими словами, «нормально разомкнутый» контакт реле разомкнут , когда на катушку реле не подается питание, и замкнут, когда катушка реле находится под напряжением. Аналогично, «нормально замкнутый» контакт реле замыкается, когда на катушку реле не подается питание, и размыкается, когда на катушку реле подается питание.

Чтобы проиллюстрировать эту концепцию, давайте рассмотрим схему управления реле, в которой реле давления включает сигнальную лампу:

Здесь и реле давления, и контакт реле (CR1-1) изображены как нормально замкнутые контакты переключателя. Это означает, что контакт реле давления будет замкнут, когда приложенное давление будет меньше его точки срабатывания (50 фунтов на кв. Дюйм), а контакт переключателя реле будет замкнут, когда обмотка реле будет обесточена.

При анализе работы системы управления реле полезно иметь способ временно обозначить состояние проводимости контактов переключателя и состояние включения катушек реле (т.е.е. обозначение, которое мы можем нарисовать карандашом на диаграмме, чтобы помочь нам проследить за работой схемы). Я рекомендую использовать символы стрелки и «X» для обозначения потока мощности и отсутствия потока мощности (соответственно). Эти символы четко обозначают состояние компонентов, избегая путаницы с символами, используемыми для обозначения нормального состояния контактов переключателя.

На этой следующей диаграмме мы предполагаем, что приложенное давление меньше 50 фунтов на квадратный дюйм, оставляя реле давления в «нормальном» (закрытом) состоянии:

Поскольку давления недостаточно для срабатывания реле давления, его контакт остается в «нормальном» состоянии (замкнут).Это подает питание на катушку реле CR1, тем самым активируя контакт CR1-1 и удерживая его в открытом состоянии . При разомкнутом контакте CR1-1 сигнальная лампа не получает питания. В этом примере мы видим реле давления в его «нормальном» состоянии, но реле в активировало состояние .

Снова используя стрелки и символы «X», чтобы обозначить наличие или отсутствие питания в этой цепи, мы теперь проанализируем ее состояние с поданным давлением реле выше 50 фунтов на квадратный дюйм:

Теперь, когда к переключателю приложено давление жидкости, достаточное для его приведения в действие, его контакт принудительно переводится в состояние срабатывания, которое для этого «нормально замкнутого» переключателя разомкнуто.Это разомкнутое состояние обесточивает катушку реле CR1, позволяя контакту реле CR1-1 возвращаться в нормальное состояние (замкнут), тем самым передавая питание на сигнальную лампу. Из этого анализа мы видим, что лампа выполняет функцию аварийного сигнала высокого давления , срабатывая, когда приложенное давление превышает точку срабатывания.

Обычно ученики сбиваются с толку, предполагая, что контакт переключателя будет в том же состоянии, в котором он втянут. Это не обязательно так. Способ рисования контактов переключателя просто отражает их нормальное состояние , определенное производителем переключателя, что означает состояние переключателя при отсутствии (или недостаточности) управляющего воздействия.Будет ли переключатель фактически находиться в своем нормальном состоянии в любой момент времени, зависит от того, присутствует ли достаточный стимул для приведения в действие этого переключателя. То, что переключатель нарисован нормально замкнутым, не обязательно означает, что будет замкнутым, когда вы пойдете анализировать его. Все это означает, что переключатель будет замкнут , когда ничего не сработает .

Тот же принцип применяется к программированию релейной логики в электронных системах управления, называемых ПЛК (программируемые логические контроллеры).В ПЛК цифровой микропроцессор выполняет логические функции, традиционно обеспечиваемые электромеханическими реле, при этом программирование для этого микропроцессора принимает форму релейной схемы (также называемой диаграммой «лестничной логики»).

Здесь мы будем эмулировать точно такую ​​же цепь аварийной сигнализации высокого давления, используя ПЛК Allen-Bradley MicroLogix 1000 вместо катушки реле:

Схема подключения:

Программа лестничной логики:

Предположим, что к реле давления приложено давление жидкости 36 фунтов на квадратный дюйм.Это меньше уставки срабатывания переключателя, равной 50 фунтам на квадратный дюйм, при этом переключатель остается в «нормальном» (замкнутом) состоянии. Это подает питание на вход I: 0/2 ПЛК. Контакт с маркировкой I: 0/2 , нарисованный в программе релейной логики ПЛК, действует как контакт реле, управляемый катушкой, запитанной от входной клеммы I: 0/2 . Таким образом, замкнутый контакт реле давления активирует входную клемму I: 0/2 , которая, в свою очередь, «замыкает» символ нормально разомкнутого контакта I: 0/2 , нарисованный в программе релейной логики.Этот «виртуальный» контакт передает виртуальную мощность на виртуальную катушку с маркировкой B3: 0/0 , которая представляет собой не что иное, как один бит данных в памяти микропроцессора ПЛК. «Возбуждение» этой виртуальной катушки приводит к «срабатыванию» любого контакта, нарисованного в программе с такой же меткой. Это означает, что нормально замкнутый контакт B3: 0/0 теперь будет «задействован» и, таким образом, будет находиться в открытом состоянии, не посылая виртуальную мощность на выходную катушку O: 0/1 . Если виртуальная катушка O: 0/1 отключена от питания, реальный выход O: 0/1 на ПЛК будет электрически разомкнут, а сигнальная лампа будет отключена (выключена).

Если мы подадим на реле давления давление жидкости 61 фунт / кв. Дюйм, нормально замкнутый контакт реле давления будет приведен в действие (принудительно) в разомкнутое состояние. Это приведет к обесточиванию входа ПЛК I: 0/2 , таким образом «размыкая» нормально разомкнутый виртуальный контакт в программе ПЛК с такой же меткой. Этот «открытый» виртуальный контакт прерывает виртуальное питание виртуальной катушки B3: 0/0 , в результате чего нормально замкнутый виртуальный контакт B3: 0/0 «замыкается», передавая виртуальное питание на виртуальную катушку O: 0 / 1 .Когда эта виртуальная выходная катушка «запитывается», активизируется реальный выходной канал ПЛК, посылая реальную мощность на сигнальную лампу, чтобы включить ее, сигнализируя об аварийном состоянии высокого давления.

Мы можем дополнительно упростить эту программу ПЛК, исключив виртуальное управляющее реле B3: 0/0 и просто имея вход I: 0/2 активируя выход O: 0/1 через «нормально замкнутый» виртуальный контакт. :

Эффект тот же: выход ПЛК O: 0/1 будет активирован всякий раз, когда вход I: 0/2 обесточивается (всякий раз, когда реле давления открывается из-за высокого давления), при этом загорается сигнальная лампа. состояние высокого давления.В состоянии низкого давления под напряжением вход I: 0/2 вынуждает виртуальный нормально замкнутый контакт I: 0/2 размыкаться, таким образом обесточивая выход ПЛК O: 0/1 и поворачивая сигнальная лампа выключена.

Программируемые логические контроллеры

не только значительно упростили подключение промышленных логических элементов управления, заменив множество электромеханических реле микропроцессором, но также добавили расширенные возможности, такие как счетчики, таймеры, секвенсоры, математические функции, связь и, конечно же, возможность легко изменять логику управления посредством программирования, а не путем переподключения реле.Прелесть программирования на релейной логике заключается в том, что оно переводит понимание технических специалистов традиционных схем релейного управления в виртуальную форму, в которой контакты и катушки взаимодействуют для выполнения практических функций управления. Однако ключевой концепцией, которую необходимо освоить, является объединение реальных условий для переключения состояния на основе «нормального» представления этих контактов переключателя, независимо от того, являются ли переключатели реальными (реле) или виртуальными (ПЛК). Как только эта жизненно важная концепция усвоена, становится возможным понять как жесткие схемы управления реле, так и программы ПЛК.Без усвоения этой жизненно важной концепции невозможно понять ни схемы управления реле, ни программы ПЛК.

Таблица логики электромеханического реле — Цифровые схемы

Позвольте электронам сами дать вам ответы на ваши собственные «практические проблемы»!

Примечания:

По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом. С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, с которыми они могут проверить свою работу.Хотя такой подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: ученики должны построить своих собственных «практических задач» с реальными компонентами и попытаться предсказать различные логические состояния. Таким образом, теория реле «оживает», и учащиеся получают практические навыки, которые они не получили бы, просто решая булевы уравнения или упрощая карты Карно.

Еще одна причина для использования этого метода практики — научить студентов научному методу : процессу проверки гипотезы (в данном случае предсказания логического состояния) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся. Обсудите эти проблемы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, вместо того, чтобы просто говорить им, что они должны и не должны делать.Я никогда не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

Примечание для инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое студентам для построения реальных схем вместо того, чтобы просто математически анализировать теоретические схемы:

Какова цель студентов, посещающих ваш курс?

Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах.Если ваша цель — обучить физиков-теоретиков, то во что бы то ни стало придерживайтесь абстрактного анализа! Но большинство из нас планируют, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

Кроме того, когда студенты создают свои собственные практические задачи, они учатся выполнять первичных исследований , тем самым давая им возможность продолжить свое образование в области электрики / электроники в автономном режиме.

В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их ученики применяли высшую математику в реальных экспериментах, не представляющих опасности для безопасности и стоивших меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставьте своих учеников практиковать математику на множестве реальных схем!

Общие сведения об однолинейных схемах подстанций и технологической шине IEC 61850 (с изображением релейных цепей)

Однолинейная схема (SLD)

Однолинейная схема (SLD) является самой базовой из набора схем, которые используются для документирования электрических функций подстанции.Основное внимание уделяется передаче функций силового оборудования и связанной с ним системы защиты и управления.

Рис. 1 — Инженер по защите устанавливает реле АББ на подстанции (фото предоставлено: .elettronews.com)

Подробности о подключении и физическом местоположении не так важны, если они не служат для связи. Например, на рисунке 10 отметки полярности трансформатора тока указывают направление тока, на которое ориентирован защитный элемент, тем самым подразумевая функцию.

Символы, очень похожие на рисунки 2 и 3, можно увидеть на рисунке 10, который является примером SLD.

Сложная задача SLD — включить все необходимые данные, сохраняя при этом удобочитаемость диаграммы. Поэтому одна линия может полагаться на неинтуитивные символы для представления устройств, поскольку коммуникационная функция очень важна.

Рисунок 2 — Примеры символов, используемых на однолинейных схемах

Обычно однолинейные или однолинейные схемы используются для документирования конфигурации электрической цепи высокого напряжения подстанции.

Символы используются для изображения высоковольтного оборудования , включая: трансформаторы, генераторы, автоматические выключатели, предохранители, воздушные выключатели, реакторы, конденсаторы, измерительные трансформаторы и другое электрическое оборудование. Связи между этими частями электрооборудования показаны сплошными линиями.

На этих схемах трехфазное оборудование и соединения показаны одной линией, что является основой для названия схемы. Однофазное оборудование может иметь тот же символ, что и трехфазное устройство, но будет конкретно обозначено фазой, к которой оно подключено.

Поскольку трехфазные устройства могут быть подключены по схеме треугольник, фаза-фаза или звезда, фаза-нейтраль , включены символы, указывающие тип подключения. Это может быть векторное представление соединения или может обозначаться самим символом обмотки.

Рисунок 3 — Трехфазное соединение в однолинейной схеме

В некоторых случаях ключевой или базовый SLD подстанции будет использоваться, чтобы показать только электрическую конфигурацию высоковольтного оборудования на подстанции.Оборудование показано в базовой физической компоновке, но когда возникают трудности с демонстрацией оборудования в правильной физической ориентации и показом оборудования в правильной электрической конфигурации, тогда правильная электрическая конфигурация имеет приоритет.

Помимо документации по конфигурации высоковольтного оборудования, обычно некоторые из систем управления и защиты показаны на SLD в базовой форме. Наиболее распространенной дополнительной системой, отображаемой на SLD, являются цепи трансформаторов тока и напряжения.

Показаны как первичная, так и вторичная цепи этих цепей. В обоих случаях показана только половина вторичного контура.

Показана полярность или половина цепи поставки для работы реле, а не обратные цепи. Вторичные цепи трансформаторов тока обычно показаны сплошными линиями между устройствами.

Чтобы различать разницы между линиями для цепи высокого напряжения и цепи трансформатора тока, цепь высокого напряжения показана более широкой сплошной линией, чем цепь трансформатора тока.Устройства, подключенные к цепям трансформаторов тока и напряжения, часто обозначаются кружком, достаточно большим, чтобы содержать номер функции или аббревиатуру.

Номера функций и сокращения перечислены в стандарте IEEE C37.2-2008.

Содержание:
Однолинейные схемы

и технологическая шина МЭК 61850

Применение технологической шины МЭК 61850 требует переосмысления того, как релейные цепи должны отображаться на SLD . Блок объединения ( MU ) в реализации шины процесса принимает аналоговые входы напряжения и тока и цифровые входы и преобразует их в протокол IEC 61850.

Выходные данные представляют собой поток данных по оптоволоконному соединению либо с оборудованием управления данными, либо непосредственно с устройствами IED, выполняющими функцию защиты. В этом случае физические подключения к MU, показанные на SLD, вряд ли будут передавать какую-либо функциональную информацию, потому что оптоволоконное соединение может передавать данные, касающиеся напряжения, тока или цифровых входов в MU.

Информация о том, какие ТТ и ТН питают ИЭУ , может помочь определить выполняемые им защитные функции.

С помощью MU вы можете указать только набор данных, которые могут поступать в IED, но не то, какие данные оно использует. Защитные функции, выполняемые устройством IED, не будут очевидны только при подключении.

Ниже приведены два примера того, как изобразить шину процесса на SLD.

Вернуться к содержанию ↑


Пример однолинейной шины процесса A

Раньше между аналоговым измерением (ТТ или ТН) и входом в устройство IED существовало взаимно однозначное соотношение.Следовательно, простое отображение соединения ТТ с IED было не только представлением физических, но и функциональных, какие бы функции IED ни выполняло, они должны были основываться на аналоговом входе.

Теперь MU может иметь несколько входных аналоговых сигналов, а затем иметь один физический выход — оптоволоконный кабель.

Таким образом, простой способ показать это должно быть согласовано с физическим представлением, а именно, соединения CT и VT показаны идущими к MU, но для добавления текста к входу волокна в IED, чтобы аналоговый вход можно было проследить обратно в MU. так что функция IED может быть более очевидной.

Рисунок 5 — Пример A объединяющего устройства на одной линии

Пример этого подхода показан на рисунке 5. MU обозначен как MC # 2 , а показанные входы — это фазный ток (CP), ток заземления (CG ), и фазного напряжения (VP) . Устройство IED с маркировкой 6CB32 использует VP, а 3T4 использует CP, CG и VP.

Вернуться к содержанию ↑


Пример однолинейной шины процесса B

Еще одно предложение для представления шины процесса на SLD — это для изображения MU как оптического вспомогательного трансформатора .При этом сохраняется практика демонстрации взаимно однозначной взаимосвязи между аналоговым измерением и входом в IED.

Таким образом, функция передачи аналоговых данных напряжения или тока на защитные реле может быть показана, как на рисунке 6.

Эти символы будут отражать физическое соединение с входами тока и напряжения, но будут отображать выход как данные для подписка на СВУ. Следовательно, один MU может иметь как вход напряжения, так и вход тока с выходом на несколько IED.Вход для каждого из этих IED будет показан отдельно для каждого тока или напряжения.

Рисунок 6 — Символы для выхода по току и напряжению объединяющего устройства и пример B подключения текущих данных к IED

Рисунок 6 показывает текущие выходные данные с объединяющего устройства (MU).

Если это интерпретировать как физическое изображение, может показаться, что было множество физических соединений, хотя на самом деле может быть одно волоконное соединение от MU к зданию управления.

Кроме того, поскольку это текущие данные, они не доставляются последовательно к IED, как если бы это был CT, скорее, данные доставляются параллельно IED. Маркировка позволит связать функцию с правильным MU.

На рисунке 6, MU имеет несколько входов тока и / или напряжения , поэтому маркировка должна учитывать это. Здесь используется текущий элемент 1 (C1) блока слияния C12 (MUC12).

Более подробное представление физических подключений от CT и VT к MU будет показано на схемах переменного тока, а физическое соединение от MU к IED может быть показано на чертеже архитектуры шины процесса.

Вернуться к содержанию ↑


Функции управления на однолинейной схеме

Было принято показывать функции основных схем защиты, а иногда и схем управления на SLD , соединяя круги защитного реле, которые позволяют другим устройства с пунктирными линиями .

Это цепи ответных действий, отключения и включения, которые автоматически выполняются реле защиты.

Стрелка на конце пунктирных линий указывает направление действия.Устройства, которые отключают или замыкают устройство прерывания высоковольтного замыкания, обозначены пунктирными линиями рядом с символами этих устройств.

Эти «контрольные линии» можно увидеть на рисунке 4 , указывая на автоматические выключатели на рисунке . Этот метод изображения релейной логики на SLD имеет ограничения.

Соединение двух линий управления обычно изображает соединение ИЛИ, что означает, что любое входящее действие приведет к одному и тому же результирующему действию.

Рисунок 4 — Пример A однолинейной схемы

Описание логики, требующей одновременного включения нескольких управляющих действий для выполнения результирующего действия, логического элемента И, трудно изобразить с помощью этого типа документации.Несмотря на недостатки этого метода логического изображения, он используется уже много лет и продолжает использоваться.

Появление модифицированной пользователем логики управления в микропроцессорных реле ставит под сомнение применение этого типа отображения логики реле на SLD.

Когда логика схемы защиты или управления больше не ограничивается результатами соединения отдельных функций реле вместе, а является составной частью определяемой пользователем логики, внутренней для релейных устройств и внешней проводки между устройствами, ограничение, показанное пунктирными линиями Изобразить общую логику схемы защиты стало неприемлемым для многих пользователей.

Та же эволюция логики защитных реле также повысила важность наличия метода для обнаружения основной общей логики на одной схеме .

До появления логики, определяемой пользователем в микропроцессорных реле, схема управления обеспечивала эту общую логическую схему, потому что логика была создана путем соединения отдельных функций вместе.

С появлением реле на базе микропроцессора, один выходной контакт может быть составным результатом работы нескольких измерительных устройств в сочетании с таймером и множеством условных ситуаций .Никакая из этой внутренней сложной логики не показана на типовой схеме управления.

В результате этих двух факторов ограничения устаревшей системы документации и необходимость документировать внутреннюю логику реле вместе с внешней логикой побудили многие коммунальные предприятия изменить способ отображения логики реле защиты на SLD. .

Рисунок 7 — Сравнение схем логических символов

Одним из методов, который был принят некоторыми утилитами, является отображение базовой логики реле защиты на SLD с использованием традиционных символов логической логики или некоторых разновидностей этих символов.

С помощью булевой логики можно изобразить более сложную логику, чем то, что можно было бы изобразить с помощью пунктирной линии со стрелками , и на одной диаграмме можно показать как внутреннюю, так и внешнюю логику программируемых реле. Чтобы сделать SLD понятным для более широкой аудитории, по крайней мере, одна коммунальная компания приняла символы, используемые на чертежах некоторых генерирующих установок.

Эти символы и более традиционные символы показаны на Рисунке 7 выше.

На рис. 8 показана часть SLD подстанции с использованием логических символов для отображения конфигурации схем защиты и управления для отключения и включения автоматического выключателя.

Рисунок 8 — Секция от одной линии подстанции (щелкните, чтобы развернуть)

Автоматический выключатель имеет две катушки отключения, поэтому логика для каждой показана отдельно. И логика управления, которая реализуется межблочной разводкой, и логика, которая реализуется посредством специального программирования микропроцессорных реле, показаны на одной схеме.

Ссылаясь на рисунок 8 выше, логика внутри пунктирной рамки, помеченная как (1M63) 62BF5 , представляет собой запрограммированную пользователем логику, тогда как все остальные логические схемы выполняются с помощью проводки между устройствами.Логика, показанная для устройства (1M63) 62BF5, является упрощением всей логики.

Полная логика этого устройства может быть показана на схеме управления защитой от отказа выключателя. Важно связать входы и выходы этого устройства с внешней логикой, показанной на SLD. На подстанции, показанной на рисунке 8, для схем защиты и управления не используется локальная сеть (LAN).

Если была локальная сеть, логика защиты и управления, реализованная с помощью сигналов, передаваемых по локальной сети, показана на той же схеме.

Рисунок 10 — Символ линейного реле для однолинейной схемы подстанции (щелкните, чтобы развернуть)

Более сложная логика, подобная той, которая используется в пилотной схеме линии передачи, показана в символах, подобных рисунку 9. Рисунок 9 — логика для разрешающего превышения достижения передачи. схема отключения с использованием реле для ретрансляции цифровой связи.

Для упрощения логики SLD некоторые детали логики опущены. Некоторыми примерами такого упрощения являются отображение только типов Зон, а не отдельных элементов, которые объединены логикой для обнаружения отказов в Зоне, и отсутствие функций синхронизации, участвующих в эхо-манипуляции с разрешающей схемой сигнала отключения.

С логикой для цепей защиты и управления в дополнение к цепям первичного питания, а также с цепями тока и напряжения, отображаемыми на SLD. SLD можно использовать для понимания систем, применяемых на подстанции.

SLD также является важным звеном между принципиальными схемами и документами по настройке реле при поиске и устранении неисправностей в схемах защиты и управления .

Рисунок 10 — Пример B однолинейной схемы (щелкните, чтобы развернуть)

Несмотря на то, что между всеми отдельными схемами есть общие черты, любые два SLD от разных организаций могут выглядеть очень по-разному.Рисунок 10 — еще один пример SLD, но он подчеркивает цифровые входы и выходы каждого реле, а также использует различные тексты и дополнительные символы, такие как описания отключения и замыкания.

Но даже с учетом этих различий, однолинейные схемы суммируют как энергосистему, которая должна быть защищена, так и средства управления, которые будут управлять энергосистемой.

Следующий уровень детализации реле энергосистемы можно найти в схемах переменного и постоянного тока. Схема переменного тока подробно описывает защищаемую энергосистему и то, как она измеряется.На схемах постоянного тока подробно описаны элементы управления, управляющие энергосистемой.

Вернуться к содержанию ↑

Ссылка // Схематическое изображение реле энергосистемы Комитетом по реле энергосистем IEEE Power Engineering Society

Работа реле — Принцип работы реле, основы, проектирование, конструкция, применение

Реле рабочее

В этой статье подробно объясняются основы работы реле, такого как реле под напряжением и реле без напряжения.Также подробно объясняется конструкция, конструкция, работа, применение, а также выбор реле.

Что такое реле?

  Реле - это электромагнитный переключатель, который используется для включения и выключения цепи с помощью сигнала малой мощности, или когда несколько цепей должны управляться одним сигналом.  

Мы знаем, что большинство высокопроизводительных промышленных устройств имеют реле для их эффективной работы. Реле — это простые переключатели, работающие как электрически, так и механически.Реле состоят из электромагнита, а также набора контактов. Механизм переключения осуществляется с помощью электромагнита. Есть и другие принципы его работы. Но они различаются в зависимости от их применения. В большинстве устройств есть реле.

Почему используется реле?

Основная операция реле происходит там, где для управления цепью может использоваться только сигнал малой мощности. Он также используется в местах, где только один сигнал может использоваться для управления множеством цепей.Применение реле началось с изобретения телефонов. Они сыграли важную роль в переключении звонков на телефонных станциях. Они также использовались в междугородной телеграфии. Они использовались для переключения сигнала, поступающего из одного источника в другой пункт назначения. После изобретения компьютеров они также использовались для выполнения логических и других логических операций. Для высокопроизводительных реле требуется большая мощность, приводимая в движение электродвигателями и т. Д. Такие реле называются контакторами.

ПОСМОТРЕТЬ: ТИПЫ РЕЛЕ

ПОСМОТРЕТЬ: КАК ПРОВЕРИТЬ РЕЛЕ

Конструкция реле

В реле всего четыре основные части. Их

  • Электромагнит
  • Подвижная арматура
  • Контакты точки переключения
  • Пружина

На рисунках ниже показана реальная конструкция простого реле.

Конструкция реле

Это электромагнитное реле с проволочной катушкой, окруженное железным сердечником.Для подвижного якоря, а также для контактов точки переключения предусмотрен путь с очень низким сопротивлением для магнитного потока. Подвижный якорь соединен с ярмом, которое механически связано с контактами точки переключения. Эти детали надежно удерживаются с помощью пружины. Пружина используется для создания воздушного зазора в цепи при обесточивании реле.

Как работает реле?

Функцию реле можно лучше понять, объяснив следующую схему, приведенную ниже.

Конструкция реле

На схеме показан внутренний разрез реле. Железный сердечник окружен управляющей катушкой. Как показано, источник питания подается на электромагнит через переключатель управления и через контакты на нагрузку. Когда через управляющую катушку начинает течь ток, на электромагнит подаётся питание и, таким образом, усиливается магнитное поле. Таким образом, верхний контактный рычаг начинает притягиваться к нижнему фиксированному рычагу и, таким образом, замыкает контакты, вызывая короткое замыкание для подачи питания на нагрузку.С другой стороны, если реле уже было обесточено, когда контакты были замкнуты, то контакт перемещается в противоположную сторону и замыкает цепь.

Как только ток в катушке отключится, подвижный якорь силой вернется в исходное положение. Эта сила будет почти равна половине силы магнитного поля. Эта сила в основном обеспечивается двумя факторами. Это весна, а также сила тяжести.

Реле

в основном предназначены для двух основных операций. Один — это приложение низкого напряжения, а другое — высокого напряжения.Для приложений с низким напряжением предпочтение будет отдаваться снижению шума всей цепи. Для приложений с высоким напряжением они в основном предназначены для уменьшения явления, называемого дуговым разрядом.

Основы реле

Основы для всех реле одинаковы. Взгляните на 4-контактное реле, показанное ниже. Показаны два цвета. Зеленый цвет представляет цепь управления, а красный цвет — цепь нагрузки. К цепи управления подключена небольшая катушка управления.К нагрузке подключен выключатель. Этот переключатель управляется катушкой в ​​цепи управления. Теперь давайте предпримем различные шаги, которые происходят в эстафете.

работа реле

Как показано на схеме, ток, протекающий через катушки, представленные контактами 1 и 3, вызывает возникновение магнитного поля. Это магнитное поле вызывает замыкание контактов 2 и 4. Таким образом, переключатель играет важную роль в работе реле. Поскольку он является частью цепи нагрузки, он используется для управления подключенной к нему электрической цепью.Таким образом, когда электрическое реле находится под напряжением, ток будет проходить через контакты 2 и 4.

Реле под напряжением (ВКЛ)
  • Реле под напряжением (ВЫКЛ)

Как только ток через контакты 1 и 3 прекращается, релейный переключатель размыкается и, таким образом, разомкнутая цепь предотвращает протекание тока через контакты 2 и 4. Таким образом, реле обесточивается и, таким образом, находится в выключенном положении.

Обесточенное реле (ВЫКЛ.)

Проще говоря, когда на контакт 1 подается напряжение, электромагнит активируется, вызывая развитие магнитного поля, которое затем замыкает контакты 2 и 4, вызывая замкнутую цепь.Когда на контакте 1 нет напряжения, не будет электромагнитной силы и, следовательно, магнитного поля. Таким образом, переключатели остаются разомкнутыми.

Шест и бросок

Реле

работают точно так же, как выключатель. Итак, применяется та же концепция. Говорят, что реле переключает один или несколько полюсов. На каждом полюсе есть контакты, которые можно перебросить тремя способами. Их

  • Нормально открытый контакт (NO) — NO контакт также называется замыкающим контактом. Он замыкает цепь при срабатывании реле.Он отключает цепь, когда реле неактивно.
  • Нормально замкнутый контакт (NC) — NC также известен как размыкающий контакт. Это противоположно замыкающему контакту. Когда реле срабатывает, цепь размыкается. Когда реле деактивировано, цепь подключается.
  • Переключающие (CO) / Двухходовые (DT) контакты — Этот тип контактов используется для управления двумя типами цепей. Они используются для управления нормально разомкнутым контактом, а также нормально замкнутым контактом с общей клеммой.По своему типу они называются размыкаются перед замыканием и замыкают до размыкания контакта.

Реле можно использовать для управления несколькими цепями одним сигналом. Реле переключает один или несколько полюсов, каждый из контактов которых может быть сброшен при подаче напряжения на катушку.

Реле

также имеют обозначения вроде

.
  • Single Pole Single Throw (SPST) — Реле SPST имеет всего четыре клеммы. Эти две клеммы могут быть подключены или отключены.Две другие клеммы необходимы для подключения катушки.
  • Однополюсное двойное переключение (SPDT) — Реле SPDT имеет в общей сложности пять клемм. Из этих двух клемм катушки. Также имеется общий терминал, который подключается к любому из двух других.
  • Двухполюсный одинарный переключатель (DPST) — Реле DPST имеет в общей сложности шесть клемм. Эти клеммы делятся на две пары. Таким образом, они могут действовать как два SPST, которые приводятся в действие одной катушкой.Из шести выводов два являются выводами катушки.
  • Double Pole Double Throw (DPDT) — Реле DPDT является самым большим из всех. Он имеет в основном восемь релейных клемм. Эти два ряда предназначены для переключения терминалов. Они предназначены для работы в качестве двух реле SPDT, которые активируются одной катушкой.

Применение реле

  • Релейная схема используется для реализации логических функций. Они играют очень важную роль в обеспечении критической для безопасности логики.
  • Реле используются для обеспечения функций задержки времени. Они используются для отсчета времени задержки размыкания и задержки замыкания контактов.
  • Реле используются для управления цепями высокого напряжения с помощью сигналов низкого напряжения. Точно так же они используются для управления сильноточными цепями с помощью сигналов низкого тока.
  • Они также используются как реле защиты. С помощью этой функции все сбои во время передачи и приема могут быть обнаружены и изолированы.
Применение реле перегрузки

Реле перегрузки — это электромеханическое устройство, которое используется для защиты двигателей от перегрузок и сбоев питания.Реле перегрузки устанавливаются в двигатели для защиты от внезапных скачков тока, которые могут повредить двигатель. Реле перегрузки работает по характеристикам с изменением тока во времени и отличается от автоматических выключателей и предохранителей, где происходит внезапное отключение для выключения двигателя.
Наиболее широко используемым реле перегрузки является тепловое реле перегрузки, в котором биметаллическая полоса используется для отключения двигателя. Эта полоса предназначена для контакта с контактором, изгибаясь при повышении температуры из-за чрезмерного протекания тока.Контакт между полосой и контактором вызывает обесточивание контактора и ограничивает мощность двигателя, тем самым выключает его.

Другой тип электродвигателя перегрузки — это электронный тип, который непрерывно отслеживает ток электродвигателя, тогда как тепловое реле перегрузки отключает электродвигатель в зависимости от повышения температуры / нагрева полосы.

Все реле перегрузки, доступные для покупки, имеют разные спецификации, наиболее важными из которых являются диапазоны тока и время срабатывания.Большинство из них предназначены для автоматического возврата к работе после повторного включения двигателя.

Выбор реле

Вы должны учитывать некоторые факторы при выборе конкретного реле. Их

  • Защита — Необходимо учитывать различные меры защиты, такие как защита от прикосновения и защита катушки. Защита контактов помогает уменьшить искрение в цепях с использованием индукторов. Защита катушки помогает снизить импульсное напряжение, возникающее при переключении.
  • Ищите стандартное реле со всеми нормативными разрешениями.
  • Время переключения — Запросите высокоскоростные переключающие реле, если они вам нужны.
  • Рейтинги — Существуют номинальные значения тока и напряжения. Текущие параметры варьируются от нескольких ампер до примерно 3000 ампер. В случае номинального напряжения они варьируются от 300 до 600 вольт переменного тока. Есть также высоковольтные реле примерно на 15000 вольт.
  • Тип используемого контакта — НЗ, нормально разомкнутый или замкнутый контакт.
  • Выберите «Сделать перед разрывом» или «Разорвать перед». Собирайте контакты с умом.
  • Изоляция между цепью катушки и контактами

Логическое руководство по символам релейной лестничной логики

Введение

Вы прошли тысячи миль на своем караване. Когда солнце палит вашу спину, на коже появляются волдыри размером с мяч для софтбола. Вы не знаете, справитесь ли вы, ребята, с теми немногими припасами, которые у вас остались.

К облегчению всего вашего клана, вы заметили небольшую известняковую пещеру вдалеке.

По мере того, как вы и ваши товарищи настраиваетесь на лучший сон за последние недели, вам приходит в голову блестящая идея.

Вы должны это записать сейчас. Вы не можете рискнуть забыть что-то столь важное.

Вы дотягиваетесь до одного из экзотических корней, которые вы собрали во время своих путешествий, и касаетесь им известняка.

Ярким красным красителем вы оставляете сообщение для следующей группы:

«Если вы зашли так далеко, но у вас еще достаточно воды, продолжайте идти по старому пути.Если у вас кончаются провизии, воспользуйтесь кратчайшим путем в город… »

Подобно древним путешественникам, идущим по пути иероглифических посланий, мы используем логические символы, чтобы направлять поток наших производственных линий.

Relay Logic

Релейная логика, релейная логика и релейные диаграммы — все это относится к тому, как мы организуем электрическую цепь.

Релейные логические схемы использовали физические контакты, катушки, переключатели и множество других устройств для каждой отдельной функции машины.

Со временем изменения в программировании логики и механические сбои заставили инженеров искать цифровую альтернативу.

Ранние символы схем реле были буквальными интерпретациями физических панелей реле. Электроэнергия проходит через левую часть лестницы, чтобы запитать вход и достичь выхода.

Релейная логика выглядит почти идентично релейной диаграмме, за исключением того, что контакты и катушки заменены компьютерными битами.

Но нам все еще нужно проиллюстрировать, что представляют собой эти биты, поэтому мы используем логические символы.Эти символы взяты прямо из схем релейной логики, даже если некоторые компоненты теперь цифровые.

Используя программируемый логический контроллер (ПЛК), мы можем настроить наши программы релейной логики и позволить компьютеру выполнять повторяющуюся часть.

Это дает вам больше времени для работы над новыми проектами и программами ПЛК, вместо того, чтобы постоянно следить за состоянием ваших машин.

Обозначения релейной логики

Контакты и катушки представлены на лестничной диаграмме, как если бы они были смоделированы в реальной жизни.Например, символ контакта часто обозначает какой-то вход, например выключатель света.

Релейная логика даже позволяет нам устанавливать такие функции, как задержки выключения. Если мы хотим дать всем 5 минут на выход из комнаты после выключения света, мы можем встроить задержку в диаграмму.

То же самое и с задержками включения. Мы можем установить таймер в нашей схеме, чтобы отложить включение машины, которая может включиться случайно. У нас еще есть несколько минут, чтобы выключить выключатель.

С другой стороны, у нас есть выходы, которые не всегда так заметны, как включение света. Многие выходы представляют собой только один бит в ПЛК и действуют как вход для другой ступени лестницы.

Таким образом, вместо того, чтобы сразу же загореться свет, мы могли бы отправить выходной сигнал на другой переключатель, для которого требуется ключ. Выход первого переключателя теперь является входом для второго.

Команды битовой логики

Построение нашей диаграммы логических символов начинается с инструкций битовой логики.Команды битовой логики работают по тем же принципам, что и старый добрый машинный язык, и для отправки сигналов используются только нули и единицы.

Результат логических операций (RLO) — это то место, где мы получаем свободу устанавливать результаты каждой ступени нашей диаграммы логических символов.

Когда все наши битовые логические инструкции и соответствующие им RLO собраны вместе, у нас есть горизонтальные ступени нашей диаграммы логических символов, удерживаемые вместе вертикальными линиями электропередач.

И, как в хорошей книге, мы всегда читаем эти диаграммы сверху вниз и слева направо.

Время сканирования

Время сканирования может означать разницу между соблюдением крайнего срока и разочарованием клиентов, ожидающих выполнения своих заказов.

ПЛК — это компьютеры, которым нужно время, чтобы обработать то, что они читают, как и мы. Несмотря на то, что они могут сканировать программы быстрее, чем мы можем моргать, все же есть возможности для улучшения.

Именно здесь функциональные блоки становятся критически важными для прибыльной сборочной линии.

Функциональные блоки

Функциональные блоки выглядят как буквальные блоки, которые втиснулись в вашу диаграмму логических символов, как джинсы, которые они выросли двадцать фунтов назад.

Некоторые называют их блоками управления, но в этой статье мы будем использовать только термин функциональные блоки, чтобы избежать путаницы.

Разбивая наши более сложные задачи на функциональные блоки, мы можем сократить время, необходимое нашему ПЛК для прохождения через нашу схему.

Зачем нужны функциональные блоки?

Функциональные блоки не только сокращают время сканирования, они часто заменяют целые физические компоненты вашей системы.

Они могут помочь вам избежать использования аппаратных механических таймеров, сэкономив как на начальных затратах, так и на обслуживании.

Они могут заменить несколько строк ступенек в вашей лестнице, облегчая реализацию и чтение вашей схемы. Он обеспечивает более четкую иллюстрацию нескольких входов и их взаимосвязи друг с другом.

Например, если бы мы использовали традиционную релейную диаграмму, нам потребовались бы два логических символа подключения, чтобы можно было использовать более одного входа.

Введение в логику «И»

Функциональные блоки позволяют нам уплотнять ступени лестничной диаграммы с помощью логики И.Использование функциональных блоков похоже на размещение всех болтов и гаек в их собственных контейнерах.

Дело не в том, что обычной релейной логике сложно следовать, но сложные системы могут выглядеть запутанными и загроможденными.

Даже опытным техническим специалистам не придется иметь дело с запутанными программами ПЛК.

Функциональные блоки могут упростить техническому специалисту диагностику проблем с ПЛК с первого взгляда.

Логика AND идеально подходит для разработки функций безопасности на вашей производственной линии.

Почему?

Допустим, у вас есть промышленный пресс на вашей линии, который может оказывать давление, достаточное для сжатия небоскреба размером с грецкий орех.

Во избежание несчастных случаев при случайном включении пресса функциональный блок, использующий логику И, заставит ваших технических специалистов нажимать две или более кнопки для запуска машины.

Таким образом, один вход совершенно бесполезен без другого, когда дело доходит до подачи питания на выход.

Введение в логику «ИЛИ»

Поскольку функциональные блоки объединяют наши строки релейной логики, у них всегда есть аналог релейной логики.

Логика И аналогична последовательной схеме, а логика ИЛИ эквивалентна параллельной схеме.Таким образом, мы можем использовать логику ИЛИ в наших функциональных блоках, чтобы запрашивать тот или иной ввод.

Логика OR отлично подходит для машин с несколькими панелями управления. Для удобства большая машина может иметь выключатели на обоих концах. С логикой ИЛИ использование любой панели приводит к одинаковому эффекту.

Наиболее распространенные логические системы

Релейная логика включает в себя целый язык символов, но в этой статье нас интересуют только те, которые вы видите на диаграммах.

Символы контактов

Логический символ для нормально разомкнутого контакта выглядит как разрыв одной из ступеней лестницы.Эти символы бывают двух типов: первый тип «нормально открытый» и тип «нормально закрытый».

Следующее объяснение должно прояснить их различия и сходства:

Используя наш предыдущий пример выключателя света, мы знаем, что этот контакт представляет выключатель света. Если кто-то не щелкнет выключателем света на цепи, он останется выключенным.

Некоторые из наиболее распространенных вариантов использования символов НО контактов:

  • Кнопки питания
  • Выключатели света
  • Внутреннее программирование

Если вам все еще непонятна функция этого логического символа, объясните его полярность противоположное должно помочь…

Полярная противоположность замыкающего контакта выглядит так же, как замыкающий контакт, но с косой чертой, проходящей через него.Цепь
активна до тех пор, пока вход не прикажет нормально замкнутому контакту отключиться.

Чаще всего для NC-контактов используются:

Обратите внимание на различие между использованием версий Open и Closed символов логики контакта. Этот контраст помогает многим начинающим программистам лучше понять оба типа.

Обычно выходной символ используется:

Выходной символ выглядит так, как будто он проглотил символ замыкающего контакта. Когда на соответствующий вход подается напряжение, включается выход.

Лучше всего их использовать в:

  • Счетчиках
  • Математических командах
  • Передача данных

Они выглядят как выходной сигнал с большой буквы P в середине. Если условие меняется с ложного на истинное за время, необходимое ПЛК для прохождения одного сканирования, выход включается.

Если мы активируем вход нашей программы ПЛК, таймер для включения приложения запускается. Это прекрасно работает в:

  • Задержка звучания сирены
  • Задержки последовательного запуска

Подумайте об этом с точки зрения запуска вашего автомобиля и простоя холодным утром перед тем, как отправиться на дорогу.Вы даете двигателю время «прогреться». Точно так же «TON» дает машине время для выполнения функций запуска.

Аналогично контакту NC, но с таймером. Если на вход подается напряжение, запускается таймер, а затем приложение отключается. Лучше всего использовать «Toff»:

  • Автоматические дисплеи
  • Машины, которые могут случайно выключиться

Думайте об этом как о противоположности приведенной выше аналогии времени «разогрева». Вместо немедленного выключения «Toff» устанавливает задержку между выключением и фактическим выключением машины.

Сравнения

Используя математические символы класса, символы логики сравнения выглядят как равные, больше и меньше символов.

Системы дозирования используют сравнения, чтобы убедиться, что содержимое каждой отдельной упаковки заполнено до надлежащего веса, прежде чем двигаться дальше.

Математические инструкции

Логические символы также позволяют нашей программе релейной логики выполнять большинство математических операций.

Эти символы операторов нужны нам для расчета таких вещей, как скорость двигателя.

Варианты логических символов

Как вы, возможно, знаете из разочаровывающего опыта, различные марки ПЛК используют небольшие вариации стандартных логических символов.

Но МЭК усердно работает над разработкой стандартов, чтобы всем было проще понять их.

Итак, производители ПЛК не обращают внимания на осторожность при использовании вариаций стандартизованных логических символов?

Не совсем так. Видите ли, ранние графические интерфейсы, используемые производителями, были не чем иным, как нарядной командной строкой.

Любые символы должны быть представлены символами ASCII, в основном то, что есть на вашей клавиатуре.

МЭК знает, что толщина линий незначительна, а другие мелкие детали могут немного изменить внешний вид логических символов. Поэтому, хотя они и составляют стандартную таблицу логических символов, они не описывают какие-либо конкретные символы, которые необходимо использовать.

И это не имеет особого значения, потому что все они работают одинаково. Вариации в символах поверхностны, и хотя они могут заставить вас задуматься; они очень похожи на стандартный набор логических символов.

Вам не нужно беспокоиться о том, что в вашем новом программном обеспечении ПЛК есть логические символы, о которых вы никогда не видели и не слышали.

c3 делает логические символы интереснее, чем мемы

Сейчас 6:30 ночи после долгого рабочего дня. Вы собираетесь на день, когда слышите это.

Ваша производственная линия останавливается без предупреждения, и оглушающая тишина разливается вокруг вас, как цемент, останавливая любые планы, которые вы должны были вовремя оставить с работы.

Вы можете почти услышать коллективный стон от всех, кто знает, что это означает со временем.Вы, наверное, думаете: «Это то, на что я записался на эту работу».

Но так быть не должно.

В большинстве случаев причиной отказов ПЛК являются неисправная проводка и другие дефекты. Поскольку аутсорсинг является обычным явлением в электронной промышленности, неудивительно, что многие компании ставят упор на количество, а не на качество.

А вы можете их винить? Они просто пытаются достичь своей прибыли, верно?

Неправильно. Точно так же, как выход функции может быть входом для другой операции, то, что вы получаете от производителя электроники, напрямую влияет на ваш бизнес.

Когда семья Тейлор решила покупать собственное оборудование, а не отдавать на аутсорсинг, они взяли на себя обязательство обеспечивать качество, как это может делать только вертикально интегрированный производитель.

У них есть полный контроль над продуктом, который они доставляют вам, от начала до конца. Не нужно иметь дело с сомнительными поставщиками на другом конце света, чтобы быстро заработать.

Поднимите свои логические символы на новый уровень

Партнерство с c3 дает вам более 40 лет опыта в отрасли, а также быстрое и дружелюбное обслуживание семейного бизнеса.

Не сидеть часами автоматические сообщения только для направления в другой отдел. Работаем со специалистами. Работа с семьей.

Наше оборудование превращает скучные логические символы в конвейер вашей мечты.

Проверьте наш инвентарь сейчас!

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям.Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

, однофазный — Подключение для 11, 12 и 14 в установке водяного насоса на основе реле

Две ключевые диаграммы из таблицы — это временная диаграмма

Схема подключения

и .

Обратите внимание, что на временной диаграмме показаны два реле, но устройство содержит только одно. Тот, который вступает в силу, выбирается диском на передней панели устройства.

Это не очень четко показано на схеме подключения, но, как вы указали, A1, A2, 11, 12 и 14 являются стандартной терминологией реле со следующим значением:

  • A1: контакт катушки
  • A2: другой контакт катушки. Подайте питание переменного тока на A1 и A2, чтобы запитать катушку.
  • 11: общее реле
  • 12: реле нормально замкнутое (подключено к 11, когда катушка не находится под напряжением )
  • 14: реле нормально разомкнуто (подключено к 11, когда катушка находится под напряжением )

Клеммы C / min / max отменяют нормальное поведение реле, как показано на временной диаграмме.В частности, если установлено значение max, реле размыкается, даже если A1 / A2 находятся под напряжением. Реле не возобновляет нормальную работу до тех пор, пока не будет выключено и не подано питание или не будет установлено минимальное значение.

Вооружившись всей этой информацией, мы сможем ответить на ваши вопросы.

Контакты 11 на обоих реле — это общий контакт, который замыкается на 12 или 14 в зависимости от состояния реле. Оба реле имеют контакт 11, подключенный к источнику питания, что означает, что они обычно (то есть в своем «выключенном» состоянии) подключают питание к контакту 12.Когда реле находится под напряжением (то есть в состоянии «включено»), оно отключит питание от контакта 12 и вместо этого подключит его к контакту 14.

Таким образом, учитывая, что контакты катушки реле 1 (A1 / A2) всегда находятся под напряжением, реле всегда находится в состоянии «включено», что соединяет контакт 11 с контактом 14. Однако это состояние отменяется входом min в соответствии с временная диаграмма. Хотя без подключенного максимального входа трудно понять, как это будет вести себя желательно.

Реле 2 включается выходом реле 1.Когда реле 2 включается, оно соединяет контакт 11 с контактом 14, который включает насос. Как вы описываете, действуют переопределения min / max.

Чтение больших схематических диаграмм



ЦЕЛИ :

  • Обсудите обозначения, написанные на больших схемах.
  • Найдите контакты, которые управляются определенными катушками на разных линиях.
  • Найдите контакты, которые управляются определенными катушками на разных электрических печатает.


Рис. 1 Типовая промышленная схема.


Илл. 2.

Схемы, представленные в этом тексте, были небольшими и предназначались обучить схемной логике и принципам работы основных систем управления. Схемы в промышленности, однако, часто намного сложнее и могут содержать несколько страниц. Обозначения обычно используются, чтобы помочь электрику интерпретировать значение определенных компонентов и найти контакты, которые контролируются катушки.Схема, показанная на рис. 1, является частью типичного промышленного управления. схематический. Обратитесь к этой схеме, чтобы найти следующую информацию предоставлено о системе управления.

1. В верхнем левом углу найдите обозначение: (2300В 3_ 60 Гц). Этот указывает, что двигатель подключен к сети 2300 вольт, трехфазной, 60 герц. линия электропередачи (илл. 2).

2. Справа от первого обозначения расположите обозначение: (200A 5000V ВЫКЛЮЧАТЕЛЬ).Это указывает на отключение на 200 ампер. выключатель, рассчитанный на 5000 вольт, который может использоваться для отключения двигателя от линия электропередачи. Также обратите внимание, что у этого переключателя есть шесть контактов, по два в каждой строке. Это обычное дело для высоковольтных выключателей.

3. В верхней части схемы найдите два трансформатора тока, 1CT и 2CT. Эти два трансформатора тока используются для определения количества ток двигателя. Трансформаторы тока вырабатывают выходной ток 5 ампер. при условии короткого замыкания.Обозначения рядом с каждым CT указывают что он имеет соотношение 150 к 5. Вторичная обмотка 1CT подключена к 1OL и 3OL. Вторичная обмотка 2CT подключена к 2OL и 4OL. Катушки перегрузки 1OL и 3OL соединены последовательно, что заставляет их иметь одинаковые текущий поток. Также обратите внимание, что используются символы змеевика (а не символы нагревателя). для перегрузок. Это указывает на то, что эти реле перегрузки являются магнитными, а не термический.

4. Найдите два предохранителя на 10 ампер, подключенных к первичной обмотке блока управления. трансформатор (илл.3). Управляющий трансформатор рассчитан на 2 кВ. (2000 вольт-ампер). Обмотка высокого напряжения рассчитана на 2300 вольт, а вторичная обмотка рассчитана на 230 вольт. Также обратите внимание, что вторичный обмотка содержит центральный отвод (X3). Центральный кран можно использовать для 120 вольт от любого из остальных X-выводов. Клеммы X1 и X2 подключен к предохранителям на 30 ампер.

5. Слева от 30-амперного предохранителя, подключенного к клемме X1, найдите обозначение (EP12246-00) (илл.4). Это обозначение означает, что вы глядя на Electrical Print 12246 и строку 00. Большинство многостраничных схем будет использовать некоторую форму записи, аналогичную этой, для обозначения просматриваемой страницы и номера строки.

6. В строке с номером EP12246-02 найдите переключатель РУЧНОЙ АВТОМАТИЧЕСКИЙ ВЫКЛ с надписью ТСЖ 120.

Также найдите схему контактов для этого переключателя справа от центр схемы. На диаграмме показана связь между конкретными клеммы для разных настроек переключателя.X обозначает соединение между клеммами и O указывает на отсутствие соединения. Обратите внимание, что в РУКЕ положение, между клеммами 1 и 2 есть соединение.

Нет связи между клеммами 3 и 4.

В положении ВЫКЛ. Нет связи между какими-либо клеммами. В положении АВТО соединение между клеммами 3 и 4 есть, но нет связи между клеммами 1 и 2. Обратитесь к переключателю. Обратите внимание, что в верхней части переключателя нарисованы три стрелки.Одна стрелка указывает на H, одна указывает на O и одна указывает на A. Линия, соединяющая к стрелке, указывающей на H, отображается сплошной линией. Линии соединены к двум другим стрелкам показаны пунктиром или пунктиром. Сплошная линия представляет положение переключателя для расположения контактов показано на схеме. Схема показывает, что в настоящее время между клеммами 1 и 2 есть соединение, а между клеммы 3 и 4.Это соответствует схеме контактов этого переключателя.


Илл. 3


Илл. 4

7. Найдите переключатель RUN-START (RS SW121) справа и ниже HOA SW. 120. Схема контактов для этого переключателя не показана. Поскольку есть только два положения для этого переключателя, другой метод используется для индикации положение контактов для различных положений переключателя. Обратите внимание, что стрелки в верхней части переключателя указывают на положения РАБОТА и ПУСК.В линия, проведенная к положению RUN, будет сплошной, а линия, проведенная к положению START позиция отображается пунктиром или пунктиром. На схеме изображена сплошная линия между клеммами переключателя 1 и 2, а также 5 и 6. Пунктирные линии показаны между клеммы 3 и 4, а также 7 и 8. Когда переключатель установлен в положение RUN, есть соединение между клеммами 1 и 2, а также 5 и 6. Когда переключатель находится в положении СТАРТ, между клеммами 3 и 4, а также 7 и 8 имеется соединение.

8. В строке 02 есть три терминала с маркировкой TB 5B. Это указывает точки клеммных колодок. Найдите терминал, рядом с которым нарисовано 2. Этот положение провода расположено на винтовой клемме №2 клеммы 5B. Другой точка клеммной колодки показана под ней. Расположение клеммы — винт клемма №5 конечной точки 5В.

9. Найдите катушку реле CR-8 в строке 02 (рис. 5). CR расшифровывается как Control Relay. Обратите внимание, что числа 2 и 10 на каждой стороне катушки показаны внутри. квадратная коробка.Квадратный квадрат указывает, что это номера клемм. для реле и не путать с номерами проводов. Клеммы 2 и 10 представляют собой стандартные соединения катушек для реле, предназначенных для установки в трубка одиннадцатиконтактная. Если вы пытались физически найти это реле, Номера контактов будут сильным намеком на то, что вы пытаетесь найти.

10. Рядом с контактом № 10 катушки реле CR-8 находится круг с подключенной линией. к нему. Строка переходит к символу вида () -8.Это указывает на контрольная точка. Контрольные точки часто размещаются в стратегических точках, чтобы помочь в устранение неисправностей при необходимости.

11. В дальнем правом углу строки 02 находится запись (-08, 24, 14). Эти числа обозначают линии на схеме, где контакты управляются. по катушке реле CR-8 можно найти. Найдите контакты, помеченные CR-8 на этих линии схемы.

12. Найдите катушку CR-7 на линии 14 (рис. 1 и рис. 6). В крайнем правом углу стороне найдите обозначение (-14, 08, EP12248 156).Это обозначение снова указывает места, где можно найти контакты, управляемые катушкой CR-7. CR-7 контакты расположены в строках 14 и 08 на этой схеме и в строке 156 документа «Электрооборудование». Печать №12248.


Илл. 5

13. Справа на схеме между линиями 00 и 02 находится обозначение НАХОДИТСЯ В РЕЛЕ. Стрелка указывает на пунктирную линию.

Это дает физическое расположение таких компонентов управления, как пускатели, реле и клеммные колодки.Кнопки, переключатели HOA, контрольные лампы и т. Д. Обычно расположены на терминале управления, где оператор имеет к ним доступ.


Илл. 6

Это обозначения, которые являются общими для многих схем промышленного управления. Однако нет ничего стандартного. Многие производители используют собственную систему нумерации и обозначений, характерную для их компании.

Некоторые используют символы NEMA, которые обсуждаются в этом тексте, а другие нет. С практикой и пониманием базовой логики и схем управления, большинство электриков могут определить, что означают эти разные символы и как они используются в цепи.

Старая поговорка «Практика приводит к совершенству», безусловно, применима к чтение принципиальных схем.

ВИКТОРИНА :

См. Рис. 1, чтобы ответить на следующие вопросы.

1. Когда переключатель HOA SW122 находится в положении ВЫКЛ, какие контакты имеют соединение между ними?

2. Какое напряжение будет приложено к катушке 1CR, когда она находится под напряжением?

3. Что касается переключателя RS SW 123, в каком положении должен быть переключатель установить соединение между клеммами 3 и 4?

4.Каковы номера клемм для двух нормально разомкнутых запасных контактов? управляется катушкой 2CR?

5. Какое напряжение приложено к катушке CR-7, когда она находится под напряжением?

6. Какие контакты расположены между номерами винтов 8 и 9 клеммы? блок 5Б?

7. Между какой клеммной колодкой и номерами винтов расположена катушка реле CR-7?

8. Предположим, что HOA SW 120 установлен в положение AUTO. Список четыре способы подачи питания на катушку CR-8.

9. В каком положении должен быть установлен переключатель HOA SW 123 для соединения между клеммы 3 и 4?

10.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *