Как выглядит схема: Как выглядит схема | SA-stitch

Содержание

Создание простой блок-схемы в Visio

Создание блок-схемы

  1. Запустите Visio.

  2. Выберите категорию Блок-схема.

  3. Дважды щелкните значок Простая блок-схема.

  4. Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

  5. Чтобы соединить элементы блок-схемы, наведите указатель мыши на первую фигуру, и щелкните стрелку, указывающую на фигуру, с которой требуется создать соединение. Если вторая фигура находится не рядом с первой, необходимо перетащить маленькую стрелку к центру второй фигуры.

  6. Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

  7. Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем на вкладке Фигура в группе Стили фигур щелкните пункт Линия, наведите указатель на пункт Стрелки и выберите нужное направление и вид стрелки.

Автоматическое выравнивание и интервалы

  1. Нажмите сочетание клавиш CTRL+A, чтобы выбрать все объекты на странице.

  2. На вкладке Главная в группе Упорядочение нажмите кнопку Положение и выберите пункт Автовыравнивание и определение интервалов.

Если это не привело к нужному результату, отмените ее, нажав сочетание клавиш CTRL+Z, и воспользуйтесь другими параметрами меню кнопок Выравнивание и Положение.

Что представляют блок-схемы

При открытии шаблона Простая блок-схема открывается набор элементов Фигуры простой блок-схемы. Каждая фигура в этом наборе представляет собой тот или иной этап процесса. Но фигуры не имеют какого-то универсального смысла, их значение определяется создателями и пользователями блок-схем. В большинстве блок-схем используется три или четыре вида фигур, и этот диапазон расширяется только по специфической необходимости.

При этом названия фигур в Visio указывают на их применение. Ниже описаны наиболее распространенные фигуры.

  • Начало/конец.    Эту фигуру следует использовать для представления первого и последнего этапа процесса.

  • Процесс.     Фигура представляет собой стандартный этап процесса. Это одна из наиболее часто используемых фигур в любом процессе.

  • Решение.    Эта фигура используется в точке, где выбор следующего этапа зависит от принятого решения. Вариантов может быть несколько, но чаще всего их два: "да" и "нет".

  • Подпроцесс.    Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа). Такой подход удобен, если блок-схема получается слишком большой и сложной.

  • Документ.    Эта фигура представляет этап, на котором создается документ.

  • Данные.    Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой "Ввод/Вывод".

  • Ссылка на текущую страницу.    Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

  • Ссылка на другую страницу.    При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой "Подпроцесс" и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

См. также

Видео. Создание блок-схемы

Просмотр примеров шаблонов и схем Visio в Интернете 

Создание схем Visio с помощью сенсорного экрана

Создание блок-схемы

  1. Запустите Visio для Интернета​​​​​.

  2. В коллекции на домашней странице прокрутите вниз до раздела Простая блок-схема.

  3. Выберите в нем нужный вариант и нажмите кнопку Создать

    Первый вариант содержит набор элементов со стандартными фигурами, а также пустой холст, чтобы начать. Другие варианты в этом разделе содержат набор элементов, а также начальную схему с несколькими фигурами, уже добавленными на холст. 

Разработка блок-схемы

  1. Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

  2. Чтобы соединить элементы блок-схемы, наведите указатель мыши на первую фигуру, и щелкните стрелку, указывающую на фигуру, с которой требуется создать соединение. Если вторая фигура находится не рядом с первой, необходимо перетащить маленькую стрелку к центру второй фигуры.

  3. Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. Когда вы закончите ввод, нажмите клавишу ESC.

  4. Чтобы изменить направление стрелки соединительной линии, выделите ее, а затем на вкладке Фигура рядом с элементом Контур фигуры нажмите стрелку вниз.

    Откроется коллекция Контур фигуры.

  5. Наведите указатель мыши на Стрелки и выберите нужный тип стрелки и направление. 

См. также

Добавление соединительных линий между фигурами

Изменение соединительных линий, стрелок и точек

Поддержка Office 2010 прекращена 13 октября 2020 г.

Перейдите на Microsoft 365, чтобы работать удаленно с любого устройства и продолжать получать поддержку.

Обновить сейчас

Создание блок-схемы

  1. Откройте вкладку Файл.

    Вкладка Файл не отображается

    Если вкладка Файл не отображается, перейдите к следующему шагу процедуры.

  2. Выберите команду Создать и пункт Блок-схема, а затем в списке Доступные шаблоны выберите элемент Простая блок-схема.

  3. Щелкните Создать.

  4. Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

  5. Соедините фигуры блок-схемы одним из указанных ниже способов.

    Соединение двух фигур друг с другом

    1. На вкладке Главная в группе Инструменты нажмите кнопку Соединительная линия.

    2. Перетащите точку соединения на первой фигуре к точке соединения на второй фигуре. После соединения фигур конечные точки соединительной линии становятся красными.

    Соединение одной фигуры с несколькими с помощью одной точки соединения

    По умолчанию используются прямоугольные соединительные линии, и соединение точки на фигуре с тремя другими фигурами выглядит как на рисунке ниже.

    Чтобы соединительные линии исходили прямо из центральной точки первой фигуры и вели к точкам на всех других фигурах, необходимо задать Прямые соединительные линии, как показано на приведенном ниже рисунке.

    1. На вкладке Главная в группе Сервис нажмите кнопку Соединительная линия.

    2. Для каждой фигуры, к которой нужно присоединить первую, перетащите указатель от одной и той же точки соединения на первой фигуре до точки соединения на каждой из остальных фигур.

    3. Щелкните каждую соединительную линию правой кнопкой мыши и выберите пункт Прямая соединительная линия.

  6. Для возврата к обычному редактированию на вкладке Главная в группе Сервис нажмите кнопку Указатель.

  7. Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

  8. Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем в группе Фигура щелкните стрелку справа от надписи Линия, наведите указатель на пункт Стрелки и выберите нужное направление.

К началу страницы

Печать большой блок-схемы

Наиболее простой способ вывести на печать блок-схему, размеры которой превышают размеры бумаги, — распечатать ее на нескольких листах, а затем склеить их.

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему полностью. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны.

Чтобы распечатать большую блок-схему, сделайте следующее:

  1. Откройте блок-схему, а затем на вкладке Конструктор в группе Параметры страницы нажмите кнопку Размер и выберите пункт Вписать в страницу.

  2. Откройте вкладку Файл.

    Вкладка Файл не отображается

    Если вкладка Файл не отображается, перейдите к следующему шагу процедуры.

  3. Выберите пункт Печать и нажмите кнопку Предварительный просмотр.

  4. Чтобы распечатать блок-схему на нескольких листах бумаги, выполните указанные ниже действия.

    1. В режиме предварительного просмотра в группе Печать нажмите кнопку Параметры страницы.

    2. На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан.

    3. Нажмите кнопку ОК.

    4. В группе Просмотр щелкните Одна плитка, чтобы посмотреть, как будет выглядеть распечатанный документ на каждом листе. (Для перехода между страницами нажимайте Следующая плитка и Предыдущая плитка.)

    5. Если документ выглядит правильно, в группе Печать нажмите кнопку Печать.

    6. После завершения печати можно обрезать поля, расположить страницы надлежащим образом и склеить их.

  5. Чтобы распечатать блок-схему на одном листе бумаги, выполните указанные ниже действия.

    1. В режиме предварительного просмотра в группе Печать нажмите кнопку Параметры страницы.

    2. На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан.

    3. В меню Масштаб выберите Разместить не более чем на.

    4. Справа от строки Разместить не более чем на введите значение 1 в поля стр. в ширину и стр. в высоту.

    5. Нажмите кнопку ОК .

    6. В группе Печать нажмите кнопку Печать.

Что представляют фигуры блок-схемы

Когда вы открываете шаблон "Простая блок-схема", также открывается набор элементов "Фигуры простой блок-схемы". Каждая фигура в наборе элементов соответствует конкретному шагу процесса.

В Visio 2010 есть множество других, специализированных наборов элементов и фигур, которые можно использовать в блок-схеме. Дополнительные сведения о других фигурах см. в статье Упорядочение и поиск фигур с помощью окна "Фигуры".

  • Начало/конец.     Эту фигуру следует использовать для представления первого и последнего этапа процесса.

  • Процесс.    Эта фигура представляет этап процесса.

  • Подпроцесс.    Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа).

  • Документ.    Эта фигура представляет этап, на котором создается документ.

  • Данные.    Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой "Ввод/Вывод".

  • Ссылка на текущую страницу.    Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

  • Ссылка на другую страницу.    При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой "Подпроцесс" и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

Создание блок-схемы

  1. В меню Файл наведите указатель мыши на пункт Создать, затем на пункт Блок-схема и выберите пункт Простая блок-схема.

  2. Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

  3. Соедините фигуры блок-схемы одним из указанных ниже способов.

    Соединение двух фигур друг с другом

    1. На панели инструментов Стандартная щелкните инструмент Соединительная линия .

    2. Перетащите точку соединения на первой фигуре к точке соединения на второй фигуре. После соединения фигур конечные точки соединительной линии становятся красными.

    Соединение одной фигуры с несколькими с помощью одной точки соединения

    По умолчанию используются прямоугольные соединительные линии, и соединение точки на фигуре с тремя другими фигурами выглядит как на рисунке ниже.

    Чтобы соединительные линии исходили прямо из центральной точки первой фигуры и вели к точкам на всех других фигурах, необходимо задать Прямые соединительные линии, как показано на приведенном ниже рисунке.

    1. На панели инструментов Стандартная щелкните инструмент Соединительная линия .

    2. Для каждой фигуры, к которой нужно присоединить первую, перетащите указатель от одной и той же точки соединения на первой фигуре до точки соединения на каждой из остальных фигур.

    3. Щелкните каждую соединительную линию правой кнопкой мыши и выберите пункт Прямая соединительная линия.

  4. На панели инструментов Стандартная щелкните инструмент Указатель , чтобы вернуться в обычный режим правки.

  5. Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

  6. Чтобы изменить направление соединительной линии, в меню Фигура наведите указатель мыши на пункт Операции и выберите пункт Обратить концы.

Что представляют блок-схемы

Когда вы открываете шаблон "Простая блок-схема", также открывается набор элементов "Фигуры простой блок-схемы". Каждая фигура в наборе элементов соответствует конкретному шагу процесса.

Из фигур, входящих в набор элементов "Фигуры простой блок-схемы", широко используются только некоторые. Именно эти фигуры описаны ниже. Дополнительные сведения об остальных фигурах см. по ссылке (Менее популярные фигуры блок-схемы) в конце этого раздела.

  • Оконечная фигура.    Эту фигуру следует использовать для представления первого и последнего этапа процесса.

  • Процесс.    Эта фигура представляет этап процесса.

  • Заранее определенный процесс.    Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа).

  • Решение.    Эта фигура используется в точке, где выбор следующего этапа зависит от принятого решения. Вариантов может быть несколько, но чаще всего их два: "да" и "нет".

  • Документ.    Эта фигура представляет этап, на котором создается документ.

  • Данные.    Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой "Ввод/Вывод".

  • Фигуры блок-схемы.    Щелкнув эту составную фигуру правой кнопкой мыши, можно выбрать любую из таких фигур: "Процесс", "Решение", "Документ" или "Данные". Любой текст, который вы введете на фигуре, или добавите в ее свойство "Данные фигуры", останется на ней.

    Вот как выглядит эта фигура в наборе элементов:

    Если перетащить фигуру на страницу документа и щелкнуть ее правой кнопкой мыши, откроется контекстное меню:

  • Хранимые данные.     Эту фигуру следует использовать для этапа, результатом которого является сохранение данных.

  • Ссылка на текущую страницу.    Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

  • Ссылка на другую страницу.    При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой "Подпроцесс" и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

Менее популярные фигуры блок-схемы

  • Динамическая соединительная линия.     Эта соединительная линия проходит в обход фигур, лежащих на ее пути.

  • Кривая соединительная линия.    Это соединительная линия с настраиваемой кривизной.

  • Поле с автоподбором высоты.     Это текстовое поле с рамкой, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Эта фигура не представляет этап процесса, но ее удобно использовать для размещения надписей на блок-схеме.

  • Примечание.     Это поле в квадратных скобках, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Как и "Поле с автоподбором высоты", эта фигура не представляет этап процесса. Используйте ее для добавления примечаний к фигурам блок-схемы.

  • Ручной ввод.    Это этап, на котором человек предоставляет информацию процессу.

  • Ручная операция.    Это этап, который должен быть выполнен человеком.

  • Внутреннее хранилище.    Эта фигура представляет данные, которые хранятся на компьютере.

  • Прямые данные.    Эта фигура представляет данные, которые хранятся таким образом, что к каждой отдельной записи возможен прямой доступ. Это соответствует способу хранения данных на жестком диске компьютера.

  • Последовательные данные.    Эта фигура представляет данные, которые сохраняются последовательно (например, данные на магнитной ленте). Считывать такие данные можно только последовательно. Например, чтобы обратиться к записи 7, нужно сначала просмотреть записи 1–6.

  • Карта и бумажная лента.    Эта фигура представляет перфокарту или бумажную ленту. В ранних компьютерных системах перфокарты и бумажные ленты использовались для записи и чтения данных, а также для хранения и запуска программ.

  • Дисплей.    Эта фигура представляет данные, отображаемые для пользователя (обычно на экране компьютера).

  • Подготовка.    Эта фигура обозначает инициализацию переменных при подготовке к выполнению процедуры.

  • Параллельный режим.    Эта фигура показывает, где два разных процесса могут работать одновременно.

  • Предел цикла.    На этой фигуре показано максимально возможное количество повторений цикла до перехода к следующему этапу.

  • Передача управления.    Эта фигура обозначает этап, на котором при выполнении некоторых условий происходит переход не к следующему, а к другому этапу.

Печать больших блок-схем

Наиболее простой способ вывести на печать блок-схему, размеры которой превышают размеры бумаги, — распечатать ее на нескольких листах, а затем склеить их.

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему целиком. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны. Чтобы проверить, помещается ли блок-схема на страницу документа, используйте предварительный просмотр в диалоговом окне Параметры страницы (меню Файл, пункт Параметры страницы, вкладка Настройка печати).

1. Блок-схема. размер которой слишком велик для страницы документа Visio.

2. Блок-схема, которая помещается на страницу документа Visio.

Изменение размера страницы документа Visio в соответствии с размером блок-схемы
  1. Когда открыта блок-схема, в меню Файл выберите пункт Параметры страницы.

  2. Откройте вкладку Размер страницы.

  3. На вкладке Размер страницы щелкните Изменять размеры по содержимому.

Чтобы увидеть, как блок-схема будет выглядеть на печати, в меню Файл выберите пункт Предварительный просмотр. На рисунке ниже показана блок-схема, которая будет распечатана на четырех листах формата Letter.

Печать больших блок-схем на нескольких листах бумаги
  1. В меню Файл выберите пункт Параметры страницы.

  2. На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан. Не нажимайте кнопку ОК.

  3. Откройте вкладку Размер страницы и щелкните Изменять размеры по содержимому. В окне предварительного просмотра теперь видна разница между новой страницей и бумагой в принтере.

  4. Нажмите кнопку ОК.

  5. В меню Файл выберите пункт Предварительный просмотр, чтобы увидеть, как блок-схема будет выглядеть на печати.

    Примечание: Между страницами могут отображаться затененные поля. Они соответствуют тем областям, которые будут распечатаны на обоих листах. Это позволяет склеить листы таким образом, чтобы на блок-схеме не было пустых промежутков.

  6. После завершения печати можно обрезать поля, расположить страницы надлежащим образом и склеить их.

Как выглядело бы Московское метро в трехмерном мире / Хабр

UPD: По просьбам в комментах добавляю ссылку на вращабельную схему на Javascript
К сожалению, код javascript вставить в тело поста не удалось
Добрый день! Недавно я читал блог одного урбаниста, который рассуждал о том, какая должна быть идеальная схема метро.Схему метро можно рисовать исходя из двух принципов:
  • Схема должна быть удобной и простой для запоминания и ориентирования
  • Схема должна соответствовать географии города

Очевидно, что эти принципы взаимоисключающие и первый принцип требует существенного искажения географической реальности.

Достаточно вспомнить, как выглядит схема Московского метро с красивыми кольцами и прямыми линиями:

и сравнить с географически точным планом:

На плане видно что кольца вовсе не являются идеально ровными и концентрическими, линии изгибаются гораздо сильнее, чем в схеме, а плотность станций в центре города настолько велика, что в плане практически невозможно разобраться.

И хотя второе изображение гораздо точнее отображает реальность, видно, что пользоваться для планирования маршрута в метро удобнее первой схемой.

И тут мне в голову пришла следующая мысль: «Как выглядело бы метро, если бы критерием для построения схемы являлось время, требуемое для перемещения от одной станции к другой?». То есть если от одной станции до другой добраться быстро, то пространственно они на схеме располагались бы недалеко.

Очевидно, что в двумерном пространстве невозможно нарисовать такую схему, в которой расстояние между двумя станциями равнялось бы времени путешествия от одной к другой из-за сложной топологии графа метро.

Также есть догадка, что такое точно возможно при построении схемы в пространстве с высокой размерностью (верхняя оценка n-1, где n- число станций). Для пространства с небольшим количеством измерений такую схему можно построить лишь приближенно.

Задача построения карты метро по времени путешествия выглядит типичной задачей оптимизации.
Пусть у нас есть начальный набор координат всех станций (X,Y,Z) и целевая матрица попарных времен (расстояний). Можно сконструировать метрику «неправильность» данного набора координат и далее минимизировать ее методом градиентного спуска по каждой из координат каждой станции. В качестве метрики можно взять простую функцию среднеквадратичного отклонения расстояний.

Что же, осталось дело за малым — нужно получить данные о том, сколько времени следует затратить на путешествие от любой станции московского метро к любой другой.

Первой мыслью было проверить api яндекс метро и вытащить оттуда эти данные. К сожалению, описания api и найти не удалось. Смотреть времена вручную в приложении долго (в метро 268 станций и размер матрицы времен 268*268=71824). Поэтому я решил разобраться в исходных данных Яндекс Метро. Так как доступа к серверу нет, был скачан apk файл с приложением и обнаружены необходимые данные. Вся информация о метро замечательно структурирована и хранится в формате JSON в папке assets/metrokit/ apk-архива приложения. Все данные хранятся в self-explanotary структурах. Meta.json содержит информацию о городах, схемы которых присутствуют в приложении, а также id данных схем.

{
            "id": "sc77792237", 
            "name": {
                "en": "Nizhny Novgorod", 
                "ru": "Нижний Новгород", 
                "tr": "Nizhny Novgorod", 
                "uk": "Нижній Новгород"
            }, 
            "size": {
                "packed": 30300, 
                "unpacked": 145408
            }, 
            "tags": [
                "published"
            ], 
            "aliases": [
                "nizhny-novgorod"
            ], 
            "logoUrl": "https://avatars.mds.yandex.net/get-bunker/135516/f2f0e33d8def90c56c189cfb57a8e6403b5a441c/orig", 
            "version": "2c27fe1", 
            "geoRegion": {
                "delta": {
                    "lat": 0.168291, 
                    "lon": 0.219727
                }, 
                "center": {
                    "lat": 56. 326635, 
                    "lon": 43.992153
                }
            }, 
            "countryCode": "RU", 
            "defaultAlias": "nizhny-novgorod"
        }

По id схемы находим папку с JSON, относящиеся и к Москве.

Файл data.json содержит основную информацию о графе метро, включая названия узлов графа, id узлов, географические координаты узлов, информацию о переходах с одной станции на другую (id, время перехода, тип перехода — перегон или пешком, по улицу или нет, время интересующее нас в секундах) а также много дополнительной информации о входах и выходах со станции. С этим достаточно легко разобраться. Начнем писать код для построения нашей схемы.

Импортируем необходимые библиотеки:

import numpy as np 
import json
import codecs
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd 
import itertools
import keras
import keras.backend as K
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.proj3d import proj_transform
from matplotlib. text import Annotation
import pickle

Структура словарей и списков python полностью соответствует структуре формата json, поэтому читаем иннформацию о метро и создаем объекты, соответствующие json объектам.
names = json.loads(codecs.open( "l10n.json", "r", "utf_8_sig" ).read() )
graph = json.loads(codecs.open( "data.json", "r", "utf_8_sig" ).read() )

Создаем словарь, ставящий в соответствие узлы графа и станции (это необходима для так как к именам привязаны именно станции, а не узлы графа)

Также на всякий случай сохраним координаты узлов для возможности построения географической карты (нормированы на диапазон 0-1)

nodeStdict={}
for stop in graph['stops']['items']:
    nodeStdict[stop['nodeId']]=stop['stationId']
coordDict={}
for node in graph['nodes']['items']:
    coordDict[node['id']]=(node['attributes']['geoPoint']['lon'],node['attributes']['geoPoint']['lat'])
lats=[]
longs=[]
for value in coordDict.values():
    lats.append(value[1])
    longs. append(value[0])
for k,v in coordDict.items():
    coordDict[k]=((v[0]-np.min(longs))/(np.max(longs)-np.min(longs)),(v[1]-np.min(lats))/(np.max(lats)-np.min(lats)))

Создадим граф метро со связями. Зададим веса каждой связи. Вес соответствует времени в пути. Удалим узлы, не являющиеся станциями (по-моему это выходы из метро а связи к ним нужны для яндекс карт при расчете времени, но точно не разбирался) создадим словарь id узла- реальное название на русском языке
G=nx.Graph()
for node in graph['nodes']['items']:
    G.add_node(node['id'])
#graph['links']
for link in graph['links']['items']:
    #G.add_edges_from([(link['fromNodeId'],link['toNodeId'])])
    G.add_edge(link['fromNodeId'], link['toNodeId'], length=link['attributes']['time'])
nodestoremove=[]
for node in G.nodes():
    if len(G.edges(node))<2:
        nodestoremove.append(node)
for node in nodestoremove:
    G.remove_node(node)
labels={}
for node in G.nodes():
    try:
        labels[node]=names['keysets']['generated'][nodeStdict[node]+'-name']['ru']
    except: labels[node]='error'

Определим к какой ветке (к какому id ветки) относится каждый узел (это понадобится позже для раскрашивания линий метро на схеме)
def getlines(graph, G):
    nodetoline={}
    id_from={}
    id_to={}
    for lk in graph['tracks']['items']:
        id_from[lk['id']]=lk['fromNodeId']
        id_to[lk['id']]=lk['toNodeId']
    for line in graph['linesToTracks']['items']:
        if line['trackId'] in id_from. keys():
            nodetoline[id_from[line['trackId']]]=line['lineId']
            nodetoline[id_to[line['trackId']]]=line['lineId']
    return nodetoline
lines=getlines(graph,G)

библиотека networkx позволяет найти длину кратчайшего пути от одного узла к другому при помощи функции nx.shortest_path_length(G, id1, id2, weight='length'), поэтому можно считать что с подготовкой данных закончили. Следующее, что необходимо сделать — подготовить модель, которая будет оптимизировать координаты станций.

Для этого разберемяся, что будет даваться на вход, на выход и как будем оптимизировать матрицу координат станций.

Предположим, у нас есть матрица всех координат (3x268). Умножение one-hot вектора (вектора, где везде 0, кроме одной единичной координаты на месте n) размерности 268 на данную матрицу координат даст 3 координаты, соответствующие станции n. Если мы возьмем пару one-hot векторов и умножим их на необходимую матрицу, то получим две тройки координат. Из пары координат можно расчитать евклидово расстояние между станциями. Таким образом, можно определить архитектуру нашей модели:

на вход мы подаем пару станций, на выходе получаем расстояние между ними.

После того, как мы определились с форматом данных для обучения модели, подготовим данные с использованием поиска расстояний на графе:

myIDs=list(G.nodes())
listofinputs1=[]
listofinputs2=[]
listofoutputs=[]
for pair in itertools.product(G.nodes(), repeat=2):
    vec1=np.zeros((len(myIDs)))
    vec2=np.zeros((len(myIDs)))
    vec1[myIDs.index(pair[0])]=1
    vec2[myIDs.index(pair[1])]=1
    listofinputs1.append(vec1)
    listofinputs2.append(vec2)
    #listofinputs.append([vec1,vec2])
    listofoutputs.append(nx.shortest_path_length(G, pair[0], pair[1], weight='length')/3600)
    #myDistMatrix[myIDs.index(pair[0]),myIDs.index(pair[1])]=nx.shortest_path_length(G, pair[0], pair[1], weight='length')

Оптимизируем методом градиентного спуска матрицу координат станций.

Если мы будем использовать фреймворк keras для машинного обучения, то получим следующее:

np. random.seed(0)
initweightmatrix=np.zeros((len(myIDs),3))
for i in range(len(myIDs)):
    initweightmatrix[i,:2]=coordDict[myIDs[i]]
    initweightmatrix[i,2]=np.random.randn()*0.001

def euclidean_distance(vects):
    x, y = vects
    sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sum_square, K.epsilon()))
def eucl_dist_output_shape(shapes):
    shape1, shape2 = shapes
    return (shape1[0], 1)

inp1=keras.layers.Input((len(myIDs),))
inp2=keras.layers.Input((len(myIDs),))
layer1=keras.layers.Dense(3,use_bias=None, activation=None)
x1=layer1(inp1)
x2=layer1(inp2)
x=keras.layers.Lambda(euclidean_distance,
                  output_shape=eucl_dist_output_shape)([x1, x2])
out=keras.layers.Dense(1,use_bias=None,activation=None)(x)
model=keras.Model(inputs=[inp1,inp2],outputs=out)
model.layers[2].set_weights([initweightmatrix])
model.layers[2].trainable=False
model.compile(optimizer=keras.optimizers.Adam(lr=0.01), loss='mse')

заметим, что в качестве начальных координат в слое layer1 мы используем реальные географические координаты -это необходимо для того, чтобы не попасть в локальный минимум функции СКО. Третью координату инициализируем ненулевой для получения ненулевого градиента (если в начале карта будет абсолютно плоской, смещение любой станции вверх или вниз будет равнозначно, следовательно градиент равен 0 и оптимизации z не произойдет). Последний элемент нашей модели (Dense(1)) влияет на масштабирование схемы для соответствия временной шкале.

Расстояние будем измерять в часах, а не секундах, так как порядки расстояний — около 1 часа, а для более эффективного обучении модели важно, чтобы все величины (входные данные, веса, targetы) были примерно одного порядка по величине. Если эти значения близки к 1, то можно использовать стандартные значения шага при оптимизации (0.001-0.01).

Строка model.layers[2].trainable=False замораживает координаты станций и на первом этапе варьируется один параметр — масштаб. После подбора масштаба нашей схемы размораживаем координаты и оптимизируем уже их:

hist=model.fit([listofinputs1,listofinputs2],listofoutputs,batch_size=71824,epochs=200)
model. layers[2].trainable=True
model.layers[-1].trainable=False
model.compile(optimizer=keras.optimizers.Adam(lr=0.01), loss='mse')
hist2=model.fit([listofinputs1,listofinputs2],listofoutputs,batch_size=71824,epochs=200)

видим, что на вход подаем сразу все пары станций, на выходе — все расстояния и наша оптимизация- full batch gradient descent (один шаг на всех данных). Функция loss в данном случае — среднеквадратичное отклонение и можно видеть, что оно составило 0.015 в конце обучения, что значит среднеквадратичное отклонение менее чем в 1 минуты для любой пары станций. Иными словами, полученная схема позволяет точно узнать расстояние, которое требуется, чтобы добраться от одной станции к другой по расстоянию по прямой между станциями сточностью +-1 минута!

Но давайте посмотрим, как выглядит наша схема!

получим координаты станций, возьмем цветовую кодировку линий и построим 3d изображение с подписями (код для красивого отображения подписей взят отсюда):

class Annotation3D(Annotation):
    '''Annotate the point xyz with text s'''

    def __init__(self, s, xyz, *args, **kwargs):
        Annotation. __init__(self,s, xy=(0,0), *args, **kwargs)
        self._verts3d = xyz        

    def draw(self, renderer):
        xs3d, ys3d, zs3d = self._verts3d
        xs, ys, zs = proj_transform(xs3d, ys3d, zs3d, renderer.M)
        self.xy=(xs,ys)
        Annotation.draw(self, renderer)

def annotate3D(ax, s, *args, **kwargs):
    '''add anotation text s to to Axes3d ax'''

    tag = Annotation3D(s, *args, **kwargs)
    ax.add_artist(tag)

fincoords=model.layers[2].get_weights()
ccode={}
for obj in graph['services']['items']:
    ccode[obj['id']]=('\#'+obj['attributes']['color'])[1:]

xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
colors=[ccode[lines[idi]] for idi in myIDs]
xyzn = zip(xn, yn, zn)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(xn,yn,zn, c=colors, marker='o')
for j, xyz_ in enumerate(xyzn): 
    annotate3D(ax, s=labels[myIDs[j]], xyz=xyz_, fontsize=9, xytext=(-3,3),
               textcoords='offset points', ha='right',va='bottom')    
plt. show()

Так как возникли трудности с конвертацией в интерактивный 3d формат для браузера, выкладываю гифки:

более красиво и узнаваемо выглядит версия без текста:

xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
colors=[ccode[lines[idi]] for idi in myIDs]
xyzn = zip(xn, yn, zn)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(xn,yn,zn, c=colors, marker='o')
plt.show()

UPD: Добавим линии метро нужного цвета и создадим гифку. Черные линии — переходы между станциями:

myedges=[(myIDs.index(edge[0]),myIDs.index(edge[1]))for edge in G.edges]
xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
c=[ccode[lines[idi]] for idi in myIDs]

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x,y,z, c=c, marker='o',s=25)
for edge in myedges:
    col='black'
    if c[edge[0]]==c[edge[1]]:
        col=c[edge[0]]
    ax. plot3D([x[edge[0]], x[edge[1]]], [y[edge[0]], y[edge[1]]], [z[edge[0]], z[edge[1]]], col)

ims = []

def rotate(angle):
    ax.view_init(azim=angle)

rot_animation = animation.FuncAnimation(fig, rotate, frames=np.arange(0, 362, 3), interval=70)
rot_animation.save('rotation2.gif', dpi=80, writer=matplotlib.animation.PillowWriter(80))

Из данной схемы можно сделать некоторые интересные выводы, которые не столь очевидны из других схем. Для некоторых веток, например зеленой, синей или фиолетовой МЦК (розовое кольцо) практически бесполезно из-за неудобных пересадок, что видно в удалении кольца от этих веток. Самые длинные по времени маршруты — от коммунарки до щелкого или пятницкого шоссе (коней красной и розовая/синяя линии) длинные маршруты так же алмаатинская-рассказовка и бунинская аллея-некрасовка. На севере Москвы, судя по плану, происходит частичное дублирование серой и салатовой ветками — они находятся рядом на схеме. Было бы итересно посмотреть на то, как новые линии (МЦД, БКЛ) и кто чаще будет пользоваться ими. В любом случае, надеюсь, подобные схемы могут быть интересным инструментам анализа, вдохновения и планирования поездок.

P.S. 3D не обязательно, для 2D варианта достаточно чуть-чуть исправить код. Но в случае 2d схемы добиться подобной точности расстояний невозможно.

Facebook

😡Извините, но это плагиат! Сворована чужая идея и реализация! И нигде не упоминается первоначальный автор!

Программы реализованы ещё более 10 лет назад!
И там схемы метро практически всех городов мира!
А по Москве, так и схемы всех прошлых годов с первых линий.
------------------------------
Схема метро
pMetro v1.29.5 от 04.03.2011. Автор - Мурадов Борис.
для Windows 95/NT4 и выше.
...
Описание
--------
pMetro - справочник метро Москвы и других городов. Отображает схему метро города (а для некоторых городов и схему электропоездов), позволяет найти
кратчайшие пути между станциями, а также описывает, что находится рядом со станциями.
Отличительные особенности программы:
- Схемы метро более 200 городов мира.
- Масштабирование, сглаживание рисунка.
- Можно задать несколько начальных и конечных станций.
- Можно отметить обязательные и нежелательные в пути станции.
- Транспорт рядом со станцией, театры, музеи и пр.
- Зоны покрытия сотовых операторов.
- Наземный транспорт: поиск пути между заданными пунктами, в том числе
с пересадками, справочник по маршрутам.
- Жирным шрифтом выделяются пути без пересадок или с одноплатформенными пересадками (с учетом направления движения).
- Схемы станций Москвы, Санкт-Петербурга, Новосибирска, Нижнего Новгорода, Екатеринбурга, Самары, Казани, Киева, Минска и Ташкента.
- 3d-макеты станций Москвы, Санкт-Петербурга, Екатеринбурга, Новосибирска, Казани и Самары.
- Многоязыковая поддержка и транслитерация.
- В каком вагоне надо ехать, чтобы сразу попасть на переход или нужный выход.
- Почти все данные доступны для редактирования. Возможность создавать свои карты.
- 3d-схема.
Программа написана во многом под влиянием программы Константина Штенникова - mmetro (http://mmetro.ru). Данные о времени движения и пересадок по Москве и некторорым другим городам также взяты из этой программы с любезного согласия автора.
Если вы хотите добавить к пакету свои карты - присылайте, они будут размещены на страничке с указанием авторства.

Прошу исправить вашу публикацию, как ошибочную и недостоверную. И указать истинных авторов идеи)
https://pmetro.su
https://ru.wikipedia.org/wiki/PMetro

Как выглядит схема для снятия переходного процесса

В реальных ключевых схемах изменение состояния транзисторов под действием ступенчатого входного напряжения происходит в течение некоторого времени, зависящего от целого ряда факторов: типа транзистора ключа, режимов его работы, характера нагрузки и т.д. При этом изменения выходных токов ключа при отпирании и запирании транзистора отличаются от линейного закона, а форма выходного напряжения значительно отличается от формы входного.

Переходные процессы биполярного ключа

Процесс переключения биполярного транзистора определяется двумя факторами: процессами накопления и рассасывания неосновных носителей в базе, формирующих ток коллектора i k , и наличием емкостей эмиттерного и коллекторного переходов C э и C к , которые перезаряжаются при переключениях. Если входное напряжение U вх равно нулю, то транзистор закрыт и ток коллектора i k равен неуправляемому току I к0 (рис. 14).

Рис.14. Переходные процессы в ключе на биполярном транзисторе

При подаче входного напряжения ступенчатой формы появляется базовый ток I б такой же формы. Если величина I б достаточна для ввода транзистора в насыщение, то возрастающий ток коллектора будет стремиться к уровню b I б , где b – коэффициент усиления тока транзистора. Нелинейный характер нарастания i k определяется наличием емкостей переходов база-эмиттер (C э ) и база-коллектор (C к ). Максимальное значение i k ограничено сопротивлением R k и не может превысить величины

Значение коллекторного тока, в тоже время, определяется количеством неосновных носителей в базе, поэтому, когда ток i k достигнет величины I kнас , его рост прекратится, но рост числа носителей заряда в базе будет расти до величины соответствующей току I б . Таким образом, в базе транзистора накапливается избыточный заряд неосновных носителей, не участвующих в создании коллекторного тока.

Как видно из диаграммы, процесс открывания транзистора занимает некоторый интервал времени t вкл . Уменьшение этого времени на практике достигают повышением в 1,5 — 3 раза базового тока, по отношению к току, достаточному для введения транзистор в насыщение.

Однако увеличение базового тока в этом случае приводит к увеличению избыточного заряда неосновных носителей в базе, которые после снятия входного сигнала (отключения тока I б ) продолжают поддерживать некоторое время t р коллекторный ток неизменным. Отрезок времени t р называют временем рассасывания неосновных носителей из базы. Только после удаления избыточного заряда из базы начинается процесс уменьшения коллекторного тока до уровня I к0 .

В быстродействующих ключевых схемах принимают меры для уменьшения t р , и соответственно, t выкл , в целом.

Ключевая схема на транзисторе Шоттки

Процесс рассасывания можно устранить, если транзистору сразу же после отирания создать режим, когда бы он находился на границе между состоянием насыщения и активным режимом работы. Этого можно достичь шунтированием перехода коллектор-база транзистора диодом Шоттки (рис. 15).

Рис. 15. Ключевая схема на транзисторе Шоттки

Когда транзистор закрыт или работает в активном режиме, потенциал коллектора выше потенциала базы и, следовательно, диод закрыт и не влияет на работу ключа. В режиме насыщения, когда транзистор полностью открыт, потенциал его коллектора оказывается ниже потенциала базы, что приводит к открыванию диода, на котором устанавливается напряжение менее 0,5 В, т. е. меньше напряжения, открывающего переход база–коллектор. Транзистор тем самым окажется на грани насыщения, так как диод зашунтирует через себя ту часть тока базы, которая создала бы избыточный заряд.

В интегральном исполнении диод Шоттки представляет собой контакт металла с коллекторной областью транзистора и составляет единую структуру, называемую транзистором Шоттки. Особенностью диода Шоттки является низкое прямое падение на нем напряжения порядка 0,4 В.

Переходные процессы в ключевой схеме на МДП-транзисторе

Основное влияние на характер протекания переходных процессов в ключевых схемах на полевых транзисторах оказывают емкости, образованные между их выводами (рис. 16).

Рис. 16. Переходные процессы в ключевой схеме на МДП-транзисторах: а – эквивалентная схема, б – временные диаграммы

При закрытом транзисторе выходная емкость C си заряжена до напряжения, практически равного E. Когда входное напряжение превышает пороговое напряжение U пор (напряжение открывания транзистора) в течение времени задержки

формируется проводящее состояние канала. Однако, при достаточно низком сопротивлении R вн источника входного сигнала U вх время задержки пренебрежимо мало.

Как только канал сформирован, емкость C си начинает разряжаться постоянным током I р , определяемым небольшим сопротивлением проводящего канала транзистора, в течение времени t вкл . За это время выходное напряжение ключа падает до величины близкой к нулю.

При запирании транзистора (уменьшение U вх до нуля) происходит зарядка емкости C си через резистор R от напряжения источника питания E в течение времени t выкл . Это время, как правило, больше времени включения, так как сопротивление нагрузочного резистора R значительно больше сопротивления канала транзистора в проводящем состоянии.

В комплементарном ключе заряд и разряд нагрузочной емкости происходит в одинаковых условиях через открытый проводящий канал. Это объясняется симметрией схемы относительно входного напряжения и нагрузки. Соответственно, интервалы времени t вкл и t выкл примерно одинаковы и почти на порядок меньше, чем у обычного ключа на МДП-транзисторах. Это преимущество сохраняется и при уменьшении напряжения питания.

1. Электромагнитная волна (в религиозной терминологии релятивизма — "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например,

200 тыс км/с в стекле и

3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")

2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" — это волнение ничего в ничем. У него нет среды-носителя колебаний.

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

В реальных ключевых схемах изменение состояния транзисторов под действием ступенчатого входного напряжения происходит в течение некоторого времени, зависящего от целого ряда факторов: типа транзистора ключа, режимов его работы, характера нагрузки и т.д. При этом изменения выходных токов ключа при отпирании и запирании транзистора отличаются от линейного закона, а форма выходного напряжения значительно отличается от формы входного.

Переходные процессы биполярного ключа

Процесс переключения биполярного транзистора определяется двумя факторами: процессами накопления и рассасывания неосновных носителей в базе, формирующих ток коллектора i k , и наличием емкостей эмиттерного и коллекторного переходов C э и C к , которые перезаряжаются при переключениях. Если входное напряжение U вх равно нулю, то транзистор закрыт и ток коллектора i k равен неуправляемому току I к0 (рис. 14).

Рис.14. Переходные процессы в ключе на биполярном транзисторе

При подаче входного напряжения ступенчатой формы появляется базовый ток I б такой же формы. Если величина I б достаточна для ввода транзистора в насыщение, то возрастающий ток коллектора будет стремиться к уровню b I б , где b – коэффициент усиления тока транзистора. Нелинейный характер нарастания i k определяется наличием емкостей переходов база-эмиттер (C э ) и база-коллектор (C к ). Максимальное значение i k ограничено сопротивлением R k и не может превысить величины

Значение коллекторного тока, в тоже время, определяется количеством неосновных носителей в базе, поэтому, когда ток i k достигнет величины I kнас , его рост прекратится, но рост числа носителей заряда в базе будет расти до величины соответствующей току I б . Таким образом, в базе транзистора накапливается избыточный заряд неосновных носителей, не участвующих в создании коллекторного тока.

Как видно из диаграммы, процесс открывания транзистора занимает некоторый интервал времени t вкл . Уменьшение этого времени на практике достигают повышением в 1,5 — 3 раза базового тока, по отношению к току, достаточному для введения транзистор в насыщение.

Однако увеличение базового тока в этом случае приводит к увеличению избыточного заряда неосновных носителей в базе, которые после снятия входного сигнала (отключения тока I б ) продолжают поддерживать некоторое время t р коллекторный ток неизменным. Отрезок времени t р называют временем рассасывания неосновных носителей из базы. Только после удаления избыточного заряда из базы начинается процесс уменьшения коллекторного тока до уровня I к0 .

В быстродействующих ключевых схемах принимают меры для уменьшения t р , и соответственно, t выкл , в целом.

Ключевая схема на транзисторе Шоттки

Процесс рассасывания можно устранить, если транзистору сразу же после отирания создать режим, когда бы он находился на границе между состоянием насыщения и активным режимом работы. Этого можно достичь шунтированием перехода коллектор-база транзистора диодом Шоттки (рис. 15).

Рис. 15. Ключевая схема на транзисторе Шоттки

Когда транзистор закрыт или работает в активном режиме, потенциал коллектора выше потенциала базы и, следовательно, диод закрыт и не влияет на работу ключа. В режиме насыщения, когда транзистор полностью открыт, потенциал его коллектора оказывается ниже потенциала базы, что приводит к открыванию диода, на котором устанавливается напряжение менее 0,5 В, т. е. меньше напряжения, открывающего переход база–коллектор. Транзистор тем самым окажется на грани насыщения, так как диод зашунтирует через себя ту часть тока базы, которая создала бы избыточный заряд.

В интегральном исполнении диод Шоттки представляет собой контакт металла с коллекторной областью транзистора и составляет единую структуру, называемую транзистором Шоттки. Особенностью диода Шоттки является низкое прямое падение на нем напряжения порядка 0,4 В.

Переходные процессы в ключевой схеме на МДП-транзисторе

Основное влияние на характер протекания переходных процессов в ключевых схемах на полевых транзисторах оказывают емкости, образованные между их выводами (рис. 16).

Рис. 16. Переходные процессы в ключевой схеме на МДП-транзисторах: а – эквивалентная схема, б – временные диаграммы

При закрытом транзисторе выходная емкость C си заряжена до напряжения, практически равного E. Когда входное напряжение превышает пороговое напряжение U пор (напряжение открывания транзистора) в течение времени задержки

формируется проводящее состояние канала. Однако, при достаточно низком сопротивлении R вн источника входного сигнала U вх время задержки пренебрежимо мало.

Как только канал сформирован, емкость C си начинает разряжаться постоянным током I р , определяемым небольшим сопротивлением проводящего канала транзистора, в течение времени t вкл . За это время выходное напряжение ключа падает до величины близкой к нулю.

При запирании транзистора (уменьшение U вх до нуля) происходит зарядка емкости C си через резистор R от напряжения источника питания E в течение времени t выкл . Это время, как правило, больше времени включения, так как сопротивление нагрузочного резистора R значительно больше сопротивления канала транзистора в проводящем состоянии.

В комплементарном ключе заряд и разряд нагрузочной емкости происходит в одинаковых условиях через открытый проводящий канал. Это объясняется симметрией схемы относительно входного напряжения и нагрузки. Соответственно, интервалы времени t вкл и t выкл примерно одинаковы и почти на порядок меньше, чем у обычного ключа на МДП-транзисторах. Это преимущество сохраняется и при уменьшении напряжения питания.

Переходные процессы не являются чем-то необычным и характерны не только для электрических цепей. Можно привести ряд примеров из разных областей физики и техники, где случаются такого рода явления.

Переходным режимом (или переходным процессом) называется режим, возникающий в электрической цепи при переходе от одного стационарного состояния к другому, чем-либо отличающемуся от предыдущего, а сопутствующие этому режиму напряжения и токи — переходными напряжениями и токами. Изменение стационарного режима цепи может происходить в результате изменения внешних сигналов, в том числе включения или отключения источника внешнего воздействия, или может быть вызвано переключениями внутри самой цепи.

Любое изменение в электрической цепи, приводящее к возникновению переходного процесса называют коммутацией. В большинстве случаев теоретически допустимо считать, что коммутация осуществляется мгновенно, т.е. различные переключения в цепи происходят без затраты времени. Процесс коммутации на схемах условно показывается стрелкой возле выключателя.

Переходные процессы в реальных цепях являются быстропротекающими. Их продолжительность составляет десятые, сотые, а часто и миллионные доли секунды. Сравнительно редко длительность этих процессов достигает единицы секунды.

Естественно возникает вопрос, надо ли вообще принимать во внимание переходные режимы, имеющие столь короткую длительность. Ответ может быть дан только для каждого конкретного случая, так как в различных условиях роль их неодинакова. Особенно велико их значение в устройствах, предназначенных для усиления, формирования и преобразования импульсных сигналов, когда длительность воздействующих на электрическую цепь сигналов соизмерима с продолжительностью переходных режимов.

Переходные процессы являются причиной искажения формы импульсов при прохождении их через линейные цепи. Расчет и анализ устройств автоматики, где происходит непрерывная смена состояния электрических цепей, немыслим без учета переходных режимов.

В ряде устройств возникновение переходных процессов, в принципе, нежелательно и опасно. Расчет переходных режимов в этих случаях позволяет определить возможные перенапряжения и увеличения токов, которые во много раз могут превышать напряжения и токи стационарного режима. Это особенно важно для цепей со значительной индуктивностью или большой емкостью.

Возникновение переходных процессов связано с особенностями изменения запасов энергии в реактивных элементах цепи. Количество энергии, накапливаемой в магнитном поле катушки с индуктивностью L, в которой протекает ток iL, выражается формулой: WL = 1/2 (LiL 2 )

Энергия, накапливаемая в электрическом поле конденсатора емкостью С, заряженного до напряжения uC, равна: WC = 1/2 (CuC 2 )

Поскольку запас магнитной энергии WL определяется током в катушке iL, а электрической энергии WC — напряжением на конденсаторе uC, то во всех электрических цепях три любых коммутациях соблюдаются два основных положения: ток катушки и напряжение на конденсаторе не могут изменяться скачком. Иногда эти положения формулируются иначе, а именно: потокосцепление катушки и заряд конденсатора могут изменяться только плавно, без скачков.

Переходные процессы в электрических цепях с двумя накопителями энергии. Короткое замыкание цепи

RLC. Апериодический и колебательный режимы.

В данном случае электрическая цепь после коммутации содержит два реактивных элемента — индуктивность и емкость. Это означает, что дифференциальное уравнение цепи должно иметь второй порядок и поэтому должны быть определены два независимых начальных условия. До коммутации цепь находилась в состоянии покоя, что соответствует нулевым начальным условиям: uC(0+) = uC(0) = 0; i(0+) = i(0) = 0.

Напряжение на резисторе uR(t) и напряжение на индуктивности uL(t) выразим через uC(t):

.

Полученное уравнение является линейным дифференциальным неоднородным уравнением второго порядка с постоянными коэффициентами.

Для определения свободной составляющей записываем соответствующее характеристическое уравнение LCp 2 + Rcp + 1 = 0 и определяем его корни:

где введены следующие обозначения: a = R / 2L — коэффициент затухания; w = 1/ Ö LC — резонансная частота контура. Далее записываем выражение для свободной составляющей

.

Вынужденную составляющую решения определим как установившееся значение напряжения на емкости в режиме постоянного тока в цепи после коммутации.

Из уравнения по второму закону Кирхгофа получим uCуст = uCвын = U. Таким образом, полное решение для напряжения

Выражение для тока необходимо для определения постоянных интегрирования. Используя нулевые начальные условия, при t = 0 получим: uC(0+) = A1 + A2 + U = 0; i(0+) = CA1p1 + CA2p2 = 0. Решение этой системы уравнений дает выражения для постоянных интегрирования:

Апериодический режим.

Условие a > w , как нетрудно убедиться, эквивалентно соотношениям: R > 2r и Q 0,5 корни (1.27) характеристического уравнения будут комплексными p1,2 =- a ± j = — a ± jw k , где w k = — угловая частота свободных затухающих колебаний. При подстановке этих корней в (1.29) и (1.30) получим

Далее, используя формулы Эйлера для экспонент с мнимыми показателями, окончательно найдем:

Качественный график полученной функции напряжения на емкости показан на рис. 1.27.

При малых потерях в контуре (R

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10568 — | 7327 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Как выглядит схема архитектуры Twitter?



Я создаю сервис, похожий на Twitter, и в процессе создания дизайна.

Я посмотрел на проекты с открытым исходным кодом Twitter на github и на некоторые альтернативные проекты с открытым исходным кодом для части примера дизайна

Таким образом, у меня есть общее представление о том, что необходимо для выполнения моей задачи. Мне не удалось найти фактическую архитектурную схему Twitters или статью, содержащую обзор об этом.

Как выглядит схема архитектуры Twitter?

Спасибо

java twitter architecture diagram
Поделиться Источник Aba Dov     23 июня 2013 в 15:00

3 ответа


  • twitter библиотека на iOS6

    Я пытаюсь заставить наше приложение работать на iOS6, но есть проблема, связанная с библиотекой twitter. Похоже, что библиотека twitter не поддерживает новую архитектуру armv7s, поэтому всякий раз, когда я пытаюсь построить приложение на устройстве, Xcode будет жаловаться, что файл универсален (3...

  • Что такое схема архитектуры веб-приложения?

    Я работаю над веб-приложением, и я должен представить его высокоуровневую диаграмму дизайна/архитектуры. Может ли кто-нибудь сказать мне, что именно представляет собой схема архитектуры? PS: я должен нарисовать диаграмму классов отдельно.



8

Было бы трудно найти единую, грандиозную архитектурную схему, объясняющую все услуги Twitter. Тем не менее, вы можете найти обзоры высокого уровня и статьи, посвященные конкретным его частям.

Обзор от ведущего инженера Twitter находится здесь .

Вы можете следить за обновлениями в блоге Twitter engineering .

Это видео об их переезде из ROR в JVM.

Список из Twitter номеров шкалы.

Статья о настройке архитектуры Twitter.

Это связано с их серверной части хранилища.

Поделиться talonx     24 июня 2013 в 03:20



2

Вот обновленная архитектура и подробности о некоторых дизайнерских решениях. Интересно отметить, что Twitter использует интенсивную архитектуру записи, чтобы сделать чтение более эффективным (O (1) infact). Статья highscalability указывает на оригинальную презентацию Infoq.

Поделиться donnie     23 декабря 2014 в 07:01



1

Вот отличный обзор по состоянию на 19 января 2017 года на случай, если кто-то еще наткнется на эту тему. Она охватывает извлеченные уроки и эволюцию их различных решений для обработки данных с течением времени.

Инфраструктура За Twitter

Поделиться MikeK     17 января 2018 в 17:13


  • Схема архитектуры, включающая поток данных между торговым движком, механизмом маршрутизации ордеров, quickfix и биржей

    Если я напишу систему маршрутизации ордеров на основе QuickfixJ, могу ли я просто начать отправлять свои сделки на биржу? Или мне нужно зарегистрироваться на бирже, или получить разрешение, или что-то в этом роде? Я не могу понять, как QuickfixJ, система маршрутизации ордеров, фактический торговый...

  • Схема архитектуры laravel?

    Может ли кто-нибудь указать мне на диаграмму, которая показывает связь между нормальными битами MVC и следующими: промежуточный слой Стража фасады Контракты У Laravel, кажется, так много посредников, и я изо всех сил пытаюсь увидеть общую картину. EDIT Подумав над ответом Алекса (ниже) Я думаю,...


Похожие вопросы:


как выглядит twitter /verify_credentials?

Итак, мне просто нужно получить базовую информацию пользователя(/verify_credentials (twitter), /me(facebook)), поэтому сейчас я пытаюсь свернуть свой собственный код получил его на facebook со...


Схема Архитектуры Системы OpenText

Кто-нибудь знает, где я могу найти схему архитектуры системы для reddot? Я знаю, что теперь они являются группой веб-решений. Если кто-то может переназначить это так, чтобы это имело больше смысла,...


Схема технической архитектуры для приложения iPhone

Существует ли какая-либо примерная схема технической архитектуры для приложения iPhone, которая могла бы отображать компоненты высокого уровня и их взаимодействие? Пожалуйста, проводите.


twitter библиотека на iOS6

Я пытаюсь заставить наше приложение работать на iOS6, но есть проблема, связанная с библиотекой twitter. Похоже, что библиотека twitter не поддерживает новую архитектуру armv7s, поэтому всякий раз,...


Что такое схема архитектуры веб-приложения?

Я работаю над веб-приложением, и я должен представить его высокоуровневую диаграмму дизайна/архитектуры. Может ли кто-нибудь сказать мне, что именно представляет собой схема архитектуры? PS: я...


Схема архитектуры, включающая поток данных между торговым движком, механизмом маршрутизации ордеров, quickfix и биржей

Если я напишу систему маршрутизации ордеров на основе QuickfixJ, могу ли я просто начать отправлять свои сделки на биржу? Или мне нужно зарегистрироваться на бирже, или получить разрешение, или...


Схема архитектуры laravel?

Может ли кто-нибудь указать мне на диаграмму, которая показывает связь между нормальными битами MVC и следующими: промежуточный слой Стража фасады Контракты У Laravel, кажется, так много...


Схема архитектуры решения - направления стрелок

Существуют различные типы стрелок, используемых в диаграммах архитектуры программного обеспечения. Например. есть два приложения а и В. В чем разница между следующим - Одиночная двунаправленная...


Схема Логической Архитектуры

Я знаю, что это довольно общий вопрос, который должен дать нормальный результат поиска google, но некоторые из них я не уверен в результатах . Мое понимание логической схемы архитектуры заключается...


Схема чистой архитектуры

Ниже приведена классическая схема чистой архитектуры из оригинального блога дяди Бобса . Я довольно смущен тем, почему шлюзы больше выходят наружу, чем варианты использования. Это то, что...

Как составить схему предложения: основные виды с примерами

Привет двоечники. Бродил недавно по просторам интернета и наткнулся на учебник по русскому языку. Вспомнил эту школу, в которую приходилось ходить каждый день и просиживать штаны. Несмотря на то, что я всегда учился ну…. скажем неплохо, повторить этот опыт я бы не хотел. В учебнике нашёл урок про то, как правильно составляется структура предложений.  И решил написать про это статью, чтобы вы, застигнутые ностальгией по школьным временам, или, вдруг, необходимостью, не бродили в поисках учебниках по русскому языку, а пришли ко мне в блог.

Кто-то возразит: «Школа давно закончилась, напишем без схем». Такая точка зрения вполне справедлива. Для тех, кто общается с помощью СМС и игровых чатов.  Итак, сегодня тема нашего занятия звучит так: «Как составить схему предложения?»  Тем более если вы копирайтер или хотите им стать и зарабатывать больше чем ваша училка, знание схем предложений, к сожалению, необходимо.

Порядок составления схемы предложения

  1. Определить тип предложения по цели высказывания и по интонации. Предложения по цели высказывания делаться: на повествовательные, вопросительные, побудительные. По эмоциональной окраске – восклицательные и невосклицательные.
  2. Найти основу – подлежащее и сказуемое. Основа ‑ это главная мысль предложения, та важная информация, которую мы хотим донести.
  3. Определить тип предложения по строению: простое или сложное.
  4. Разбить сложное предложение на простые составляющие. Отметить границы простых предложений.
  5. Выделить причастный или деепричастный оборот, проследить перечисления.
  6. Определить союзную связь. Проверить правильность применения сочинительного или подчинительного союза.

Для составления схемы понадобятся графические обозначения. Равноправные предложения в составе сложного предложения обозначим квадратными скобками. Подчиненное вместе с союзом – круглыми скобками. Главное слово, от которого задается вопрос, — крестиком.

Схема простого предложения

Рассмотрим сразу пример. Начнем с самого легкого задания для начальной школы.

Это простое двухсоставное предложение. Различают также односоставное, когда главные члены предложения выражены одним подлежащим или одним сказуемым. Простые предложения бывают распространенными, как в нашем случае, или нераспространенными, к примеру:

Обращаем внимание на сказуемое. Оно может быть простым или сложным:

  • Простым: «Михаил сочинял».
  • Составным глагольным: «Миша хотел писать на диване».
  • Составным именным: «Миша был другом для меня».

В простом предложении может быть обращение:

Иван, сядь в левый ряд. Схема предложения следующая

[│О│,…..].

Важно выделить обращение запятыми так же, как и вводные слова.

К несчастью, такое случалось довольно часто

[│ВВ│,…..].

Не забываем найти и выделить деепричастный или причастный обороты.

Не отрывая глаз, смотрел на нее пес

[│ДО│, Х …].

Вид, открывшийся перед ним, был похож на зачарованное царство холода.

 [ Х,│ ПО│, …..].

В литературных текстах, в текстах-рассуждениях часто встречается прямая речь.

«Не заходи во двор!»- громко крикнул незнакомец.

«[П!]»- [а].

«Ура, братцы!- закричал он. – Кажется, наше дело начинает идти на лад».

«[П..,│О│!] — [а]. — [│ВВ│,…П..]».

Итак, училка по английскому. Представьте у меня все пятерки (80 процентов), я иду на красный диплом техникума, олимпиады, конференции – меня знают все. И эта…... ну…. женщина ставит мне тряк. Я ей говорю: вы что не нормальная, посмотрите на мои оценки, вы что творите? И нифига – якобы принцип. Хотя какой на хер принцип, когда она ставила четверки спортсменам, которые не приходили вообще на пары и за банку кофе ставила пятерки. И ей все это говорили, Паше надо поставить хотя бы четверку.  Короче жесть. Уже на защите диплома вмешался сам директор и она поставила мне 4 уже после защиты, но красный диплом был потерян.

Схема сложного предложения.

Различают несколько видов сложных предложений. Рассмотрим их по порядку.

Сложносочиненное — это два простых равноправных предложения, соединенные сочинительным союзом.

Стены тоннеля раздвинулись, и путешественники очутились в огромном подлунном гроте.

Схема здесь несложная […..], и […..].

В сложноподчиненном предложении одна часть главная, вторая подчиняется, сопутствует первой.

Отдельные колонны были так огромны, что доставали своими вершинами до самого свода.

[…..], (что ….).

Окружающий воздух был намного чище того, который он вдыхал дома.

[…..], (которым ….).

Подчинение в таких предложениях происходит с помощью подчинительных союзов.

Бессоюзное предложение аналогично сложносочиненному, но не имеет союза.

Телевизионная студия предлагала смехотворно малую сумму – Мига рассердился.

[…..] — […..].

В нашем примере недовольство Миги вызвано действиями, произведенными в первой части сложного предложения. Но союза нет, его заменяет знак тире.

Не запутайтесь, составляя схему с разными типами связи. Разбить такие предложения, при этом не потеряв главную мысль, бывает очень сложно.

Дно тоннеля уходило вниз, поэтому идти было легко и просто: казалось, кто-то толкает в спину, и впереди скоро зажжется свет.

 […..], (поэтому ….): [│ВВ│,...], и [....].

Сложное предложение может иметь несколько придаточных частей, вытекающих одно из другого. Это последовательное подчинение.

Ребятам сообщили, что завтра будет праздник, который закончится карнавальным шествием.

[…..],

↓ что?

 (что ….),

↓ какой?

 (который ….).

Различают также параллельное подчинение. От главного предложения задаются разные вопросы к придаточным частям. Придаточные части в данном случае могут практически без изменения сделаться отдельными простыми предложениями.

Когда пришел фотограф, Серенький завернул акцию в платочек, чтобы спрятать ее за пазуху.

                      […..]

↓ когда?                   ↓ зачем?

 (когда ….),             (чтобы ….).

В русском языке выделяют однородное подчинение. Это перечисление простых предложений. К ним задается одинаковый вопрос от главной части, и соединяются они одинаковым союзом.

Наблюдая весной за природой, можно заметить, как прилетают птицы, как появляются нежные листочки, как зацветают первые цветы.

                      […..]

↓ что?            ↓ что?            ↓ что?

 (как ….),     (как ….),      (как ….).

Основные виды предложений рассмотрены. Читая и анализируя текст, внимательно просматривайте большие по конструкции предложения. Выделяйте главную информацию. Мысленно задавайте вопросы от главного слова или главной части к придаточной или подчиненной. Это поможет уловить суть и правильно расставить знаки препинания.

Всем творческих успехов. Ну и найдите 10 отличий на этих картинках и напишите за сколько у вас это получилось сделать.

Найди 10 отличий

Создание схемы линий Московского метро 2.0


Для начала попробуем, скажем, нарисовать схему с нуля. Что если отказаться от вселенной сорока пяти градусов и сделать все углы кратными тридцати?

Нет, не то. В центре стало в пять раз хуже, а ветки за кольцом выглядят так, будто вихрь налетел и надавал веткам пиздюлей.

С другой стороны, пересадка «Пушкинская» — «Тверская» — «Чеховская» выглядит в пять раз чище, пропал непонятный поворот серой ветки и девяностокилометровый перегон между «Аннино» и «Бульваром Дмитрия Донского». Кстати, другие дизайнеры при создании своих схем часто копируют этот странный фрагмент 🙂

Вернемся к старой сорокапятиградусной схеме и попробуем все это так сохранить.

Ай лав Москоу:

Из-за того, что «Смоленским» и «Арбатским» теперь потребовалось немного больше места (добавилась река, появились строящиеся «Плющиха» и «Волхонка» — вот это всё), переход на «Библиотеке им. Ленина» перестал быть большим красивым кругом и стал больше похож на центральный московский ипподром. В общем, стало окончательно ясно, что визитную карточку предыдущей схемы — пересадку на «Библиотеке» — следует выкинуть в корзину и нарисовать новую визитную карточку.

Пробуем нарисовать:

Ини и яни нравятся способом построения, но не нравятся тем, что нихуя, прямо скажем, не считываются.

Тут внезапно пришел Людвиг и нарисовал на бумажке руль.

Охуенно, оставляем руль.

Заодно решено привести размеры всех кружков-пересадок к одному знаменателю. Раньше размера было три: маленький (когда пересадка из трех станций с разными названиями), средний (две станции с одним названием, а третья — с другим) и большой (все три станции называются «Киевская» и их нужно, блядь, как-то подписать).

Попробуем сделать все кружки большими, как «Киевская»:

Не, анду.

А средними?

О, вроде норм. Ну а «Киевская» пусть так и будет исключением. И «Библиотеку» еще раза в два покрупнее (Тема попросил).

Параллельно придумываем, как показать железнодорожные ветки. Дело в том, что показывать просто пересадку со станции «Кунцевская» на платформу Кунцево-I — это не очень информативно. Гораздо информативнее то, что, пересев на Кунцево-I, пассажир может доехать сначала до «Филей», а потом и вовсе до «Белорусской».

Воспользуемся официальной схемой пригородного железнодорожного сообщения Москвы и Московской области, нарисованной неизвестным дизайнером на основе нашей схемы-2010:

Классический ж/д-пунктир прекрасен и считывается без всякой легенды, но, к сожалению, от него слегка рябит в глазах и выглядит он слишком важным (схема у нас все-таки метрошная, а электрички — это не метро, мы не в Стокгольме).

В итоге останавливаемся на деликатных розовых полосочках, которые видны, но в глаза не бросаются. И дружат со скоростными автобусами — 901, 902, 903 и 904.

Добавляем сетку, список станций и легенду.

Проверяем расстояние от текста до меток на всех ветках.

Файл отправляется на конкурс Дептранса, Егор отправляется на самолет.

Эволюция схемы в 95 картинках:


Одной из причин создания второй версии схемы было желание вставить в нее строящийся второй пересадочный контур и продолжить желтую ветку на запад. Теперь можно их удалить — получится в два раза чище:

У 903 автобуса конечная — Холмогорская улица, а не Мытищи, а у 902 — Ново-Переделкино, а не Солнцево:

Выравниваем ветки на севере, съехавшие из-за строящихся веток:

А теперь — на юге:

Все, можно готовить анонс и рисовать для него последнюю картинку.

Может, на этой картинке должны стоять маршруты автобусов между периферийными станциями?

Или какая-нибудь контурная фигня на айфоне?

Или там должна стоять схема с кольцевыми дорогами и кросс-платформенными пересадками?

Или нет, не просто кольцевые дороги, а еще и главные шоссе и достопримечательности. И пусть это будет не последняя картинка, а первая.

И еще можно будет в нее потом добавить лосика.

Так, а что если выправить загнувшуюся фиолетовую ветку?

Да, конечно, так и надо сделать.

Можно открывать анонс.



Что такое схема? - learn.sparkfun.com

Обзор

Добро пожаловать на трассу 101! Одна из первых вещей, с которыми вы столкнетесь при изучении электроники, - это концепция схемы . Это руководство объяснит, что такое схема, а также более подробно обсудит напряжение .

Простая схема, состоящая из кнопки, светодиода и резистора, построена двумя разными способами.

Рекомендуемая литература

Есть несколько концепций, которые вы должны хорошо понимать, чтобы извлечь максимальную пользу из этого руководства.

Основы схемотехники

Напряжение и принцип работы

Вы, наверное, слышали, что аккумулятор или розетка имеет определенное число вольт . Это измерение электрического потенциала , создаваемого аккумулятором или электросетью, подключенной к розетке.

Все эти вольт ждут, пока вы ими воспользуетесь, но есть одна загвоздка: , чтобы электричество выполняло любую работу, оно должно перемещаться .Это что-то вроде надутого воздушного шара; если вы его отщипните, там будет воздух, и может что-то сделать, если его отпустить, но на самом деле он ничего не сделает, пока вы не выпустите его.

В отличие от воздуха, выходящего из воздушного шара, электричество может проходить только через материалы, которые могут проводить электричество, например, медный провод. Если вы подключите провод к батарее или настенной розетке ( ПРЕДУПРЕЖДЕНИЕ: напряжение в розетке опасно, не делайте этого!), Вы дадите электричеству дорогу, по которой можно будет двигаться.Но если провод ни к чему не подключен, электричеству некуда будет уходить, и оно все равно не будет двигаться.

Что заставляет электричество двигаться? Электричество хочет перетекать с более высокого напряжения на более низкое. Это в точности похоже на воздушный шар: сжатый воздух в воздушном шаре хочет вытечь изнутри шара (более высокое давление) наружу (более низкое давление). Если вы создадите проводящий путь между более высоким и более низким напряжением, по нему будет течь электричество.И если вы вставите что-то полезное в этот путь, например, светодиод, протекающее электричество будет делать некоторую работу за вас, например, зажигать этот светодиод. Ура!

Итак, где вы найдете более высокое и более низкое напряжение? Вот кое-что действительно полезное: у каждого источника электричества есть две стороны . Вы можете увидеть это на батареях, у которых с обоих концов есть металлические заглушки, или на розетке с двумя (или более) отверстиями. В батареях и других источниках напряжения постоянного тока эти стороны (часто называемые клеммами ) обозначаются положительным (или «+») и отрицательным (или «-»).

Почему у каждого источника электричества есть две стороны? Это восходит к идее «потенциала» и того, что вам нужна разность напряжений, чтобы заставить электричество течь. Это звучит глупо, но у вас не может быть разницы без двух разных вещей. В любом источнике питания положительная сторона будет иметь более высокое напряжение, чем отрицательная сторона, что нам и нужно. Фактически, когда мы измеряем напряжение, мы обычно говорим, что отрицательная сторона составляет 0 вольт, а положительная сторона - сколько вольт может обеспечить источник питания.

Электрические источники подобны насосам. У насосов всегда есть две стороны: выход, который что-то выдувает, и вход, который что-то всасывает. Батареи, генераторы и солнечные панели работают одинаково. Что-то внутри них усердно работает, перемещая электричество к розетке (положительная сторона), но все это электричество, покидающее устройство, создает пустоту, а это означает, что отрицательная сторона должна втянуть электричество, чтобы заменить его. *

Что мы узнали на данный момент?

  • Напряжение потенциально, но электричество должно течь, чтобы делать что-нибудь полезное.
  • Электричеству нужен путь, через который должен проходить электрический провод, например медный провод.
  • Электричество перетекает с более высокого напряжения на более низкое.
  • Источники напряжения постоянного тока
  • всегда имеют две стороны, называемые положительной и отрицательной, причем положительная сторона имеет более высокое напряжение, чем отрицательная сторона.

Простейшая схема

Наконец-то мы готовы заставить электричество работать на нас! Если мы подключим положительную сторону источника напряжения через что-то, что выполняет некоторую работу, например, светоизлучающий диод (LED), и обратно к отрицательной стороне источника напряжения; электричество, или текущий , будет течь.И мы можем поместить на путь вещи, которые делают полезные вещи, когда через них течет ток, например, светодиоды, которые загораются.

Этот круговой путь, который всегда требуется, чтобы заставить электричество течь и делать что-то полезное, называется цепью. Схема - это путь, который начинается и заканчивается в одном и том же месте, что мы и делаем.

Щелкните эту ссылку, чтобы увидеть симуляцию тока, протекающего по простой цепи. Эта симуляция требует запуска Java.


* Бенджамин Франклин первоначально писал, что электричество течет с положительной стороны источника напряжения на отрицательную.Однако Франклин не знал, что электроны на самом деле текут в противоположном направлении - на атомном уровне они выходят из отрицательной стороны и возвращаются обратно в положительную сторону. Поскольку инженеры следовали примеру Франклина на протяжении сотен лет, прежде чем правда была открыта, мы до сих пор используем «неправильное» соглашение. С практической точки зрения эта деталь не имеет значения, и пока все используют одно и то же соглашение, мы все можем создавать схемы, которые работают нормально.

Короткие и открытые цепи

Что такое «нагрузка»?

Причина, по которой мы хотим создавать электрические цепи, состоит в том, чтобы заставить электричество делать полезные вещи для нас.Мы делаем это, вставляя в цепь элементы, которые используют текущий поток, чтобы загораться, шуметь, запускать программы и т. Д.

Эти вещи называются нагрузками , потому что они «нагружают» источник питания, точно так же, как вы «загружаетесь», когда что-то несете. Точно так же, как вы можете быть загружены слишком большим весом, вы можете слишком сильно перегрузить источник питания, что замедлит ток. Но, в отличие от вас, также возможно слишком мало нагружать цепь - это может позволить слишком большому току протекать (представьте, что бежите слишком быстро, если вы не несете никакого веса), что может сжечь ваши детали или даже источник питания.

Из следующего руководства вы узнаете все о напряжении, токе и нагрузках: «Напряжение, ток, сопротивление и закон Ома». А пока давайте узнаем о двух особых случаях цепи: короткое замыкание и разомкнутая цепь . Знание об этом очень поможет при устранении неполадок в собственных цепях.

Короткое замыкание

НЕ ДЕЛАЙТЕ ЭТОГО, но если вы подключите провод напрямую от положительной к отрицательной стороне источника питания, вы создадите так называемое короткое замыкание .Это очень плохая идея.

Кажется, это лучшая схема, так почему это плохая идея? Помните, что электрический ток хочет течь от более высокого напряжения к более низкому напряжению, и если вы добавите нагрузку в ток, вы можете сделать что-то полезное, например, зажечь светодиод.

Если у вас ДЕЙСТВИТЕЛЬНО есть ток нагрузки, ток, протекающий через вашу цепь, будет ограничен тем, что потребляет ваше устройство, что обычно очень мало. Однако, если вы НЕ вставляете ничего, чтобы ограничить текущий поток, не будет ничего, что могло бы замедлить ток, и он будет пытаться быть бесконечным!

Ваш блок питания не может обеспечить бесконечный ток, но он будет обеспечивать его столько, сколько может, а это может быть много.Это может привести к возгоранию вашего провода, повреждению источника питания, разрядке аккумулятора или другим интересным вещам. В большинстве случаев в ваш источник питания будет встроен какой-то предохранительный механизм для ограничения максимального тока в случае короткого замыкания, но не всегда. По этой причине во всех домах и зданиях есть автоматические выключатели, чтобы предотвратить возникновение пожара в случае короткого замыкания в проводке.

Тесно связанная проблема - случайно пропустить слишком большой ток через часть вашей цепи, что приведет к ее сгоранию.Это не совсем короткое замыкание, но оно близко. Чаще всего это происходит, когда вы используете неправильное значение резистора , которое пропускает слишком большой ток через другой компонент, такой как светодиод.

Итог: если вы заметили, что вещи внезапно нагреваются или какая-то деталь внезапно перегорает, немедленно отключайте питание и ищите возможные короткие замыкания.

Обрыв цепи

Противоположностью короткому замыканию является разрыв цепи .Это схема, в которой петля не полностью подключена (и, следовательно, это вообще не схема).

В отличие от описанного выше короткого замыкания, эта «цепь» ничего не повредит, но и ваша цепь не будет работать. Если вы новичок в схемах, часто бывает трудно найти место разрыва, особенно если вы используете макетные платы, где все проводники скрыты.

Если ваша цепь не работает, наиболее вероятная причина - обрыв цепи. Обычно это происходит из-за обрыва соединения или ослабленного провода.(Короткое замыкание может украсть всю мощность у остальной части вашей схемы, поэтому обязательно ищите и их.)

СОВЕТ: , если вы не можете легко найти, где ваша цепь разомкнута, мультиметр может быть очень полезным инструментом. Если вы настроите его для измерения вольт, вы можете использовать его для проверки напряжения в различных точках вашей цепи с питанием и, в конечном итоге, найти точку, в которой напряжение не проходит.

Ресурсы и дальнейшее развитие

Вы только что узнали, в самом простом виде, что такое схема.По мере обучения вы столкнетесь с более сложными схемами, имеющими несколько контуров и намного больше электронных компонентов. Но ВСЕ схемы, какими бы сложными они ни были, будут следовать тем же правилам, что и базовая схема с одним контуром, о которой вы только что узнали.

Ваше путешествие в мир электроники только начинается. Предлагаем следующие темы для изучения:

  • Макетные платы - это полезные инструменты, которые позволяют быстро создавать временные схемы с помощью перемычек.Мы используем их постоянно. Вы также можете освоить работу с проводом, чтобы помочь вам построить свои схемы.
  • Мультиметр позволяет измерять напряжение, ток и сопротивление и является большим подспорьем при поиске и устранении неисправностей в цепях.
  • Цепи бывают разных размеров, форм и конфигураций. Ознакомьтесь с руководством по последовательным и параллельным схемам, чтобы увидеть, как схемы переходят на новый уровень.

Вот несколько руководств по наиболее распространенным компонентам, которые вы будете использовать при построении схем.

  • Отличный способ узнать о схемах - это начать их делать. Наше руководство по светодиодам покажет, как зажечь один или несколько светодиодов.
  • Резисторы
  • - один из наиболее широко используемых компонентов в схемах.
  • Конденсаторы также встречаются в большинстве схем. Как и диоды.

Как сделать схему

Вы когда-нибудь задумывались о разнице между батареями и электричеством от розеток или о том, как сделать электрическую цепь?

На этой странице вы узнаете об электронах и электрическом токе, батареях, схемах и многом другом!

Проекты схемотехники

Построить схему

Как сделать схему? Цепь - это путь, по которому течет электричество.Он начинается с источника питания, такого как батарея, и течет по проводу к лампочке или другому объекту и обратно к другой стороне источника питания. Вы можете построить свою собственную схему и посмотреть, как она работает с этим проектом!

Что вам понадобится:

* Чтобы использовать фольгу вместо проволоки, отрежьте 2 полоски длиной 6 дюймов и шириной 3 дюйма каждая. Плотно согните каждую по длинному краю, чтобы получилась тонкая полоска.)
** Чтобы использовать скрепки вместо держателей батарей, прикрепите один конец скрепки к каждому концу батареи тонкими полосками ленты.Затем подсоедините провода к скрепкам.

Часть 1 - Создание цепи:

  1. Подсоедините один конец каждого провода к винтам на основании патрона лампы. (Если вы используете фольгу, попросите взрослого помочь вам открутить каждый винт, чтобы под ним поместилась полоска фольги.)
  2. Подключите свободный конец одного провода к отрицательному («-») концу одной батареи. Что-нибудь случилось?
  3. Присоедините свободный конец другого провода к положительному («+») концу батареи.Что теперь происходит?

Часть 2 - Суммирующая мощность

  1. Отключите аккумулятор от цепи. Поставьте одну батарею так, чтобы конец со знаком «+» был направлен вверх, затем установите другую батарею рядом с ней так, чтобы плоский конец со знаком «-» был направлен вверх. Обмотайте середину батарей липкой лентой, чтобы удерживать их вместе.
  2. Прикрепите скрепку к батареям так, чтобы она соединяла конец «+» одной батареи с концом «-» другой. Закрепите скрепку узкой лентой (не заклеивайте концы металлических батарей).
  3. Переверните батарейки и приклейте один конец скрепки к каждой батарейке. Теперь вы можете подключить к каждой скрепке по одному проводу. (В нижней части аккумуляторного блока должна быть только одна канцелярская скрепка - не подключайте к ней провод.)
  4. Подсоедините свободные концы проводов к лампочке.

(Примечание: вместо шагов 1-3 вы можете использовать две батареи в держателях батарей и соединить их одним проводом.)

Что случилось:

В первой части вы узнали, как сделать схему с батареей, чтобы зажечь лампочку.

Электроэнергия подается от батарей. Когда они подключены должным образом, они могут «запитать» такие вещи, как фонарик, будильник, радио… даже робота!

Почему не загорелась лампочка, когда вы подключили ее к одному концу аккумулятора с помощью провода?

Электричество от батареи должно проходить через один конец (отрицательный или «-») и обратно через положительный («+») конец, чтобы работать.

То, что вы построили с батареей, проводом и лампочкой на шаге 3, называется разомкнутой цепью .

Чтобы электричество начало течь, нужен замкнутый контур . Электричество вызывается крошечными частицами с отрицательным зарядом, называемыми электронами .

Когда цепь замкнута или замкнута, электроны могут течь от одного конца батареи по всем проводам к другому концу батареи. По пути он будет переносить электроны к подключенным к нему электрическим объектам - например, к лампочке - и заставлять их работать!

Во второй части вы добавили еще одну батарею.Это должно было заставить лампочку гореть ярче, потому что две батареи вместе могут обеспечить больше электричества, чем одна!

Скрепка в нижней части батарейного блока позволяла электричеству течь между батареями, делая поток электронов сильнее.

Вы видите, как работают замкнутые и разомкнутые цепи, чтобы позволить или остановить электричество?

Изолятор или проводник?

Материалы, через которые может проходить электричество, являются проводниками вызова.Материалы, препятствующие протеканию электричества, называются изоляторами.

Вы можете узнать, какие предметы в вашем доме являются проводниками, а какие - изоляторами, используя схему, которую вы создали в последнем проекте, чтобы проверить их!

Что вам понадобится:
  • Цепь с лампочкой и 2 батареями
  • Дополнительная проволока с зажимом типа «крокодил» (или проволока из алюминиевой фольги *)
  • Объекты для испытаний (из металла, стекла, бумаги, дерева и пластика)
  • Рабочий лист (необязательно)
Чем вы занимаетесь:
  1. Отсоедините один из проводов от аккумуляторной батареи.Подключите один конец нового провода к батарее. У вас должно получиться два провода со свободными концами (между лампочкой и аккумулятором).
  2. Произошел разрыв цепи, лампочка не должна загореться. Затем вы протестируете объекты, чтобы увидеть, являются ли они проводниками или изоляторами. Если объект является проводником, лампочка загорится. Это изолятор, он не горит. Для каждого объекта угадайте, думаете ли вы, что каждый объект замкнет цепь и загорится лампочка или нет.
  3. Подсоедините концы свободных проводов к объекту и посмотрите, что произойдет. Вот некоторые предметы, которые вы можете протестировать, - это скрепка, ножницы (попробуйте лезвия и ручки по отдельности), стакан, пластиковую посуду, деревянный кубик, вашу любимую игрушку или что-нибудь еще, о чем вы можете подумать.
Что случилось:

Перед тем, как протестировать каждый объект, угадайте, загорится он лампочкой или нет. Если это так, то объект, к которому вы прикасаетесь проводами, является проводником.

Лампочка загорается, потому что проводник замыкает или замыкает цепь, и электричество может течь от батареи к лампочке и обратно к батарее! Если он не загорается, объект является изолятором и останавливает поток электричества, как это делает разомкнутая цепь.

Когда вы настраивали цепь на шаге 1, это была разомкнутая цепь. Электроны не могли двигаться по кругу, потому что два провода не соприкасались. Электроны были прерваны.

Когда вы помещаете металлический объект между двумя проводами, металл замыкает или замыкает цепь - электроны могут течь через металлический объект и переходить от одного провода к другому! Объекты, замыкающие цепь, заставили лампочку загореться. Эти объекты - проводники. Они проводят электричество.

Большинство других материалов, таких как пластик, дерево и стекло, являются изоляторами. Изолятор в разомкнутой цепи не замыкает цепь, потому что электроны не могут проходить через него! Лампочка не загоралась, когда между проводами вставлялся изолятор.

Если вы используете провода или зажимы из крокодиловой кожи, внимательно посмотрите на них. Внутри они металлические, а снаружи пластик. Металл - хороший проводник. Пластик - хороший изолятор. Пластик, обернутый вокруг провода, помогает электронам течь по металлическому проводу, блокируя их передачу на другой объект за пределами проводов.

Урок схемотехники

Что такое электричество?

Все вокруг вас состоит из крошечных частиц, называемых атомами.

Атомы содержат внутри еще более мелкие частицы, называемые электронами . Электроны всегда имеют отрицательный заряд.

Когда электроны движутся, они производят электричество!

Электричество - это движение или поток электронов от одного атома к другому. Не волнуйтесь, если это покажется сложным. Это!

Электронов называют субатомными частицами , что означает, что то, что они делают, происходит внутри атомов, так что это довольно сложная наука.

Вы помните, как узнали о магнитах? У них есть положительный и отрицательный заряды, а противоположные заряды (+ »и« - ») притягиваются друг к другу. То же самое и с электрическими зарядами. Отрицательно заряженные электроны пытаются сопоставить положительные заряды в других объектах.

Как электроны перемещаются от одного атома к другому?

Они плавают вокруг своих атомов до тех пор, пока не получат достаточно электроэнергии, чтобы их толкнуть.

Энергия, которая заставляет их двигаться, исходит от источника питания, такого как аккумулятор или электрическая розетка.

Это работает примерно так же, как вода течет по шлангу, когда вы открываете кран.

Когда вы включаете выключатель или подключаете прибор, электроны проходят по проводам и выходят в виде электричества, которое мы иногда называем «мощностью».

Вы, наверное, знаете, что в некоторых электронных устройствах используются батарейки, а некоторые могут быть подключены к розетке.

В чем разница? Электричество, которое исходит из розеток в вашем доме, очень мощное - в нем много электронов, протекающих с большим количеством энергии.

Он называется переменным током , или переменным током. Электроны в переменном токе очень быстро перемещаются вперед и назад (со скоростью света) по проводам на сотни миль от больших электростанций к розеткам, встроенным в стены домов и зданий.

Поскольку переменный ток очень силен, он также может быть очень опасным. Никогда не прикасайтесь к линии электропередачи, не вставляйте пальцы или предметы, кроме электрических вилок, в розетки. Вы можете получить сильный удар, который может нанести вам вред из-за сильных токов, протекающих по проводам и розеткам.

Батареи вырабатывают гораздо менее мощный вид электричества, называемый постоянным током или DC. В постоянном токе электроны движутся только в одном направлении - от отрицательного (-) конца или вывода к положительному (+) выводу, через батарею и обратно обратно через «-» конец.

Ток, протекающий по проводам, подключенным к батареям, намного безопаснее переменного тока.

Он также очень полезен для питания небольших предметов, таких как сотовые телефоны, радио, часы, игрушки и многое другое.

Все о схемах

Цепь - это путь, по которому течет электричество. Если путь нарушен, это называется разомкнутой цепью, и электроны не могут двигаться полностью. Если цепь замкнута, это замкнутая цепь, и электроны могут перемещаться от одного конца источника питания (например, батареи) через провод к другому концу источника питания. В цепи батареи положительный и отрицательный концы батареи должны быть соединены через цепь, чтобы обмениваться электронами с лампочкой или другим объектом, подключенным к цепи.

Переключатель - это то, что позволяет размыкать и замыкать цепь. Если вы включаете выключатель света в своем доме, вы замыкаете или замыкаете цепь. Внутри стены выключатель замыкает цепь, и электричество течет к свету. Когда вы выключаете свет, цепь отключается (теперь это разомкнутая цепь ), электроны перестают течь, и свет гаснет.

Отрицательно заряженные электроны, о которых мы говорили выше, не могут «прыгать», чтобы соответствовать положительным зарядам - ​​они могут перемещаться только от одного атома к другому.Вот почему цепи должны быть замкнутыми, чтобы работать.

Жизнь без электричества

Отключалось ли когда-нибудь электричество там, где вы живете?

Иногда сильный ветер и шторм могут повредить линии электропередач (высокие столбы, удерживающие толстые провода, по которым течет электричество), нарушая поток электричества.

Когда это происходит, электроны перестают течь и не могут добраться туда, куда бы они ни направлялись. Когда в ваш дом не подается электричество, ни свет, ни розетки не будут работать!

Если на улице темно, то и внутри будет темно.

Компьютеры, телефоны, микроволновые печи, радио и другие устройства, которые необходимо подключить для работы, перестанут работать.

Если вы раньше теряли власть, можете ли вы описать, как это было?

Вы делали что-нибудь, что было прервано?

Вам приходилось использовать свечи, чтобы видеть?

Если вы никогда раньше не сталкивались с перебоями в подаче электроэнергии, постарайтесь думать обо всех повседневных делах, требующих электричества.

Как бы изменился ваш день, если бы у вас не было электричества? Есть ли вещи, которые вы могли бы использовать, работающие от батареек?

  • Прочтите этот урок естествознания, чтобы узнать больше об энергии и различных видах электричества.

Научные слова

Электроны - крошечные частицы внутри атомов, которые всегда имеют отрицательный заряд. Именно они вызывают электричество.

Текущий - электроны текут, чтобы произвести электричество.

Обрыв цепи - прерванный путь, по которому электроны не могут течь.

Замкнутая цепь - непрерывный путь, по которому электроны могут течь от источника питания обратно к другому концу источника питания.

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает выявлять первопричины и устранять электрические неисправности. Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление.Напряжение (иногда называемое электродвижущей силой) - это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи. Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током.Электрический ток - это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток - это количество воды, протекающей через шланг. Напряжение - это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер - это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока.Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом. Один вольт - это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь - это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление.Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов). Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие каждый в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь. Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка - это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства.Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь - это «путь» или петля, которая позволяет электричеству (току) течь.Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример - фары). После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет разрыв, у вас будет разрыв электрического потока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные.Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок. Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4. Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.). Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык друг за другом, чтобы образовалась простая петля для протекания тока через цепь.Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю. Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни - хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути прохождения тока.На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым. Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В приведенной ниже параллельной цепи два или более сопротивления (R1, R2 и т. Д.) соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной стороне.

Последовательные параллельные схемы

Последовательно-параллельная схема имеет некоторые компоненты, включенные последовательно, а другие - параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи.Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели - хороший пример соединения резисторов и ламп в последовательно-параллельную цепь. В этом примере, регулируя реостат, вы можете увеличивать или уменьшать яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием.Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A - это наиболее распространенный тип устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь.Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току. Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты.Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя. Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так.Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току. Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя, даже если неисправности нет. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM. Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и плавкие элементы.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, встроенные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую маркировку для каждого номинального тока. (Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка. Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым.Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки - это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току. Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки - специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг.Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки плавкими вставками или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific. Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель.Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или привинчены, вставной тип является наиболее популярным.

Конструкция картриджа с плавким предохранителем

Конструкция элемента предохранителя довольно проста. Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже.Плавкая часть плавкого предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя.Существует три типа автоматических выключателей: тип с ручным сбросом - механический, тип с автоматическим сбросом - механический и твердотельный с автоматическим сбросом - PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними.Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно.Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы установить биметаллическую пластину, как показано.

Тип с автоматическим сбросом - механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями.Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться от избыточного тока в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автосбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока. Автоматические выключатели с автоматическим возвратом в исходное положение считаются «циклическими», потому что они циклически размыкаются и замыкаются до тех пор, пока ток не вернется к нормальному уровню.

Тип твердотельного накопителя с автоматическим сбросом - PTC

Полимерное устройство с положительным температурным коэффициентом (PTC) известно как самовосстанавливающийся предохранитель.

Полимерный PTC - это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры. PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Строительство и эксплуатация полимерных материалов PTC

В нормальном состоянии материал полимерного ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе.Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое. Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока в цепи остается поданное напряжение. Он сбрасывается только при снятии напряжения и охлаждении полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи. Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора - это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи.Устройство управления или переключатель позволяет включать или выключать электричество в цепи. Выключатель - это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный одинарный бросок (SPST)
  • Однополюсный, двойной бросок (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Время задержки
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель - наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели

описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, однополюсные), SPDT (однополюсные, двухходовые) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя - переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двусторонний (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания - хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, за исключением случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты замкнутыми, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть - опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предельной температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Задержка по времени

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток протекает через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени - это обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигалки. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле - это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, а нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты», пока реле не сработает.

Работа реле

Ток протекает через катушку управления, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды - тянущие типа

Соленоид - это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фары бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, электродвигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как разработан двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление увеличивается, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично ... да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким при низком сопротивлении или ток будет низким при высоком сопротивлении. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет большим. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления - насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Три правила работы схемы | ОРЕЛ

Приветствую новых инженеров. Это прекрасное место для начала, с простой схемы, которая является строительным блоком для каждого элемента электроники в нашем мире.Когда вы полностью поймете, вы будете готовы начать собственное путешествие по их проектированию и устранению неисправностей.

Строительные блоки схемы

Перед тем, как погрузиться в полную схему, разумно сначала поразмыслить над отдельными частями, составляющими единое целое, такими как поток, нагрузка и проводимость. Мы разбили эти принципы на три основных правила:

  • Правило 1 - Электричество всегда будет течь от более высокого напряжения к более низкому.
  • Правило 2 - Электричество всегда требует работы.
  • Правило 3 - Электричеству всегда нужен путь.

Правило 1. Все дело в потоке

Каждой электронной схеме нужен источник питания, будь то батарея AA, которую можно вставить в контроллер Xbox One, или что-то более мощное, например настенная розетка, которая может питать большое количество устройств. Электричество, исходящее от этих источников, измеряется напряжением, вольтами или просто В.

Да, мы говорим о таком напряжении! Когда он будет достаточно высоким, это может нанести серьезный ущерб.

Независимо от того, откуда течет эта энергия, ее цель всегда одна - переходить из одной области в другую и в процессе выполнять некоторую работу, например, заряжать компьютер или включать свет.

Фундаментальным компонентом этого потока энергии является то, что электричество всегда будет течь от более высокого напряжения к более низкому напряжению.Всегда. Это называется потенциалом . Можно сказать, что это потенциальное электричество должно перемещаться из одного района в другой.

Поток высокого (положительного) напряжения в низкое (отрицательное) напряжение.

Как это соотносится с нашим реальным миром? Возьмем для примера простую батарею:

  • Батарея имеет две стороны, отрицательная сторона - это низкое напряжение, измеряемое при 0 В, положительная сторона - это высокое напряжение, измеряемое при 1,5 В.
  • Энергия всегда будет вытекать из положительной стороны батареи, чтобы перейти к отрицательной стороне, чтобы найти баланс.
  • Для этого он должен течь по чему-то, обычно по медному проводу, и в процессе выполнять некоторую работу, например включать свет или вращать двигатель.

В конце концов, все электричество хочет найти равновесие на земле (0 В). Единственный способ сделать это в батарее - сместить положительный полюс на отрицательный. Мы извлекаем выгоду из этого естественного стремления к энергии, размещая некоторые объекты так, чтобы они проходили через них, что позволяет нам включать свет, силовые двигатели и включать и выключать транзисторы в компьютере.

Все это составляет Правило 1 - Электричество всегда будет хотеть течь от более высокого напряжения к более низкому напряжению. Запомните это; это никогда не изменится.

Правило 2 - Начало работы

Итак, у вас может быть электричество, которое хочет перетекать с более высокого напряжения на более низкое, но какой в ​​этом смысл? Единственная причина заставить электричество течь - это немного поработать. Этот процесс, когда электричество выполняет работу в цепи, называется нагрузкой .Без нагрузки или работы с электричеством нет смысла иметь электрическую цепь. Нагрузка может быть чем угодно, например:

  • Spinning Двигатель, вращающий пропеллеры дрона.
  • Включение светодиода на кабеле для зарядки, чтобы указать, что ваш ноутбук подключен к сети.
  • Подключение гарнитуры по беспроводной сети к ноутбуку для прослушивания музыки.

В это время года электрическая нагрузка бывает разных форм, одна из которых питает эти светодиоды.(Источник изображения)

Обратите внимание, что все эти нагрузки являются действиями. Электричество всегда заставляет происходить что-то физическое, даже если мы не можем увидеть это собственными глазами. Но почему это называется нагрузкой? Вы можете думать об этом как об обузе для всего, что питает вашу схему. Для вращения двигателя требуется электричество, а это забирает у вашего источника питания энергию, которая у него когда-то была.

Помните Правило 2 - У электричества всегда есть работа, которую нужно выполнить . Без работы схема бесполезна.

Правило 3 - Следование по пути

Третье и последнее правило - вот что делает возможными первые два правила: электричеству нужен путь для передвижения. Этот путь действует как своего рода посредник. Допустим, вы подключаете зарядное устройство ноутбука к розетке, а затем к ноутбуку. Разумеется, он заряжается, но без этого шнура между компьютером и розеткой ничего бы не произошло.

Это потому, что электричеству нужен путь, по которому можно добраться из одного пункта назначения в другой.И путь всегда один и тот же:

  • Электроэнергия - Электричество всегда исходит от источника, такого как батарея или розетка.
  • Journey - Затем он путешествует по тропе, выполняя свою работу по пути.
  • Назначение - Затем он прибывает в конечный пункт назначения, находя покой в ​​точке с самым низким напряжением.

Этот путь, по которому проходит электричество, состоит из так называемого проводящего материала, который состоит из обычных металлов, таких как медь, серебро, золото или алюминий.Электроэнергетика любит ездить на этой штуке. Электричество также очень избирательно, и оно не мешает путешествовать по дорожкам, сделанным из индуктивных материалов. Сюда входят такие вещи, как резина, стекло и даже воздух.

Видите все эти медные провода? Электричество любит путешествовать по этому проводящему материалу.

Запомните Правило 3 - Электричеству всегда нужен путь по . Без пути он никуда не денется.

Собираем все вместе - полная схема

Давайте теперь объединим все эти правила в полное определение схемы.

Цепь - это просто путь, по которому может течь электричество.

И с помощью этой простой концепции мужчины и женщины построили безумно сложные цепи, которые отправили человечество в космос и в глубины наших глубочайших океанов. А пока постараемся упростить задачу и составим нашу первую схему. Вот что вам понадобится, если вы хотите продолжить:

  • (1) аккумулятор 9 В
  • (1) Резистор 470 Ом
  • (1) Стандартный светодиод
  • (3) Измерительные провода с зажимами типа «крокодил»

Шаг 1 - Добавление источника питания

Возвращаясь к нашему правилу трех, первое гласит, что электричество всегда будет течь от более высокого напряжения к более низкому.Итак, это означает, что нам нужен какой-то источник питания в этой цепи, мы добавим нашу батарею на 9 В.

Начало нашей схемы начинается с батареи 9В.

Правило 1 теперь выполнено. У нас есть какой-то источник питания, у которого высокое напряжение на положительном конце (+) и 0 В на отрицательном конце (-). Но все это электричество будет потрачено зря, если мы не будем с ним что-то делать, так что давайте дадим ему немного работы (нагрузку).

Шаг 2. Добавление работы

Теперь мы хотим, чтобы электричество поработало за нас, прежде чем оно успокоится, поэтому давайте включим простой светодиодный индикатор.Скорее всего, вы видели их повсюду: на своей рождественской елке, в фонариках, лампочках и т. Д. Итак, мы возьмем этот светодиод и поместим его с другой стороны нашей батареи.

Теперь о светодиодах следует упомянуть то, что они очень чувствительны и не могут пропускать слишком много энергии, поэтому нам нужно добавить так называемый резистор. Мы не будем сейчас вдаваться в подробности, но просто знаем, что резистор будет действовать, как сказано в его названии, - сопротивляться потоку электричества, достаточному для того, чтобы наш светодиод справился с ним. Разместим резистор слева от светодиода.

Добавляем немного работы в нашу схему с помощью светодиода и резистора.

Отлично, Правило 2 выполнено, и у нашего электричества есть над чем поработать. Но у него нет возможности завершить свою работу без пути, давайте добавим это сейчас.

Шаг 3 - Предоставление пути

Эта деталь проста, нам просто нужно соединить наши зажимы типа «крокодил» между всеми компонентами нашей схемы. Если вы все сделаете правильно, то ваш светодиод будет ярко светить! Помните, что при подключении проводов к батарее всегда подключайте сначала положительный конец, а затем отрицательный.Посмотрите на картинку ниже, чтобы увидеть, как все это должно быть связано вместе.

Теперь у нашего электричества есть проход с добавленными зажимами из крокодиловой кожи

Типы цепей

Теперь, прежде чем вы убежите в дикую природу и создадите свои собственные схемы, вам нужно знать о двух способах описания схемы, один из которых может испортить жизнь вашей схемы, они включают:

Замкнутый или открытый контур

Цепь считается замкнутой цепью , когда есть полный путь, по которому может проходить электричество.Это также называется полной схемой. Теперь, если ваша цепь не работает должным образом, это означает, что это обрыв цепи . Это может быть вызвано несколькими причинами, включая неплотное соединение или обрыв провода.

Вот простой и наглядный способ понять разницу между замкнутой и разомкнутой цепями. Посмотрите на схему ниже и обратите внимание, что это та же самая цепь, которую мы создали выше, только теперь в ней есть переключатель.

Вот схема цепи, которую мы сделали выше.Обратите внимание на добавление переключателя.

Сейчас переключатель поднят, и вы увидите, что электричество не имеет плавного пути, так как переключатель разрывает соединение. Это разомкнутая цепь. Но что произойдет, если щелкнуть выключателем?

Теперь наш выключатель срабатывает, замыкая цепь, позволяя электричеству течь к нашему светодиоду!

Ага! Теперь вы только что проложили полный путь для вашего электричества, и ваш светодиод загорится! Это замкнутая схема.

Короткое замыкание

Затем короткое замыкание . Если вы не даете своей схеме никакой работы, но все же обеспечиваете некоторую мощность, приготовьтесь к некоторым проблемам. Посмотрите на нашу схему ниже, мы вынули светодиод, резистор и переключатель, оставив только медный провод и батарею.

Вот цепь, которая скоро превратится в короткое замыкание! Без какой-либо работы эта батарея скоро сгорит.

Если мы соединим эту штуку вместе в ее физической форме, тогда аккумулятор и провод сильно нагреются, и в конечном итоге батарея разрядится.Почему это происходит? Когда вы даете электричеству некоторую работу в цепи, такую ​​как зажигание светодиода или вращение двигателя, это ограничивает количество электричества, которое будет проходить через вашу цепь.

Но в ту минуту, когда вы убираете из своей цепи любую работу, электричество сходит с ума и бежит по своему пути на полной скорости, и ничто его не сдерживает. Если вы позволите этому случиться в течение длительного периода времени, то обнаружите, что у вас поврежден блок питания, разряженная батарея или, может быть, что-то еще хуже, например, пожар!

Ух ты! Не пытайтесь делать это дома.Вот здоровенная батарея фонаря на 12 В, замкнутая во имя науки. (Источник изображения)

Итак, если вы когда-либо работали с цепью, и ваш провод или батарея сильно нагреваются, тогда немедленно выключите все, и ищите любые короткие замыкания.

Ты теперь опасен

Итак, молодой мастер электроники, теперь у вас есть вся информация, необходимая для управления скромной схемой. Понимая, как работает схема, вы скоро сможете выполнять проекты любых форм и размеров.Но прежде чем начать собственное путешествие, запомните Руководящее правило троек:

.

  • Правило 1 - Электричество всегда будет течь от более высокого напряжения к более низкому.
  • Правило 2 - Электричество всегда требует работы.
  • Правило 3 - Электричество всегда требует дороги.

И если ваша схема когда-нибудь станет очень горячей, выключите ее! У вас короткое замыкание.

Готовы построить свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно.

Перегрузка цепи - все, что вам нужно знать

Случалось ли это когда-нибудь с вами? Вы подключили слишком много устройств к розетке и все в порядке. Пока внезапно не отключится электричество. Если вы столкнулись с такой ситуацией, то, скорее всего, вы создали перегрузку цепи. Что это такое и чем вызвано? Давай узнаем об этом больше.

Основы электрической цепи

Цепи

состоят из различных компонентов, таких как проводка, прерыватель или предохранитель, и подключенных к ним устройств, таких как осветительные приборы и приборы.Электроэнергия, которую использует каждая цепь, увеличивает общую нагрузку цепи.

Когда номинальная нагрузка на проводку цепи превышает номинальную, автоматический выключатель срабатывает и отключает питание всей цепи.

Что такое перегрузка цепи?

Все электрические цепи рассчитаны на подачу ограниченного количества электроэнергии. Когда вы потребляете больше электричества, чем может выдержать цепь, произойдет перегрузка цепи. Срабатывания автоматического выключателя помогают «разорвать» цепь и, следовательно, протекать ток.Если бы не было выключателей, перегрузка могла бы вызвать перегрев цепи. Это могло либо расплавить изоляцию провода, либо даже привести к сильному пожару.

Различные цепи имеют разную номинальную нагрузку, поэтому одни цепи могут обеспечивать больше электроэнергии, чем другие. Домашние электрические системы разработаны для типичного домашнего использования, но мы можем совершить ошибку, подключив слишком много устройств к одной цепи. Тем не менее, если вы хорошо разбираетесь в схеме расположения электрических цепей в доме, вы можете легко предотвратить перегрузки.

Каковы признаки перегрузки цепи

Различные цепи имеют разную номинальную нагрузку. Это означает, что они могут быть перегружены в разных случаях. Наиболее очевидным признаком перегрузки цепи является отключение цепи и отключение всего питания.

Другие знаки включают:

  1. Затемнение света
  2. Горящий запах от выключателей или розеток
  3. Розетки теплые на ощупь
  4. Приборы не получают достаточной мощности
  5. Гудящие розетки или выключатели

Вы должны вызвать электрика, если эти проблемы не исчезнут даже после принятия мер по предотвращению перегрузки цепи.

Как отобразить перегрузку цепи

Может показаться, что из автоматического выключателя выходит много проводов и кабелей. Они могут показаться сложными для расшифровки, но Национальный электротехнический кодекс вводит схемную логику для упрощения системы.

Цепи на главной панели можно условно разделить на два типа:

  1. Выделенные цепи : К ним относятся схемы, которые обслуживают один крупнотоннажный прибор, такой как холодильник, микроволновая печь или печь.Их также можно использовать для мелкой кухонной техники и ванных комнат.
  2. Цепи общего назначения : Они обслуживают несколько розеток, таких как освещение, и большинство розеток в вашем доме. Вы можете использовать эти цепи, когда вам нужна дополнительная мощность или если вы хотите добавить еще одну розетку.

Расчет нагрузки цепи

Чтобы понять, сколько устройств вы можете подключить, вам нужно сначала определить количество энергии, которое может выдержать цепь вашей панели. Вы можете рассчитать мощность, которую может выдержать схема, умножив номинальную силу тока на вольты.Это даст вам общую мощность.

Например, максимально допустимая мощность 10-амперной цепи при 120 В составляет 1200 Вт. Для 15-амперной схемы при 120 вольт максимально допустимая мощность составит 1800 ватт.
В идеале вы не должны превышать 80% максимально допустимой мощности. Возможно, что схема может выдержать более 80% своей номинальной мощности, но она может отключиться, как только нагрузка превысит 80% ее номинальной мощности. Например, рекомендуемая мощность 10-амперной цепи при 120 В будет 960 Вт, что составляет 80% от 1200 Вт.

3 Общие решения при перегрузке цепи

  1. Модернизируйте свою электрическую систему и электрические кабели
  2. Не использовать сразу все электроприборы
  3. Время от времени используйте удлинитель

Если вы столкнулись с постоянной перегрузкой цепи или коротким замыканием, несмотря на принятие всех мер, немедленно вызовите электрика.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет.Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. Он хранит обширный инвентарь электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования.Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • Оценка 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 8A

        • Оценка 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 6A

        • класс 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (безымянные версии)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием - дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Что вызывает короткое замыкание?

Термин «короткое замыкание» часто используется несколько неправильно для обозначения любой проблемы с проводкой в ​​электрической цепи.Истинное короткое замыкание происходит, когда провода электрической цепи или соединения проводов обнажены или повреждены; они должны быть диагностированы и отремонтированы как можно скорее.

Что такое короткое замыкание?

Короткое замыкание относится к особому состоянию, при котором электричество выходит за пределы установленного пути электрической цепи. Короткое замыкание происходит, когда электрический поток завершает свой круговой путь через более короткое расстояние, чем присутствует в установленной проводке.

Определение короткого замыкания

По своей природе электричество стремится к тому, чтобы вернулся на землю , и в правильно функционирующей цепи это означает, что ток течет через установленную электрическую цепь обратно к сервисной панели и далее обратно через электрические провода. Однако, если соединения внутри проводки ослабнут или разорвутся, электрический ток может «протечь». В этом случае электрический ток немедленно стремится вернуться к земле по более короткому пути.Этот путь вполне может проходить через легковоспламеняющиеся материалы или даже через человека, поэтому короткое замыкание представляет опасность пожара или смертельного шока.

Причина, по которой это происходит, заключается в том, что эти другие материалы предлагают путь с меньшим сопротивлением, чем присутствует в медной проводке цепи. Например, в выключателе света с неисправной проводкой или ненадежным соединением проводов, если оголенный медный горячий провод касается металлической распределительной коробки или металлической лицевой панели на переключателе, ток будет прыгать в направлении любого пути с наименьшим сопротивлением, что вполне может проходить через палец, руку и тело того, кто прикасается к переключателю.

2 типа короткого замыкания

В общих чертах, короткое замыкание - это любое состояние, при котором установленная электрическая цепь прерывается из-за дефекта проводки или электрических соединений. На самом деле, есть две ситуации, которые квалифицируются как короткие замыкания, хотя имеют разные названия.

Короткое замыкание

Термин короткое замыкание чаще всего используется электриками для обозначения ситуации, когда горячий провод, по которому проходит постоянный ток, касается нейтрального провода.Когда это происходит, сопротивление мгновенно уменьшается, и большой объем тока протекает неожиданным путем. Когда происходит это классическое короткое замыкание, иногда разлетаются искры, вы можете услышать треск, а иногда возникает дым и пламя.

Заземление

Короткое замыкание на землю - это тип короткого замыкания, которое происходит, когда ток, по которому проходит горячий провод, входит в контакт с какой-либо заземленной частью системы, например, с оголенным медным заземляющим проводом, заземленной металлической настенной коробкой или заземленной частью прибора.Как и в случае классического короткого замыкания, замыкание на землю вызывает мгновенное уменьшение сопротивления, что позволяет большому количеству беспрепятственного тока проходить по неожиданному пути. Здесь меньше шансов на возгорание и возгорание, но больше шансов на шок.

3 причины короткого замыкания

Есть несколько причин короткого замыкания, в том числе три, которые чаще всего виноваты.

Неисправность изоляции провода цепи

Старая или поврежденная изоляция может привести к соприкосновению нейтрали и горячих проводов, что может вызвать короткое замыкание.Неизолированные скобы, проколы гвоздей и винтов, а также старение могут привести к ухудшению состояния оболочки проводов или изоляции и возникновению коротких замыканий. Или, если животные-вредители, такие как мыши, крысы или белки, грызут электрическую проводку, внутренние проводники могут быть оголены, что приведет к короткому замыканию.

Свободные соединения проводов

Крепления могут ослабнуть, иногда позволяя касаться нейтрального и токоведущего провода. Исправить неисправные соединения проводов сложно, и с этим лучше всего справятся те, кто хорошо знаком с электромонтажными работами.

Неисправность электропроводки прибора

Когда устройство подключено к розетке, его проводка фактически становится продолжением цепи, а любые проблемы в проводке устройства становятся проблемами цепи. В старых или сломанных приборах со временем может возникнуть внутреннее короткое замыкание. Короткое замыкание в электроприборах может происходить в вилках, шнурах питания или внутри самого устройства. Лучше попросить техника взглянуть на шорты в более крупных бытовых приборах, таких как духовки и посудомоечные машины.Меньшие приборы, такие как лампы, часто можно перемонтировать самостоятельно.

3 средства защиты от коротких замыканий

Поскольку как классические короткие замыкания, так и замыкания на землю представляют опасность поражения электрическим током и возгорания, ваша система электропроводки имеет различные средства защиты от этих опасностей.

Автоматические выключатели или предохранители

С 1960-х годов практически все новые или обновленные системы электропроводки защищены главной сервисной панелью, на которой размещены отдельные автоматические выключатели, управляющие отдельными цепями в доме.В старых установках проводки аналогичная защита обеспечивается предохранителями. Автоматические выключатели используют внутреннюю систему пружин или сжатого воздуха, чтобы определять изменения в протекании тока и разрывать соединение цепи при возникновении нарушений, таких как внезапное беспрепятственное протекание тока, возникающее во время короткого замыкания.

Прерыватели цепи при замыкании на землю (GFCI)

Начиная с 1971 года, электрические правила стали требовать защиты от замыкания на землю либо с помощью специальных автоматических выключателей GFCI, либо с помощью розеток GFCI.Эти устройства выполняют те же функции, что и автоматические выключатели, в том смысле, что они обнаруживают изменения тока, но они намного более чувствительны, чем автоматические выключатели, и перекрывают ток, когда они обнаруживают очень незначительные колебания тока. GFCI являются наиболее ценными для защиты от ударов, которые могут возникнуть при коротких замыканиях типа замыкания на землю.

Смотреть сейчас: разница между розеткой GFCI и автоматическим выключателем GFCI

Прерыватели цепи от дугового замыкания (AFCI)

Начиная с 1999 года, электрические правила начали требовать нового типа защиты от дуги - искры, которая возникает при скачках электричества между металлическими контактами, что может произойти, когда проводное соединение ослаблено, но не полностью разъединено.Вы можете рассматривать AFCI как устройство, которое предупреждает короткое замыкание и отключает питание до того, как оно достигнет состояния короткого замыкания. В отличие от GFCI, которые предназначены для защиты от ударов, AFCI наиболее полезны для предотвращения пожаров, вызванных дуговым разрядом. Защита AFCI может быть обеспечена как автоматическими выключателями AFCI, так и розетками AFCI.

Работа с короткими замыканиями

Наиболее распространенным признаком короткого замыкания является срабатывание автоматического выключателя и отключение цепи.Однако существуют и другие условия, которые могут вызвать срабатывание автоматического выключателя, например, перегрузка по мощности, поэтому важно определить, почему срабатывает автоматический выключатель. Если автоматический выключатель продолжает срабатывать сразу после сброса, это явный признак того, что есть проблема с проводкой где-то в цепи или в одном из приборов, подключенных к этой цепи.

Следуйте этой процедуре, если вы подозреваете короткое замыкание:

  1. Найдите сработавший автоматический выключатель: На главной сервисной панели найдите отдельный автоматический выключатель с ручкой, которая защелкнулась в положении ВЫКЛ.Некоторые выключатели могут иметь красный или оранжевый индикатор в виде окна, чтобы их было легче обнаружить. Этот сработавший прерыватель идентифицирует цепь, в которой существует проблема. При осмотре цепи оставьте выключатель выключенным.
  2. Проверьте шнуры питания устройства: Проверьте все шнуры питания, подключенные к розеткам в цепи, которая отключилась. Если вы обнаружите что-либо, что повреждено или пластиковая изоляция расплавилась, велика вероятность, что короткое замыкание произошло внутри самого прибора или устройства.Отключите эти приборы от электрической сети. Если вы обнаружите подозрительные устройства, снова включите автоматический выключатель после отключения их от сети. Если цепь теперь остается активной и не отключается снова, значит, проблема в приборе. Однако, если автоматический выключатель сразу же снова сработает, переходите к следующему шагу.
  3. Выключите все выключатели света и приборов в цепи. Затем верните автоматический выключатель в положение ВКЛ.
  4. Включите каждый выключатель света или выключатель прибора по одному.Если вы дойдете до переключателя, который снова вызывает срабатывание автоматического выключателя, вы определили участок электрической проводки, где имеется слабое соединение или проблема с проводкой.
  5. Устранить проблему с электропроводкой. Это шаг, который может потребовать помощи профессионального электрика. Не пытайтесь сделать это, если вы не уверены в своих знаниях и уровне навыков. Этот ремонт будет включать отключение цепи, затем открытие розеток и распределительных коробок для проверки проводов и соединений проводов и выполнения любого необходимого ремонта.

Если вы не можете найти очевидную проблему в одном из подключаемых устройств или в соединениях проводки прибора, проблема, скорее всего, скрыта где-то в настенной проводке. Для решения этой проблемы вам потребуется вызвать квалифицированного электрика. Не включайте цепь повторно до тех пор, пока проблема не будет выявлена ​​и устранена - это создает риск пожара и поражения электрическим током для вас и вашей семьи. Любой запах дыма, следы обугливания или расплавленного пластика - признак серьезной проблемы.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *