Lm350t схема блока питания — Вместе мастерим
Регулируемый источник питания выполнен по простой схеме с применением линейного стабилизатора LM350. Линейный регулятор напряжения LM350 осуществляет регулировку напряжения в диапазоне от 1.2В до 33В при максимальном входном напряжении 35В, и способен обеспечить нагрузку максимальным током 3А .
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.
Схема включения стабилизатора
Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы.
LM3ХХ — схема принципиальная подключения
К сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.
На что обратить внимание
- Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
- Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
- Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
- В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.
После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.
Печатная плата для LM3ХХ
Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.
Плата печатная рисунок для LM350
Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.
Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.
Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).
БП на микросхеме LM350
Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).
Вот на нее ссылка на али ru. Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.
Как обычно, начинаем с самых маленьких элементов.
Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Питание собранного модуля осуществляется от блока питания 12В 5А. Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM
Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1.
Но на многих проектах не какого охлаждения не увидел.
Все, включая монтажную плату, выглядит прилично, откровенного брака нигде не видно.
Электрические характеристики LM338
Высыпаем содержимое всех пакетиков на стол. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Второй параметр — ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум мкА, но в реальных условиях он может достигать мкА.
Попробуем немного уменьшить напряжение.
И пользуясь случаем задам вопрос.
Такое чувство, что комплектовал набор не сильно трезвый китаец : Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.
В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LMK, а проще говоря — регулируемый блок питания : Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.
Попробуем немного уменьшить напряжение. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Получается небольшая кучка разнообразных радиодеталей.
Мощный лабораторный блок питания своими руками
Блок питания на LM338K, 5А/1.2-25В — Меандр — занимательная электроника
Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM
Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.
В принципе, больше ничего интересного в отдельно валяющихся элементах нет, а значит можно переходить к сборке блока питания. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.
Подготовлено для сайта RadioStorage. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Попробуем немного уменьшить напряжение. У микросхемы LMT схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.
Quem id mentitum e velit, nam mentitum in expetendis. Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.
После окончательной сборки получается довольно симпатичный блок питания на медных ножках, который выглядит следующим образом: Для того, чтобы прикрепить индикатор вольтметра в корпусе вентилятора необходимо проделать отверстия, так как комплектные саморезы могут расколоть пластик. Мощные резисторы по 0,3 Ом. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM
Выглядит она следующим образом: К качеству изготовления элементов конструктора претензий у меня нет. Данный стабилизатор напряжения, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания. Схема плавного включения мягкий старт блока питания Некоторые чувствительные электронные схемы требуют плавного включения электропитания.
Переменный резистор R1 используется для плавного регулирования выходного напряжения. Например, диодный мост из четырех выпрямительных диодов Д обеспечит рабочие токи до 10А.
Компактный простой ЛБП на LM317 350 338
Основные технические характеристики LM338
Контакты Мощный блок питания на напряжение В и ток 5AA и более LM, Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более в зависимости от количества микросхем. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.
Подготовлено для сайта RadioStorage. Детали Транзистор BD нужно установить на небольшой радиатор.
Согласно описанию, микросхема LM работает при достаточно широком разбросе входного напряжения, этот диапазон может лежать в пределах от 3-х до 35 Вольт. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM
Дабы установить соответствие этих данных истине воспользуемся мультиметром. Я сначала мочил по привычке но это делать не обязательно. Он используется как датчик, который подключен между adj LM и землей.
Вы можете скачать файл с нашего сервера, благодарность сайту приветствуется, особенно материальная. В качестве резисторов R3, R Уважаемый Пользователь! Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.
А то я руководствовался вот этими записями www. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.
Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало… На этом, пожалуй, все. Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Я специально на плату нанес текст очень мелким шрифтом. Цоколевка расположение выводов у микросхем LM
Смысл в ней в том что она тонкая и к ней нефига не прилипает. Можно сказать просто урезал. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350
Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.
Схема включения стабилизатора
Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.
LM3ХХ — схема принципиальная подключенияК сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.
На что обратить внимание
- Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
- Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
- Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
- В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.
После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.
БП на макетной платеПечатная плата для LM3ХХ
Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.
Плата печатная рисунок для LM350Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.
Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.
Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).
БП на микросхеме LM350Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).
LM338 регулируемый стабилизатор напряжения и тока. Распиновка, datasheet
Стабилизатор напряжения LM338, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания.
Технические характеристики стабилизатора LM
338:- Обеспечения выходного напряжения от 1,2 до 32 В.
- Ток нагрузки до 5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Интегральная микросхема LM338 выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 и в пластиковом TO-220:
Распиновка выводов стабилизатора LM338
Основные технические характеристики LM338
Калькулятор для LM338
Расчет параметров стабилизатора LM338 идентичен расчету LM317. Онлайн калькулятор находится здесь.
Примеры применения стабилизатора LM338 (схемы включения)
Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.
Простой регулируемый блок питания на LM338
Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.
Переменный резистор R1 используется для плавного регулирования выходного напряжения.
Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….
Простой 5 амперный регулируемый блок питания
Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.
Регулируемый блок питания на 15 ампер
Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:
В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.
Переменный резистор R8 предназначен для плавной регулировки выходного напряжения
Источник питания с цифровым управлением
В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.
Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.
Схема контроллера освещения
Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.
Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.
Зарядное устройство 12В на LM338
Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором R* можно задать необходимый ток зарядки для конкретного аккумулятора.
Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Схема плавного включения (мягкий старт) блока питания
Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.
Схема термостата на LM338
LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.
Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.
Скачать datasheet LM338 (729,7 KiB, скачано: 6 938)
Микросхема lm317t схема подключения — Мастер Фломастер
В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.
Datasheet по lm317, lm350, lm338
Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).
Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.
LM317 | LM350 | LM338 | |
---|---|---|---|
Диапазон значений регулируемого выходного напряжения | 1,2…37В | 1,2…33В | 1,2…33В |
Максимальный показатель токовой нагрузки | 1,5А | 3А | 5А |
Максимальное допустимое входное напряжение | 40В | 35В | 35В |
Показатель возможной погрешности стабилизации |
0,1%
* — зависит от производителя ИМ.
Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.
Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.
Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:
- ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
- OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
- INPUT. Вывод для подачи напряжения питания.
Схемы и расчеты
Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.
Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I0 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.
Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.
Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.
Онлайн калькулятор lm317, lm350 и lm338
Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).
На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.
Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.
Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах
Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.
В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.
Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.
Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.
Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).
Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.
Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита
Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…
Фото готовой платы.
Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.
Опубликовано: Август 18, 2012 • Рубрика: Блоки питания
В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.
Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.
Как получить от этих микросхем максимум и избежать типовых ошибок?
Об этом по-порядку:
Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 — регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.
Обращаю особое внимание, что цоколёвки у этих микросхем различные!
Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).
Цоколёвка LM317 и LM337:
Типовая схема включения LM317:
Увеличение по клику
Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:
Uвых=1,25*(1+R1/R2)+Iadj*R1
где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.
Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.
Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.
Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:
- Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
- Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.
Увеличение по клику
увеличение по клику
Важно: для микросхем LM337 полярность включения диодов следует поменять!
3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.
Получаем итоговый вариант схемы:
Увеличение по клику
4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!
Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.
5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:
Увеличение по клику
Пояснения к схеме:
- длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
- для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
- проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
- так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).
Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.
Понравилась статья? Расскажи друзьям:
Похожие статьи:
Следите за новостями портала:
14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”
Отечественные аналоги микросхем:
Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!
В связи с широкой доступностью и низкой стоимостью оригинальных микросхем
лучше не тратить время, деньги и нервы.
Используйте LM317 и LM337.
Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.
С уважением Сергей Храбан
Я Вам очень благодарен, спасибо большое! Всех благ!
Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.
Уважаемый Олег, разница напряжений в плечах обусловлена:
1. разницей опорных напряжений микросхем. То что в паспорте указано 1,25В — это идеальный случай (или усреднённое значение). Подробнее здесь: radiopages.ru/accurate_lm317.html
2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)
Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то. при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.
Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.
Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.
Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег
Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.
Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.
Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.
Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег
Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.
А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?
Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!
А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?
Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег
Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.
По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!
Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?
Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.
Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше. это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.
Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.
Благодарю Вас за консультации. С уважением Олег.
Добавить комментарий
Спамеры, не тратьте своё время — все комментарии модерируются.
All comments are moderated!
Вы должны авторизоваться, чтобы оставить комментарий.
описание, характеристики, схема включения стабилизатора, аналоги
При разработке электрических схем часто возникает необходимость применения стабилизаторов напряжения малой или средней мощности (до 1,5 А) или источников образцового напряжения. Удобно, если такой узел имеется в интегральном исполнении, в виде единой микросхемы. Ряд из 9 номиналов постоянных напряжений с номиналами от 5 до 24 В закрывают стабилизаторы серии 78ХХ. Ниша работы LM317 – напряжения выше (до 37 В) и ниже (до 1,2 В) данного диапазона, промежуточные значения напряжения, регулируемые стабилизаторы.
Что из себя представляет микросхема LM317
Микросхема представляет собой линейный стабилизатор напряжения, выходное значение которого можно устанавливать в определенных пределах или оперативно регулировать. Выпускается в нескольких вариантах корпуса с тремя выводами. Диапазон выходного напряжения у всех вариантов одинаковый, а максимальный ток может различаться.
Основные характеристики линейного стабилизатора напряжения LM317
В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.
Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.
Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.
Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:
- минимальное выходное напряжение – 1,25 В;
- минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;
Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).
Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.
Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.
Важно! На заявленные параметры можно ориентироваться, если микросхема выпущена каким-либо известным производителем. Продукция неизвестных фирм обычно имеет более низкие характеристики
Назначение выводов и принцип работы
Упоминалось, что LM317 относится к классу линейных стабилизаторов. Это означает, что стабилизация выходного напряжения осуществляется за счёт перераспределения энергии между нагрузкой и регулирующим элементом.
Транзистор и нагрузка составляют делитель входного напряжения. Если заданное на нагрузке напряжение уменьшается (по причине изменения тока и т.п.), транзистор приоткрывается. Если увеличивается – закрывается, коэффициент деления изменяется и напряжение на нагрузке остается стабильным. Недостатки такой схемы известны:
- необходимо, чтобы входное напряжение превышало выходное;
- на регулирующем транзисторе рассеивается большая мощность;
- КПД даже теоретически не может превышать отношение Uвых/Uвх.
Зато имеются серьезные плюсы (относительно импульсных схем):
- относительно простая и недорогая микросхема;
- требует минимальной внешней обвязки;
- и главное достоинство – выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).
Стандартная схема включения микросхемы:
- на вывод Input подается входное напряжение;
- на вывод Output – выходное;
- на Ajust – опорное напряжение, от которого зависит выходное.
Резисторы R1 и R2 задают выходное напряжение. Оно рассчитывается по формуле:
Uвых=1,25⋅ (1+R2/R1) +Iadj⋅R2.
Iadj является паразитным током вывода настройки, по данным изготовителя он может быть в пределах 5 мкА. Практика показывает, что он может достигать значений на порядок-два выше.
Конденсатор С1 может иметь ёмкость от сотен до нескольких тысяч микрофарад. В большинстве случаев им служит выходной конденсатор выпрямителя. Он должен быть подключен к микросхеме проводниками длиной не более 7 см. Если это условие для конденсатора выпрямителя выполнить нельзя, то следует подключить дополнительную ёмкость примерно в 100 мкФ в непосредственной близости от входного вывода. Конденсатор С3 не должен иметь ёмкость более 100-200 мкФ по двум причинам:
- чтобы избежать перехода стабилизатора в режим автоколебаний;
- чтобы устранить бросок тока на заряд при подаче питания.
Во втором случае может сработать защита от перегрузки.
Не стоит забывать, что при протекании тока через резисторы, они нагреваются (это также возможно при повышении температуры окружающей среды). Сопротивление R1 и R2 изменяются, и нет гарантии, что они изменятся пропорционально. Поэтому напряжение на выходе с прогревом или охлаждением может изменяться. Если это критично, можно использовать резисторы с нормированным температурным коэффициентом сопротивления. Их можно отличить по наличию шести полосок на корпусе. Но стоят такие элементы дороже и купить их сложнее. Другой вариант – вместо R2 использовать стабилитрон на подходящее напряжение.
Какие существуют аналоги
Существуют подобные микросхемы, разработанные в других фирмах других стран. Полными аналогами являются:
- GL317;
- SG317;
- UPC317;
- ECG1900.
Также выпускаются стабилизаторы с повышенными электрическими характеристиками. Больший ток могут выдать:
- LM338 – 5 А;
- LM138 – 5 А
- LM350 – 3 А.
Если требуется регулируемый источник напряжения с верхним пределом в 60 В, надо применять стабилизаторы LM317HV, LM117HV. Индекс HV означает High Voltage – высокое напряжение.
Из отечественных микросхем полным аналогом является КР142ЕН12, но она выпускается только в корпусе ТО-220. Это надо учитывать при разработке печатных плат.
Примеры схем включения стабилизатора LM317
Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.
Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.
Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.
Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.
Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.
Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.
Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.
Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.
Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.
Простой регулируемый двухканальный линейный блок питания с защитой по току на LM350. Схема
Иногда требуется простой линейный блок питания с регулируемым выходным напряжением и регулируемой функцией ограничения тока. В данной статье представлен простой блок питания с использованием регулируемого стабилизатора LM350, который обеспечивает регулируемое напряжение до 17 В и максимальный выходной ток до 2А.
LM350 имеет более высокую рассеиваемую мощность по сравнению с общедоступным регулируемым стабилизатором напряжения LM317 и, следовательно, имеет более высокий гарантированный выходной ток.
Характеристики LM350
Распиновка LM350
Типовое включение LM350
Скачать datasheet LM350 (85,5 KiB, скачано: 209)
Принципиальная схема блока питания приведена на рисунке ниже. Источник питания построен с использованием мостового выпрямителя (BR1), регулируемого стабилизатора напряжения LM350 (IC1), транзисторов BC327(T1) и BC337(T2) и нескольких дополнительных компонентов.
Если использовать трансформатор с напряжением на вторичной обмотке 18-20 В с номинальным током 2A, с данной схемой мы можете получить выходное напряжение VOUT1 от 1,2 В до примерно 16,5 В, на разъеме CON3, и выходное напряжение VOUT2 от 0 В до 15 В, на разъеме CON2.
Вход регулируемого блока питания защищен предохранителем 2А F1. Конденсаторы С3 и С5 (2200 мкФ) являются основными фильтрующими конденсаторами.
Профессиональный цифровой осциллограф
Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…
Входное напряжение ограничено максимальным входным напряжением микросхемы LM350. Максимальная рассеиваемая мощность LM350 составляет около 25 Вт.
Согласно datasheet на LM350, входное напряжение LM350 может быть от 3 В до 35 В, а выходное напряжение может регулироваться в диапазоне от 1,2 В до 33 В
Выходное напряжение VOUT1 можно рассчитать по следующей формуле:
VOUT1=1,25В * (1+(VR2+VR3)/R7))
Выходное напряжение VOUT2 примерно на 1,5 В ниже, чем VOUT1, и, следовательно, может начинаться с 0В.
Транзисторы T1 и T2 совместно с потенциометром VR3 образуют блок ограничения по току. Минимальный выходной ток составляет около 0,35 А и зависит от резистора R2 и потенциометра VR3.
Бегунок потенциометра VR3 должен находиться в крайнем правом положении для получения минимального выходного тока, а в крайнем левом положении — для получения максимального выходного тока.
Максимальный выходной ток составляет около 2А. когда VR1 настроен на максимальный выходной ток, T1 и T2 будут открыты, а светодиод LED2 будет светиться. В противном случае транзисторы будут T1 и T2 будут заперты, и LED2 будет выключен.
Конденсаторы С4 и С9 предотвращают переключение транзисторов Т1 и Т2 во время переходных процессов. Выходное напряжение регулируется с помощью потенциометров VR1 и VR3.
VR2 используется для грубой регулировки, в то время как VR3 используется для более точной регулировки выходного напряжения.
Соберите схему на плате. Подайте примерно 18-20 В на разъем CON1. Свечение светодиода LED1 указывает на наличие входного питания. LED2 светится, когда срабатывает ограничение по току.
Скачать рисунок печатной платы (397,5 KiB, скачано: 266)
Lm317t стабилизатор тока схема — Морской флот
Качественный блок питания с регулируемым выходным напряжением – мечта каждого начинающего радиолюбителя. В быту такие устройства применяются повсеместно. К примеру, взять любое зарядное устройство для телефона или ноутбука, блок питания детской игрушки, игровой приставки, стационарного телефона, многих других бытовых приборов.
Что касается схемной реализации, конструкция источников может быть разной:
- с силовыми трансформаторами, полноценным диодным мостом;
- импульсные преобразователи сетевого напряжения с выходным регулируемым напряжением.
Но чтобы источник был надежным, долговечным, для него лучше выбирать надежную элементную базу. Здесь то начинают возникать трудности. Например, выбирая в качестве регулирующих, стабилизирующих компонентов отечественного производства, порог нижнего напряжения ограничивается 5 В. А что делать, если требуется 1,5 В? В таком случае лучше воспользоваться импортными аналогами. Тем более они более стабильны и практически не греются при работе. Одним из самых широко употребляемых является интегральный стабилизатор lm317t.
Основные характеристики, топология микросхемы
Микросхема lm317 является универсальной. Она может быть использована как стабилизатор с постоянно установленным выходным напряжением и как регулируемый стабилизатор с высоким КПД. МС обладает высокими практическими характеристиками, делающими возможным его использование в различных схемах зарядных устройств или лабораторных блоков питания. При этом вам даже не придется волноваться за надежность работы при критических нагрузках, потому что микросхема оснащена внутренней защитой от короткого замыкания.
Это весьма хорошее дополнение, потому что максимальный выходной ток стабилизатора на lm317 составляет не более 1,5 А. Но наличие защиты не даст вам ее непреднамеренно спалить. Для повышения тока стабилизации необходимо использование дополнительных транзисторов. Таким образом, можно регулировать токи до 10 и более А при использовании соответствующих компонентов. Но об этом поговорим позже, а в таблице ниже представим основные характеристики компонента.
Параметр | Значение |
Uоп. | 1,25 В |
Макс разница между Uвых. и Uвх. | Не более 40 В |
Мин разница между Uвых. и Uвх. | Не менее 1,3 В |
Макс. Uвых. | 37 В |
Мин. Uвых. | 1,25 В |
Iвых. макс. | 1,5 А |
Iрег | До 100 мкА |
Пульсации | Не более 65 дБ |
Тип корпуса | ТО-220 |
Предел рабочих температур | От 0 до +125 градусов |
Цоколевка микросхемы
Изготовлена интегральная микросхема в стандартном корпусе ТО-220 с теплоотводом, устанавливаемым на радиатор. Что касается нумерации выводов, они расположены по ГОСТу слева направо и имеют следующее значение:
Номер вывода | Название вывода | Значение |
1 | Adj | Регулировка |
2 | Out | Выход |
3 | In | Вход |
Вывод 2 соединен с теплоотводом без изолятора, поэтому в устройствах, если радиатор контактирует с корпусом, необходимо использовать изоляторы из слюды или любого другого теплопроводящего материала. Это важный момент, потому что можно случайно закоротить выводы, а на выходе микросхемы просто ничего не будет.
Аналоги lm317
Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Среди отечественных компонентов на lm317 аналог есть достаточно мощный и производительный. Им является микросхема КР142ЕН12А. Но при ее использовании стоит учесть тот факт, что она неспособна обеспечить напряжение меньше 5 В на выходе, поэтому если это важно, придется опять-таки использовать дополнительный транзистор или же найти именно требуемый компонент.
Что касается форм-фактора, то у КР есть столько же выводов, сколько их имеет lm317. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора. При выполнении монтажа интегральной схемы ее рекомендуется устанавливать на радиатор с хорошим теплоотводом и системой охлаждения. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Но при номинальной нагрузке устройство выделяет немного тепла.
Кроме отечественной интегральной схемы КР142ЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в 2-3 раза больше. К таким микросхемам относятся:
- lm350at, lm350t — 3 А;
- lm350k — 3 А, 30 Вт в другом корпусе;
- lm338t, lm338k — 5 А.
Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В.
Особенности подключения
На lm317t схема включения довольно проста, состоит из минимального количества компонентов. При этом их число зависит от назначения устройства. Если изготавливается стабилизатор напряжения, для него потребуются следующие детали:
Rs – шунтирующее сопротивление, выполняющее также роль балласта. Выбирается значением около 0,2 Ом, если требуется обеспечить максимальный выходной ток до 1,5 А.
Резистивный делить с R1, R2, подключенный к выходу и корпусу, а со средней точки поступает регулирующее напряжение, образуя глубокую обратную связь. Благодаря чему достигается минимальный коэффициент пульсаций и высокая стабильность выходного напряжения. Их сопротивление выбирается исходя из соотношения 1:10: R1=240 Ом, R2=2,4 кОм. Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.
Если требуется сконструировать стабилизатор тока, для этого понадобится еще меньше компонентов:
R1, являющееся шунтом. Им задается выходной ток, который не должен превышать 1,5 А.
Чтобы правильно рассчитать схему того или другого устройства, всегда можно использовать калькулятор lm317. Что касается расчета Rs, то его можно определить по обычной формуле: Iвых. = Uоп/R1. На lm317 стабилизатор тока светодиода получается достаточно качественный, который может быть изготовлен нескольких типов в зависимости от мощности LED:
- для подключения одноватного светодиода с током потребления 350мА необходимо использовать Rs = 3,6 Ом. Его мощность выбирается не менее 0,5 Вт;
- для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.
На lm317 стабилизатор тока светодиода получается достаточно надежный, но важно правильно рассчитать сопротивление шунта и выбрать его мощность. А поможет в этом деле калькулятор. Также на светодиодах и на основе этой МС изготавливают различные мощные светильники и самодельные прожекторы.
Построение мощных регулируемых блоков питания
Внутренний транзистор lm317 недостаточно мощный, для его увеличения придется использовать внешние дополнительные транзисторы. В данном случае выбираются компоненты без ограничений, потому что управление ими требует намного меньших величин токов, которые микросхема вполне способна предоставить.
Регулируемый блок питания lm317 с внешним транзистором не сильно отличается от обычного включения. Вместо постоянного R2 устанавливается переменный резистор, а база транзистора подключается на вход микросхемы через дополнительный ограничивающий резистор, запирающий транзистор. В качестве управляемого используется биполярный ключ с проводимостью p-n-p. В таком исполнении микросхема оперирует токами порядка 10 мА.
При проектировании двухполярных источников питания потребуется использовать комплементарную пару этой микросхемы, которой является lm337. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. В обратном плече стабилизатора компоненты подключаются таким же образом, как и в верхнем. В качестве первичной цепи выступает трансформатор или импульсный блок, что зависит от качества работы схемы и ее эффективности.
Некоторые особенности работы с микросхемой lm317
При проектировании блоков питания с небольшим выходным напряжением, при котором разница между входным и выходным значением не превышает 7 В, лучше использовать другие, более чувствительные микросхемы с выходным током до 100 мА — LP2950 и LP2951. При низком падении lm317 не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.
Другие практические схемы на lm317
Кроме обычных стабилизаторов и регуляторов напряжения на основе этой микросхемы также можно изготовить цифровой регулятор напряжения. Для этого потребуется сама микросхема, набор транзисторов и несколько резисторов. Посредством включения транзисторов и по приходу цифрового кода с ПК или иного устройства изменяется сопротивления R2, что приводит и к изменению тока цепи в пределах напряжения от 1,25 до 1,3 В.
Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.
Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.
Виды стабилизирующих устройств
По способу ограничения силы тока выделяются устройства линейного и импульсного типа.
Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.
Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:
- отсутствием электромагнитных помех;
- простотой;
- низкой стоимостью.
Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.
Схемы линейных устройств
Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.
Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.
Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.
Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.
Каждый вывод микросхемы имеет свое предназначение:
- ADJUST. Ввод для регулирования выходного напряжения.
- OUTPUT. Ввод для формирования выходного напряжения.
- INPUT. Ввод для подачи питающего напряжения.
Технические показатели стабилизатора:
- Напряжение на выходе в пределах 1,2–37 В.
- Защита от перегрузки и КЗ.
- Погрешность выходного напряжения 0,1%.
- Схема включения с регулируемым выходным напряжением.
Мощность рассеяния и входное напряжение устройства
Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.
Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.
При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.
Краткое описание
Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:
- яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
- выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
- поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
- погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
- имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
- корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.
Схемы включения
Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.
Простейший стабилизированный блок питания
Чтобы сделать стабилизатор тока потребуется:
- микросхемка LM317;
- резистор;
- монтажные средства.
Собираем модель по нижеприведенной схеме:
Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.
Блок питания на интегральном стабилизаторе
Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.
Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.
Схема стабилизатора с регулируемым блоком питания
Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.
Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.
Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.
Область применения
Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.
Микросхема применима в устройствах:
Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.
Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.
Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.
Технические характеристики стабилизатора LM317:
- Обеспечения выходного напряжения от 1,2 до 37 В.
- Ток нагрузки до 1,5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.
Назначение выводов микросхемы:
Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.
Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.
Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.
В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:
Источник питания на 5 Вольт с электронным включением
Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:
Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 39 761)
Аналог LM317
К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:
- GL317
- SG31
- SG317
- UC317T
- ECG1900
- LM31MDT
- SP900
- КР142ЕН12 (отечественный аналог)
- КР1157ЕН1 (отечественный аналог)
28 комментариев
Интересная статья! Спасибо!
Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.
Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.
Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.
С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.
А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?
Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта
Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .
Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.
Резисторы R1 и R2 можно подобрать и другого номинала?
да, рассчитать можно здесь
можно ли совместить на одной lm317, регулировку тока и напряжения,
Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !
Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).
Большое Спасибо за статью.
Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?
Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.
Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.
Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?
Спасибо за схему,а как увеличить ток до10А?
Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо
Каков температурный диапазон эксплуатации LM317T?
Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.
Кто-нибудь пробовал параллелить микросхемы?
Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.
Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.
Схема расположения выводов регулятора напряженияLM350T, эквивалент, спецификации и техническое описание
Конфигурация контактовНомер контакта | Имя контакта | Описание |
1 | Настроить | Эти контакты регулируют выходное напряжение |
2 | Выходное напряжение (Vout) | Регулируемое выходное напряжение, устанавливаемое регулировочным штифтом, может быть получено с этого штифта . |
3 | Входное напряжение (Vin) | Входное напряжение, которое необходимо отрегулировать, подается на этот вывод . |
- Регулируемый трехконтактный стабилизатор положительного напряжения
- Выходное напряжение может быть установлено в диапазоне от 1.От 25 В до 33 В
- Максимальный выходной ток 3А
- Максимальная разница входного и выходного напряжения составляет 35 В, рекомендуется 15 В
- Рабочая температура перехода 125 ° C
- Доступен в упаковке To-220, SOT223, TO263
LM7805, LM7806, LM7809, LM7812, LM7905, LM7912, LM117V33, XC6206P332MR.
Регуляторы эквивалентного напряжения LM350LM317, LT1086, LM1117 (SMD), PB137, LM337 (регулятор отрицательного переменного напряжения)
Где использовать регулятор напряжения LM350Когда дело доходит до требований к регулируемому напряжению, LM317, скорее всего, будет первым выбором.Но одним из недостатков этой микросхемы является то, что она может подавать максимум 1,5 А, поэтому, если вы хотите обеспечить ток более 1,5 А, вы можете использовать регулятор LM350 IC , который может подавать до 3 А.
Итак, если вы ищете регулируемый регулятор напряжения для установки напряжения от 1,25 В до 33 В и подачи тока до 3 А, то эта микросхема регулятора может быть правильным выбором для вашего приложения. Помимо этого, микросхема также имеет режим регулятора тока, что делает ее пригодной для зарядки аккумуляторов.
Как использовать LM350Это трехконтактная ИС регулятора, как показано на схеме выводов LM350 , и она очень проста в использовании. В его техническом описании есть много прикладных схем, но эта ИС известна тем, что используется в качестве регулятора переменного напряжения. Итак, давайте посмотрим, как использовать эту ИС в качестве регулятора переменного напряжения.
Как было сказано ранее, ИС имеет три контакта, в которых входное напряжение подается на контакт 3 (V IN ), затем с помощью пары резисторов (делитель потенциала) мы устанавливаем напряжение на контакте 1 (Adjust), которое будет определять выходной сигнал. напряжение ИС, которое выдается на выводе 2 (V OUT ).Теперь, чтобы заставить его действовать как регулятор переменного напряжения, мы должны установить переменное напряжение на выводе 1, что можно сделать с помощью потенциометра в делителе потенциала.
Резистор R1 (должно быть 240R) и потенциометр (может быть до 10 кОм) вместе создают разность потенциалов на регулирующем контакте, которая соответственно регулирует выходной контакт. Формулы для расчета выходного напряжения исходя из номинала резисторов
В ВЫХ = 1,25 × (1 + (R2 / R1)) + Iadj (R2)
Теперь давайте проверим эту формулу для указанной выше схемы.-6) (5000)
= 29,9 В
По той же формуле можно рассчитать номинал резистора для требуемого выходного напряжения. Один из простых способов сделать это — использовать этот онлайн-калькулятор, чтобы случайным образом подставить значение резисторов, которые у вас есть, и проверить, какое выходное напряжение вы получите.
Приложения- Используется для регулирования положительного напряжения
- Источник переменного тока
- Цепи ограничения тока
- Цепи обратной полярности
- Обычно используется в настольных ПК, DVD и других потребительских товарах
- Используется в цепях управления двигателем
Регулируемый регулятор напряжения
LM350 — Электросхема.com
Если вам нужна простая в сборке и качественная схема блока питания на 3А. Многие специалисты часто рекомендовали использовать LM350.
Это микросхема стабилизатора напряжения 3A для регулируемого источника питания постоянного тока (от 1,25 В до 35 В), высокопроизводительная, с несколькими компонентами.
Эта схема выглядит как Мой первый источник переменного тока постоянного тока. Но это больше выходной ток. Таким образом, эта схема может обеспечивать больше нагрузок. И мы можем купить эту микросхему в ближайших к вам магазинах.
Я мысленно знаю, теперь вы хотите построить этот цикл.Но много раз мне не терпелось не изучить компоненты. Это приводит к плохой работе схемы. Я не хочу, чтобы ты был похож на меня. Итак, мы должны сначала изучить это.
Лист данных LM350
Как использовать LM350? Для этого есть простая деталь:
LM350 лучше всего подходит для вас. Потому что это регулируемый трехконтактный стабилизатор положительного напряжения.
Который выглядит как популярный LM317. Мы можем установить выходное напряжение с помощью всего двух внешних резисторов. Но он может обеспечить выходной ток более 3.0A, в диапазоне напряжений от 1,2 В до 33 В.
Кроме того, он использует внутреннее ограничение тока, тепловое отключение и безопасный режим.
Мы можем использовать LM350 в самых разных приложениях. Например, простой регулируемый импульсный регулятор, программируемый выходной регулятор, прецизионный регулятор тока путем подключения постоянного резистора между регулировочным и выходным контактами.
Короче говоря, он работает как LM317, но может обеспечивать более высокий ток.
Распиновка LM350
Распиновка LM350То же, что и распиновка LM350 выше.Он очень похож на популярный LM317. Кроме того, его штыревой вывод соединяет поверхность радиатора.
Внимание!
Поскольку он имеет высокий ток, превышающий 3 А, мы должны установить LM350 на большом радиаторе.
Основные характеристики
- 3,0 A Выходной ток
- Регулируемое выходное напряжение от 1,2 В до 33 В
- Регулировка нагрузки обычно 0,1%
- Регулировка линии обычно 0,005% / В
- Внутренняя тепловая защита от перегрузки
- Внутреннее короткое замыкание
- Постоянная ограничения тока с температурой
- Компенсация безопасной зоны выходного транзистора
- Плавающий режим для приложений высокого напряжения
КАЛЬКУЛЯТОР РЕГУЛЯТОРА НАПРЯЖЕНИЯ LM350
Нам он нравится, потому что он прост в использовании.Вы видите схему LM350 ниже. Мы используем всего 2 резистора для контроля выходного напряжения. Формула:
Vout = 1,25 x {1+ (R2 / R1)}
LM350 Базовая схемаПри нормальной работе LM350 имеет номинальное опорное напряжение 1,25 В (Vref) между выходным проводом и регулируемым свинец (ADJ).
А, так как напряжение постоянное, то постоянный ток. Затем протекает через выходной резистор R2. Для регулировки выходного напряжения.
Использование списка резисторов (без вычислений)
Если у нас нет калькулятора или занятого или медленного мозга, как у меня.Использование списка резисторов — простое решение. Просто выберите подходящие резисторы по номинальному напряжению.
1,43 В: R1 = 470 Ом, R2 = 68 Ом
1,47 В: R1 = 470 Ом, R2 = 82 Ом
1,47 В: R1 = 390 Ом, R2 = 68 Ом
1,51 В: R1 = 330 Ом, R2 = 68 Ом
1,51 В: R1 = 390 Ом, R2 = 82 Ом
1,52 В: R1 = 470 Ом, R2 = 100 Ом
1,53 В: R1 = 390 Ом, R2 = 82 Ом
1,56 В: R1 = 330 Ом, R2 = 82 Ом
1,57 В: R1 = 270 Ом, R2 = 68 Ом
1,57 В: R1 = 470 Ом, R2 = 120 Ом
1,57 В: R1 = 390 Ом, R2 = 100 Ом
1.59 В: R1 = 390 Ом, R2 = 100 Ом
1,60 В: R1 = 240 Ом, R2 = 68 Ом
1,63 В: R1 = 330 Ом, R2 = 100 Ом
1,63 В: R1 = 270 Ом, R2 = 82 Ом
1,64 В: R1 = 390 Ом, R2 = 120 Ом
1,64 В: R1 = 220 Ом, R2 = 68 Ом
1,65 В: R1 = 470 Ом, R2 = 150 Ом
1,66 В: R1 = 390 Ом, R2 = 120 Ом
1,68 В: R1 = 240 Ом, R2 = 82 Ом
1,71 В : R1 = 330 Ом, R2 = 120 Ом
1,71 В: R1 = 270 Ом, R2 = 100 Ом
1,72 В: R1 = 220 Ом, R2 = 82 Ом
1,72 В: R1 = 180 Ом, R2 = 68 Ом
1,73 В: R1 = 470 Ом, R2 = 180 Ом
1,73 В: R1 = 390 Ом, R2 = 150 Ом
1.76 В: R1 = 390 Ом, R2 = 150 Ом
1,77 В: R1 = 240 Ом, R2 = 100 Ом
1,81 В: R1 = 270 Ом, R2 = 120 Ом
1,82 В: R1 = 150 Ом, R2 = 68 Ом
1,82 В: R1 = 330 Ом, R2 = 150 Ом
1,82 В: R1 = 180 Ом, R2 = 82 Ом
1,83 В: R1 = 390 Ом, R2 = 180 Ом
1,84 В: R1 = 470 Ом, R2 = 220 Ом
1,86 В: R1 = 390 Ом, R2 = 180 Ом
1,88 В : R1 = 240 Ом, R2 = 120 Ом
1,89 В: R1 = 470 Ом, R2 = 240 Ом
1,93 В: R1 = 330 Ом, R2 = 180 Ом
1,93 В: R1 = 150 Ом, R2 = 82 Ом
1,94 В: R1 = 270 Ом, R2 = 150 Ом
1,96 В: R1 = 390 Ом, R2 = 220 Ом
1.97 В: R1 = 470 Ом, R2 = 270 Ом
1,99 В: R1 = 390 Ом, R2 = 220 Ом
2,02 В: R1 = 390 Ом, R2 = 240 Ом
2,03 В: R1 = 240 Ом, R2 = 150 Ом
2,06 В: R1 = 390 Ом, R2 = 240 Ом
2,08 В: R1 = 330 Ом, R2 = 220 Ом
2,10 В: R1 = 220 Ом, R2 = 150 Ом
2,12 В: R1 = 390 Ом, R2 = 270 Ом
2,13 В: R1 = 470 Ом, R2 = 330 Ом
2,16 В : R1 = 330 Ом, R2 = 240 Ом
2,16 В: R1 = 390 Ом, R2 = 270 Ом
2,19 В: R1 = 240 Ом, R2 = 180 Ом
2,23 В: R1 = 470 Ом, R2 = 390 Ом
2,25 В: R1 = 150 Ом, R2 = 120 Ом
2,27 В: R1 = 270 Ом, R2 = 220 Ом
2.27 В: R1 = 330 Ом, R2 = 270 Ом
2,29 В: R1 = 470 Ом, R2 = 390 Ом
2,29 В: R1 = 180 Ом, R2 = 150 Ом
2,31 В: R1 = 390 Ом, R2 = 330 Ом
2,36 В: R1 = 270 Ом, R2 = 240 Ом
2,37 В: R1 = 390 Ом, R2 = 330 Ом
2,40 В: R1 = 240 Ом, R2 = 220 Ом
2,44 В: R1 = 390 Ом, R2 = 390 Ом
2,50 В: R1 = 470 Ом, R2 = 470 Ом
2,57 В : R1 = 390 Ом, R2 = 390 Ом
2,61 В: R1 = 220 Ом, R2 = 240 Ом
2,65 В: R1 = 330 Ом, R2 = 390 Ом
2,66 В: R1 = 240 Ом, R2 = 270 Ом
2,73 В: R1 = 330 Ом, R2 = 390 Ом
2,74 В: R1 = 470 Ом, R2 = 560 Ом
2.75 В: R1 = 150 Ом, R2 = 180 Ом
2,76 В: R1 = 390 Ом, R2 = 470 Ом
2,78 В: R1 = 270 Ом, R2 = 330 Ом
2,78 В: R1 = 220 Ом, R2 = 270 Ом
2,84 В: R1 = 390 Ом, R2 = 470 Ом
2,92 В: R1 = 180 Ом, R2 = 240 Ом
2,96 В: R1 = 270 Ом, R2 = 390 Ом
2,97 В: R1 = 240 Ом, R2 = 330 Ом
3,03 В: R1 = 330 Ом, R2 = 470 Ом
3,05 В : R1 = 390 Ом, R2 = 560 Ом
3,06 В: R1 = 270 Ом, R2 = 390 Ом
3,06 В: R1 = 470 Ом, R2 = 680 Ом
3,08 В: R1 = 150 Ом, R2 = 220 Ом
3,13 В: R1 = 220 Ом, R2 = 330 Ом
3,14 В: R1 = 390 Ом, R2 = 560 Ом
3.18 В: R1 = 240 Ом, R2 = 390 Ом
3,25 В: R1 = 150 Ом, R2 = 240 Ом
3,28 В: R1 = 240 Ом, R2 = 390 Ом
3,35 В: R1 = 220 Ом, R2 = 390 Ом
3,37 В: R1 = 330 Ом, R2 = 560 Ом
3,43 В: R1 = 270 Ом, R2 = 470 Ом
3,43 В: R1 = 390 Ом, R2 = 680 Ом
3,43 В: R1 = 470 Ом, R2 = 820 Ом
3,47 В: R1 = 220 Ом, R2 = 390 Ом
3,50 В : R1 = 150 Ом, R2 = 270 Ом
3,54 В: R1 = 180 Ом, R2 = 330 Ом
3,55 В: R1 = 390 Ом, R2 = 680 Ом
3,70 В: R1 = 240 Ом, R2 = 470 Ом
3,82 В: R1 = 180 Ом, R2 = 390 Ом
3,83 В: R1 = 330 Ом, R2 = 680 Ом
3.84 В: R1 = 270 Ом, R2 = 560 Ом
3,88 В: R1 = 390 Ом, R2 = 820 Ом
3,91 В: R1 = 470 Ом, R2 = 1K
3,92 В: R1 = 220 Ом, R2 = 470 Ом
3,96 В: R1 = 180 Ом, R2 = 390 Ом
4,00 В: R1 = 150 Ом, R2 = 330 Ом
4,02 В: R1 = 390 Ом, R2 = 820 Ом
4,17 В: R1 = 240 Ом, R2 = 560 Ом
4,33 В: R1 = 150 Ом, R2 = 390 Ом
4,36 В : R1 = 330 Ом, R2 = 820 Ом
4,40 В: R1 = 270 Ом, R2 = 680 Ом
4,43 В: R1 = 220 Ом, R2 = 560 Ом
4,44 В: R1 = 470 Ом, R2 = 1,2 кОм
4,46 В: R1 = 390 Ом, R2 = 1K
4,50 В: R1 = 150 Ом, R2 = 390 Ом
4.51 В: R1 = 180 Ом, R2 = 470 Ом
4,63 В: R1 = 390 Ом, R2 = 1K
4,79 В: R1 = 240 Ом, R2 = 680
5,04 В: R1 = 330 Ом, R2 = 1K
5,05 В: R1 = 270 Ом, R2 = 820 Ом
5,10 В: R1 = 390 Ом, R2 = 1,2 K
5,11 В: R1 = 220 Ом, R2 = 680 Ом
5,14 В: R1 = 180 Ом, R2 = 560 Ом
5,17 В: R1 = 150 Ом, R2 = 470 Ом
5,24 V: R1 = 470 Ом, R2 = 1,5 кОм
5,30 В: R1 = 390 Ом, R2 = 1,2 кОм
5,52 В: R1 = 240 Ом, R2 = 820 Ом
5,80 В: R1 = 330 Ом, R2 = 1,2 кОм
5,88 В: R1 = 270 Ом, R2 = 1K
5,91 В: R1 = 220 Ом, R2 = 820 Ом
5.92 В: R1 = 150 Ом, R2 = 560 Ом
5,97 В: R1 = 180 Ом, R2 = 680 Ом
6,04 В: R1 = 470 Ом, R2 = 1,8 К
6,06 В: R1 = 390 Ом, R2 = 1,5 кОм
6,32 В: R1 = 390 Ом, R2 = 1,5 кОм
6,46 В: R1 = 240 Ом, R2 = 1K
6,81 В: R1 = 270 Ом, R2 = 1,2 кОм
6,92 В: R1 = 150 Ом, R2 = 680 Ом
6,93 В: R1 = 330 Ом, R2 = 1,5 кОм
6,94 В: R1 = 180 Ом, R2 = 820 Ом
7,02 В: R1 = 390 Ом, R2 = 1,8 кОм
7,10 В: R1 = 470 Ом, R2 = 2,2 кОм
7,33 В: R1 = 390 Ом, R2 = 1,8 кОм
7,50 В: R1 = 240 Ом, R2 = 1,2 К
8,07 В: R1 = 330 Ом, R2 = 1.8K
8,08 В: R1 = 150 Ом, R2 = 820 Ом
8,19 В: R1 = 270 Ом, R2 = 1,5 кОм
8,30 В: R1 = 390 Ом, R2 = 2,2 кОм
8,43 В: R1 = 470 Ом, R2 = 2,7 кОм
8,68 V: R1 = 390 Ом, R2 = 2,2 кОм
9,06 В: R1 = 240 Ом, R2 = 1,5 кОм
9,58 В: R1 = 330 Ом, R2 = 2,2 кОм
9,77 В: R1 = 220 Ом, R2 = 1,5 кОм
9,90 В: R1 = 390 Ом, R2 = 2,7 кОм
10,03 В: R1 = 470 Ом, R2 = 3,3 кОм
10,37 В: R1 = 390 Ом, R2 = 2,7 кОм
10,63 В: R1 = 240 Ом, R2 = 1,8 кОм
11,25 В: R1 = 150 Ом, R2 = 1,2 кОм
11,44 В: R1 = 270 Ом, R2 = 2,2 кОм
11.48 В: R1 = 330 Ом, R2 = 2,7 кОм
11,67 В: R1 = 180 Ом, R2 = 1,5 кОм
11,83 В: R1 = 390 Ом, R2 = 3,3 кОм
12,40 В: R1 = 390 Ом, R2 = 3,3 кОм
12,71 В: R1 = 240 Ом, R2 = 2,2 кОм
13,75 В: R1 = 330 Ом, R2 = 3,3 кОм
15,31 В: R1 = 240 Ом, R2 = 2,7 кОм
16,25 В: R1 = 150 Ом, R2 = 1,8 кОм
16,53 В: R1 = 270 Ом, R2 = 3,3 кОм
16,59 В: R1 = 220 Ом, R2 = 2,7 кОм
18,44 В: R1 = 240 Ом, R2 = 3,3 кОм
19,58 В: R1 = 150 Ом, R2 = 2,2 кОм
20,00 В: R1 = 220 Ом, R2 = 3,3 кОм
23,75 В: R1 = 150 Ом, R2 = 2,7 кОм
24.17 В: R1 = 180 Ом, R2 = 3,3 кОм
28,75 В: R1 = 150 Ом, R2 = 3,3 кОм
Например, вам нужен источник питания 5 В, 3 А. Вы смотрите на 5.00В. Мы можем видеть при скорости 5,04 В или 5,05 В.
Я смотрю на 5,05 В, потому что у меня R1 = 270 Ом. Тогда я использую R2 на 820 Ом. Это просто?
Фильтр конденсаторов
- Оба конденсатора C1 и C4-0,1 мкФ являются входными шунтирующими конденсаторами. Это необходимо, если устройства (IC1) находятся на расстоянии более 6 дюймов от конденсаторов фильтра.
- C3-47uF — это байпасный конденсатор, который предотвращает подавление пульсаций 86 дБ.
- C4 — 100 мкФ используется для улучшения переходной характеристики. Выходной конденсатор в диапазоне от 1 мкФ до 1000 мкФ из танталового электролитического материала. Он обычно используется для обеспечения улучшенного выходного сопротивления и подавления переходных процессов.
Когда внешние конденсаторы используются с любыми регуляторами IC. Иногда необходимо добавить защитный диод, чтобы предотвратить разряд конденсаторов через точку низкого тока в регулятор.
Хотя скачок короткий , энергии достаточно, чтобы повредить части ИС.
- Когда отрицательное напряжение или всплески 20A текут в обратном направлении, выходное напряжение будет поглощаться диодом D3.
- Затем от D2 до защищают Out и Adj.
- D1 защищен скачками напряжения на входе и выходе.
Примечание: D1-D3 — диоды 1N4007.
Что еще? давайте построим схему.
Как работает регулятор LM350
На рисунке ниже схема аналогична моему первому источнику переменного тока постоянного тока.
Когда мы подаем AC220V или AC110V (для США), нажав S1, чтобы включить этот источник питания. ACV будет проходить через F1 для защиты при перегрузке или слишком большом входном напряжении.
Затем переменное напряжение переходит в трансформатор, способный преобразовывать высокое переменное напряжение в более низкие уровни переменного-18 В, и он поступает на диод BD1-моста для преобразования (выпрямителя) переменного тока в постоянный.
См. Схему регулируемого регулятора напряжения LM350.Затем они будут через электролитический конденсатор C1-4700uF сглаживать (фильтровать) пульсирующее напряжение от трансформатора до постоянного постоянного тока (DC).
Теперь у нас есть напряжение в этот момент от 22 В до 25 В
И затем ток будет проходить через входной контакт IC1-LM350. Как я уже сказал выше.
Это ИС регулируемого регулятора тока 3А. Регулируемое выходное напряжение можно регулировать в диапазоне от 1,2 В до 22 В. путем вращения VR1.
Производитель LM350 блок питания
Прежде всего приобретите любые детали по списку ниже.
Список компонентов
IC1: LM350T 3 контакта положительный стабилизатор напряжения 3 А
C1: 4700 мкФ 35 В, электролитический
C3: 47 мкФ 35 В, электролитический
C5: 100 мкФ 50 В, электролитический
C6: 1000 мкФ 16 В, электролитический 902 0.1 мкФ 50 В, керамические или майларовые конденсаторы
C7: 0,01 мкФ 50 В, керамические
BD1: 4 А, 200 В мостовой диод
D1-D3: 1N4007, 1 А, 1000 В Диод
R1, R2: 120 Ом 0,5 Вт резисторы
VR1: переменные резисторы 5 B)
S1: двухпозиционный переключатель или переключатель SPST
F1, предохранитель 0,5A-1A
T1, 3A вторичный трансформатор от 18 В до 21 В
Радиатор, перфорированная печатная плата, провода, вентилятор постоянного тока, светодиодный вольтметр и др.
В схеме есть деталей мало, поэтому я собираю устройства на перфорированной плате.
Мне нравится им пользоваться.Потому что мы можем очень быстро создавать прототипы и сохранять их.
Посмотрите на компоновку компонентов ниже.
И разводка каждой точки пайки контактов устройства.
См. Прототипы регуляторов LM350
Помните: Использование перфорированной печатной платы. Мы должны увеличить размер медного провода в сильноточной цепи, такой как Земля, Вход, Выход ИС. Вы можете добавить свинцовый припой, чтобы сделать линию цепи больше. Как показано ниже.
Нам нужно установить LM350 с большим радиатором. Потому что, пока он работает, очень жарко.
Похоже на транзистор ТО-220, поэтому монтируем его так же. Будьте осторожны, это короткое замыкание на корпус радиатора.
Мне нравится делать электронику экономичным способом. Мы можем построить хороший проект. Например, использование ножек устройства в качестве точек подключения проводов на печатной плате.
См. Ниже, когда я собираю диод 1N4007. Я вставляю его ножку в проводку на плате.
О трансформаторе
Уровень напряжения вторичной обмотки трансформатора влияет на максимальный уровень выходного напряжения. В этой схеме мне нужно выходное напряжение около 22 В. Поэтому я использую вторичную катушку 18 В.
Но если у вас нет такого номинала напряжения. Вы можете использовать трансформатор 18V CT 18V. Но используются только 18V и CT. Остальные не используются. Посмотреть иллюстрации.
Или используйте трансформатор 9V CT 9V, но не используя CT.
Если вы используете трансформатор на 20 В, максимальное выходное напряжение будет 25 В. Не допускайте перенапряжения более 24 В. ИС может не работать остывать.
Еще одна проблема — выключатель S1 со встроенной лампой или неоновая лампа. Подключим схему, как показано. Конечно, мы должны четко определить L и N.
Помните: Перед подключением к сети переменного тока обязательно проверьте переключатель с помощью измерителя. Опасно высокое напряжение!
Тестирование
Для начала проверьте цепь и проводку на наличие ошибок.Затем установите VR1 на минимум. Затем мы тестируем этот проект с выходным напряжением 1,2 В.
Затем отрегулируйте напряжение до 12 В. А дальше я пытаюсь использовать лампу 12В 50Вт в качестве нагрузки . Напряжение должно быть не ниже 12 В, а ток лампы, как я измеряю, составляет 3,5 А.
Вы можете посмотреть видео ниже.
Этот проект хорош настолько, насколько мне нужно. Я счастлив. Спасибо за просмотр.
Повышение производительности
Кроме того, мы можем повысить производительность этого проекта следующим образом.
Требуется источник постоянного тока. У моего трансформатора есть еще одна вторичная обмотка. Применяю это. См. Схему ниже.
Это простая цепь нерегулируемого источника постоянного тока. 6 В переменного тока выпрямляется с помощью D4-D7 и фильтруется с помощью C6, C7 до 8 В постоянного тока для светодиодного вольтметра и вентилятора постоянного тока.
- Добавьте охлаждающий вентилятор. Пока работает. Это так жарко. Мы должны добавить охлаждающий вентилятор (12 В), чтобы закрыть радиатор.
Затем мы собрали этот проект на распределительной коробке из АБС-пластика для электронного оборудования в корпусе корпуса.
Потому что дрель проста в установке в качестве электроизолятора и к тому же дешевая.
Передняя часть прототипа
Посмотрите! Мы закончили проект регулируемого регулятора напряжения LM350.
…
Загрузить этот
Все полноразмерные изображения этого поста находятся в этой электронной книге: Elec Circuit vol. 2 ниже. Пожалуйста, поддержите меня. 🙂
Купите здесь: Линейные регуляторы напряжения LM350
LM350 — Регуляторы напряжения — Линейные
Мы рекомендуем другие схемы, использующие LM350
Преобразователь постоянного тока с 12 В на 6 А 3A — вы можете уменьшить напряжение с 12 В до 6 В для любой цепи.С помощью регулятора 6 В.
Регулятор 24 В, 3 А — Нам это нравится, а вы?
0–12 В, 3 А Источник переменного тока —LM350 может запускать напряжение при нулевом напряжении. И может защитить нагрузку неправильной полярности.
Генератор импульсов высокой мощности до 3 А макс. —Он может управлять двигателем или лампой с помощью импульса. Использование низкого тока! Это тоже хорошее обучение.
ИЛИ… Что еще? этого не достаточно!
Посмотрите:
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
LM350T datasheet — 3A, Регулируемый выход, регулятор положительного напряжения, Упаковка:
BQ26220 : Прецизионный мультихимический счетчик заряда / разряда на основе флэш-памяти с измерением напряжения.
HV5630 : Драйвер высокого напряжения. Только раковина Выходы N-канальный открытый сток. HV5622 / HV5630 32-канальный последовательно-параллельный преобразователь с выходами с открытым стоком Варианты комплектации Устройство HV5622 HV5630 Рекомендуемая рабочая точка VPP макс. 300 В HV5622X HV5630X Обработано с использованием технологии HVCMOS Ток потребления.
MB4010W : Однофазный мостовой выпрямитель на 40 А, от 50 до 1000 В. Монтажное отверстие для винта №8 Пластиковый корпус с металлическим дном Любое монтажное положение Номинальное значение перенапряжения 400 А Рабочая температура: до + 150 ° C Температура хранения: до + 150 ° C Маркировка устройства Максимальное обратное пиковое обратное напряжение 800 В 1000 В Максимальное среднеквадратичное напряжение Максимальное напряжение блокировки постоянного тока 800 В Среднее значение 1000 В Пик прямого тока Максимальный прямой импульсный ток.
PT4413A : Plug-in Power Solutions-> Изолированный-> Один выход.ti PT4413, Преобразователь постоянного тока в постоянный, 100 Вт, 48 В, ISOlated.
PT6103A : Plug-in Power Solutions-> Non-Isolated-> Single Posi. ti PT6103, 12Vout 1A Широкий вход Регулируемый понижающий Isr.
REG1117A-5 :. q ФИКСИРОВАННЫЕ И РЕГУЛИРУЕМЫЕ ВЕРСИИ q МОДЕЛЬ 2,85 В ДЛЯ АКТИВНОГО ЗАКЛЮЧЕНИЯ SCSI-2 q ВЫХОДНОЙ ТОК: REG1117: макс. 800 мА REG1117A: макс. 1A q ДОПУСК НА ВЫХОДЕ: макс. 1% q ВЫПУСКНОЕ НАПРЯЖЕНИЕ: REG1117: макс. ПРЕДЕЛ ВНУТРЕННЕГО ТОКА q ЗАЩИТА ОТ ПЕРЕГРУЗКИ q ПАКЕТЫ SOT-223 И DDPAK ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА Семейство простых в использовании трехконтактных.
SI-3102S : Регулятор с несколькими выходами. Регулятор с двумя выходами. q Один вход, двойной выход <вспомогательный выход (5 В / 0,04 А), основной выход (5 В / 0,1 А)> q Основной выход может быть включен / выключен извне (с помощью замка зажигания и т. д.) <наиболее подходит в качестве резервного источника питания памяти > q Низкий ток в режиме ожидания 0,8 мА) q Низкое падение напряжения 1 В q Встроенные цепи защиты от перегрузки по току, перенапряжения и тепловой защиты с понижающим током q TO220.
SPI-8010A : Импульсный регулятор для поверхностного монтажа.Корпус с 16 выводами для поверхностного монтажа. Выходной ток: 3,0 A. Высокий КПД: 91% (при VIN 5 В). Высокий КПД 250 кГц позволяет уменьшить количество дроссельной катушки. Опорное напряжение 1 В (Vref) с переменным выходным напряжением может поддерживать выходное напряжение от до 24 В. Широкий диапазон входного напряжения до 50 В) Возможность включения / выключения выхода Встроенная защита от перегрузки по току и тепловая защита.
TPIC6C596D : Управление и мониторинг-> Питание + логика. ti TPIC6C596, 8-битный регистр сдвига.
TPS3825-25DBVR : Цепи контроля процессора.Генератор сброса при включении питания с фиксированным временем задержки, мс (TPS3820) Вход ручного сброса (TPS3820 / 3/5/8) Выход сброса, доступный в активном низком (TPS3820 / 3/4/5), активном высоком (TPS3824) и открытом -Drain (TPS3828) Диапазон контроля напряжения питания Сторожевой таймер 5 В (TPS3820 / 3/4/8) Ток питания 15 A (тип.) SOT23-5 Диапазон температур корпуса. для приложений 85C Приложения.
TPS60123 : Регулируемые преобразователи постоянного / постоянного тока с высокоэффективным зарядным насосом на 200 мА. TPS60124, TPS60125 РЕГУЛИРУЕМЫЙ 200-мА ВЫСОКОЭФФЕКТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ ЗАРЯДНОГО НАСОСА Применение ПРЕОБРАЗОВАТЕЛЕЙ ПОСТОЯННОГО ТОКА Высокая средняя эффективность в диапазоне входного напряжения из-за специальной топологии переключения Минимальный выходной ток 200 мА от диапазона входного напряжения до 3.Регулируемое выходное напряжение 6 В, выходное напряжение 3 В, 4%, катушки индуктивности не требуются, требуются только четыре внешних компонента с низким уровнем электромагнитных помех.
TPS75315QPWP : ti TPS75315, Быстродействующие регуляторы напряжения 1,5 А LDO с переходной характеристикой. TPS75125Q, TPS75133Q С ПИТАНИЕМ ХОРОШО TPS75325Q, TPS75333Q СО СБРОСОМ БЫСТРЫЙ ПЕРЕХОДНОЙ ОТВЕТ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ С НИЗКИМ ПАДЕНИЕМ 1,5 А Стабилизатор напряжения с низким падением напряжения 1,5 А Доступен в версиях 2,5 В, 3,3 В, с фиксированным выходом и регулируемой мощностью с открытым стоком- Хороший (PG) Выход состояния (TPS751xxQ) Сброс при включении питания с открытым стоком с задержкой 100 мс (TPS753xxQ) Падение напряжения.
UPD16877 : Монолитная четырехмостовая схема драйвера. PD16877 — это монолитная БИС драйвера с четырьмя H-мостами, в выходных каскадах которой используются силовые полевые МОП-транзисторы. Благодаря использованию МОП-процесса, эта ИС драйвера существенно улучшила напряжение насыщения и потребляемую мощность по сравнению с обычными схемами драйвера, использующими биполярные транзисторы. За счет исключения схемы подкачки заряда ток при отключении питания резко возрастает.
LTC3412A : 3A, 4 МГц, монолитный синхронный понижающий регулятор LTC3412A — это высокоэффективный монолитный синхронный понижающий преобразователь постоянного тока в постоянный ток, использующий архитектуру с постоянной частотой и режимом тока.Он работает в диапазоне входного напряжения от 2,25 В до 5,5 В и обеспечивает регулируемое выходное напряжение от 0,8 до 5 В, обеспечивая при этом выходной ток до 3 А.
ВНХ3СП30-Э : Автомобильный полностью интегрированный привод двигателя с Н-мостом. Автомобильный полностью интегрированный драйвер мотора с H-образным мостом Тип VNh3SP30-E RDS (вкл.) 19 м макс. (На ногу) Iout 30A Vccmax 41V Входы, совместимые с логическим уровнем 5В Отключение при пониженном и повышенном напряжении Зажим перенапряжения Термическое отключение Защита от перекрестной проводимости Ограничитель линейного тока Очень низкое энергопотребление в режиме ожидания. ШИМ-режим до 20 кГц. Защита от потерь.
S-1142 : ВЫСОКОПОДОБНОЕ НАПРЯЖЕНИЕ НИЗКОЕ ПОТРЕБЛЕНИЕ ТОКА РЕГУЛЯТОР НАПРЯЖЕНИЯ CMOS С НИЗКИМ ВЫПАДЕНИЕМ ТОКА Серия S-1142, разработанная на основе процесса CMOS высокого выдерживаемого напряжения, представляет собой стабилизатор положительного напряжения с высоким выдерживаемым напряжением и низким потреблением тока , и высокая точность выходного напряжения. Серия S-1142 работает при высоком максимальном рабочем напряжении 50 В и низком токе.
BQ20Z60-R1 : Датчик газа, соответствующий стандарту SBS 1.1, с технологией отслеживания импеданса. Датчик газа и защитная ИС, совместимый с SBS bq20z60-R1, с запатентованной технологией отслеживания сопротивления, разработан для установки в аккумулятор или внутри системы.Bq20z60-R1 измеряет и поддерживает точный учет доступного заряда литий-ионных или литий-полимерных аккумуляторов с помощью своей встроенной функции.
LX1972A : Детектор окружающего света Запатентованная схема обеспечивает пиковый спектральный отклик при 520 нм, с ИК-откликом менее ± 5% от пикового отклика при более 900 нм. Фотодатчик представляет собой матрицу ПИН-диодов с линейной, точной и очень повторяемой функцией передачи тока. Зеркала с высоким коэффициентом усиления на микросхеме увеличивают фототок PIN-диода до чувствительности.
Схема регулятора напряжения 15 В 10 А с использованием микросхемы LM196
В следующей статье описывается схема источника питания линейного регулятора напряжения с использованием микросхемы LM196, которая способна выдерживать ток до 10 ампер и может обеспечивать переменное напряжение от 1,25 В. до 15 В постоянного тока.
Об IC LM196 или LM396
IC LM 196 представляет собой одночиповый универсальный высокопроизводительный стабилизатор, который может быть настроен для обеспечения регулируемого выходного напряжения от 1,25 В до 15 В или даже более при токах, превышающих 10 ампер.
Это однокристальное решение для всех приложений электронных схем, которые включают или требуют регулируемый постоянный ток до 10 ампер.
Это означает, что теперь вы можете выполнять тяжелые операции с напряжением в соответствии с вашими личными предпочтениями, используя эту простую в сборке однокристальную схему. аналогичные функции, но не могут обрабатывать более 5 ампер, LM196, с другой стороны, преодолевает это ограничение LM338 и идет дальше, добавляя к характеристикам еще 5 ампер.
Основные характеристики
Основные характеристики этой ИС регулируемого стабилизатора напряжения 15 В, 10 А можно резюмировать следующим образом:
- Выход настраивается на +/- 0,8 В
- Мгновенно регулируемое напряжение от 1,25 В до 15 В постоянного тока
- Гарантированный выходной ток не ниже 10 ампер.
- Подтверждено тестированием продуктов P +.
- Максимальная рассеиваемая мощность не превышает 70 Вт даже при полной нагрузке.
- Выход с внутренней защитой от перегрузки и короткого замыкания
- Устройство с внутренней защитой от теплового побега или теплового пробоя.
- Подача выходного напряжения гарантирована даже при наихудшем сценарии, например, при отключении регулировочного штифта.
ПРИМЕЧАНИЕ: Несмотря на то, что ИС рассчитана на напряжение от 1,25 В до 15 В, в таблице данных также указано, что возможно получение более высоких выходных напряжений, чем 15 В, при условии, что не превышается дифференциал входа / выхода.
Дифференциал входа / выхода указан на уровне 20 В.
Это означает, что ИС может быть настроена для генерирования более высоких напряжений на выходе при условии, что разница между входом и выходом 20 В не будет превышена.
Детали расположения выводов LM196
Как показано на следующей диаграмме, снизу с большей площадью металла вниз, выводы выводов IC LM196 могут быть идентифицированы следующим образом:
- Правый вывод = регулировочный палец
- Левый контакт = выходной контакт.
- Корпус или корпус = Вход
Цепь источника питания 10 А с использованием IC LM196 или LM396
Стандартная схема стабилизатора напряжения 10 А с использованием IC LM196 показана на следующем рисунке.
Расчет резисторов аналогичен расчету IC LM338 или LM317. R2 можно отрегулировать для получения необходимого регулируемого напряжения на выходе.
Все клеммы заземления, задействованные в цепи, должны быть закреплены на основном входном заземлении, которое, очевидно, будет отрицательной точкой мостового выпрямителя (здесь не показан). Точно так же положительный сигнал нагрузки должен быть получен напрямую от соответствующего вывода ИС.
Земля и плюс взяты от основных узлов из-за наличия в цепи высоких токов.По мере увеличения тока проводник пропорционально оказывает большее сопротивление потоку тока, что приводит к падению напряжения на выходе, и, следовательно, следует избегать ненужной длины дорожек.
+ _ + _ + _. Принципиальная электрическая схема (проводная работа) «*» «*» Страница — 1. Электромагнитный клапан защелки. Клеммная колодка внутри коробки контроллера GSM «B1»
HM-W536 Руководство по установке
HM-W536 Руководство по установке 13.09.2013 ВАЖНЫЕ ИНСТРУКЦИИ ПО БЕЗОПАСНОСТИ Предупреждение. При использовании электрических устройств необходимо соблюдать основные меры безопасности, чтобы снизить риск возгорания, поражения электрическим током или травм.
Дополнительная информацияИнструкция по эксплуатации
Детектор движения VMD202 Инструкция по эксплуатации ПРЕДОСТЕРЕЖЕНИЯ И ПРЕДУПРЕЖДЕНИЯ Никогда не используйте VMD202 в качестве системы безопасного реверсирования или обнаружения присутствия. VMD202 требует, чтобы транспортное средство двигалось для обнаружения.
Дополнительная информацияAdvantium 2 Plus Сигнализация
ADI 9510-B Advantium 2 Plus Alarm ИНСТРУКЦИИ ПО УСТАНОВКЕ И ЭКСПЛУАТАЦИИ Внимательно прочтите эти инструкции перед эксплуатацией Внимательно прочтите эти Controls Corporation of America 1501 Harpers Road Virginia
Дополнительная информацияGLOLAB Универсальный телефонный фиксатор
GLOLAB Universal Telephone Hold 1 UNIVERSAL HOLD CIRCUIT Если у вас есть телефонная служба с тональным набором, вы теперь можете удерживать вызов с любого телефона в доме, даже с беспроводных телефонов и телефонов без
Дополнительная информацияАнтенна EH-20 20м.Автор: VE3RGW
Антенна EH-20 20 м. По VE3RGW. Эквивалентная схема антенной системы EH-20 (прототип 2A). Верхний цилиндр Нижний цилиндр Земля Противоположная позиция Катушка фазирования Трансформатор сопротивления и цепь настройки Катушка настройки Feed
Дополнительная информацияLOXONE 12-канальный усилитель
12-канальный усилитель LOXONE Артикул: 200110 Благодарим вас за покупку 12-канального усилителя Loxone.Универсальность усилителя делает его идеальным выбором практически для любого типа пользовательских мультирум
. Дополнительная информацияя ChatterBox! Безопасность мотоциклов
i Перед началом установки * Прочтите это руководство, чтобы ознакомиться с требованиями, необходимыми для завершения установки. * Используйте высококачественный мультиметр для проверки всех проводов до
Дополнительная информацияPiSector Системы безопасности для дома
PiSector Домашние системы безопасности Руководство пользователя (ALM-S02) Перед использованием полностью прочтите руководство.PiSector Inc., США, www.pisector.com Благодарим вас за покупку этой системы охранной сигнализации. Для надлежащего использования и вашей безопасности просьба
Дополнительная информация4,3-дюймовая резервная камера
TM 4.-дюймовая резервная камера Номер модели: PKC0BU4 Руководство пользователя и информация о гарантии Перед использованием этого продукта полностью прочтите эти инструкции. Сохраните это руководство для использования в будущем. ВВЕДЕНИЕ
Дополнительная информацияКошелек для зарядки сотового телефона
Кошелек для зарядки сотового телефона, созданный Бекки Стерн Последнее обновление: 20.02.2015, 13:16, EST Руководство по содержанию Руководство по содержанию Обзор содержания Подготовка USB и источника питания Создание полки для зарядки Установите катушку в сумке
Дополнительная информацияДомашняя охранная сигнализация
Руководство пользователя системы охранной сигнализации для дома (ALM-S02) Внимательно прочтите руководство перед использованием.PiSector Inc., США www.pisector.com Благодарим вас за покупку данной системы охранной сигнализации для дома. Для вашей безопасности и лучшего
Дополнительная информацияИнверторы питания от батарей
Инверторы питания от батарей Renogy 500W 1000W 2000W Инвертор с чистой синусоидой Руководство по эксплуатации 2775 E. Philadelphia St., Ontario, CA 91761 1-800-330-8678 1 Версия 1.1 Важные инструкции по безопасности Сохраните эти инструкции.
Дополнительная информацияABLOY DA60 SWING DOOR OPERATOR Руководство по установке и вводу в эксплуатацию Abloy Oy AN ASSA ABLOY Group РАЗРЕШЕНИЯ / СТАНДАРТЫ Директива по низковольтному оборудованию 7 // EEC с поправками, внесенными в соответствии с директивой 9/68 / EEC Директива EMC
Дополнительная информацияФункция блокировки шунта 3066
Версия: январь 2004 г. Содержание Блок активации системы сигнализации Блок деактивации Цифровой цилиндр замка или интеллектуальное реле 1.0 Метод работы 4 1.1 Общие положения 4 1.2 Включение системы сигнализации 4 1.3 Поворот
Дополнительная информацияРуководство по установке резервной камеры
Гц Гц В этом руководстве: Установка камеры заднего вида требует подключения силовой проводки к существующей схеме обратного освещения и добавления заземления шасси, а также прокладки кабеля видеосигнала к передней панели
Дополнительная информацияКомплект динамиков Overnight Sensations
Комплект динамиков Overnight Sensations Благодарим вас за покупку комплекта корпуса Overnight Sensation.Этот комплект громкоговорителей был точно вырезан с использованием станков с ЧПУ для обеспечения наилучшей посадки и отделки. С маленьким
Дополнительная информацияФормула потери напряжения
www.litz-wire.com HM Wire International Inc. Телефон: 330-244-8501 Факс: 330-244-8561 Формула потери напряжения www.hmwire.com Потеря напряжения в проводе является синонимом потери давления в трубе. Электрический ток
Дополнительная информацияБЫСТРОЕ СПРАВОЧНОЕ РУКОВОДСТВО
КРАТКОЕ РУКОВОДСТВО ПО ПЛАЗМЕННОЙ СИСТЕМЕ PIONEER PDP-501HD: ПЛАЗМЕННАЯ ПАНЕЛЬ PDP-501R: МЕДИА-РЕСИВЕР PDP-501S-LR: ДИНАМИКИ СОДЕРЖАНИЕ 1.0 ВЫБЕРИТЕ МЕСТО УСТАНОВКИ … 2 2.0 НАСТРОЙКА
Дополнительная информацияЛаборатория открытий солнечной энергии
Цель лаборатории Solar Energy Discovery. Построить цепи с солнечными элементами, включенными последовательно и параллельно, и проанализировать полученные характеристики. Введение Фотоэлектрический солнечный элемент преобразует лучистую (солнечную) энергию
Дополнительная информацияРуководство по установке модели 2300DR
Руководство по установке модели 2300DR POWER ACCESS CORPORATION P.O. BOX 1050 170 MAIN STREET NEW HARTFORD, CT 06057 800-344-0088 ВЕБ-САЙТ: www.power-access.com ЭЛЕКТРОННАЯ ПОЧТА: [email protected] 1 СТАНДАРТНЫЕ ДЕТАЛИ
Дополнительная информацияGlobal Water Instrumentation, Inc.
Global Water Instrumentation, Inc. 11390 Amalgam Way Gold River, CA 95670 T: 800-876-1172 Int l: (916) 638-3429, F: (916) 638-3270 Панели солнечных батарей 2 Вт Солнечные панели: SP101 Солнечные батареи 5 Вт Панель: СП102 01-752
Дополнительная информацияGSM домашняя сигнализация s инструкция
Руководство по домашней GSM-сигнализации I.Основные характеристики: 1, восемь беспроводных светодиодных зон и четыре проводных зоны 2, двусторонняя связь 3, система поддерживает сотовые телефоны GSM, нет необходимости в фиксированной телефонной линии.
Дополнительная информация Принципиальная схема импульсного регулятора3a с использованием Lm317
Электронные компоненты
Электронные компоненты Arduino Uno Arduino Uno — это микроконтроллер (простой компьютер), у него нет возможности взаимодействовать.Необходимо построить схемы и интерфейс. Battery Snap Battery Snap используется для подключения
Дополнительная информацияКонструкции усилителя операционного усилителя
Конструкции усилителя операционного усилителя Хотя современные операционные усилители на интегральных схемах упрощают разработку линейных схем, обработка ИС ограничивает выходную мощность усилителя. Однако для многих приложений требуется существенно
Дополнительная информацияРаспространяется по: www.jameco.com 1-800-831-4242 Содержание и авторские права на прилагаемый материал являются собственностью его владельца. Регулируемые регуляторы на 5 ампер LM138 / LM338 Общее описание Серия LM138
Дополнительная информацияPreLab 7: LED Blinker (до 30 октября)
ЦЕЛЬ PreLab 7: LED-мигалка (срок сдачи — 30 октября) Общая цель лабораторной работы 7 — продемонстрировать двухсветный мигающий индикатор с регулируемой частотой. Это двухнедельная лаборатория.Первая неделя включает в себя разработку и тестирование
Дополнительная информацияЦепи драйвера двигателя постоянного тока
DC-Mot 19 мая 2012 г. Зачем нужна схема привода двигателя? Обычные двигатели постоянного тока с редукторной головкой требуют тока более 250 мА. ИС, такие как таймер 555, микроконтроллер ATmega, микросхемы серии 74 не могут обеспечить
Дополнительная информацияН-мостовая схема привода двигателя постоянного тока
Страница 1 из 9 David Cook ROBOT ROOM домашние проекты контакты авторские права и отказ от ответственности книги ссылки DC Motor-Driver H-Bridge Circuit Физическое движение в той или иной форме помогает отличить робота от компьютера.Это
Дополнительная информацияELEXBO A-Car-Engineering
1 Задача: -Строить последовательно все принципиальные схемы и описать свои выводы. -Опишите также различия между предыдущей электрической схемой. Постройте эту электрическую схему и опишите
Дополнительная информацияGCSE Electronics. Схема работы
Схема электроники GCSE рабочей недели Примечания к деталям темы 1 Практические навыки сборки схемы с использованием диаграммы распознавание компонента по его внешнему виду (это укрепление доверия / мотивация
Дополнительная информацияEE223 Лаборатория №4.Компараторы
EE223 Лаборатория № 4 Компараторы Цели 1) Научиться проектировать с использованием компараторов 2) Научиться макетировать схемы, включающие интегральные схемы (ИС) 3) Узнать, как получить и прочитать таблицы данных ИС
Дополнительная информацияРаспространяется по: www.jameco.com 1-800-831-4242 Содержание и авторские права на прилагаемый материал являются собственностью его владельца.LM392 Операционный усилитель / компаратор напряжения малой мощности Общее описание
Дополнительная информацияЛекция 14: Таймеры 555
Инженерный факультет MEP382: Проектирование прикладных измерительных систем Лекция 14: Таймеры 555 ИСТОРИЯ ИС ТАЙМЕРА 555 ИС таймера 555 была впервые представлена примерно в 1971 году компанией Signetics Corporation как SE555 / NE555
Дополнительная информацияЭлектроника, датчики и исполнительные механизмы
Электроника, датчики и приводы 4/14/15 Дэвид Фликер BE107 Обзор Базовая электроника и компоненты Датчики Приводы Электроника 101 Напряжение, В, по сути, это количество энергии, полученной или потерянной
Дополнительная информацияЦепи системы управления с операционными усилителями
Цепи системы управления с операционными усилителями 27.04.2009 Цель Внедрить операционные усилители, транзисторы и их применение. Внедрить систему управления с элементами аналоговой схемы. Разностный усилитель Рисунок 1 Основная разница
Дополнительная информацияИС биполярного шагового двигателя EDE1204
Двухполюсный шаговый двигатель EDE1204 IC EDE1204 Катушка B Управляющий сигнал 1 Катушка B Катушка A 18 Катушка A Управляющий сигнал Катушка B Управляющий сигнал 2 Катушка B Катушка A 17 Катушка A Управляющий сигнал Подключите к + 5V DC 3 + 5V OSC1 16 Генератор
Дополнительная информацияПрименение диодов
Применение диодов Учащиеся должны уметь: (а) описывать ВАХ кремниевого диода (б) описывать использование диодов для защиты компонентов в цепях постоянного тока и полуволнового выпрямления
Дополнительная информацияПолупроводник 21.09.2015
Полупроводниковая электроника 21.09.2015 Пусковой простой диод.Диод — один из простейших полупроводниковых приборов. Он состоит из двух слоев полупроводника. Один пропитан электроном
Дополнительная информацияОдноместный операционный усилитель малой мощности LM321
Одиночный усилитель малой мощности Общее описание LM321 обеспечивает производительность и экономичность системам с низким энергопотреблением. При высокой частоте единичного усиления и гарантированной скорости нарастания 0,4 В / мкс ток покоя составляет
Дополнительная информацияЦепи таймера LM555 и LM556
Цепи таймера LM555 и LM556 ВНУТРЕННЯЯ СХЕМА ТАЙМЕРА LM555 БЛОК СХЕМЫ «СБРОС» И «КОНТРОЛЬ» Примечания к входным клеммам Большинство схем на этом веб-сайте, которые используют микросхемы таймера LM555 и LM556, не поддерживают
Дополнительная информацияПРАКТИЧЕСКОЕ УСТРАНЕНИЕ НЕПОЛАДОК ЭЛЕКТРОНИКИ
ПРАКТИЧЕСКОЕ УСТРАНЕНИЕ НЕПОЛАДОК ЭЛЕКТРОНИКИ Второе издание Джеймс Пероццо 4 k 0 DELMAR PUBLISHERS INC.Содержание Предисловие / xiii первая глава Некоторые необходимые основы Обзор главы / 1 Необходимая справочная информация / 1 Несколько определений / 6
Дополнительная информацияГлава 11 Этапы вывода
1 Глава 11 Цели изучения выходных каскадов 2 1) Классификация выходных каскадов усилителя 2) Анализ и проектирование различных типов выходных каскадов 3) Обзор усилителей мощности Введение
Дополнительная информацияELM334 Швейцар гаража
EM Garage Doorman Описание EM — это интегральная схема для удаленного контроля положения электрических контактов (например, на двери гаража) и сообщения о положении с помощью цветных индикаторов ED.
Дополнительная информацияПовторное упражнение лабораторной работы 2
Повторное упражнение в лаборатории 2 + 15V 100k 1K 2N2222 Подключите светодиодный дисплей Обратите внимание на ориентацию светодиодов на проводах заземления 6.091 IAP 2008 Лекция 3 1 Компаратор, осциллятор +5 +15 1k 2 V- 7 6 Vin 3 V + 4 V o Обратите внимание, что питание
Дополнительная информацияLM2935 Двойной регулятор с малым падением напряжения
LM2935 Двойной стабилизатор с малым падением напряжения Общее описание Двойной стабилизатор 5 В LM2935 обеспечивает выход 750 мА, а также выход в режиме ожидания 10 мА.Он имеет низкий ток покоя 3 мА или меньше при питании
Дополнительная информацияТехнический лицензионный класс T6
Техническая лицензия Класс T6 Курс радиолюбителей Монро, EMS Building, Монро, Юта, 11/18 января 2014 г., 22 января 2014 г. Тестовая сессия Срок действия: 1 июля 2010 г. 30 июня 2014 г. Радиолюбитель
Дополнительная информацияСхема аудио / сервопривода
http: // www.scary-terry.com/audioservo/audioservo.htm Схема аудио / сервопривода Это схема, которую я разработал для управления сервоприводом с использованием различных источников звука. Моя цель в создании этого была относительно
Дополнительная информацияLM723 LM723C Регулятор напряжения
Регулятор напряжения LM723 LM723C Общее описание LM723 LM723C — регулятор напряжения, предназначенный в первую очередь для применения с последовательными регуляторами. Сам по себе он обеспечивает выходные токи до 150 мА, но
Дополнительная информацияBMC040.Двойная логика. Последнее обновление
BMC040. Двойная логика. Последнее обновление 2-1-2016. Если у вас есть какие-либо вопросы или вам нужна помощь в устранении неполадок, обращайтесь по электронной почте [email protected] I Обзор / функции II Схема III Конструкция A. Детали
Дополнительная информацияРуководство по семейству интеллектуального освещения Номер детали Описание Доступные пакеты CCFL / EEFL Интеллектуальные инверторные ИС Стр.ЖК-МОНИТОР (LCDM) ПРИМЕНЕНИЕ OZ9919 Выбираемый LCDM 16 SOP, бессвинцовый
Дополнительная информацияПрограммируемый операционный видеоусилитель с частотой 40 МГц
Программируемый операционный видеоусилитель с полосой пропускания 40 МГц Обычные высокоскоростные операционные усилители с полосой пропускания, превышающей 40 МГц, создают проблемы, которые обычно не встречаются в более медленных усилителях, таких как LF356
Дополнительная информация