Как работает симисторный регулятор мощности. Какие схемы используются для его создания. Как сделать мощный регулятор мощности своими руками. На что обратить внимание при выборе комплектующих. Какие меры безопасности необходимо соблюдать при сборке.
Принцип работы симисторного регулятора мощности
Симисторный регулятор мощности позволяет плавно изменять мощность, подаваемую на нагрузку, путем изменения угла открытия симистора. Симистор представляет собой полупроводниковый прибор, способный проводить ток в обоих направлениях.
Основной принцип работы такого регулятора заключается в следующем:
- В каждом полупериоде сетевого напряжения симистор открывается на определенный угол
- Чем больше угол открытия, тем большая часть синусоиды проходит через нагрузку
- Изменяя угол открытия симистора, можно регулировать эффективное напряжение и мощность на нагрузке
Момент открытия симистора задается RC-цепочкой, состоящей из переменного резистора и конденсатора. Изменяя сопротивление, можно регулировать время заряда конденсатора и, соответственно, момент открытия симистора.

Основные схемы симисторных регуляторов мощности
Существует несколько базовых схем симисторных регуляторов мощности:
1. Простейшая схема на динисторе
В этой схеме используется динистор для формирования управляющего импульса симистора. Основные компоненты:
- Симистор (например, BT136)
- Динистор (DB3)
- Переменный резистор 100-500 кОм
- Конденсатор 0.1 мкФ
2. Схема с диодным мостом
Вместо динистора используется диодный мост для формирования управляющих импульсов. Преимущество — более стабильная работа. Компоненты:
- Симистор
- Диодный мост на 4 диода
- Переменный резистор
- Конденсатор
3. Схема на специализированной микросхеме
Используются специальные микросхемы для управления симистором, например КР1182ПМ1. Преимущества — точная регулировка, дополнительные функции. Основные элементы:
- Микросхема КР1182ПМ1
- Симистор
- Минимум внешних компонентов
Как сделать мощный регулятор мощности своими руками
При самостоятельном изготовлении мощного симисторного регулятора следует учитывать несколько важных моментов:

Выбор симистора
Симистор необходимо выбирать с запасом по току минимум 30-50%. Например, для нагрузки 3 кВт (ток около 14 А) подойдет симистор на 25-40 А.
Радиатор охлаждения
Для мощностей свыше 1 кВт обязательно нужен массивный радиатор. Оптимальный вариант — радиатор с принудительным охлаждением вентилятором.
Толщина проводников
Дорожки печатной платы и соединительные провода должны выдерживать рабочий ток. Для 3 кВт рекомендуется использовать провод сечением 2.5-4 мм2.
Надежные соединения
Все соединения лучше паять, отказавшись от клемм и разъемов. Это снизит вероятность нагрева в местах контакта.
Защита от КЗ
Обязательно нужно установить автоматический выключатель соответствующего номинала для защиты от короткого замыкания.
Меры безопасности при изготовлении регулятора мощности
При самостоятельном изготовлении мощного регулятора необходимо соблюдать следующие меры безопасности:
- Использовать качественные комплектующие от проверенных производителей
- Тщательно изолировать все токоведущие части
- Обеспечить надежное заземление корпуса устройства
- Не превышать максимально допустимую мощность нагрузки
- Периодически проверять температуру нагрева компонентов
Типичные ошибки при создании мощных регуляторов
При самостоятельном изготовлении регуляторов мощности часто допускаются следующие ошибки:

- Выбор симистора с недостаточным запасом по току
- Использование радиатора недостаточной площади
- Применение тонких проводов и дорожек платы
- Ненадежные контактные соединения
- Отсутствие защиты от короткого замыкания
Области применения мощных симисторных регуляторов
Мощные симисторные регуляторы находят применение во многих областях:
- Регулировка яркости мощных осветительных приборов
- Управление нагревательными элементами
- Регулировка скорости вращения электродвигателей
- Плавный пуск мощных электроприборов
- Управление сварочными аппаратами
Преимущества и недостатки симисторных регуляторов
Симисторные регуляторы мощности имеют ряд преимуществ и недостатков по сравнению с другими типами регуляторов:
Преимущества:
- Высокий КПД
- Плавная регулировка мощности
- Простота конструкции
- Небольшие габариты
- Низкая стоимость
Недостатки:
- Генерация помех в сеть
- Нагрев симистора при больших мощностях
- Сложность управления индуктивной нагрузкой
Перспективы развития симисторных регуляторов мощности
Основные направления совершенствования симисторных регуляторов мощности:

- Применение новых типов симисторов с улучшенными характеристиками
- Использование микроконтроллеров для прецизионного управления
- Внедрение схем подавления помех
- Разработка интеллектуальных алгоритмов управления нагрузкой
- Интеграция с системами «умного дома»
Таким образом, симисторные регуляторы мощности остаются востребованным и перспективным решением для управления мощной нагрузкой переменного тока. При правильном проектировании и изготовлении они обеспечивают надежное и эффективное регулирование мощности в широком диапазоне.
Схема регулятора мощности на т142 80 2 — ЕГАИС
Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.
Схема мощного симисторного регулятора мощности
Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.
В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?
В первую очередь
Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.
Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А.
Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами.
Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.
Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.
Для сведения, медный провод сечением 2.5мм2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.
Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.
Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов.
Температура достигла 900С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу.
Иначе получим настоящую печь.
- Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
- Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
- Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.
Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.
Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.
О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.
Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.
В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм2.
Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.
- Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.
Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».
Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.
- Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
- Вывод.
- Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
- Печатная плата регулятора мощности СКАЧАТЬ
Регулятор мощности схема
Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.
Схема симисторного регулятора мощности на логических элементах |
На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан генератор прямоугольных импульсов, период колебания которого около 15-25 сетевых полупериодов.
Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.
4 поступает «1» и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был «ноль», то элементы DD1.4.DD1.
6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.
До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.
Схема симисторного регулятора мощности |
Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.
В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.
Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.
В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.
Вариант схемы с небольшими доработками на 3,5 кВт
Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!
Используемые в конструкции радиокомпоненты: Симистор Т1 — BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т — типа DB3 или DB4. Конденсатор 0,1мкФ керамический.
Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом.
Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается.
Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.
Симисторный регулятор мощности на 75 Ампер |
При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.
Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.
Самая простая схема симисторного регулятора |
В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда
При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.
Конденсатор С1 от 0,1…1,0 мкФ. Резистор R2 1,0…0,1 МОм.
Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.
Схема регулятор мощности на тиристоре КУ202М |
Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену в справочнике по транзисторам.
Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201
Регулятор мощности на 220 вольт |
Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.
С1, С2 — 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 — динистор, BTA26-600B — симистор, 1N4148/16 В — диод, светодиод любой.
Схема на 2 киловатта и на 220 вольт |
Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.
Дискретный регулятор мощности |
Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.
Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В.
Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.
На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.
Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5.
При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку.
Для того чтобы было понятней привожу векторные диаграммы работы схемы.
Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.
Регулятор мощности схема на КР1182ПМ1 и симисторе |
Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.
Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.
Регуляторы мощности для паяльника |
Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю
Регулятор мощности комбинированного типа |
Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.
Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.
Регулятор мощности на микроконтроллере |
Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.
Самодельный симисторный регулятор мощности
Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры.
Но симисторы тоже не стоит упускать из виду – они дешевые, у них маленький размер, а самое главное – высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.
Как работает симистор?
Можно ли сделать самому?
Схема регулятора
Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:
Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
Динистор с порогом открывания 32 В.
Для регулировки мощности используется переменный резистор.
Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора.
Последний при этом открывается, чтобы ток прошел к нагрузке.
Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается прямо пропорциональна сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.
Как работает устройство
Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.
Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора.
Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.
В схеме используются такие элементы:
Динистор типа DB3.
Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
Полупроводниковые диоды германиевые – 1N4007.
Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
Переменный резистор 100 кОм, постоянные – от 270 Ом до 1,6 кОм (подбираются опытным путем).
Особенности схемы регулятора
Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик.
В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах.
При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.
Подготовительные работы
Теперь можно приступить непосредственно к сборке устройства.
Сборка регулятора
Источник: fb.ru
Мощный симисторный регулятор мощности | audio-cxem.info
Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.
Схема мощного симисторного регулятора мощности
Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.
В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8. 5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?
В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.
Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.
Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.
Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.
Для сведения, медный провод сечением 2.5мм2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.
Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.
Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 900С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.
Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.
Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.
Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.
О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.
Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.
В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм2.
Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.
Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.
Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».
Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.
Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
Вывод.
Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
Печатная плата регулятора мощности СКАЧАТЬ
Микроконтроллер
— симистор самозапускающийся. Как я могу улучшить свою схему?
По этой причине я использовал симисторы, а не реле, так как последние вызывали проблемы со сбросом Arduino при питании индуктивных нагрузок.
У меня были проблемы с шумом от индуктивных нагрузок, просачивающимся через емкость между катушкой и контактом реле и вызывающим неполадки в работе микросхемы контроллера реле. Это была неприятная нагрузка, маленький двигатель переменного тока, управляющий клапаном, и у него был очень прыгучий концевой выключатель, который искрил и производил много шума.
Решение состояло в том, чтобы поставить демпфер на нагрузку, что в любом случае полезно для контактов реле. Это позаботилось о большей части шума в источнике. Затем я добавил конденсатор 10 нФ между выводом катушки, подключенным к драйверу, и землей, чтобы поймать то, что осталось от пика. С тех пор проблем больше нет.
нагреватель TRIAC сам срабатывает и в конечном итоге сжигает нагреватель.
Вот это интересно. Симистор может самопроизвольно срабатывать при некоторых обстоятельствах, но при резистивной нагрузке он должен оставаться включенным только в течение полупериода, а затем без проблем отключается. Довольно странно, что он постоянно срабатывает на резистивной нагрузке. Если, возможно, линия электропередачи не является достаточно индуктивной, и когда симистор выключается, всплески напряжения, и вы забыли добавить конденсатор X2 и / или MOV на входе сети питания вашей схемы, чтобы поглотить этот всплеск.
Или, возможно, срабатывает не симистор, а опто-триак или транзистор, управляющий светодиодом, если управляющий сигнал проходит по проводам, которые улавливают шум.
Вы обязательно должны поместить светодиод на вход опто-симистора, чтобы убедиться, что он не срабатывает из-за неправильного поведения Arduino.
удаление встроенного регулятора напряжения Arduino + экранирование микроконтроллера не должно вызывать проблем со сбросом
Экран бесполезен, если через экран торчит много проводов. По сути, обычный прототип Arduino будет очень чувствителен к шуму и сбоям, потому что он состоит из нескольких плат и модулей, соединенных кучей проводов. Итак, во-первых, у него нет земли, так как любой ток, проходящий через беспорядок заземляющих проводов, приведет к тому, что каждая плата будет иметь различное представление о том, что такое «0V». Затем контакты GPIO микроконтроллера напрямую подключаются к разъемам платы без какой-либо защиты, без диодов, без колпачков, без TVS, поэтому любые пики, подхваченные проводами, напрямую заденут входные контакты и сломают микроконтроллер.
Регулятор напряжения, скорее всего, невинный наблюдатель.
Если вы хотите, чтобы он был более надежным, вам нужно поместить микро на хорошей плате с хорошим заземлением и установить хотя бы минимальную фильтрацию на IO. Например, если у вас есть разъем ввода-вывода, вы можете поместить резистор и двойной диод Шоттки BAT54S (по 4 полюса каждый на разъеме reichelt) на каждую линию, один диод на землю, а другой на VCC. Добавьте развязывающий конденсатор на VCC рядом с диодами, чтобы обеспечить короткий путь к заземлению для токов, которые диоды будут отводить от вашего микро. Вы также можете фильтровать входы с помощью RC или поставить транзистор. Но лучше всего иметь все на плате, с хорошим заземлением и без путаницы проводов.
Китай Производитель стабилизатора напряжения, Солнечная панель, Поставщик стабилизатора напряжения
Стабилизатор напряжения
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Панель солнечных батарей
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Свяжитесь сейчас
Солнечная система
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Солнечный контроллер
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Видео
Свяжитесь сейчас
Профиль компании
{{ util. each(imageUrls, функция(imageUrl){}}
{{ }) }}
{{ если (изображениеUrls.length > 1){ }}
{{ } }}
Вид бизнеса: | Производитель/Фабрика | |
Деловой диапазон: | Электрика и электроника | |
Основные продукты: | Стабилизатор напряжения , Солнечная панель | |
Сертификация системы менеджмента: | ИСО9001:2015, ИСО14001:2015, ОХСАС18001:2007 | |
Основные рынки: | Европа, Юго-Восточная Азия/Ближний Восток, Африка | |
Среднее время выполнения: | Время выполнения в пиковый сезон: один месяц Время выполнения в межсезонье: один месяц |
Компания Zhejiang TTN Electric Co.