Обозначение реостата на схеме: Условное обозначение реостата на схеме

Содержание

Условное обозначение реостата на схеме

Резистор (англ. resistor от лат. resisto — сопротивляюсь) —один из самых распространенных радиоэлементов. Даже в простом транзисторном приемнике число резисторов достигает нескольких десятков, а в современном теле-иизоре их не менее двух-трех сотен.

Резисторы используют в качестве нагрузочных и токоограничительных элементов, делителей напряжения, добавочных сопротивлений и шунтов в измерительных цепях и т. д.

Основным параметром резистора является сопротивление, характеризующее его способность препятствовать протеканию электрического тока. Сопротивление измеряется в омах, килоомах (тысяча Ом) и мегаомах (1 000000 Ом).

Постоянные резисторы

Вначале резисторы изображали на схемах в виде ломаной линии — меандра (рис. 1,а, б), которая обозначала высокоомный прокол, намотанный на изоляционный каркас. По мере усложнения радиоприборов число резисторов в них увеличивалось, и, чтобы облегчить начертание, их с шли изображать на схемах в виде зубчатой линии (рис. 1,в).

На смену этому символу пришел символ в виде прямоугольника (рис. 1,г), который стали применять для обозначения любого резистора, независимо от его конструкции и особенностей.

Рис. 1. Постойнные резисторы и их обозначение.

Постоянные резисторы могут иметь один или несколько отводов от резистивного элемента. На условном обозначении такого резиетора дополнительные выводы изображают в том же порядке, как это имеет место в самом резисторе (рис. 2). При большом числе отводов длину символа допускается увеличивать.

Рис. 2. Постоянные резисторы с отводами – обозначение.

Сопротивление постоянного резистора, как говорит само название, изменить невозможно. Поэтому, если в цепи требуется установить определенный ток или напряжение, то для этого приходится подбирать отдельные элементы цепи, которыми часто являются резисторы. Возле символов этих элементов на схемах ставят звездочку * — знак, говорящий о необходимости их подбора при настройке или регулировке.

Обозначение сопротивления резисторов

Нимннальную мощность рассеяния резистора (от 0,05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа (рис. 3). Заметим, мм ни таки не должны касаться контура условного обозначения резистора.

Рис. 3. Обозначение мощности резисторов.

На принципиальной схеме номинальное сопротивление резистора указывают рядом с условным обозначением (рис. 4). Согласно ГОСТ 2.702—7S сопротивлении от 0 до 999 Ом указывают числом без единицы измерения (2,2; 33, 120. ), от 1 до 999 кОм — числом с бумвой к (47 к, 220 к, 910к и т. д.),свыше 1 мегаома — числом с буквой М (1 М, 3,6М и т. д.).

Рис. 4. Обозначение сопротивления для резисторов на схемах.

На резисторах отечественного производства номинальное сопротивление, допускаемое отклонение от него, а если позволяют размеры, и номинальную мощность рассеяния указывают в виде полного или сокращенного (кодированного) обозначения.

Согласно ГОСТ 11076—69 единицы сопротивления в кодированной системе обозначают буквами Е (ом), К (килоом) и М (мегаом). Так, резисторы сопротивлением 47 Ом маркируют 47Е, 75 Ом —75Е, 12 кОм — 12К, 82 кОм —82К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения:

  • 180 Ом = 0,18 кОм = К18;
  • 910 Ом = 0,91 кОм = К91;
  • 150 к0м = 0,15 МОм = М15;
  • 680 к0м = 0,68 МОм = М68 и т. д.

Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 2,2 Ом — 2Е2; 5,1 кОм —5К1; 3,3 МОм — ЗМЗ и т. д.

Кодированные буквенные обозначения установлены и для допускаемых отклонений сопротивления от номинального. Допускаемому отклонению ±1% -соответствует буква Р, ±2%—Л, ±5%—И, ±10% —С, ±20%—В. Таким образом, надпись на корпусе резистора К75И обозначает номинальное сопротивление 750 Ом с допускаемым отклонением ±5%; надпись МЗЗВ — 330 кОм ±20% и т. д.

Переменные резисторы

Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.

Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.

В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).

В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.

Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.

Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.

Рис. 5. Реостаты и переменные резисторы – условное обозначение.

Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при

бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.

Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.

Рис. 6. Обозначение потенциометра на принципиальных схемах.

К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.

Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.

Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.

Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.

Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:

  • А — с линейной,
  • Б — с логарифмической,
  • В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).

Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.

Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.

Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).

Регулируемые резисторы

Регулируемые резисторы – резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами. Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

Рис. 9. Обозначение переменного резистора с отводами.

Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).

Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).

Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

Подстроечные резисторы

Подстроечные резисторы — разновидность переменных. Узел щеточного контакта таких резисторов приспособлен для управления отверткой. Условное обозначение подстроечного резистора (рис. 12) наглядно отражает его назначение: это, по сути, постоянный резистор с отводом, положение которого можно изменять.

Рис. 12. Внешний вид и обозначение подстроечных резисторов.

Общее обозначение подстроечного резистора отличается тем, что вместо знака регулирования использован знак подстроечного регулирования.

Нелинейные резисторы

В радиотехнике, электронике и автоматике находят применение нелинейные саморегулирующиеся резисторы, изменяющие свое сопротивление поя действием внешних электричеоких или неэлектрических факторов: угольные столбы, варисторы, терморезисторы и tj д.

Угольный столб, представляющий собой пакет угольных шайб, изменяет свое сопротивление под действием механического усилия.

Рис. 13. Вид и обозначение нелинейных саморегулирующихся резисторов.

Для сжатия шайб обычно используют электромагнит. Изменяя напряжение на его обмйтке, можно в больших пределах изменять степень сжатия шайб и, следовательно, сопротивление угольного столба.

Используют такие резисторы в стабилизаторах и регуляторах напряжения. Условное обозначение угольного столба состоит из ба-зовцго символа резистора и знака нелинейного саморегулирования с буквой Р, которая символизирует механическое усилие — давление (рис. 13,а).

Терморезисторы, как говорит само название, характеризуются тем, что их сопротивление изменяется под действием температуры. Токопроводящие элементы этих резисторов изготовляют из полупроводниковых материалов.

Сопротивление терморезистора прямого подогрева изменяется за счет выделяющейся в нем мощности или при изменении температуры окружающей среды, а терморезистора косвенного подогрева — под действием тепла, выделяемого специальным подогревателем.

Зависимость сопротивления терморезисторов от температуры имеет нелинейный характер, поэтому на схемах их изображают в виде нелинейного резистора со знаком температуры —1° (рис. 13,6, в).

Знак температурного коэффициента сопротивления (положительный, если с увеличением температуры сопротивление терморезистора возрастает, и отрицательный, если оно уменьшается) указывают только в том случае, если он отрицательный (рис. 13,в).

В условное обозначение терморезистора косвенного подогрева кроме знака нелинейного регулирования входит символ подогревателя, напоминающий перевернутую латинскую букву U (рис. 13,г).

Нелинейные полупроводниковые резисторы, известные под названием варисторов, изменяют свое сопротивление при изменении приложенного к ним напряжения.

Существуют варисторы, у которых увеличение напряжения всего в 2—3 раза сопровождается уменьшением сопротивления в несколько десятков раз. На схемах их обозначают в виде нелинейного саморегулирующегося резистора с латинской буквой U (напряжение) у излома знака саморегулирования (рис. 13,3).

В системах автоматики широко используют фоторезисторы — полупроводниковые резисторы, изменяющие свое сопротивление под действием света. Условное графическое обозначение такого резистора состоит из базового символа, помещенного в круг (символ корпуса полупроводникового прибора), и знака фотоэлектрического эффекта — двух наклонных параллельных стрелок.

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Резистор (англ. resistor, от лат. resisto—сопротивляюсь) — радиокомпонент, основное назначение которого оказывать активное сопротивление электрическому току. Основные характеристики резистора — номинальное сопротивление и рассеиваемая мощность. Наиболее широко используются постоянные резисторы, реже — переменные, подстроечные, а также резисторы, изменяющие свое сопротивление под действием внешних факторов.

Постоянные резисторы бывают проволочными (из провода с высоким и стабильным удельным сопротивлением) и непроволочными (с резистивным элементом, например, в виде тонкой пленки из оксида металла, пиролитического углерода и т. д.). Однако на схемах их обозначают одинаково — в виде прямоугольника с линиями электрической связи, символизирующими выводы резистора (рис. 1). Это условное графическое обозначение — основа, на которой строятся обозначения всех разновидностей резисторов. Указанные на рис. 1 размеры резисторов установлены ГОСТом и их следует соблюдать при вычерчивании схем.

На схемах рядом с обозначением резистора (по возможности сверху или справа) указывают его условное буквенно-цифровое позиционное обозначение и номинальное сопротивление. Позиционное обозначение состоит из латинской буквы R (Rezisto) и порядкового номера резистора но схеме. Сопротивление от 0 до 999 Ом указывают числом без обозначения единицы измерения (51 Ом —> 51), сопротивления от 1 до 999 кОм — числом со строчной буквой к (100 кОм —> 100 к), сопротивления от 1 до 999 МОм — числом с прописной буквой М (150 МОм —> 150 М).

Если же позиционное обозначение резистора помечено звездочкой (резистор R2* на рис.1), то это означает, что сопротивление указано ориентировочно и при налаживании устройства его необходимо подобрать по определённой методике.

Номинальную рассеиваемую мощность указывают специальными значками внутри условного графического обозначения (рис. 2).

Постоянные резисторы могут иметь отводы от резистивного элемента (рис. 3, а), причем, если необходимо, то символ резистора вытягивают в длину (рис. 3, б).

Переменные резисторы используют для всевозможных регулировок. Как правило, у такого резистора минимум три вывода: два — от резистивного элемента, определяющего номинальное (а практически — максимальное) сопротивление, и один — от переметающегося по нему токосъемника — движка. Последний изображают в виде стрелки, перпендикулярной длинной стороне основного условного графического изображения (рис. 4, а). Для переменных резисторов в реостатном включении допускается использовать условное графическое изображение рис. 4, б. Переменные резисторы с дополнительными отводами обозначаются так, как показано на рис. 4, е. Отводы у переменных резисторов показывают так же, как и у постоянных (см. рис. 3).

Для регулирования громкости, тембра, уровня в стереофонической аппаратуре, частоты в измерительных генераторах сигналов применяют сдвоенные переменные резисторы. На схемах условных графических изображений входящие в них резисторы стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 5, а). Если же сделать этого не удается, т. е. символы резисторов оказываются на удалении один от другого, то механическую связь изображают отрезками штриховой линии (рис. 5, б). Принадлежность резисторов к сдвоенному блоку указывают в позиционном обозначении (R2.1 — первый резистор сдвоенного переменного резистора R2, R2.2 — второй).

В бытовой аппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с условным графическим изображением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны обозначения, при перемещении к которой движок воздействует на выключатель, (рис. 6, а). При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае если обозначение резистора и выключателя на схеме удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 6, б).

Подстроенные резисторы — это разновидность переменных. Узел перемещения движка таких резисторов чаще всего приспособлен для управления отверткой и не рассчитан на частые регулировки. Обозначение подстроечного резистора (рис. 7) наглядно отражает его назначение: практически это постоянный резистор с отводом, положение которого можно изменять.

Из резисторов, изменяющих свое сопротивление под действием внешних факторов, наиболее часто используют терморезисторы (обозначение RK) и варисторы (RU). Общим для условного графического изображения резисторов этой группы является знак нелинейного саморегулирования в виде наклонной линии с изломом внизу (рис. 8).

Для указания внешних факторов воздействия используют их общепринятые буквенные обозначения: f (температура), U (напряжение) и т. д.

Знак температурного коэффициента сопротивления терморсзисторов указывают только в том случае, если он отрицательный (см. рис. 8, резистор RK2).

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как на схемах изображают реостат. Реостат и методы его включения

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).


В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а ).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит. ]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).


На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления R л лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее — она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор — реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Инструкция

Используя учебник по , повторите, как распределяется ток в случаях параллельного и последовательного включения резисторов в электрическую цепь. Знание данных закономерностей позволит правильно подключить реостат. Как известно, при параллельном подключении резистора в цепь ток, проходящий ранее через элемент, к которому подключается , разделяется на две части: одна часть течет через первоначальный элемент, а другая – через резистор.

Нарисуйте схему параллельного включения реостата в цепь, если вам необходимо шунтировать некоторый элемент цепи и контролировать силу тока через него в максимально возможных пределах. При максимально возможном значении сопротивления реостата ток через исследуемый элемент остается первоначальным, а при минимальном сопротивлении весь ток проходит через реостат в обход элемента.

Обратите внимание, что параллельного включения реостата не позволит вам контролировать общий ток в цепи, ибо при параллельном подключении элементов общая сила тока не изменяется, она только распределяется между отдельными ветвями.

Если же вам необходимо иметь возможность изменять общий ток цепи, то реостат нужно подключить последовательно с элементами цепи. Тогда появится возможность изменять общее сопротивление цепи, регулируя таким образом и общий ток.

Заметьте, что при подключении реостата последовательно с исследуемым элементом появляется возможность увеличивать и уменьшать напряжение на элементе. Это обосновывается тем, что напряжение в цепи распределятся по элементам в соответствии с правилом: чем больше сопротивление, тем больше напряжение, падающее на данном элементе.

Обратите также внимание на то, что при подключении реостата в цепь последовательно с исследуемым элементом можно контролировать не только напряжение на данном элементе, но и силу тока. Ведь при изменении тока в общей цепи его значение изменяется и в отдельных элементах цепи, включенных последовательно в цепь. Между тем, существует определенное различие между двумя способами регулирования силы тока через элемент. В случае подключения реостата последовательно вы получаете возможность изменять силу тока в исследуемом элементе, не затрагивая всю схему, а значит, не вторгаясь в режим работы устройства. В случае же включения реостата последовательно в электрическую цепь любые манипуляции с ним приводят к колебаниям силы тока во всей цепи, нарушая, таким образом, работу прибора.

Изменение тока, происходящее при изменении сопротивления, зависит от того, каким именно является исследуемой резистивный элемент, а именно, от того, какой вольт-амперной характеристикой он обладает.

Вам понадобится

  • Учебник по физике 8 класса, лист бумаги, шариковая ручка.

Инструкция

Прочитайте в учебнике по формулировку выражения закона Ома. Как известно, именно этот закон описывает связь электрического тока и напряжения на участке цепи. По закону Ома, сила тока прямо пропорциональна напряжению на участке цепи и обратно пропорциональна сопротивлению данного участка. Таким образом, очевидным является, что при увеличении сопротивления ток, проходящий через него, уменьшается.

Обратите внимание, что зависимость тока от сопротивления участка цепи является гиперболической, что говорит о резком спаде тока при увеличении значения сопротивления.

Помните, что такая зависимость тока от сопротивления является справедливой лишь для участка цепи, состоящего из одного элемента, а также лишь для обычных линейных резистивных элементов. Линейность в данном случае означает то, что вольт-амперная (зависимость тока от напряжения) представляется в виде прямой линии.

Напишите на листе бумаги выражение для закона Ома . Оно будет равно произведению силы тока на сопротивление резистора. Придайте сопротивлению несколько постоянных значений и запишите соответствующие законы Ома для каждого из них. Вы получите уравнения прямых с различными коэффициентами.

Соберём цепь, изображённую на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил:

Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Обрати внимание!

Сопротивление проводника прямо пропорционально его длине, т.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решётки проводника. Из-за различия в строении кристаллической решётки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Для характеристики материала вводят величину, которую называют удельным сопротивлением.

Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м и площадью поперечного сечения \(1\) м².

Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:

R = ρ ι S .

Из этой формулы можно выразить и другие величины:

ι = RS ρ , S = ρ ι R , ρ = RS ι .

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1\) м², а единицей длины — \(1\) м, то единицей удельного сопротивления будет:

1 Ом ⋅ 1 м 2 1 м = 1 Ом ⋅ 1 м, т.е. Ом ⋅ м.

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

1 Ом ⋅ 1 мм 2 1 м, т.е. Ом ⋅ мм 2 м.

В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.

Обрати внимание!

Удельное сопротивление с изменением температуры меняется.

Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.

Обрати внимание!

Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.

На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке.

В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединённого с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.

Реостатом называют электрическое устройство используемое для ограничения и регулировки тока или напряжения в электрической схеме.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:


Керамического цилиндра
Металлическая проволока — которая наматывется на трубку из керамики, концы проволоки выведены на контакты (зажимы), расположенные на противоположных концах трубки с обоих сторон;
Металлическая штанга — установлена чуть выше трубки, на одной стороне которой имеется контактная клемма;
Движущийся контакт — закреплен на штанге, который иногда называют ползун.

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б — токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:


Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.


При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

R реост =U реост /I

Падение напряжения находится по формуле ниже:

U реост =U ист -U потр

У реостата имеется всего два вывода, а у его родственника , целых три. Поэтому больше не путайте их между собой.

Как обозначается реостат на схеме. Что такое реостат? Виды и их назначение. Тема: Электромагнитные явления

Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия. Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети. Итак, реостат – это прибор, регулирующий напряжение и ток.

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает. Обратите внимание на рисунок ниже.

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

И еще один момент. В электрических схемах обозначение этих приборов вот такое:

или такое

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

Прибор, способный справляться с изменением сопротивления, принято называть реостатом. Структурно он представлен набором резисторов, которые подключены между собой ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделяются устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определиться, для чего нужен реостат, нужно детальнее рассмотреть его особенности и принцип работы.

Описываемые приспособления универсальны в применении. В зависимости от непосредственного назначения их принято разделять на такие виды:

Важно! Реостаты применяются в качестве ограничителей тока в обмотках возбуждения электромашин с постоянным током.

Таким способом выравниваются сильные перепады электрического тока, а также динамические перегрузки, влекущие повреждение привода и всего механизма, подведенного к нему. Обеспечение подходящего сопротивления в момент запуска продлевает эксплуатационный срок коллектора и щеток.

В отдельную группу выделяются потенциометры. Они представляют собой делители напряжения, в основу которых заложены переменные резисторы. Такие приборы дают возможность применять в электронных схемах разное напряжение без дополнительных блоков питания, трансформаторов. Регулирование силы тока посредством реостата часто задействуется в радиотехнической сфере. Ярким тому примером выступает изменение громкости в динамиках.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Важно! Большинство положений бегунка используют только часть реостата. При изменении длины проводника осуществляется регулировка силы электротока в рабочей цепи. С целью предупреждения преждевременного износа витков ползунок оснащается скользящим контактом (колесико или стержень из графита).

Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.

Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Определив, для чего предназначены реостаты, следует подробнее рассмотреть их составляющую сторону. В зависимости от материала, используемого на производстве, выделяются следующие установки:

  • керамические — особенность заключается в применении при небольших мощностях;
  • металлические — нашли широкое потребление в разных направлениях деятельности человека;
  • угольные — их основное использование в промышленности.

Важно! Тепло отводится масляным, водяным или воздушным путем. Если нет возможности рассеивания тепла с рабочей поверхности, задействуется жидкостное охлаждение. Теплоотдача может повышаться за счет применения вентилятора и радиатора.

Напряжение, сила тока в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в непосредственной зависимости. Такая особенность положена в основу датчика угла поворота. В подобном приборе конкретная электрическая величина соответствует определенному положению ротора.

В настоящее время подобные датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной тому выступает неустойчивость зависимости сопротивления и угла по отношению к температурному действию. Постепенное вытеснение датчиков реостатного типа еще обусловлено переходом на цифровые, более удобные системы. Сегодня резистивные измерители задействуются в схемах, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, легко можно объяснить их широкое использование в автомобилестроении, технике, промышленности. Сопротивление необходимо для работы радиотехники, при запуске электродвигателей, они применимы в виде активной нагрузки. Выход из строя небольшого прибора может повлечь сбой работы всей системы. В этом и заключается важность реостатов

Обычно редко кто задумывается, каким образом в различных приборах регулируется уровень звука. Во многих электрических приборах регулировка громкости звука осуществляется за счет изменения силы тока. Для этого чаще всего применяется специальный аппарат, разработанный Иоганном Христианом Поггендорфом, который регулирует силу тока и напряжение электрической сети, он получил название – реостат.

Итак, реостат представляет собой прибор, основная задача которого заключается в регулировке напряжения и силы тока. Этот элемент электрической сети весьма распространен, его применяют в физике, радиотехнике, электронике.

Устройство реостата

Устройство реостата для опытного физика не вызывает трудностей и представляет собой керамический полый цилиндр с металлической обмоткой, концы которой выведены на специальные контакты, получившие название клеммы, расположенные с обеих сторон керамического цилиндра. В качестве обмотки применяется материал, обладающий большим удельным сопротивлением, за счет этого даже небольшое изменение длины отражает изменение и сопротивления. Вдоль цилиндра расположен металлический шланг, на котором закреплен движущийся контакт, который получил название ползунок.

Керамический цилиндр внутри пуст для того, чтобы происходило охлаждение прибора при прохождении через него электроэнергии. Для безопасности ряд приборов имеют специальный кожух, скрывающий все внутренности механизма.

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

  • Пусковые реостаты предназначены для запуска электродвигателей с постоянным или переменным током;
  • Пускорегулирующие реостаты не только предназначены для запуска двигателей с постоянным током, но и для регулировки силы тока;
  • Балластные реостаты, еще получили название нагрузочные, поглощают энергию, которая необходима для регулирования нагрузки на электрогенераторах, т.е. создают нужное сопротивление в электрической сети;
  • Реостаты возбуждения применяются в электрических машинах для регулировки постоянного и переменного тока, они поглощают лишнюю энергию;
  • В особорую группу выделяют реостаты, предназначенные для деления напряжения, их называют потенциометрами. Они позволяют применять в одном приборе различные напряжения, не используя дополнительные приспособления, такие как трансформаторы и блоки питания. В этом случае реостат имеет 3 клеммы, где нижние клеммы используются для входа тока, а верхняя и одна нижняя – в качестве выхода. Регулировка напряжения осуществляется при движении ползунка.

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Виды реостатов по материалу их изготовления

Главным элементом, определяющим принцип работы реостата, является материал, из которого он изготовлен. Кроме того, при прохождении через прибор тока должно происходить его охлаждение: воздушное или жидкостное. Воздушное охлаждение происходит благодаря полому цилиндру и применимо во всех приборах. Жидкостное охлаждение используется только для реостатов, изготовленных из металла. Охлаждение происходит за счет полного погружения в жидкость или отдельных частей прибора. Жидкостные реостаты могут быть водными или масляными.

Можно выделить следующие реостаты по материалу изготовления:

  • Металлические реостаты с воздушным типом охлаждения наиболее распространены, поскольку применимы в различных сферах и для различных приборов, сопротивление в них может быть постоянным или ступенчатым. Достоинством подобных конструкций являются компактные размеры, достаточно простая конструкция, доступная ценовая стоимость. Металлические жидкостные реостаты представляют собой сосуд, наполненный жидкостью. В качестве материала изготовления могут быть использованы сталь, чугун, хром, никель, железо и др.;
  • Жидкостные реостаты применимы для регулировки силы тока;
  • Керамические – применимы при относительно небольших нагрузках;
  • Угольные на сегодняшний день применяются только в промышленной сфере и представляют собой ряд шайб из угля, сжатых друг с другом при помощи пружин. Изменение сопротивления данного типа реостата происходит при помощи изменения силы сжатия пружин.

Задаваясь вопросом, зачем в повседневной жизни нужен данный прибор, можно получить банальный ответ: ни один современный телевизор не обходится без реостата. Благодаря этому прибору, происходит регулировка уровня громкости, также он связан с возможностью переключения каналов.

Как видно, это действительно универсальный и незаменимый компонент. Стоит подчеркнуть, что разновидностей реостатов весьма много, в зависимости от их основного предназначения. На сегодняшний день реостат применяется в промышленной сфере, в автомобилестроении, в современной электронной технике. Он широко применим в радиотехнике и различных типах электродвигателей. Выход из строя реостата способен вывести из строя всю систему электросети.

Видео

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R . Если изменять сопротивление проводника R , тогда будет меняться сила тока.

Сопротивление зависит от длины L , от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов
Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

обозначение на схеме, для чего нужны реостаты

Этот электрический прибор был изобретён немецким физиком Поггендорфом во второй половине XIX века. Первый образец устройства давал ясное представление о том, что такое реостат (РС). Его предназначение заключалось в том, чтобы путём изменения собственного сопротивления влиять на величину силы тока и напряжения в электрической цепи.

а) – ползунковый реостат, где В – ввод, А – выход электрического тока; б) – схематичное изображение РС

Как устроен реостат

Реостат это управляемое переменное сопротивление, которое может изменять параметры тока в электрической цепи.

В результате большого количества экспериментов и научно-технических исследований появились различные модели реостатов, такие как:

  • проволочный;
  • ползунковый;
  • жидкостный;
  • ламповый.

Проволочный

Это простейший реостат. Он состоял из проволоки с высоким удельным сопротивлением, натянутой на раму. Она проходила сразу через несколько разъёмов. Включая тот или иной контакт, добивались изменения длины проводника. Тем самым получали нужную величину сопротивления, следовательно, изменялись параметры силы тока и напряжения в электрической цепи. Недостатком такого устройства являлась ограниченность длины проводника, соответственно, диапазона изменений характеристик тока.

Ползунковый

Ползунковый прибор – это классика строения реостата. РС представляет собой удлинённую катушку, которая выглядит как цилиндр из диэлектрического материала с намотанным на него проводом, покрытого окалиной. По штанге поступательно передвигается ползунок, который касается контактами спирали катушки. Прибор подключают к электрической цепи в двух точках: это контакт ползунка и один из концов катушки.

Жидкостный

Аппарат представляет собой ёмкость, заполненную электролитом, в которую погружены два электрода в виде металлических пластин. Сопротивление тока, протекающего через электролит, напрямую зависит от промежутка между электродами и обратно пропорционально площади поверхности электродов.

Ламповый

Сопротивление в цепи регулируется количеством включённых параллельно ламп накаливания. Это не очень удачное решение. Регулировка параметров тока дорого обходится за счёт большой траты электроэнергии, потребляемой лампами накаливания.

Важно! Все вышеперечисленные устройства давно канули в прошлое, кроме ползункового реостата. Это были пионеры в сфере регулировки параметров электрического тока. На смену им пришли экономичные и компактные переменные резисторы. Несмотря на это, принцип работы устройств остался прежним.

Принцип работы

Принцип работы РС можно рассмотреть на примере действия ползункового прибора. Ползун перемещается вдоль катушки поперёк витков намотки. По бокам керамического цилиндра установлены две стойки, которые поддерживают горизонтальную штангу. Ползун надет через отверстие в корпусе на эту горизонтальную ось, по которой он свободно перемещается.

Ползунок двумя металлическими пластинками трётся о витки катушки. Ток не может проходить напрямую через витки, а только по спирали. Следовательно, работать может только та часть катушки, которая заключена между входным контактом и ползунком. Этим была решена проблема ограниченности длины проводника проволочного РС.

Чем ближе контактор к входному контакту катушки, тем меньше сопротивление РС. В результате уменьшается напряжение, и увеличивается сила тока электрической цепи. Напряжение подаётся на всю длину обмотки, а рабочий ток снимается контактами ползуна. Контактор в принципе разделяет РС на два последовательно соединённых резистора.

Обратите внимание! Реостат на схеме обозначают в виде прямоугольника со стрелкой. Геометрическая фигура – это катушка, а стрелка означает ползунок.

Обозначение реостата на электросхеме

Виды реостатов

Основные три вида реостатов:

  • тороидальный реостат;
  • рычажный тип;
  • штепсельный РС.

Тороидальный реостат

Обмотка РС представляет собой тороидальную конструкцию, верхняя поверхность которой образует контактную дорожку. Поворотный контактор вращается вокруг своей оси, касаясь обмотки. Тороидальная катушка обеспечивает неразрывность электрической цепи во время поворота ползуна.

Эту особенность переменного сопротивления используют в городском электротранспорте. Беспрерывная перемена силы тока и напряжения питания электродвигателя обеспечивает плавное перемещение транспортного средства. При поломке устройство не подлежит ремонту. Потребуется замена прибора новым реостатом.

Тороидальный реостат

Рычажный тип

В отличие от тороидальной модели, рычажный реостат меняет величину сопротивления тока рывками. Рычаг, исполняя роль контактора, передвигается с одного контакта на другой. В устройстве расположено несколько резисторных линий с определённым сопротивлением. Рычажный бегунок одновременно работает выключателем одной линии и включателем другого резистора.

Штепсельные РС

Как и рычажный тип РС, штепсельные устройства регулируют сопротивление электрической цепи ступенчато. Единственное отличие заключается в том, что переход от одного режима к другим параметрам тока происходит без разрыва цепи. При извлечении очередного штепселя происходит перенаправление энергетического потока через определённый резистор.

Материалы изготовления

Реостаты по виду материала изготовления делятся на 4 типа. Это угольные, металлические, жидкостные и керамические РС:

  1. К угольным устройствам относятся модели, где переменным сопротивлением выступает графитовый стержень.
  2. Металлическим примером исполнения могут быть ползунковые реостаты. У них переменный резистор – это катушка из металлической проволоки.
  3. Жидкостные переменные сопротивления используются для регулирования работы электродвигателей во взрывоопасной атмосфере.
  4. К керамическим реостатам относятся тороидальные приборы. Их устройство описано выше по тексту.

Охлаждение

Электричество, пройдя через резистор, тратит часть энергии на преодоление сопротивления проводника, которая преобразуется в тепло. При чрезмерном его выделении реостат может сильно перегреться и прийти в полную негодность.

По этой причине применяют, согласно ГОСТу, две системы охлаждения переменных резисторов, это:

  • воздушная;
  • жидкостная.

Воздушная система охлаждения

Она основана на принудительной вентиляции. Для этого применяют лопастные и турбинные вентиляторы. В реостате датчик производит измерение уровня нагрева прибора. При достижении допустимого порога температуры датчик подаёт сигнал на включение системы вентиляции. При понижении нагрева вентилятор выключается.

Жидкостное охлаждение

Жидкостное охлаждение переменного резистора большой мощности осуществляется с помощью саркофага, в рубашке которого постоянно циркулирует минеральное масло. Оно отводит тепло от реостата наружу.

Для чего нужен РС

Исходя из того, для чего нужен реостат, переменные устройства делятся на следующие виды:

  • пускорегулирующие приборы;
  • пусковые РС;
  • балластники;
  • нагрузочные устройства.

Пускорегулирующие приборы

Реостаты применяют в системе управления электродвигателями постоянного тока. При переменном токе РС включают в схему питания асинхронных двигателей с фазовым ротором.

Пусковые РС

Их основное назначение – это понижение величины силы пускового тока во время старта электромотора. Также такие реостаты работают в системах рекуперативного реостатного торможения. Оно нужно для плавного снижения скорости вращения роторов электромоторов и генераторов.

Балластники

Балластные РС быстро поглощают энергию, которая выделяется при резком торможении электродвигателя. То есть происходит сброс балласта в виде излишней электроэнергии.

Нагрузочные устройства

РС этого вида создают дополнительную нагрузку в электроцепи. Это нужно для поддержания необходимых процессов, связанных с режимом работы различных приборов, двигателей и других устройств.

Датчики на основе реостата

Положение ползуна в РС определяет величину напряжения и силы тока в рабочей цепи электрического тока. Изготовить датчик на основе реостата не составляет особого труда. К тороидальному переменному сопротивлению подводят фазу и ноль питания, на выход выводят изменённую фазу из резистора и ноль.

Сегодня на смену устаревшим приборам пришли оптические и магнитные аналоги. Датчики на основе переменных резисторов ещё продолжают массово применять в радиотехнике. Это подстроечные сопротивления регуляторов уровня громкости и других опций.

Датчик на основе реостата

Поворачивая ручку регулировки громкости радиоустройства, перемещают ползунок по графитовому диску. От его положения зависят сопротивление цепи и мощность звукового сигнала.

Реостат печки отопления салона автомобиля

Сама печка автомобиля во включённом состоянии находится в статичной степени нагрева. Уровень температуры воздуха в салоне зависит от скорости вращения ротора вентилятора. Реостат, встроенный в цепь питания вентилятора, меняет скорость воздушного горячего потока через ручное управление.

Существуют комбинированные системы обогрева салона автомобиля. Это когда степень нагрева воздушного потока регулируется двумя реостатами: самой печки и вентилятора.

Реостат печки автомобиля

Дополнительная информация. Типичной причиной выхода из строя системы обогрева салона часто бывает перегорание предохранителя. Поломку устраняют перепайкой электрической детали.

С развитием научно-технического прогресса многие электроприборы быстро устаревают. На смену им приходят более совершенные устройства, менее затратные и более эффективные. То же происходит с реостатами. Электротехническая промышленность постоянно поставляет на рынок всё более новые и совершенные виды резисторов.

Видео

Как решать задачи с реостатом

Знакомство с реостатом впервые происходит в школе в 8-м классе на теме «Электрические явления». Выполняется ряд лабораторных работ по электричеству, рассматривается ряд электрических схем.

Но к 10-му классу непонятные вопросы при решении задач все-таки остаются.

Давайте разберёмся с этим физическим прибором и рассмотрим ряд примеров и задач, которые встречались на экзамене и вполне могут встретиться.

В основе решения задач с реостатом надо знать формулу зависимости сопротивления проводников от его геометрических размеров. Именно эта формула лежит в основе принципа работы реостата.

Необходимо научиться определять «активную часть» реостата, то есть эта та часть реостата, по которой течет электрический ток. Чем больше длина активной части, тем большим электрическим сопротивлением обладает реостат. А от сопротивления реостата зависит сила тока в цепи.

Давайте рассмотрим два обозначения реостата на схеме, и посмотрим, отличие этих схем друг от друга. А после разберем несколько примеров.

Следствием всех перемещений ползунка реостата является изменение силы тока, согласно законам Ома для участка цепи и для полной цепи.

Ряд задач с реостатом Вы можете посмотреть на сайте. А ниже рассмотрим еще пару вопросов и задач с реостатом, чтобы закрепить материал.

Задача 1. Как будут изменяться показания электроизмерительных приборов при перемещении ползунка реостата вверх? Объяснить.

При перемещении ползунка реостата вверх, длина рабочей части реостата уменьшится. Так как реостат соединен последовательно с резистором, общее сопротивление цепи — уменьшиться. А следовательно сила тока в цепи, согласно законам Ома — увеличится. Напряжения, измеряемое на резисторе тоже увеличится.

Задача 2.
Реостат параллельно включён с резистором в электрическую цепь так, как показано на рисунке. Как будут изменяться показания амперметра, при перемещении ползунка реостата вправо? Объяснить.

При перемещении ползунка реостата вправо сопротивление реостата будет уменьшаться, а следовательно общее сопротивление электрической цепи, согласно формулам для расчета параллельного соединения — будет тоже уменьшаться. То есть сила тока в цепи будет увеличиваться.

 

Вы можете оставить комментарий, или поставить трэкбек со своего сайта.

Написать комментарий

Принцип работы реостата

Автор Почемучка На чтение 21 мин. Просмотров 108

Как и рычажные, штепсельные реостаты регулируют сопротивление ступенчато. Отличительной особенностью является изменение параметров сети без разрыва цепи. При нахождении штепселя в перемычке, большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор.

Устройство, с помощью которого происходит изменение сопротивления, называется реостатом. Он может состоять из набора резисторов, подключаемых ступенчато, либо иметь практически непрерывное изменение сопротивления. Существуют приборы позволяющие производить плавную регулировку без разрыва сети. Так как сила тока цепи зависит от напряжения источника и сопротивления, меняя количество подключенных секций реостата, можно косвенно влиять на все основные параметры электрического контура.

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

И еще один момент. В электрических схемах обозначение этих приборов вот такое:

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

Такие устройства состоят из магазина сопротивлений.

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R. Если изменять сопротивление проводника R, тогда будет меняться сила тока.

Сопротивление зависит от длины L, от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов
Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение
Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:
  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.
Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:
  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Разновидности агрегатов

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.

Изобретён реостат был немецким физиком Иоганном Христианом Поггендорфом в 1843 г. (Wheatstone). Подобный же прибор — агометр, независимо от Витстона, был описан российским академиком Якоби.

Реостат по своей сути это переменное сопротивление, включаемое в электрическую цепь последовательно с нагрузкой.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б — токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с законом Ома сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:

Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.

При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

Падение напряжения находится по формуле ниже:

У реостата имеется всего два вывода, а у его родственника потенциометра, целых три. Поэтому больше не путайте их между собой.

реостаты возбуждения — для регулирования тока в обмотках возбуждения электрических машин постоянного и переменного тока;

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов.

В зависимости от назначения различают следующие основные виды реостатов:

пусковые — для пуска электродвигателей постоянного или переменного тока;

пускорегулирующие — для пуска и регулирования частоты вращения электродвигателей постоянного тока;

реостаты возбуждения — для регулирования тока в обмотках возбуждения электрических машин постоянного и переменного тока;

нагрузочные или балластные — для поглощения электроэнергии регулирования нагрузки генераторов при испытании самих генераторов или их первичных двигателей.

Металлические реостаты. Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных Конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским.

В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Рис. 7-3. Реостат с непрерывным изменением сопротивления.

Отключающая способность контактов , в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков; загрязнение помещения, повышение пожарной опасности.

Реостаты могут включаться в схему как переменный резистор (рис. 7-3, а) или как потенциометр (рис. 7-3,б). Они обеспечивают плавное регулирование сопротивления, а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Рис. 7-4. Пускорегулирующий реостат: б — схема включения Rпк — резистор, шунтирующий катушку контактора в отключенном положении реостата; Rогр — резистор, ограничивающий ток в катушке; Ш1, Ш2 — параллельная обмотка возбуждения; С/, С2 — последовательная обмотка возбуждения

Рис. 7-5. Реостат возбуждения: б — одна из схем включения Rпр — сопротивление предвключенное; OВ — обмотка возбуждения

Рис. 7-6. Маслонаполненный реостат серии РМ: а – общий вид; б – схема.

Реостаты со ступенчатым изменением сопротивления (рис. 7-4 и 7-5) состоят из набора резисторов I и ступенчатого переключающего устройства.

Реостаты по типу приведенных на рис. 7-4 и 7-5 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Маслонаполненный реостатсерии РМ, предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 7-6. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10000 операций, механическая — 45 000. Реостат допускает 2—3 пуска подряд.

При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Что такое реостат из металла? Это элемент, имеющий воздушный тип охлаждения. Такие реостаты наиболее распространены, так как их наиболее легко можно приспособить к самым разным рабочим условиям. Это относится как к тепловым и электрическим характеристикам, так и к параметрам конструкции. Они могут изготавливаться со ступенчатым или непрерывным типом изменения сопротивления.

Переключатель является плоским. В нем есть подвижный контакт, который скользит по контактам неподвижным в одной и той же плоскости. Те контакты, которые не двигаются, выполнены в форме болтов, имеющих плоские головки цилиндрического или полусферического типа в форме пластин либо шин, которые расположены по дуге в один ряд или два. Тот контакт, который двигается, называется щеткой. Он может быть рычажным или мостиковым по своему типу выполнения.

Еще есть разделение на самоустанавливающийся и несамоустанавливающийся. Последний вариант по конструкции проще, но, так как контакт часто нарушается, он не является надежным в использовании. Самоустанавливающийся подвижный контакт обеспечивает необходимую степень нажатия и в эксплуатации более надежен.

Но резистивный элемент потенциометра не всегда может давать прямолинейную характеристику или иметь линейное изменение сопротивления во всем диапазоне хода при регулировке стеклоочистителя, но вместо этого может вызывать то, что называется логарифмическим изменением сопротивления.

Реостат как регулятор тока

На приведенной выше схеме эффективное сопротивление реостата находится между контактом 3 концевого зажима и контактом стеклоочистителя на контакте 2. Если контакт 1 не подключен, сопротивление цепи между контактом 1 и контактом 2 разомкнуто и не оказывает влияния на величину тока нагрузки. И наоборот, если контакт 1 и контакт 2 соединены вместе, то эта часть резистивной дорожки замкнута накоротко и снова не влияет на значение тока нагрузки.

Поскольку реостаты контролируют ток, то по определению они должны быть соответствующим образом рассчитаны на то, чтобы выдерживать этот постоянный ток нагрузки. Потенциометр с тремя контактами можно настроить как реостат с двумя контактами, но резистивная дорожка на основе углерода может не выдержать ток нагрузки. Также контакт стеклоочистителя потенциометра обычно является самой слабой точкой, поэтому лучше всего проводить через стеклоочиститель как можно меньше тока.

Однако обратите внимание, что реостат не подходит для управления током нагрузки, если сопротивление нагрузки, R L , намного выше, чем полное значение сопротивления реостата. Это R L >> R RHEO . Резистивное значение сопротивления нагрузки должно быть намного ниже, чем у реостата, чтобы ток нагрузки мог протекать.

Обычно реостаты представляют собой высокомощные электромеханические переменные резисторы, используемые для силовых применений, и резистивный элемент которые обычно изготавливается из толстого резистивного провода, подходящего для обеспечения максимального тока I, когда его сопротивление R минимально.

Проволочные реостаты в основном используются в приложениях управления мощностью, таких как схемы управления лампами, нагревателями или двигателями, для регулирования полевых токов для управления скоростью или пусковым током двигателей постоянного тока и т.д. Существует много типов реостатов, но наиболее распространенными являются вращающиеся тороидальные типы, которые используют открытую конструкцию для охлаждения, но также доступны закрытые типы.

Слайдер реостат

Имеются также реостаты с трубчатыми слайдерами, которые можно найти в физических лабораториях и лабораториях в школах и колледжах. Эти линейные или скользящие типы используют резистивный провод, намотанный на изолирующий трубчатый формирователь или цилиндр. Скользящий контакт (штифт 2), установленный выше, регулируется вручную влево или вправо для увеличения или уменьшения эффективного сопротивления реостата, как показано на рисунке.

Как и в случае с вращающимися потенциометрами, также доступны ползунковые реостаты многоканального типа. В некоторых типах постоянные электрические соединения сделаны с резистивным проводом, чтобы дать фиксированное значение сопротивления между любыми двумя терминалами. Такие промежуточные соединения обычно известны как «ответвления», то же имя, что и используемые на трансформаторах.

Кроме ступенчатого контакта в реостатах применяется и другой тип соединения – скользящий. Такая конструкция характерна для ползунковых реостатов. В них вместо рычага применяется передвигающаяся по всей длине трубки штанга с ползуном. Плавно движущийся контакт обеспечивает последовательное изменение сопротивления в цепи. Это достигается за счёт использования в схеме определённой части обмотки реостата.

Ступенчатый и скользящий контакты реостата

Кроме ступенчатого контакта в реостатах применяется и другой тип соединения – скользящий. Такая конструкция характерна для ползунковых реостатов. В них вместо рычага применяется передвигающаяся по всей длине трубки штанга с ползуном. Плавно движущийся контакт обеспечивает последовательное изменение сопротивления в цепи. Это достигается за счёт использования в схеме определённой части обмотки реостата.

Разумеется, в качестве материала для изготовления трубок реостата используется не только керамика. Токопроводящим материалом для электрической цепи реостата могут быть и другие материалы:

  • Металл (предназначен для набора сопротивления).
  • Уголь.
  • Жидкая среда.

Работа ступенчатых и скользящих контактов реостата в большой степени зависит от организации процесса охлаждения. В качестве охлаждающей среды, как правило, используется воздух (естественное охлаждение) или жидкость (принудительное охлаждение). Для жидкостного охлаждения используются вода или масло. В конечном счёте, правильный выбор контактных материалов и охлаждающих сред для реостатов зависит от конкретного назначения и технических показателей прибора.

Разновидность реостатов зависит от их основного назначения:

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Схематическое обозначение реостата

Он состоит из набора нихромовых элементов и проволок, соединенных параллельно в электрическую схему и разбит на несколько секций заключенных в металлический корпус. Каждая секция включается в работу при помощи рубильника. Подбором нужного числа работающих секций, выбирается нужный режим сварки и регулируется через 5-10 А. Реостат подключается в сварочную цепь последовательно источнику сварки.

Реостат балластный.

Балластный реостат предназначен для создания крутопадающей характеристики источника питания, ступенчатого регулирования сварочного тока и компенсации постоянной составляющей сварочного тока при работе от трансформатора. Реостат балластный — используется как дополнительное устройство. Применяется при многопостовой сварке для формирования падающей вольт-амперной характеристики или в случае необходимости дополнительного более тонкого регулирования режима сварки.

Он состоит из набора нихромовых элементов и проволок, соединенных параллельно в электрическую схему и разбит на несколько секций заключенных в металлический корпус. Каждая секция включается в работу при помощи рубильника. Подбором нужного числа работающих секций, выбирается нужный режим сварки и регулируется через 5-10 А. Реостат подключается в сварочную цепь последовательно источнику сварки.

Род тока AC/DC (переменный/постоянный)

Источники

http://swapmotor.ru/ustrojstvo-dvigatelya/reostat.html
http://onlineelektrik.ru/eoborudovanie/kondensatori/chto-takoe-reostat.html
http://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/reostaty/
http://220v.guru/elementy-elektriki/dlya-chego-nuzhen-reostat-princip-ego-raboty-v-cepi.html
http://www.texnic.ru/books/electrotex/el077.html
http://eti.su/articles/visokovoltnaya-tehnika/visokovoltnaya-tehnika_633.html
http://principraboty.ru/princip-raboty-reostata/
http://meanders.ru.com/chto-takoe-reostat-princip-raboty.shtml
http://www.ttaars.ru/about/stati/stupenchatyy-reostat/
http://elquanta.ru/teoriya/reostat-chto-ehto-takoe.html
http://www.svartk.ru/articles/reostat-ballastnyy/

Электрические цепи. Реостат

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

Реостатом именуется аппарат, состоящий из набора резисторов и устройства, при помощи которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и неизменный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным либо водяным) остыванием . Воздушное остывание может применяться для всех конструкций реостатов. Масляное и водяное остывание употребляется для железных реостатов, резисторы могут или погружаться в жидкость, или обтекаться ею. При всем этом следует подразумевать, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Железные реостаты с воздушным остыванием получили наибольшее распространение. Их легче всего приспособить к разным условиям работы как в отношении электронных и термических черт, так и в отношении разных конструктивных характеристик. Реостаты могут производиться с непрерывным либо со ступенчатым конфигурацией сопротивления.

Тумблер ступеней в реостатах производится плоским. В плоском тумблере подвижный контакт скользит по недвижным контактам, перемещаясь при всем этом в одной плоскости. Недвижные контакты производятся в виде болтов с плоскими цилиндрическими либо полусферическими головками, пластинок либо шин, располагаемых по дуге окружности в один либо два ряда. Подвижный скользящий контакт, именуемый обычно щеткой, может производиться мостикового либо рычажного типа, самоустанавливающимся либо несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду нередкого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высочайшая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Плюсами плоского тумблера ступеней реостата являются относительная простота конструкции, сравнимо маленькие габариты при большенном числе ступеней, низкая цена, возможность установки на плите тумблера контакторов и реле для отключения и защиты управляемых цепей. Недочеты — сравнимо малая мощность переключения и маленькая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность внедрения для сложных схем соединения.

Железные реостаты с масляным остыванием обеспечивают повышение теплоемкости и неизменной времени нагрева за счет большой теплоемкости и неплохой теплопроводимости масла. Это позволяет при краткосрочных режимах резко наращивать нагрузку на резисторы, а как следует, уменьшить расход резистивного материала и габариты реостата. Погружаемые в масло элементы обязаны иметь как можно огромную поверхность, чтоб обеспечить неплохую теплопотерю. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия среды в хим и других производствах. Погружать в масло можно только резисторы либо резисторы и контакты.

Отключающая способность контактов в масле увеличивается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле растет, но сразу улучшаются условия остывания. Не считая того, за счет смазки можно допустить огромные контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для долгих и повторно-кратковременных режимов работы реостаты с масляным остыванием неприменимы ввиду малой теплопотери с поверхности бака и большой неизменной времени остывания. Они используются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редчайших запусках.

Наличие масла делает и ряд недочетов: загрязнение помещения, увеличение пожарной угрозы.

Пример реостата с фактически непрерывным конфигурацией сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню либо кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый с помощью изолированного стержня 8, на конец которого надевается изолированная ручка (на рисунке ручка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластинки 7 — для наружного присоединения.

Реостаты могут врубаться в схему как переменный резистор (рис. 1, а) либо как потенциометр (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а как следует, и тока либо напряжения в цепи и находят обширное применение в лабораторных критериях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения при помощи реостата мотора неизменного тока маленький мощности.

Перед включением мотора нужно убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Потом включают рубильник и рычаг реостата переводят на 1-ый промежный контакт. При всем этом движок возбуждается, а в цепи якоря возникает пусковой ток, величина которого ограничена всеми 4-мя секциями сопротивления Rп. По мере роста частоты вращения якоря пусковой ток миниатюризируется и рычаг реостата переводят на 2-ой, 3-ий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на краткосрочный режим работы, а потому рычаг реостата нельзя продолжительно задерживать на промежных контактах : в данном случае сопротивления реостата перенагреваются и могут перегореть.

До того как отключить движок от сети, нужно ручку реостата перевести в последнее левое положение. При всем этом движок отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В неприятном случае могут показаться огромные перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход движков неизменного тока регулировочный реостат в цепи обмотки возбуждения следует стопроцентно вывести для роста потока возбуждения.

Для запуска движков с поочередным возбуждением используют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко 2-ух зажимов — Л и Я.

Реостаты со ступенчатым конфигурацией сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из недвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к недвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от частей сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, также всех других управляемых реостатом цепей. Привод реостата может быть ручной (с помощью ручки) и двигательный.

Рис. 3. Схема включения пускорегулирующего реостата: Rпк — резистор, шунтирующий катушку контактора в отключенном положении реостата, Rогр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя неизменного тока, С1, С2 — поочередная обмотка возбуждения электродвигателя неизменного тока.

Рис. 4. Схема включения регулировочного реостата возбуждения: Rпр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя неизменного тока.

Реостаты по типу приведенных на рис. 2 и 3 отыскали обширное распространение. Их конструкции владеют, но, некими недочетами, а именно огромным числом крепежных деталей и монтажных проводов, в особенности в реостатах возбуждения, которые имеют огромное число ступеней.

Схема включения маслонаполненного реостата серии РМ , созданный для запуска асинхронных движков с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 запуска попорядку.

Реостат состоит из интегрированных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали частей и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней секторами цилиндрической поверхности, соединенными по определенной электронной схеме. На недвижной рейке укреплены соединенные с резисторными элементами недвижные контакты. При повороте оси барабана (маховиком либо двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те либо другие недвижные контакты и тем меняют значение сопротивления в цепи ротора.

Прибор был разработан учёным Иоганном Христианом Поггендорфом. Так что же такое реостат и для чего он необходим?

Что такое реостат

Реостат имеет достаточно простую конструкцию

Реостатом называют электрический аппарат, состоящий из резисторов и устройства, с помощью которого осуществляется регулирование сопротивления всех включённых резисторов. Данный прибор является универсальным: он способен не только управлять силой тока и напряжением, но и устанавливать громкость звука в телевизорах.

Устройство реостата

Керамический цилиндр обматывается металлическим проводником, называемым обмоткой. Его концы выводятся к клеммам. Это небольшие по размеру зажимы, к которым крепится верхний стержень, выполненный из металла. Вдоль этого стержня и обмотки перемещается скользящий контакт, который специалисты зовут ползунком. Благодаря данным элементам и осуществляется работа реостата.

Стоит отметить, что керамический цилиндр полый. Эта особенность позволяет аппарату охлаждаться, предотвращает перегревы, делая прибор более безопасным.

Для чего он нужен

Реостат является лучшим способом контроля и регулирования силы тока. Аппарат меняет сопротивление, способен изменять напряжение в электрической цепи, что позволяет регулировать функционирование электродвигателя в швейной машине, громкость радиоприёмника, телевизора.

Реостат позволяет регулировать и менять силу тока и напряжение

Реостат активно применяется при создании электрических приборов. Благодаря такому элементу силу тока и напряжения можно контролировать, преотвращая перегревы.

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R . Если изменять сопротивление проводника R , тогда будет меняться сила тока.

Сопротивление зависит от длины L , от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов
Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия. Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети. Итак, реостат – это прибор, регулирующий напряжение и ток.

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает. Обратите внимание на рисунок ниже.

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

И еще один момент. В электрических схемах обозначение этих приборов вот такое:

или такое

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

Резисторы

1. Резисторы

Резисторы есть наиболее часто используемый компонент в электронике, и их цель — создать заданные значения тока и напряжения в цепи. А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b — некоторые высокая мощность резисторы.Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).

Рис. 1.1a: Некоторые маломощные резисторы Фиг. 1.1b: Резисторы большой мощности и реостаты

Символ резистора показан на следующая диаграмма (вверху: американский символ, внизу: европейский символ.)

Рис. 1.2a: Символы резисторов

Агрегат для Измерительное сопротивление Ом . (греческая буква Ω — называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом).Для Например, 120000 Ом представлен как 120 кОм, а 1 200 000 Ом — как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом. Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.

1.1 Маркировка резистора

Значение сопротивления равно маркировка на корпусе резистора. Большинство резисторов имеют 4 полосы. Первые две полосы обеспечивают числа для сопротивления, а третья полоса обеспечивает количество нули. Четвертая полоса указывает на допуск. Значения допуска 5%, Чаще всего доступны 2% и 1%.

В следующей таблице показаны используемые цвета. для определения номиналов резистора:

ЦВЕТ ЦИФРА МНОЖИТЕЛЬ ДОПУСК TC
Серебро х 0.01 Вт 10%
Золото x 0,1 Вт 5%
Черный 0 x 1 Вт
Коричневый 1 x 10 Вт 1% 100 * 10 -6 / K
Красный 2 x 100 Вт 2% 50 * 10 -6 / K
Оранжевый 3 x 1 кВт 15 * 10 -6 / K
Желтый 4 x 10 кВт 25 * 10 -6 / K
Зеленый 5 x 100 кВт 0.5%
Синий 6 x 1 МВт 0,25% 10 * 10 -6 / K
Фиолетовый 7 x 10 МВт 0,1% 5 * 10 -6 / K
Серый 8 x 100 МВт
Белый 9 x 1 ГВт 1 * 10 -6 / K

** TC — Темп.Коэффициент, только для SMD устройства

Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский

Ниже показаны все резисторы из От 0R1 (одна десятая ома) до 22M:

ПРИМЕЧАНИЯ:
Резисторы, указанные выше, имеют «общее значение» 5%. типы.
Четвертый диапазон называется диапазоном «допуска».Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.

РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третья полоса золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = «разделите на 10», чтобы получить значения 1R0. на 8R2
Примеры см. в 1-й колонке выше.

Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на 100.
(Помните: в слове «серебро» больше букв, значит делитель «больше»)
Silver = «разделить на 100», чтобы получить значения от 0R1 (одна десятая ома) до 0R82
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше для Примеры.

Буквы «R, k и M» заменяют десятичную дробь. точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2 точка 2 Ом 22 R = 22 Ом
2 k 2 = 2200 Ом 100 к = 100000 Ом
2 M 2 = 2200000 Ом

Общие резисторы имеют 4 шт. группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса — это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.

Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая — множитель, пятая — допуск.

для поверхностного монтажа Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.

Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип — плоский. Цилиндрические резисторы SMD помечены шестью полосами — первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.

Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры — это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.

Само собой разумеется, что существует массовое производство всех типы резисторов. Чаще всего используются резисторы E12. серии и имеют значение допуска 5%.Общие значения для первых двух цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24 серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д. (0R39, 3R9, 39R, 390R, 3к9, 39к)

Для некоторых электрических цепей, допуск резистора не важен и не указывается.В этом в корпусе можно использовать резисторы с допуском 5%. Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.

1,2 Резистор Рассеивание

Если поток ток через резистор увеличивается, он нагревается, а если температура превышает определенное критическое значение, он может выйти из строя. В номинальная мощность резистора — это мощность, которую он может рассеивать в течение длительного времени. промежуток времени.
Номинальная мощность резисторов малой мощности не указана. На следующих диаграммах показаны размер и номинальная мощность:

Рис. 1.3: Размеры резистора

Наиболее часто используется резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт. Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт, так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью, можно использовать другой с таким же сопротивлением и более высоким рейтингом, но его большие размеры увеличивают пространство, занимаемое на печатной плате а также добавленная стоимость.

Мощность (в ваттах) может быть рассчитана по одному из следующие формулы, где U — символ напряжения на резистор (в вольтах), I — ток в амперах, а R — сопротивление в Ом:

Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:

А резистор 1/4 Вт может использоваться.

Во многих случаях это Непросто определить ток или напряжение на резисторе.В этом в случае, когда мощность, рассеиваемая резистором, определяется для «худшего» кейс. Мы должны принять максимально возможное напряжение на резисторе, т. е. полное напряжение источника питания (аккумулятор и т. д.).
Если мы отметим это напряжение как В В , максимальное рассеивание это:

Например, если В В = 9 В, рассеиваемая мощность 220 Вт резистор:

А 0.Резистор мощностью 5 Вт или выше должен использоваться

1,3 Нелинейные резисторы

Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.

Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: NTC Резисторы (рисунок а) (отрицательный температурный коэффициент) — их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) — их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) — их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) — их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.

Фиг.1.4: Нелинейные резисторы — a. НТЦ, б. PTC, c. LDR

дюйм любительские условия, когда нелинейный резистор может быть недоступен, это можно заменить другими компонентами. Например, NTC резистор можно заменить на транзистор с подстроечным резистором потенциометр, для регулировки необходимого значения сопротивления. Автомобильный свет может играть роль резистора PTC , в то время как резистор LDR можно было заменить открытым транзистором.В качестве примера на рисунке справа показан 2N3055 с его верхним часть удалена, так что свет может падать на кристалл внутри.

1,4 Практическая примеры с резисторами

На рис. 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.

Рис. 1.5a: RC-усилитель

На рисунке 1.5a представлен RC-усилитель напряжения, который может использоваться для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление. Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо «установить» рабочая точка транзистора.Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и земля должны составлять примерно половину батареи (источника питания) Напряжение. Так как напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.

Подключить вольтметр между узел C и земля. Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт.Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.

Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление — более высокое усиление , более низкое сопротивление — нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).

Резистор R3 и конденсатор 100Ф сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется «Моторная лодка», как это звучит как шум моторной лодки. Этот шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад производит очень слабый фоновый шум, называемый «шипением». Это происходит из-за ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны поступил на вход первого транзистора и, таким образом, мы получили петля для «генерации шума». Скорость прохождения сигнала вокруг цепи определяет частоту нестабильности.К добавление резистора и электролита к каждому каскаду, фильтр низких частот производится, и это «убивает» или снижает амплитуду нарушения сигнал. При необходимости значение R3 можно увеличить.

Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.

Рис. 1.5b: Звуковой индикатор изменения температуры или количества света

Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на Рисунок 1.5б. Без триммера TP и нелинейного резистора NTC это аудио осциллятор. Частоту звука можно рассчитать по следующей формуле:

В нашем случае R = 47кВт и C = 47nF, а частота равна:

Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается.При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны на 2C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный. Если температура падает, сопротивление увеличивается и при 2С осциллятор активирован.

Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом.Естественно, резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.

Если вместо резистора NTC, резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение. Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.

Вместо NTC мы могли бы использовать резистор LDR — осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую сигнализацию для помещений, где свет должен быть всегда включен.

LDR может быть соединен с резистором R. In в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для егерей и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная.Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор. Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.

Подрезной горшок с рисунка 1.5b используется для точной настройки. Таким образом, TP с рисунка 1.5b может использоваться для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).

1,5 Потенциометры

Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.

С потенциометрами с покрытием, (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Существует проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.

Рис. 1.6a: Потенциометр с покрытием

с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора.По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.

Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Самый распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения — радиоприемники, усилители звука и аналогичные устройства где горшки используются для регулировки громкости, тона, баланса, и т.п.

Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.

Сопротивление потенциометра обычно составляет E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).

Потенциометры

бывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.

Рис. 1.6b: Потенциометры

Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, и т.п.

Слева внизу находится так называемый бегунок потенциометр.

Справа внизу — горшок с проволочной обмоткой мощностью 20 Вт, обычно используется как реостат (для регулирования тока во время зарядки аккумулятор и т. д.).

Для схем, требующих очень точной значения напряжения и тока, подстроечные потенциометры (или просто горшочки для обрезки ). Это небольшие потенциометры с ползунком, который регулируется отверткой.

Обрезные горшки также бывают разных различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.

Рис. 1.7: Обрезной горшок

Регулировки сопротивления сделано отверткой. Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина).Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.

1,6 Практический примеры с потенциометрами

Как указывалось ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства. Они используются для регулировки громкости, тон, баланс и т. д.

В качестве примера разберем общая схема регулировки тембра в аудиоусилителе.В нем два горшка и показан на рисунке 1.8a.

Рис. 1.8 Регулировка тона цепь: а. Схема электрическая, б. Функция усиления

Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), в то время как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.

Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, колокольчики, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.

На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.

Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.

Третий горшок на диаграмме регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда и марка log )

Резисторы | Закон Ома | Учебник по электронике

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими. Возможно, самой простой переменной в любой цепи для управления является ее сопротивление.Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, производятся специально для создания точного количества сопротивления для вставки в цепь. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды.

В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку электрическая энергия рассеивается ими в рабочем контуре. Однако, как правило, резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и значения на схеме резистора

Наиболее распространенное схематическое обозначение резистора — зигзагообразная линия:

Значения резисторов в омах обычно отображаются как смежные числа, и если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, например R 1 , R 2 , R 3 и т. Д. .Как видите, символы резисторов могут отображаться как по горизонтали, так и по вертикали:

Настоящие резисторы совсем не похожи на зигзагообразный символ. Вместо этого они выглядят как маленькие трубки или цилиндры с двумя торчащими проводами для подключения к цепи. Вот образцы резисторов разных типов и размеров:

В соответствии с их внешним видом, альтернативное схематическое обозначение резистора выглядит как небольшая прямоугольная коробка:

Также можно показать, что резисторы

имеют переменное, а не фиксированное сопротивление.Это может быть сделано с целью описания реального физического устройства, разработанного с целью обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто случайно имеет нестабильное сопротивление:

Фактически, каждый раз, когда вы видите символ компонента, нарисованный через диагональную стрелку, этот компонент имеет переменную, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным условным обозначением электронных символов.

Переменные резисторы

Переменные резисторы должны иметь какие-либо физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать для изменения величины электрического сопротивления. На фотографии показаны некоторые устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию, поскольку электрические токи через них преодолевают «трение» их сопротивления, резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждений.Естественно, эта номинальная мощность указывается в физических единицах измерения «ватты». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше.

Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резистора, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная рассеиваемая мощность. Также обратите внимание, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое ничего не делает, кроме сопротивления электрическому току, резисторы — чрезвычайно полезные устройства в схемах.

Поскольку они просты и широко используются в мире электричества и электроники, мы потратим значительное количество времени на анализ схем, состоящих только из резисторов и батарей.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов, рассмотрите фотографию ниже. Это изображение печатной платы или печатной платы: сборка, состоящая из прослоенных слоев изоляционной фенольной волокнистой платы и проводящих медных полос, в которые можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой».”

Различные компоненты на этой печатной плате обозначены печатными этикетками. Резисторы обозначаются любой этикеткой, начинающейся с буквы «R».

Эта конкретная печатная плата представляет собой компьютерный аксессуар, называемый «модемом», который позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть как минимум дюжину резисторов (все с мощностью рассеиваемой мощности 1/4 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами») также содержит собственный массив резисторов для своих внутренних функций.Другой пример печатной платы показывает резисторы, упакованные в еще меньшие блоки, называемые «устройствами для поверхностного монтажа».

Эта конкретная печатная плата является нижней стороной жесткого диска персонального компьютера, и снова припаянные к ней резисторы обозначены этикетками, начинающимися с буквы «R»:

На этой печатной плате более сотни резисторов для поверхностного монтажа, и это количество, конечно, не включает количество резисторов, встроенных в черные «микросхемы».Эти две фотографии должны убедить любого, что резисторы — устройства, которые «просто» препятствуют прохождению электрического тока, — очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схематических диаграммах символы резисторов иногда используются для иллюстрации любого общего типа устройства в цепи, выполняющего что-то полезное с электрической энергией. Любое неспецифическое электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схематическую диаграмму, показывающую символ резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей некоторые концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращенным представлением чего-то еще более практичного, чем резистор.

Анализ цепей резисторов

Чтобы подвести итог тому, что мы узнали в этом уроке, давайте проанализируем следующую схему, определив все, что мы можем, исходя из предоставленной информации:

Все, что нам здесь дано для начала, — это напряжение батареи (10 вольт) и ток цепи (2 ампера). Нам неизвестно сопротивление резистора в Ом или рассеиваемая им мощность в ваттах. Изучая наш массив уравнений закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных величин напряжения и тока:

Подставляя известные величины напряжения (E) и тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

Для условий цепи 10 В и 2 А сопротивление резистора должно быть 5 Ом.Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы указать резистор с минимальной номинальной мощностью 20 Вт, иначе он перегреется и выйдет из строя.

Материалы резистора

Резисторы

могут быть изготовлены из самых разных материалов, каждый из которых имеет свои свойства и специфические области применения. Большинство инженеров-электриков используют следующие типы:

Резисторы с проволочной обмоткой
Резисторы с проволочной обмоткой

изготавливаются путем наматывания резистивного провода вокруг непроводящего сердечника по спирали.Обычно они производятся для высокоточных и силовых приложений. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивный провод из никель-хромового сплава не подходит для приложений с частотами выше 50 кГц.

Низкий уровень шума и устойчивость к колебаниям температуры являются стандартными характеристиками проволочных резисторов. Доступны значения сопротивления от 0,1 до 100 кОм с точностью от 0,1% до 20%.

Резисторы металлопленочные

Нитрид тантала или нихрома обычно используется для изготовления металлопленочных резисторов.Комбинация керамического материала и металла обычно составляет резистивный материал. Значение сопротивления изменяется путем вырезания спирального рисунка в пленке, очень похоже на углеродную пленку с помощью лазера или абразива. Металлопленочные резисторы обычно менее устойчивы к температуре, чем резисторы с проволочной обмоткой, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлических пленочных резисторов.Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. Из-за этого металлооксидные пленочные резисторы используются в приложениях, требующих высокой прочности.

Фольгированные резисторы

Разработанный в 1960-х годах резистор из фольги по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете и используются в приложениях с высокими требованиями к точности. Керамическая подложка, к которой приклеена тонкая объемная металлическая фольга, составляет резистивный элемент.Фольговые резисторы имеют очень низкотемпературный коэффициент сопротивления.

Резисторы из углеродного состава (CCR)

До 1960-х годов резисторы из углеродного состава были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Смесь мелких частиц углерода и непроводящего керамического материала используется для резистивного элемента резисторов CCR.

Вещество формуют в форме цилиндра и запекают.Размеры корпуса и соотношение углерода и керамики определяют величину сопротивления. Использование большего количества углерода в процессе означает меньшее сопротивление. Резисторы CCR по-прежнему полезны для определенных приложений из-за их способности выдерживать импульсы высокой энергии, хорошим примером применения может быть источник питания.

Резисторы углеродные пленочные

Углеродные пленочные резисторы имеют тонкую углеродную пленку (со спиральным вырезом в пленке для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике.Это позволяет получить более точное значение сопротивления, а также увеличивает значение сопротивления. Резисторы из углеродной пленки намного точнее, чем резисторы из углеродной композиции. Специальные углеродные пленочные резисторы используются в приложениях, требующих высокой импульсной стабильности.

Ключевые показатели эффективности (КПЭ)

KPI для каждого материала резистора можно найти ниже:

Характеристика Металлическая пленка Толстая металлическая пленка Прецизионная металлическая пленка Углеродный состав Углеродная пленка
Темп.диапазон -55 + 125 -55 + 130 -55 + 155 -40 + 105 0,55 + 155
Макс. темп. коэфф. 100 100 15 1200 250–1000
Vмакс 200-350 250 200 350-500 350-500
Шум (мкВ на вольт приложенного постоянного тока) 0,5 0,1 0.1 4 (100 КБ) 5 (100 КБ)
R Insul. 10000 10000 10000 10000 10000
Припой (% изменения значения сопротивления) 0,20% 0,15% 0,02% 2% 0,50%
Влажное тепло (изменение значения сопротивления в%) 0,50% 1% 0,50% 15% 3.50%
Срок годности (% изменения значения сопротивления) 0,10% 0,10% 0,00% 5% 2%
Полный рейтинг (2000ч при 70 ° C) 1% 1% 0,03% 10% 4%

ОБЗОР:

  • Устройства, называемые резисторами, созданы для обеспечения точного значения сопротивления в электрических цепях.Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (ватты).
  • Номинальное сопротивление резистора не может быть определено по физическому размеру резистора (ов), о котором идет речь, хотя приблизительные номинальные значения мощности могут. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет какую-либо полезную задачу с помощью электроэнергии, обычно называется нагрузкой. Иногда символы резисторов используются на принципиальных схемах для обозначения неспецифической нагрузки, а не для обозначения фактического резистора.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор цветового кода резистора в разделе Инструменты .

Вычислительные предикторы не могут идентифицировать эффекты замены аминокислот в положениях реостата

  • 1

    Bruse, S. et al. Полное секвенирование экзома позволяет идентифицировать новые гены-кандидаты, которые изменяют восприимчивость к хронической обструктивной болезни легких. Hum Genomics 10 , 1, DOI: 10.1186 / s40246-015-0058-7 (2016).

    CAS Статья PubMed PubMed Central Google ученый

  • 2

    Ellinghaus, D. et al. Связь между вариантами PRDM1 и NDP52 и болезнью Крона на основе секвенирования экзома и функциональных исследований. Гастроэнтерология 145 , 339–347, DOI: 10.1053 / j.gastro.2013.04.040 (2013).

    CAS Статья PubMed PubMed Central Google ученый

  • 3

    Тернер Т.N. et al. Секвенирование генома в семьях с аутизмом выявляет нарушение предполагаемой некодирующей регуляторной ДНК. Am J Hum Genet 98 , 58–74, DOI: 10.1016 / j.ajhg.2015.11.023 (2016).

    CAS Статья PubMed Google ученый

  • 4

    Бромберг, Ю. Создание конвейера анализа генома для прогнозирования риска и предотвращения заболеваний. J Mol Biol 425 , 3993–4005, DOI: 10,1016 / j.jmb.2013.07.038 (2013).

    CAS Статья PubMed Google ученый

  • 5

    Dong, C. et al. Сравнение и интеграция методов прогнозирования вредоносности несинонимичных SNV в исследованиях секвенирования всего экзома. Hum Mol Genet 24 , 2125–2137, DOI: 10,1093 / hmg / ddu733 (2015).

    CAS Статья PubMed Google ученый

  • 6

    Хеникофф, С.И Хеникофф, Дж. Г. Матрицы замещения аминокислот из белковых блоков. Proc Natl Acad Sci USA 89 , 10915–10919 (1992).

    CAS Статья ОБЪЯВЛЕНИЯ Google ученый

  • 7

    Грей, В. Э., Кукурба, К. Р. и Кумар, С. Производительность вычислительных инструментов при оценке функционального воздействия лабораторно-индуцированных аминокислотных мутаций. Биоинформатика 28 , 2093–2096, DOI: 10.1093 / биоинформатика / bts336 (2012).

    CAS Статья PubMed PubMed Central Google ученый

  • 8

    Суинт-Круз, Л., Ларсон, К., Петитт, Б. М. и Мэтьюз, К. С. Функция точной настройки: корреляция взаимодействий шарнирных доменов с функциональными различиями между LacI и PurR. Protein Sci 11 , 778–794, DOI: 10,1110 / пс 4050102 (2002).

    CAS Статья PubMed PubMed Central Google ученый

  • 9

    Пендерграсс, Д.К., Уильямс, Р., Блэр, Дж. Б. и Фентон, А. В. Поиск аллостерической информации: естественные мутации и сохранение позиционной последовательности в пируваткиназе. IUBMB Life 58 , 31–38, DOI: 10.1080 / 15216540500531705 (2006).

    CAS Статья PubMed Google ученый

  • 10

    de Beer, T. A. et al. Аминокислотные изменения в вариантах, связанных с заболеванием, радикально отличаются от вариантов, наблюдаемых в наборе данных проекта «1000 геномов». PLoS Comput Biol 9 , e1003382, DOI: 10.1371 / journal.pcbi.1003382 (2013).

    CAS Статья PubMed PubMed Central Google ученый

  • 11

    Meinhardt, S., Manley, M. W. Jr., Parente, D. J. & Swint-Kruse, L. Реостаты и тумблеры для регулирования функции белка. PLoS One 8 , e83502, DOI: 10.1371 / journal.pone.0083502 (2013).

    CAS Статья PubMed PubMed Central ОБЪЯВЛЕНИЯ Google ученый

  • 12

    Ишвар, А., Tang, Q. & Fenton, A. W. Определение взаимодействий в сайте связывания фруктозо-1,6-бисфосфата пируваткиназы печени человека, которые способствуют аллостерии. Биохимия 54 , 1516–1524, DOI: 10.1021 / bi501426w (2015).

    CAS Статья PubMed PubMed Central Google ученый

  • 13

    Weaver, Y. M. & Hagenbuch, B. Несколько консервативных положительно заряженных аминокислот в OATP1B1 участвуют в связывании или транслокации различных субстратов. J Membr Biol 236 , 279–290, DOI: 10.1007 / s00232-010-9300-3 (2010).

    CAS Статья PubMed PubMed Central Google ученый

  • 14

    Suckow, J. et al. Генетические исследования репрессора Lac. XV: 4000 одиночных аминокислотных замен и анализ полученных фенотипов на основе структуры белка. J Mol Biol 261 , 509–523, DOI: 10.1006 / jmbi.1996.0479 (1996).

    CAS Статья PubMed Google ученый

  • 15

    Hecht, M., Bromberg, Y. & Rost, B. Лучшее предсказание функциональных эффектов для вариантов последовательностей. BMC Genomics 16 Приложение 8, S1, DOI: 10.1186 / 1471-2164-16-S8-S1 (2015).

    CAS Статья PubMed PubMed Central Google ученый

  • 16

    Чой, Ю., Симс, Г. Э., Мерфи, С., Миллер, Дж. Р. и Чан, А. П. Прогнозирование функционального эффекта аминокислотных замен и инделей. PLoS One 7 , e46688, DOI: 10.1371 / journal.pone.0046688 (2012).

    CAS Статья PubMed PubMed Central ОБЪЯВЛЕНИЯ Google ученый

  • 17

    Аджубей И.А. и др. Метод и сервер для прогнозирования разрушительных миссенс-мутаций. Nat методы 7 , 248–249, DOI: 10.1038 / nmeth0410-248 (2010).

    CAS Статья PubMed PubMed Central Google ученый

  • 18

    Li, B. et al. Автоматизированный вывод о молекулярных механизмах заболевания по аминокислотным заменам. Биоинформатика 25 , 2744–2750, DOI: 10.1093 / биоинформатика / btp528 (2009).

    CAS Статья PubMed PubMed Central Google ученый

  • 19

    Тан, Х.И Томас, П. Д. PANTHER-PSEP: прогнозирование генетических вариантов, вызывающих болезни, с использованием позиционно-зависимого эволюционного сохранения. Биоинформатика , DOI: 10.1093 / биоинформатика / btw222 (2016).

  • 20

    Фирнберг, Э., Лабонте, Дж. У., Грей, Дж. Дж. И Остермайер, М. Полная карта с высоким разрешением ландшафта приспособленности гена. Mol Biol Evol 31 , 1581–1592, DOI: 10.1093 / molbev / msu081 (2014).

    CAS Статья PubMed PubMed Central Google ученый

  • 21

    Суинт-Круз, Л.Использование эволюции для руководства протеиновой инженерией: Дьявол в деталях. Biophys J 111 , 10–18, DOI: 10.1016 / j.bpj.2016.05.030 (2016).

    CAS Статья PubMed PubMed Central Google ученый

  • 22

    Ng, P. C. & Henikoff, S. Предсказание вредных аминокислотных замен. Genome Res 11 , 863–874, DOI: 10.1101 / gr.176601 (2001).

    CAS Статья PubMed PubMed Central Google ученый

  • 23

    Бромберг Ю.& Рост, Б. SNAP: прогнозирование влияния несинонимичных полиморфизмов на функцию. Nucleic Acids Res 35 , 3823–3835, DOI: 10,1093 / nar / gkm238 (2007).

    CAS Статья PubMed PubMed Central Google ученый

  • 24

    Meinhardt, S. et al. Новое понимание гибридных белков LacI / GalR: общесемейные функциональные атрибуты и биологически значимые вариации в репрессии транскрипции. Nucleic Acids Res 40 , 11139–11154, DOI: 10.1093 / nar / gks806 (2012).

    CAS Статья PubMed PubMed Central Google ученый

  • 25

    Genomes Project, C. et al. Глобальный справочник по генетической изменчивости человека. Nature 526 , 68–74, DOI: 10,1038 / nature15393 (2015).

    CAS Статья ОБЪЯВЛЕНИЯ Google ученый

  • 26

    Lek, M. et al. Анализ генетической изменчивости, кодирующей белок, у 60 706 человек. Природа 536 , 285–291, DOI: 10.1038 / nature19057 (2016).

    CAS Статья PubMed PubMed Central Google ученый

  • 27

    Bromberg, Y., Kahn, P.C. & Rost, B. Варианты нейтральной и слабонейтральной последовательности могут определять индивидуальность. Proc Natl Acad Sci USA 110 , 14255–14260, DOI: 10.1073 / pnas.1216613110 (2013).

    Артикул PubMed ОБЪЯВЛЕНИЯ Google ученый

  • 28

    Рост, Б., Радивояц П. и Бромберг Ю. Функция белка в точной медицине: глубокое понимание с помощью машинного обучения. FEBS Lett 590 , 2327–2341, DOI: 10.1002 / 1873-3468.12307 (2016).

    CAS Статья PubMed PubMed Central Google ученый

  • 29

    UniProt, C. UniProt: центр информации о белках. Nucleic Acids Res 43 , D204–212, DOI: 10.1093 / nar / gku989 (2015).

    CAS Статья Google ученый

  • 30

    Walkiewicz, K. et al. Небольшие изменения в функции ферментов могут привести к неожиданно большим эффектам приспособленности во время адаптивной эволюции устойчивости к антибиотикам. Proc Natl Acad Sci USA 109 , 21408–21413, DOI: 10.1073 / pnas.1209335110 (2012).

    Артикул PubMed ОБЪЯВЛЕНИЯ Google ученый

  • 31

    Рока-Шмуэль, Л., Toth-Petroczy, A. & Tawfik, D. S. Систематическое картирование мутационного пространства белков с помощью длительного дрейфа обнаруживает пагубные последствия, казалось бы, нейтральных мутаций. PLoS Comput Biol 11 , e1004421, DOI: 10.1371 / journal.pcbi.1004421 (2015).

    CAS Статья PubMed PubMed Central ОБЪЯВЛЕНИЯ Google ученый

  • 32

    Урано, Д., Донг, Т., Беннетцен, Дж. Л. и Джонс, А. М. Адаптивная эволюция партнеров по передаче сигналов. Mol Biol Evol 32 , 998–1007, DOI: 10,1093 / molbev / msu404 (2015).

    CAS Статья PubMed PubMed Central Google ученый

  • 33

    Уильямс, Т. Н. Полиморфизм эритроцитов человека и малярия. Curr Opin Microbiol 9 , 388–394, DOI: 10.1016 / j.mib.2006.06.009 (2006).

    CAS Статья PubMed Google ученый

  • 34

    Белл, К.Э. и Льюис М. Более пристальный взгляд на конформацию репрессора Lac, связанного с оператором. Nat Struct Biol 7 , 209–214, DOI: 10,1038 / 73317 (2000).

    CAS Статья PubMed Google ученый

  • 35

    Meinhardt, S. & Swint-Kruse, L. Экспериментальная идентификация детерминант специфичности в линкере домена белка LacI / GalR: прогнозы на основе биоинформатики генерируют истинно положительные и ложно отрицательные результаты. Белки 73 , 941–957, DOI: 10.1002 / prot.22121 (2008).

    CAS Статья PubMed PubMed Central Google ученый

  • 36

    Тунгтур, С., Скиннер, Х., Жан, Х., Суинт-Круз, Л. и Беккет, Д. Тесты in vivo термодинамических моделей функции репрессора транскрипции. Biophys Chem 159 , 142–151, DOI: 10.1016 / j.bpc.2011.06.005 (2011).

    CAS Статья PubMed PubMed Central Google ученый

  • 37

    Жан, Х., Taraban, M., Trewhella, J. & Swint-Kruse, L. Подразделение репрессорной функции: аффинность связывания ДНК, селективность и аллостеризация могут быть изменены аминокислотной заменой неконсервативных остатков в гомологе LacI / GalR. Биохимия 47 , 8058–8069, DOI: 10.1021 / bi800443k (2008).

    CAS Статья PubMed PubMed Central Google ученый

  • 38

    Жан, Х., Суинт-Круз, Л. и Мэтьюз, К.S. Внешние взаимодействия доминируют над склонностью к спирали в сопряженном связывании и сворачивании шарнирной спирали белка-репрессора лактозы. Биохимия 45 , 5896–5906, DOI: 10.1021 / bi052619p (2006).

    CAS Статья PubMed PubMed Central Google ученый

  • 39

    Lewis, M. et al. Кристаллическая структура репрессора лактозного оперона и его комплексов с ДНК и индуктором. Наука 271 , 1247–1254 (1996).

    CAS Статья ОБЪЯВЛЕНИЯ Google ученый

  • 40

    Chen, J. & Matthews, K. S. Диссоциация субъединицы влияет на связывание ДНК в димерном lac-репрессоре, продуцируемом C-концевой делецией. Биохимия 33 , 8728–8735 (1994).

    CAS Статья Google ученый

  • 41

    Muller, J., Barker, A., Oehler, S. & Muller-Hill, B. Димерные lac-репрессоры проявляют фазозависимую кооперативность. J Mol Biol 284 , 851–857, DOI: 10.1006 / jmbi.1998.2253 (1998).

    CAS Статья PubMed Google ученый

  • 42

    Chen, J. & Matthews, K. S. Делеция карбоксильного концевого домена репрессора лактозы влияет на образование тетрамера. J Biol Chem 267 , 13843–13850 (1992).

    CAS PubMed Google ученый

  • 43

    Барри, Дж.К. и Мэтьюз, К. С. Термодинамический анализ разворачивания и диссоциации в белке-репрессоре лактозы. Биохимия 38 , 6520–6528, DOI: 10.1021 / bi97 (1999).

    CAS Статья PubMed Google ученый

  • 44

    Элер С., Эйсманн Э. Р., Крамер Х. и Мюллер-Хилл Б. Три оператора lac-оперона сотрудничают в репрессии. EMBO J 9 , 973–979 (1990).

    CAS Статья Google ученый

  • 45

    Markiewicz, P., Kleina, L.G., Cruz, C., Ehret, S. & Miller, J.H. Генетические исследования lac-репрессора. XIV. Анализ 4000 измененных lac-репрессоров Escherichia coli выявляет существенные и второстепенные остатки, а также «спейсеры», для которых не требуется конкретная последовательность. J Mol Biol 240 , 421–433, DOI: 10.1006 / jmbi.1994.1458 (1994).

    CAS Статья PubMed Google ученый

  • 46

    R Основная команда. R: язык и среда для статистических вычислений . R Фонд статистических вычислений, Вена, Австрия (2015).

  • 47

    Altschul, S. F. et al. Gapped BLAST и PSI-BLAST: новое поколение программ поиска по базам данных белков. Nucleic Acids Res 25 , 3389–3402 (1997).

    CAS Статья Google ученый

  • 48

    Pruitt, K. D. et al. RefSeq: обновление референсных последовательностей млекопитающих. Nucleic Acids Res 42 , D756–763, DOI: 10.1093 / nar / gkt1114 (2014).

    CAS Статья PubMed Google ученый

  • 49

    Tungtur, S., Parente, D. J. & Swint-Kruse, L. Функционально важные позиции могут составлять большую часть архитектуры белка. Белки 79 , 1589–1608, DOI: 10.1002 / prot.22985 (2011).

    CAS Статья PubMed PubMed Central Google ученый

  • 50

    Альтшул, С.Ф., Гиш, В., Миллер, В., Майерс, Э. У. и Липман, Д. Дж. Базовый инструмент поиска локального выравнивания. J Mol Biol 215 , 403–410, DOI: 10.1016 / S0022-2836 (05) 80360-2 (1990).

    CAS Статья PubMed PubMed Central Google ученый

  • 51

    Ми, Х., Муругануджан, А. и Томас, П. Д. ПАНТЕРА в 2013 г .: моделирование эволюции функции генов и других атрибутов генов в контексте филогенетических деревьев. Nucleic Acids Res 41 , D377–386, DOI: 10.1093 / nar / gks1118 (2013).

    CAS Статья PubMed PubMed Central Google ученый

  • 52

    Рева Б., Антипин Ю. и Сандер С. Прогнозирование функционального воздействия мутаций белков: приложение к геномике рака. Nucleic Acids Res 39 , e118, DOI: 10.1093 / nar / gkr407 (2011).

    CAS Статья PubMed PubMed Central Google ученый

  • 53

    Шимковиц, Дж.и другие. Веб-сервер FoldX: силовое поле онлайн. Nucleic Acids Res 33 , W382–388, DOI: 10.1093 / nar / gki387 (2005).

    CAS Статья PubMed PubMed Central Google ученый

  • 54

    Mathe, E. et al. Вычислительные подходы к прогнозированию биологического эффекта миссенс-мутаций p53: сравнение трех методов, основанных на анализе последовательностей. Nucleic Acids Res 34 , 1317–1325, DOI: 10.1093 / nar / gkj518 (2006).

    CAS Статья PubMed PubMed Central Google ученый

  • 55

    Grantham, R. Формула разности аминокислот для объяснения эволюции белка. Наука 185 , 862–864 (1974).

    CAS Статья ОБЪЯВЛЕНИЯ Google ученый

  • 56

    Stone, E. A. & Sidow, A. Нарушение физико-химических ограничений с помощью миссенс-замен опосредует нарушение функции белка и тяжесть заболевания. Genome Res 15 , 978–986, DOI: 10.1101 / gr.3804205 (2005).

    CAS Статья PubMed PubMed Central Google ученый

  • 57

    Раменский В., Борк П., Сюняев С. Несинонимичные SNP человека: сервер и обзор. Nucleic Acids Res 30 , 3894–3900 (2002).

    CAS Статья Google ученый

  • 58

    Capriotti, E., Калабрезе, Р. и Касадио, Р. Предсказание роста генетических заболеваний человека, связанных с точечными мутациями белков, с помощью опорных векторных машин и эволюционной информации. Биоинформатика 22 , 2729–2734, DOI: 10.1093 / биоинформатика / btl423 (2006).

    CAS Статья PubMed Google ученый

  • 59

    McKusick, V.A. Mendelian Inheritance in Man и его онлайн-версия, OMIM. Am J Hum Genet 80 , 588–604, DOI: 10.1086/514346 (2007).

    CAS Статья PubMed PubMed Central Google ученый

  • 60

    Capriotti, E., Fariselli, P., Calabrese, R. & Casadio, R. Прогнозирование изменений стабильности белка на основе последовательностей с использованием машин поддерживающих векторов. Биоинформатика 21 Дополнение 2, ii54–58, DOI: 10.1093 / bioinformatics / bti1109 (2005).

    CAS Статья PubMed Google ученый

  • 61

    Бава, К.A., Gromiha, M. M., Uedaira, H., Kitajima, K. & Sarai, A. ProTherm, версия 4.0: термодинамическая база данных для белков и мутантов. Nucleic Acids Res 32 , D120–121, DOI: 10.1093 / nar / gkh082 (2004).

    CAS Статья PubMed PubMed Central Google ученый

  • 62

    Bao, L., Zhou, M. & Cui, Y. nsSNPAnalyzer: определение несинонимичных одиночных нуклеотидных полиморфизмов, связанных с заболеванием. Nucleic Acids Res 33 , W480–482, DOI: 10.1093 / nar / gki372 (2005).

    CAS Статья PubMed PubMed Central Google ученый

  • 63

    Yip, Y. L. et al. Страница вариантов Swiss-Prot и база данных ModSNP: ресурс для информации о последовательности и структуре вариантов белков человека. Hum Mutat 23 , 464–470, DOI: 10.1002 / humu.20021 (2004).

    CAS Статья PubMed Google ученый

  • 64

    Чандония, Дж.M. et al. Сборник ASTRAL в 2004 г. Nucleic Acids Res 32 , D189–192, DOI: 10.1093 / nar / gkh034 (2004).

    CAS Статья PubMed PubMed Central Google ученый

  • 65

    Bendl, J. et al. PredictSNP: надежный и точный консенсусный классификатор для прогнозирования мутаций, связанных с заболеванием. PLoS Comput Biol 10 , e1003440, DOI: 10.1371 / journal.pcbi.1003440 (2014).

    CAS Статья PubMed PubMed Central Google ученый

  • 66

    Кавабата, Т., Ота, М. и Нисикава, К. База данных белковых мутантов. Nucleic Acids Res 27 , 355–357 (1999).

    CAS Статья Google ученый

  • 67

    Capriotti, E., Altman, R. B. & Bromberg, Y. Коллективное суждение позволяет прогнозировать связанные с заболеванием однонуклеотидные варианты. BMC Genomics 14 Приложение 3, S2, DOI: 10.1186 / 1471-2164-14-S3-S2 (2013).

    Артикул PubMed PubMed Central Google ученый

  • 68

    Стенсон П.D. et al. База данных мутаций генов человека (HGMD): обновление 2003 г. Hum Mutat 21 , 577–581, DOI: 10.1002 / humu.10212 (2003).

    CAS Статья PubMed Google ученый

  • 69

    Sherry, S.T. et al. dbSNP: база данных генетической изменчивости NCBI. Nucleic Acids Res 29 , 308–311 (2001).

    CAS Статья Google ученый

  • 70

    Тавтиджан, С.В., Бирнс, Г. Б., Голдгар, Д. Э. и Томас, А. Классификация редких миссенс-замен с использованием поверхностей риска с применением генетической и молекулярной эпидемиологии. Hum Mutat 29 , 1342–1354, DOI: 10.1002 / humu.20896 (2008).

    CAS Статья PubMed PubMed Central Google ученый

  • 71

    Шредингер Л.Л.С. Система молекулярной графики PyMOL, версия 1.8 . URL https: // www.pymol.org (2015).

  • Подводные электрические системы — Глава 6

    6
    РАЗНОЕ ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ
    A. ВЫКЛЮЧАТЕЛИ
    6А1. Общий. Автоматический выключатель — это устройство для размыкания электрической цепи под нагрузкой и его также можно использовать в качестве переключателя для включения схема.Автоматические выключатели могут быть как автоматическими. или неавтоматический в работе. Они есть двух основных типов для приложений постоянного тока: углеродистые наконечники и закаленная дуга типов . Обозначение этих типов ВМФ — ACB. (автоматический отрыв углерода) и AQB (автоматический закаленный разрыв) или NQB (неавтоматический закаленный перерыв).

    Тип АКБ представлен на подводных лодках. от I.T.E. тип KN, используемый на электрической лодке Суда компании и тип General Electric АЛ-2Н использовался на судах Портсмута.AQB типы представлены выключателями Westinghouse и используются только на судах портсмутской конструкции. до SS 381. Позже Портсмут судов и на всех судах компании Electric Boat Company они заменены выключателями с предохранителями.

    6A2. Автоматические выключатели типа ACB. Автоматические выключатели ACB (Рисунок 6-1) используются на подводных лодках живы передний, двухполюсный, с ручным управлением и с отключением бесплатно. Они вложены для защиты персонала. и оснащены перегрузкой и короткими защита цепи и, в случае вспомогательного генераторный выключатель с защитой от обратного тока.Они оснащены ручкой срабатывания ручного отключения, которая может использоваться как задержка устройство и, на более старых, менее ударопрочных моделях, можно повернуть, чтобы заблокировать выключатель. делает выключатель неспособным отключиться при перегрузке, его никогда не следует оставлять в заблокированном положении после непосредственная опасность открытия из-за до шока прошло. Защита от перегрузки устройство срабатывает для отключения выключателя по истечении времени задержки когда ток превышает определенное значение, обычно 125 процентов полной нагрузки. Время задержки получается масляным бачком, состоящим из двух точно шлифовать диски в масляной ванне.Когда диски расположены близко друг к другу, масляная пленка между им сопротивляется усилиям отключающего соленоида чтобы разлучить их. Время задержки обратно пропорционально

    пропорционально току и, следовательно, на большом тока, устройство срабатывает быстрее. Токами более 800 процентов номинального тока соленоид тянет так сильно, что вся приборная панель поднимается против сильной пружины. Это поездки выключатель за короткое время и известен как мгновенная защита от короткого замыкания.

    Защита от обратного тока предусмотрена на выключатель вспомогательного генератора для предотвращения повреждение двигателя при попытке генератора действовать как двигатель при подключении через аккумулятор. Это устройство состоит из небольшого крутящего момента мотор, то есть мотор, который пытается вращаться но не может повернуть целую революцию. Поле полюса двигателя находятся под напряжением от линии ток в одном полюсе выключателя и якоря возбуждается катушкой, подключенной через два полюса.

    Когда ток течет в нормальном направление, в котором двигатель стремится вращаться в одном направление, но не позволяет сделать это из-за остановки.Если ток в выключателе меняется на противоположный, двигатель имеет тенденцию вращаться в другом направлении. Когда ток достигает определенного значения, крутящий момент превышает усилие калибровочной пружины и вращается до тех пор, пока не попадет в поршень, который срабатывает. выключатель. Диапазон калибровки реверса текущая поездка обычно составляет от 10 процентов до 25 процентов номинального тока. Действие выключатель ACB при разрыве дуги просто вытяжка дуги между углем чаевые по мере их разделения. Связь разработана так что последние точки для разделения находятся на угольные наконечники, предотвращающие сгорание токоведущие контакты, покрытые серебром для низкого контактного сопротивления.

    6A3. Выключатели типа AQB и NQB. Тип Автоматические выключатели AQB и NQB, используемые на подводных лодках, находятся в мертвой зоне, двухполюсные, с ручным управлением, а на выключателях AQB срабатывают бесплатно и оснащен защитой от короткого замыкания. Дуга в этот выключатель отключается следующим образом: Когда контакты разъединяются, возникает дуга. в стальную коробку, изолированную от остальной части

    89


    Рисунок 6-1.Автоматический выключатель типа ACB.
    выключатель и прорезь так, чтобы они были разделены на несколько частей, что значительно удлиняет его и охлаждая его. Магнитные силы, возникающие между дуга и стальной короб заставляют дугу двигаться в коробку.

    Функция короткого замыкания, предусмотренная на AQB выключатели состоят из элемента отключения короткого замыкания который обычно калибруется на заводе и не легко настроить. Лучше всего заменить элемент с новым, имеющим желаемые характеристики отключения.Когда споткнулся, ручка выключателя AQB возвращается в положение между ВЫКЛ и ВКЛ. Чтобы его сбросить, ручка должна быть сначала переведена в положение ВЫКЛ. а затем в положение ВКЛ. Автоматические выключатели NQB полностью ручной в эксплуатации и открывать только тогда, когда ручка повернута в положение ВЫКЛ. У них есть те же функции прерывания дуги, что и AQB выключатели.

    Все выключатели AQB снабжены ручным управлением. удерживать их от перегрузки, и они могут быть запертым закрытым от перегрузка или шок. Запорные устройства должны никогда не занимайтесь, кроме случаев крайней необходимости чтобы предотвратить открытие из-за удара.


    Рисунок 6-2. Автоматический выключатель типа AQB, крышка снята.
    90

    Рисунок 6-3. ПЛАН ОСВЕЩЕНИЯ УПРАВЛЕНИЕ ДИММЕРОМ НА ПОДВОДЕ КЛАССА 313.

    Рисунок 6-4. ПЛАН СИСТЕМЫ АВАРИЙНОГО ОСВЕЩЕНИЯ ПОДВОДНОЙ ЛОДКИ КЛАССА 313.

    Б.ПРЕДОХРАНИТЕЛИ И ВЫКЛЮЧАТЕЛИ
    6Б1. Предохранители. Как и автоматические выключатели, предохранители используется для защиты от коротких замыканий. Однако после размыкания предохранителей цепь из-за короткого замыкания их нельзя замкнуть и подлежит замене. Предохранители зависят от их воздействие на плавление токоведущей полосы металла за счет тепла, выделяемого током в самой полосе. Предохранители обычно выбираются чтобы они прервали цепь, когда 200 процентов номинального тока проходит через их.Все предохранители имеют срабатывание с выдержкой времени, которое обратно пропорционально току. Это вызвано теплоемкостью предохранителя и окружающие части. Следует соблюдать осторожность, когда установка предохранителей, чтобы убедиться в хорошем контакте в зажимах, так как соединение с высоким сопротивлением, выделяют тепло и вызывают перегорание предохранителя на слабый ток.

    6Б2. Переключатели с предохранителями. Выключатели с предохранителями используется для отключения и подключения различных нагрузки на вспомогательную энергосистему и для обеспечения защита от короткого замыкания на кабели и

    распределительные щиты.Тип, используемый на подводных лодках состоит из металлических ящиков с предохранителями с соединителями лезвий ножа, прикрепленными к выдвижной кусок внутри крышки. Когда крышка нормально закрыт, предохранитель и прикрепленные ножи может устанавливать соединение через разделенный тип сообщения в ящике; но нажимая в сторону перед закрытие крышки приводит к тому, что лезвия не работают контакта, и они, таким образом, заблокированы в электрически открытая позиция. Запрещается заменять предохранители на предохранители. большей емкости, чем показано на принципиальная схема или обозначена на шильдике на на держателе предохранителя или на распределительной коробке.

    Фиксаторы предохранителей установлены на всех предохранителях, могут быть выброшены из держателей током. Это могут быть изолирующие блоки, удерживаемые над линией. предохранителей винтами с накатанной головкой или прикрепленных внутрь крышки ящика; или они могут быть небольшие зажимы из пружинной стали, которые увеличивают натяжение штырей держателя предохранителя. Держатели предохранителей всегда следует заменять, если они снимаются для любая цель.

    C. СИСТЕМА ОСВЕЩЕНИЯ
    6C1.Описание. В систему освещения входят: система служебного освещения судна и системы аварийного освещения левого и правого борта. Каждая из систем представляет собой отдельный дистрибутив система.

    Электропитание системы служебного освещения корабля на подводных лодках позднего типа получается из аккумуляторы через 2 регулятора напряжения фидера освещения (см. Раздел 6D1) и распределение освещения коммутатор. На более ранних кораблях мощность для эта система была снабжена двигателем освещения генераторные установки (см. раздел 4C1).

    На судах, которые получают мощность освещения напрямую от батареек селектор батарейки выключатель был включен в освещение распределительный щит. Этот переключатель позволяет выбор батареи или берега подключение как источник питания.

    Кормушки из светораспределения распределительный щит по длине корабля на обоих стороны и обслуживают все штатные цепи освещения через распределительные коробки с предохранителями. Финал

    разводка на осветительные приборы и слаботочные розетки через стандартное распределение освещения ящики с выключателями и предохранителями для каждой исходящей схема.

    Система аварийного освещения правого борта питание напрямую через 2 выключателя подключен к положительной и отрицательной конечной ячейке клеммные разъемы передней аккумуляторной батареи. Эти переключатели подключены к 13 осветительным приборам. единиц, цепь к вспомогательному гироскопу, и к передний и задний контуры маркерных буев. А Ответвительная распределительная коробка обеспечивает подключение к панель управления гирокомпасом для сигнализации система.

    Система аварийного освещения порта имеет прямое питание. через выключатели, подключенные к плюсу и отрицательная конечная ячейка клеммные разъемы АКБ.В устройство этой системы аналогично устройству аварийная система правого борта, кроме расположение цепей и то, что там нет подключения сигнализации гирокомпаса.

    91

    Каждый осветительный блок состоит из двух 115-вольтных огни, защитный резистор и мгновенный выключатель, все подключены последовательно, так как они всегда работают непосредственно на полном напряжении АКБ .

    6C2.Прожектор. 12-дюймовая лампа накаливания для прожектора сигнала требуется 120-вольтный постоянный ток. поставка. Не считается частью освещения система, потому что питание берется из с предохранителем, двухполюсный, однопозиционный переключатель на IC. распределительный щит и привел к герметичному розетка и защелкивающийся переключатель на мосту.

    6C3. Обслуживание. Герметичный тип прожекторы, которые остаются на постоянном месте

    должны содержаться в чистоте и смазке.Функция защиты от давления состоит из бесплатного структура затопления, которая быстро осушается после подводные поверхности. Питание не должно подаваться на лампу, пока она не выйдет из воды примерно 2 минуты. Особая забота необходимо принять меры, чтобы сохранить все электрические соединения чистые, движущиеся части смазаны, а алюминиевые поверхности окрашены для предотвращения коррозии.

    ВНИМАНИЕ. Погружение при включенном свете или вскоре после использования сломает лампочка прожектора из-за теплового удара.Подводное плавание с включенным светом или включением его при погружении в воду перегорят предохранители.

    D. РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ ПИТАНИЯ ОСВЕЩЕНИЯ
    6Д1. Описание. Напряжение фидера освещения регуляторы используются на некоторых судах вместо мотор-генераторные установки, для поддержание напряжения системы освещения на уровне 120 вольт или ниже. Используются два агрегата, один для правого борта. и один для цепей освещения портов.

    Эти регуляторы в основном реостаты в который перемещается контактным рычагом, либо вручную или двигателем через круговой контакт реостата лицевая панель. Резисторные трубки рассеивают излишки напряжение в виде тепла. Когда аккумулятор напряжение высокое как, например, во время зарядка, подача на каждую из осветительных стабилизаторы напряжения, получаемые от одного половина батарей может достигать 175 вольт. Затем реостат настраивают на поглощение разница между этим напряжением питания и желаемое напряжение нагрузки 120 В.Реостат сопротивление отводится так, что оно производит напряжение падение не более 2 1/2 вольт на шаг при любой ток от 100 до 12,5 ампер. Реостат рассчитан на рассеивание 5500 ватт при максимальном состоянии 55 вольт падение на 100 ампер. Этот реостат будет нести от 12,5 до 100 ампер через падение от 0 до 55 вольт.

    Сборка приводится в действие через регулятор напряжения. элемент, известный как регулирующий элемент HIR, и реле ПОДНЯТИЯ и НИЖНЕГО.Элемент представляет собой прибор для измерения напряжения, который уравновешивает натяжение катушек с натяжением винтовая пружина. Реле RAISE и LOWER служат для подключения мотора реостата так, чтобы он

    вращается в одну или другую сторону в ответ к чувствительному к напряжению элементу.

    По сути, регулирующий элемент имеет 2 части, одна движущаяся, а другая неподвижная. В подвижная арматура несет подвижный рычаг и поддерживается двумя пружинами плоских петель. Стационарный часть состоит из 2-х стационарных контактов с опорой элементы и части магнитной цепи.Один катушка установлена ​​на каждом сердечнике. Каждый из них катушки рассчитаны на 27,5 миллиампер и имеют сопротивление 1950 Ом.

    Винтовая пружина закреплена между подвижный рычаг и неподвижный элемент с помощью рычаг, который можно отрегулировать для получения надлежащего натяжение пружины. Нижний конец подвижного рука несет 2 противовеса, которые статически балансируйте движущуюся руку в вертикальном положении. Верхний конец движущейся руки несет двойное лицо, подвижный контакт между парой стационарных контактов реле.Эти неподвижными контактами являются R (поднять) и L (опускать) контактов и может регулироваться для фиксации рабочего положение и ход подвижной арматуры по отношению к полюсным наконечникам.

    Реле RAISE и LOWER состоят из две части, одна неподвижная, другая движущаяся. В Стационарная часть состоит из основания, сердечника, катушки, стационарный главный контакт, предохранительная катушка и дугогасительная камера. Подвижная часть несет основную подвижный контакт на его верхнем конце и противовес на нижнем конце для статического баланса.

    92

    Вся сборка защищена от капель конструкция и жалюзи предусмотрены для утечка горячего воздуха. Максимально допустимый повышение температуры на трубках резистора реостата составляет 375 градусов по Цельсию.

    ВНИМАНИЕ. Хотя температура может не достигать максимальной температуры 375 ° C, необходимо соблюдать осторожность взятые при обращении с оборудованием или работе с ним.

    6Д2.Ручная операция. Правильная процедура для ручное управление регуляторами следующим образом: поверните переключатель управления в Положение РУЧНОЕ. Вытяните маховик реостата отключить реостат от скорости двигателя редукторы. Напряжение нагрузки равно в зависимости от положения рычага реостата. Поворачивая маховик реостата по часовой стрелке направление отключает или уменьшает реостат сопротивление и повышает напряжение нагрузки. Превращая маховик реостата против часовой стрелки

    направление сокращает или увеличивает сопротивление реостата и снижает напряжение нагрузки.

    6Д3. Автоматическая работа. Следующие необходимо соблюдать меры предосторожности перед тем, как поворачивать переключатель управления в положение автоматического (АВТО). Всегда настраивайте положение реостата вручную на подайте на ламповую нагрузку 120 вольт. Это — значение напряжения, которое регулирующий элемент был скорректирован для поддержания.

    После ручной настройки на 120 В поверните переключатель управления в положение АВТО. В подвижный контакт регулирующего элемента будет центрированный или плавающий между передней и задней частью стационарные контакты.И RAISE, и НИЖНИЕ контакты будут разомкнуты.

    Когда напряжение на нагрузке возрастает, либо от нагрузки заменой или увеличением зарядного генератора напряжение, элемент замыкает свой нижний контакт. Это активирует реле УМЕНЬШЕНИЯ, которое


    Рисунок 6.5. Принципиальная схема регулятора напряжения фидера освещения.
    93


    Рисунок 6-6.Регуляторы напряжения фидеров освещения и распределительные щиты освещения.

    замыкает свой контакт в цепи возбуждения двигателя. В двигатель вращает рычаг реостата против часовой стрелки. направление, чтобы сократить сопротивление и опустить напряжение нагрузки. Действие продолжается до тех пор, пока напряжение восстанавливается до 120 вольт.

    При понижении напряжения нагрузки элемент замыкается. его контакт. При условии, что напряжение нагрузки не было снижено до значения меньше, чем 50 вольт, реле увеличения замыкает свой контакт в цепь возбуждения двигателя.Двигатель приводит в движение рычаг реостата по часовой стрелке, чтобы вырезать сопротивление и поднять напряжение нагрузки. Действие непрерывно, пока напряжение не восстановится до 120 вольт.

    ПРИМЕЧАНИЕ. Значительное увеличение нагрузки (более 50 амперы) не следует бросать, когда переключатель управления установлен в положение АВТО, так как это может вызвать нагрузка и управляющее напряжение упадут ниже 50 вольт, в этом случае УВЕЛИЧЕНИЕ и УМЕНЬШЕНИЕ реле и реостат приводного двигателя будут


    Рисунок 6-7.Регулятор напряжения фидера освещения, верх снят.


    Рисунок 6-8. Вид сверху на регулятор напряжения фидера освещения.

    94

    не работают. Как правило, если установлен автоматический контроль, шаги нагрузки не должны превышать 50 амперы. При ручном управлении меры предосторожности, такие как увеличивать количество нагрузки не нужно, потому что оператор может позаботиться о любой нагрузке изменение рейтинга реостата.Ввиду того факта, что перенапряжение значительно снижает срок службы лампы накаливания при ручном управлении, должен быть установлен порядок работы, который предотвратит большие перенапряжения.

    6Д4. Общее техническое обслуживание. Оборудование требует только разумной осторожности, чтобы сохранить контакты и элемент управления очищены от пыли или грязь. Контакты элемента можно чистить и полировать без снятия контактов. Чистый

    следует использовать сухую ткань; наждачная бумага или другое ни в коем случае нельзя использовать абразивные материалы.

    Движущиеся части следует периодически проверять. для бесплатного использования и видеть, что все движется контакты правильно выровнены с их стационарные контакты. Главный и вспомогательный контакты должен закрываться примерно в одно и то же время. Воздушный зазор между подвижным и неподвижным основной контакт должен быть примерно 1/8 дюйма. Винт в нижней части подвижного Предусмотрен рычаг для регулировки воздушного зазора.

    Смазка мотора реостата должна периодически проверять. Мотор оборудован с 2 маслозаливными трубками, каждая из которых имеет винт заглушка для разрешения заправки.

    E. ОТОПЛЕНИЕ
    6E1. Нагреватели смазочного масла. Четыре нагревателя погружные блоки, рассчитанные на 220 вольт и 500 ватт, установлены в каждой из 2 смазочных масел агрегаты подогревателя. Каждый погружной блок нагревателя состоит из 3-х лопастей, отдельно заключенных в стальная оболочка. Концы оболочек припаяны. к клеммной коробке погружного блока который имеет резьбу для вставки в нагреватель корпус трубы в сборе.

    В процессе работы масло циркулирует через трубы корпуса отопителя и, по ходу, проходит над каждым из погружных блоков нагревателя. В температура, необходимая для доведения масла до надлежащая вязкость контролируется путем врезания или вырезать необходимое количество нагревателей, каждый из которых снабжен переключателем ВКЛ-ВЫКЛ.

    ВНИМАНИЕ. Погружные блоки не должны быть включенным, если масло не течет. Единицы будут быстро выгорают, если ток подается во время они не погружены в масло.

    6E2. Воздухонагреватели. Переносные 2 кВт и 4 кВт Нагреватели нагнетательного типа установлены на каждом судне. Обогреватели оснащены переключателем, обеспечивающим 2 тепловых пункта. Положения переключателя: отмечены OFF, LOW и HIGH. Автономный вентилятор прилагается и подключается, когда переключатель переведен в одно из положений нагрева. Нагреватель мощностью 4 кВт рассчитан на 250 вольт, на 16 ампер, и имеет 4 литые изолированные секции нагревателя в сетке с круглым оребрением. Каждая пара секций защищен термовыключателем, срабатывает

    чрезмерно поддерживаемая температура и при условии с индикатором, показывающим, что вырез имеет споткнулся.Сброс может быть выполнен только после машина остыла до безопасной рабочей температуры.

    Нагреватель мощностью 2 кВт рассчитан на 250 вольт при 8 ампер и аналогичен по конструкции Нагреватель мощностью 4 кВт, за исключением того, что каждая секция обогревателя номинальная мощность 500 Вт вместо 1000 Вт.

    Воздухонагреватели оснащены защитными устройствами. чтобы обеспечить работу при 345 вольт. Тем не мение, при длительной смене аккумулятора при высоком напряжении они могут быть выключены или НИЗКИЕ в качестве дальнейшего меры предосторожности.

    6E3.Водонагреватели. Горячая вода резервуары емкостью 20 галлонов и 25 галлонов, обогревается нагревательными элементами стержневого типа, которые термостатически управляемый магнитными контакторами. Бак на 20 галлонов оборудован 2 обогревателями. ед., и резервуар емкостью 25 галлонов, с 3-мя нагревательными единицы. Каждый нагревательный блок рассчитан на 4 кВт при 275 вольт и будет удовлетворительно работать в диапазоне от 200 до 345 вольт. Два водонепроницаемых терминала коробки предоставляются. Нижняя коробка обеспечивает доступ к и содержит соединения отопления единицы.Верхнее поле обеспечивает доступ и содержит термостат. Термостат настраивается на любой диапазон температур от 120 градусов по Фаренгейту до 180 градусов по Фаренгейту и работает при изменении + — 5 степени F.

    При правильной вентиляции бак

    95

    всегда полностью заполнен водой. Вода температура поддерживается в соответствии с настройка термостата, который контролирует катушечные цепи контакторов магнитопровода в контроллер.Когда температура воды падает ниже уставки термостата, термостат замыкает цепь катушки, в результате чего контакторы закрыть и подключить нагревательные элементы к линии. Когда вода в баке достигнет желаемого температуры, термостат открывается, открывая контакторы и отключение отопления единиц от линии. Работа каждого танка управляется тумблером ВКЛ и ВЫКЛ расположен на панели контактора магнитной линии.

    6E4. Урны для кофе. Урна состоит из 2 контейнеры цилиндрического типа, один установленный внутри Другие.Воздушная камера между контейнерами предотвращает охлаждение кофе внутри емкость, когда в воду наливается пресная вода бак.

    Бак для воды нагревается 2 погружениями. единицы, оба управляемые одним 3-х индикаторы нагрева, реверсивное управление переключатель установлен в распределительная коробка, расположенная перед агрегатом. Погружные нагревательные элементы устанавливаются через задняя часть корпуса урны в нижней части водный отсек. Головки блока, клеммы, и провода находятся под съемной крышкой пластина.

    Каждый из нагревательных агрегатов имеет рейтинг 1000 Вт при 250 вольт. Вход урны, при номинальном напряжении 2000 Вт на ВЫСОКОМ, 1000 Вт на СРЕДНЕМ и 500 Вт на НИЗКОМ. Вместимость урны — 2 галлона кофе и 4 галлона воды.

    ВНИМАНИЕ. Нагревательные элементы нельзя включен, если урна не наполнена водой и всегда должен быть выключен или переведен на НИЗКИЙ во время длительная зарядка аккумулятора при высоком напряжении, в для защиты агрегатов от повреждений высокое напряжение.

    6E5. Камбузный хребет. Камбузный ассортимент состоит из в основном из варочной поверхности и печь. Эти агрегаты и их нагревательные элементы поддерживается в усиленном корпусе диапазона. В варочная поверхность и духовой шкаф работают независимо друг от друга. контролируется двумя трехконтурными реверсивными индикаторные переключатели, и каждый переключатель защищен двойным вырезом полюса.

    Нагревательные элементы варочной поверхности состоят из никель-хромовый резистор, встроенный в изоляционный материал в бесшовной стали оболочка, отливаемая как единое целое в кулинарию поверхностное литье.Варочная поверхность имеет площадь 19 дюймов на 18 дюймов и рассчитан примерно на 4000 Вт на ВЫСОКОМ, 2000 Вт на СРЕДНЕМ и 1000 Вт на НИЗКОМ. В клеммы герметичны для предотвращения попадания воздуха, влаги, или смазка от попадания в нагревательные змеевики.

    Изолированная духовка составляет примерно 17 дюймов в ширину, 18 дюймов в глубину, и 14 дюймов в высоту. Духовка снабжена регулируемый автоматический контроль температуры и индикатор с диапазоном от 200 градусов до 550 градусов F. Используются два нагревательных элемента; один расположен внизу, другой — вверху печь.

    Нагревательные элементы духовки такие же конструкция как элементы варочной поверхности за исключением того, что они заключены в никель-хром трубы и поддерживаются в стальной раме. Каждый Нагревательный блок рассчитан примерно на 1500 Вт на ВЫСОКОМ, 750 Вт на СРЕДНЕМ и 375 Вт на НИЗКОМ при 250 вольт.

    Все нагревательные элементы могут работать непрерывно при любом напряжении до 345 вольт без вредного окисления.

    Диапазон рассчитан на тяжелые условия эксплуатации. обслуживание и требует небольшого количества электроэнергии поддержание.Запасные нагревательные элементы, переключатели и на борту имеются блоки контроля температуры для замены

    96


    Авторские права © 2013-2016, Ассоциация морских парков
    Все права защищены.
    Юридические уведомления и политика конфиденциальности
    Версия 1.11, 20 мая 2016 г.

    Номера электрических устройств

    Номера устройств указаны в стандарте ANSI / IEEE C37.2 и используются для обозначения функций устройства, показанного на принципиальной схеме.

    1. Мастер-элемент

    Инициирующее устройство, такое как контрольный переключатель, которое работает либо напрямую, либо через другие разрешающие устройства для включения или отключения оборудования.

    2. Пусковое или замыкающее реле с задержкой времени

    Функции, обеспечивающие желаемое время задержки до или после любой точки срабатывания в последовательности переключения или системе защитных реле.

    3. Реле проверки или блокировки

    Работает в соответствии с положением других устройств в оборудовании, чтобы разрешить выполнение или остановку последовательности операций.

    4. Главный контактор

    Служит для замыкания и размыкания необходимых цепей управления для ввода оборудования в работу в требуемых условиях и вывода его из эксплуатации при других или ненормальных условиях.

    5.Устройство остановки

    Используется для отключения оборудования и вывода его из строя, за исключением функции электрической блокировки (устройство 86) в ненормальных условиях.

    6. Пусковой выключатель

    Подключает машину к источнику пускового напряжения.

    7. Анодный выключатель

    Устройство, используемое в анодных цепях силового выпрямителя с основной целью прерывания цепи выпрямителя в случае возникновения дуговой дуги.

    8. Устройство отключения управляющего питания

    Ножевой выключатель, автоматический выключатель или выдвижной блок предохранителей, используемый для подключения и отключения источника управляющего напряжения к шине управления или части оборудования и от них, включая вспомогательный источник питания для небольших двигателей и нагревателей.

    9. Реверсивное устройство

    Используется для реверсирования поля машины или для выполнения любых других функций реверсирования.

    10.Переключатель последовательности единиц

    Устройство, используемое для изменения последовательности, в которой блоки могут быть включены и выключены в конфигурациях с несколькими блоками.

    11. Многофункциональное устройство

    Выполняет три или более сравнительно важных функции, которые могут быть назначены только путем объединения нескольких из этих номеров функций устройства. Все функции, выполняемые устройством 11, должны быть определены в легенде чертежа или в списке определений функций устройства.

    12.Устройство повышенной скорости

    Обычно переключатель скорости с прямым подключением, который работает при превышении скорости машины.

    13. Устройство синхронной скорости

    Устройство любого типа, которое работает примерно с синхронной скоростью машины, например центробежный переключатель, реле частоты скольжения, реле напряжения и реле минимального тока.

    14. Устройство пониженной скорости

    Работает, когда скорость машины падает ниже заданного значения.

    15. Устройство согласования скорости или частоты

    Функции для согласования и удержания скорости или частоты машины или системы, равной или приблизительно равной скорости или частоте другой машины, источника или системы.

    16. Устройство передачи данных

    Для устройства 16 буквы суффикса дополнительно определяют устройство: первая буква суффикса — «S» для последовательного порта или «E» для Ethernet. Последующие буквы: функция обработки безопасности ‘C’ (например,грамм. VPN, шифрование), межсетевой экран или фильтр сообщений «F», функция управления сетью «M», маршрутизатор «R», коммутатор «S» и телефонный компонент «T». Таким образом, управляемый коммутатор Ethernet будет 16ESM.

    17. Маневровый или выпускной выключатель

    Служит для размыкания или замыкания шунтирующей цепи вокруг любого устройства, за исключением устройств, которые выполняют маневровые операции, которые могут потребоваться в процессе запуска машины.

    18. Устройство ускорения или замедления

    Замыкает или вызывает замыкание цепей, которые используются для увеличения или уменьшения скорости машины.

    19. Пусковой контактор

    Устройство, которое запускает или вызывает автоматический перевод машины из состояния запуска в рабочее состояние.

    20. Клапан

    Клапан с электрическим приводом, используемый в вакуумной, воздушной, газовой, масляной или аналогичной линии.

    21. Дистанционное реле

    Работает, когда полная проводимость, импеданс или реактивное сопротивление цепи увеличивается или уменьшается сверх заданных пределов.

    22. Автоматический выключатель эквалайзера

    Служит для управления или включения и отключения выравнивателя или соединений для балансировки тока для машинного поля или для регулирования оборудования в многоблочной установке.

    23. Устройство контроля температуры

    Функционирует для повышения или понижения температуры машины или другого оборудования или любой среды, когда ее температура падает ниже или повышается выше заданного значения. Представьте термостат, который включает обогреватель в распределительном устройстве.

    24. Реле вольт на герц

    Реле с мгновенной или временной характеристикой, которое срабатывает, когда отношение напряжения к частоте превышает заданное значение.

    25. Устройство синхронизации или проверки синхронизма

    Работает, когда две цепи переменного тока находятся в требуемых пределах частоты, фазового угла или напряжения, чтобы разрешить или вызвать параллельное включение этих двух цепей.

    26. Аппарат Тепловой прибор

    Работает, когда температура оборудования, жидкости или другой среды превышает заданное значение: или если температура защищаемого устройства, такого как силовой выпрямитель, или любой среды снижается ниже заданного значения.

    27. Реле минимального напряжения

    Работает, когда заданное значение напряжения падает ниже заданного значения.

    28. Датчик пламени

    Устройство, контролирующее наличие пилотного или основного пламени такого аппарата, как газовая турбина или паровой котел.

    29. Разделительный контактор

    Используется специально для отключения одной цепи от другой в целях аварийной работы, технического обслуживания или тестирования.

    30. Реле сигнализатора

    Устройство без автоматического сброса, которое дает ряд отдельных визуальных указаний на функции защитных устройств и которое также может быть выполнено с возможностью выполнения функции блокировки.

    31. Устройство раздельного возбуждения

    Подключает цепь, такую ​​как шунтирующее поле синхронного преобразователя, к источнику отдельного возбуждения во время последовательности запуска; или тот, который питает цепи возбуждения и зажигания силового выпрямителя.

    32. Реле мощности

    Устройство, которое работает на заданном значении потока мощности в заданном направлении или на обратной мощности, возникающей в результате обратного дугового разряда в анодной или катодной цепях силового выпрямителя.

    33. Позиционный переключатель

    Включает или прерывает контакт, когда основное устройство или часть устройства, не имеющая номера функции устройства, достигает заданного положения.

    34. Главное устройство последовательности

    Устанавливает или определяет последовательность работы основных устройств в оборудовании во время запуска и остановки или во время других последовательных операций переключения, таких как многоконтактный переключатель с приводом от двигателя или устройство программирования, такое как компьютер.

    35. Щеточное или скользящее устройство короткого замыкания

    Используется для подъема, опускания или перемещения щеток машины, или для короткого замыкания контактных колец, или для включения или отключения контактов механического выпрямителя.

    36. Полярность или напряжение поляризации

    Разрешает работу другого устройства только с заранее определенной полярностью или проверяет наличие поляризующего напряжения в оборудовании.

    37. Реле минимального тока или минимальной мощности

    Работает, когда поток тока или мощности уменьшается ниже заданного значения.

    38. Устройство защиты подшипников

    Работает при чрезмерной температуре подшипника или других ненормальных механических условиях, связанных с подшипником, которые в конечном итоге могут привести к чрезмерной температуре подшипника.

    39. Монитор механического состояния

    Работает при возникновении ненормального механического состояния, не охватываемого функцией 38 устройства, такого как чрезмерная вибрация, эксцентриситет, ударное расширение, наклон или отказ уплотнения.

    40. Полевое реле

    Функционирует при заданном или аномально низком значении или отказе тока возбуждения машины, или при чрезмерном значении реактивной составляющей тока якоря в машине переменного тока, указывающей на возбуждение ненормально слабого поля.

    41. Полевой автоматический выключатель

    Используется для применения или снятия возбуждения поля машины.

    42. Рабочий выключатель

    Функции для подключения машины к источнику рабочего или рабочего напряжения.Эта функция также может использоваться для устройства, такого как контактор, который используется последовательно с автоматическим выключателем или другими средствами защиты поля, в первую очередь для частого размыкания и замыкания выключателя.

    43. Устройство ручного переключения или переключения

    Устройство с ручным управлением, которое переключает цепи управления для изменения схемы работы коммутационного оборудования или некоторых устройств.

    44. Пусковое реле последовательности агрегатов

    Функционирует для запуска следующего доступного блока в многоблочном оборудовании при отказе или недоступности обычно предшествующего блока.

    45. Монитор атмосферных условий

    Работает при возникновении ненормальных атмосферных условий, например, вредных паров, взрывоопасных смесей, дыма или пожара.

    46. Реле тока обратной фазы или баланса фаз

    Работает, когда многофазные токи имеют обратную последовательность фаз, или когда многофазные токи несбалансированы или содержат компоненты обратной последовательности фаз, превышающие заданное значение.

    47.Реле чередования фаз или фазового баланса

    Работает на заданном значении многофазного напряжения в желаемой последовательности фаз.

    48. Реле неполной последовательности

    Возвращает оборудование в нормальное или выключенное положение и блокирует его, если нормальная последовательность запуска, работы или остановки не завершена должным образом в течение заданного времени. Если устройство используется только для сигнализации, желательно обозначить ее как 48A (сигнализация).

    49. Термореле машины или трансформатора

    Работает, когда температура якоря машины или другой несущей обмотки или элемента машины или температура силового выпрямителя или силового трансформатора (включая трансформатор силового выпрямителя) превышает заданное значение.

    50. Реле мгновенного максимального тока или скорости нарастания

    Срабатывает мгновенно при чрезмерном значении тока или при чрезмерной скорости нарастания тока, что указывает на неисправность в защищаемом устройстве или цепи.

    51. Реле максимального тока переменного тока

    Реле с независимой или обратнозависимой временной характеристикой, которое срабатывает, когда ток в цепи переменного тока превышает заданное значение.

    52. Автоматический выключатель переменного тока

    Устройство, которое используется для замыкания и прерывания цепи питания переменного тока при нормальных условиях или для прерывания этой цепи при возникновении аварийных ситуаций.

    53. Реле возбудителя или генератора постоянного тока

    Реле, которое заставляет возбуждение поля машины постоянного тока нарастать во время запуска или которое срабатывает, когда напряжение машины повышается до заданного значения.

    54. Высокоскоростной выключатель постоянного тока

    Автоматический выключатель, который начинает снижать ток в главной цепи через 0,01 секунды или меньше, после возникновения перегрузки по току постоянного тока или чрезмерной скорости нарастания тока.

    55. Реле коэффициента мощности

    Работает, когда коэффициент мощности в цепи переменного тока поднимается выше или опускается ниже заданного значения.

    56. Реле полевого применения

    Автоматически управляет приложением возбуждения поля к двигателю переменного тока в некоторой заранее определенной точке в цикле скольжения.

    57. Устройство короткого замыкания или заземления

    Устройство переключения первичной цепи, которое функционирует для короткого замыкания или заземления цепи в ответ на автоматические или ручные действия.

    58. Реле неисправности устранения неисправности

    Работает, если один или несколько анодов силового выпрямителя не срабатывают, или для обнаружения и дуговой дуги, или при отказе диода проводить или блокировать должным образом.

    59. Реле максимального напряжения

    Работает при заданном значении перенапряжения.

    60. Реле баланса напряжения или тока

    Работает с заданной разницей напряжения, входным или выходным током или двумя цепями.

    61. Реле или датчик плотности

    Работает при заданном значении или заданной скорости изменения плотности газа.

    62. Реле останова или размыкания с задержкой

    Реле с выдержкой времени, которое работает вместе с устройством, которое инициирует отключение, останов или размыкание в автоматической последовательности или в системе защитных реле.

    63. Реле давления

    Работает при заданных значениях давления жидкости или газа или при заданных скоростях изменения этих значений.

    64. Реле датчика заземления

    Работает при отсутствии заземления изоляции машины или другого оборудования. Эта функция назначается только реле, которое обнаруживает прохождение тока от рамы машины или ограждающего корпуса или конструкции части устройства к земле или обнаруживает заземление на нормально незаземленной обмотке или цепи.Он не применяется к устройствам, подключенным во вторичной цепи трансформатора тока, во вторичной нейтрали трансформаторов тока, включенных в силовую цепь нормально заземленной системы.

    65. Губернатор

    Узел гидравлического, электрического или механического регулирующего оборудования, используемого для регулирования потока воды, пара или другой среды к первичному двигателю для таких целей, как запуск, скорость удержания, нагрузка или остановка.

    66.Устройство для надрезания или толкания

    Функции, позволяющие выполнять только определенное количество операций данного устройства или оборудования или определенное количество последовательных операций в течение заданного времени друг за другом. Это также устройство, которое функционирует для периодического включения цепи или на доли определенных временных интервалов, или которое используется для обеспечения прерывистого ускорения или толчкового режима машины на низких скоростях для механического позиционирования.

    67. Направленное реле максимального тока переменного тока

    Работает на желаемом значении перегрузки по току переменного тока, протекающего в заданном направлении.

    68. Реле блокировки

    Инициирует пилот-сигнал для блокировки отключения при внешних повреждениях в линии передачи или в другом устройстве в заранее определенных условиях или взаимодействует с другими устройствами, чтобы заблокировать отключение или заблокировать повторное включение при сбое в работе или при экономии энергии .

    69. Разрешающее устройство контроля

    Двухпозиционный переключатель с ручным управлением, который в одном положении разрешает включение автоматического выключателя или ввод оборудования в работу, а в другом положении предотвращает включение автоматического выключателя или оборудования.

    70. Реостат

    Устройство переменного сопротивления, используемое в электрической цепи с электрическим приводом или с другими электрическими аксессуарами, такими как вспомогательные, позиционные или концевые выключатели.

    71. Реле уровня жидкости или газа

    Действует при заданных значениях уровня жидкости или газа или при заданных скоростях изменения этих значений.

    72. Автоматический выключатель D-C

    Используется для замыкания и прерывания цепи питания постоянного тока при нормальных условиях или для прерывания этой цепи при неисправности или аварийных условиях.

    73. Нагрузочный контактор

    Используется для шунтирования или вставки ступени ограничения нагрузки, сдвига или индикации сопротивления в силовой цепи, или для включения обогревателя в цепи, или для включения светового или рекуперативного нагрузочного резистора, силового выпрямителя или другой машины и вне цепи.

    74. Реле аварийной сигнализации

    Реле, отличное от сигнализатора, как описано в функции устройства 30, которое используется для включения или работы в связи с визуальной или звуковой сигнализацией.

    75. Механизм изменения положения

    Механизм, который используется для перемещения основного устройства из одного положения в другое в оборудовании: например, для перемещения съемного блока выключателя в и из подключенных, отключенных и испытательных положений.

    76. Реле максимального тока D-C

    Работает, когда ток в цепи постоянного тока превышает заданное значение.

    77. Телеметрический прибор

    Передатчик, используемый для генерации и передачи в удаленное место электрического сигнала, представляющего измеряемую величину, или приемник, используемый для приема электрического сигнала от удаленного передатчика и преобразования сигнала для представления исходной измеренной величины.

    78. Реле для измерения фазового угла или защиты от асинхронного хода

    Работает с заданным фазовым углом между двумя напряжениями, между двумя токами или между напряжением и током.

    79. Реле повторного включения переменного тока

    Управляет автоматическим повторным включением и блокировкой прерывателя цепи переменного тока.

    80. Реле расхода жидкости или газа

    Работает при заданных значениях расхода жидкости или газа или при заданных скоростях изменения этих значений.

    81. Реле частоты

    Работает на заданном значении частоты (ниже, выше или выше нормальной системной частоты) или скорости изменения частоты.

    82. Реле повторного включения D-C

    Управляет автоматическим включением и повторным включением прерывателя цепи постоянного тока, как правило, в ответ на условия цепи нагрузки.

    83. Автоматическое селективное управление или реле переключения

    Выполняет автоматический выбор между определенными источниками или условиями в оборудовании или автоматически выполняет операцию передачи.

    84. Привод

    Полный электрический механизм или сервомеханизм, включая рабочий двигатель, соленоиды, позиционные переключатели и т. Д., Для переключателя ответвлений, индукционного регулятора или любого подобного устройства, которое иначе не имеет номера функции устройства.

    85. Реле приемника несущей или контрольной проводки

    Реле, которое срабатывает или ограничивается сигналом, используемым в связи с направленной ретрансляцией неисправности контрольного провода постоянного тока или несущего тока.

    86. Реле блокировки

    Ручное или электрически сбрасываемое реле или устройство, которое функционирует для отключения или вывода оборудования из строя, или того и другого при возникновении ненормальных условий.

    87. Реле дифференциальной защиты

    Функция зависит от процента, фазового угла или другой количественной разности двух токов или некоторых других электрических величин.

    88. Вспомогательный двигатель или двигатель-генератор

    Используется для управления вспомогательным оборудованием, таким как насосы, нагнетатели, возбудители, вращающиеся магнитные усилители и т. Д.

    89. Линейный коммутатор

    Переключатель, используемый в качестве разъединителя, выключателя нагрузки или разъединителя в силовой цепи переменного или постоянного тока, когда это устройство работает от электричества или имеет электрические аксессуары, такие как вспомогательный переключатель, магнитный замок и т. Д.

    90. Регулирующее устройство

    Функции для регулирования количества или величин, таких как напряжение, текущая мощность, скорость, частота, температура и нагрузка при определенном значении или между определенными (обычно близкими) пределами для машин, соединительных линий или другого оборудования.

    91. Реле направления напряжения

    Срабатывает, когда напряжение на размыкателе цепи или контакторе превышает заданное значение в заданном направлении.

    92. Реле направления напряжения и мощности

    Разрешает или вызывает соединение двух цепей, когда разница напряжений между ними превышает заданное значение в заданном направлении, и вызывает отключение этих двух цепей друг от друга, когда мощность, протекающая между ними, превышает заданное значение в противоположном направлении.

    93. Переключающий контактор

    Функции для увеличения или уменьшения за один шаг значения возбуждения поля в машине.

    94. Реле отключения или отключения

    Функции для отключения автоматического выключателя, контактора или оборудования или для разрешения немедленного отключения других устройств; или для предотвращения немедленного повторного включения прерывателя цепи, если он должен размыкаться автоматически, даже если его замыкающая цепь остается замкнутой.

    95. Для конкретных приложений, где другие номера не подходят

    96. Реле блокировки отключения шинопровода

    97-99. Для конкретных приложений, где другие номера не подходят

    Вспомогательные устройства

    Этими буквами обозначены отдельные вспомогательные устройства, например:

    • C — Реле включения или контактор
    • CL — Вспомогательное реле, замкнуто (запитано, когда главное устройство находится в замкнутом положении).
    • CS — Переключатель управления
    • D — Переключатель или реле положения «вниз»
    • L — Реле опускания
    • 1. — Реле размыкания
    • OP — Вспомогательное реле, разомкнутое (запитано, когда главное устройство находится в разомкнутом положении).
    • PB — Кнопка
    • R — Реле подъема
    • U — Переключатель или реле положения «вверх»
    • X Вспомогательное реле
    • Y Вспомогательное реле
    • Z Вспомогательное реле

    Банкноты
    • Номера устройств могут быть объединены, если устройство обеспечивает несколько функций, например, реле максимального тока переменного тока мгновенного действия / с выдержкой времени, обозначенное как 50/51.
    • В номере устройства можно использовать букву или цифру суффикса. Например, суффикс N используется, если устройство подключено к нейтральному проводу (59N в реле используется для защиты от смещения нейтрали).
    • Суффиксы X, Y, Z используются для вспомогательных устройств. Точно так же суффикс «G» может обозначать «землю», следовательно, «51G» — это реле заземления максимального тока с выдержкой времени. Суффикс «G» может также означать «генератор», следовательно, «87G» — это реле дифференциальной защиты генератора.
    • Суффикс «T» может обозначать «трансформатор», следовательно, «87T» — это дифференциальное защитное реле трансформатора. «F» может обозначать «поле» на генераторе или «предохранитель», как в защитном предохранителе для пускового трансформатора.
    • Суффиксы используются для различения нескольких «одинаковых» устройств в одном оборудовании, например 51-1, 512.
    • При управлении выключателем с помощью схемы управления реле X-Y, реле X является устройством, основное
    • Контакты
    • используются для подачи питания на замыкающую катушку или устройство, которое каким-либо другим образом, например, путем высвобождения накопленной энергии, заставляет выключатель замыкаться.Контакты реле Y обеспечивают защиту от накачки автоматического выключателя.

    Справочные листы для печати номеров устройств ANSI / IEEE

    Схема блока предохранителей Реле Hyundai Veracruz с назначением и расположением

    9 0011 RR WIPER
    AUDIO 2 10A Аудиосистема, задняя панель управления и реле, цифровые часы, BCM
    C / LIGHTER 20A Передний прикуриватель и гнездо
    A / BAG2 10A Подушки безопасности
    A / BAG 1 15A Блок управления SRS
    A / BAG IND 10A Комбинация приборов (сигнальная лампа подушки безопасности)
    B / UP LP 10A Реле фонарей заднего хода, TCM, Электрохромированное зеркало, Блок управления сигнализацией заднего хода
    CRUISE 10A Многофункциональный переключатель, модуль иммобилайзера PIC, переключатель обогрева сиденья водителя / пассажира
    ATM CONT Блок блокировки ключа банкомата 10 А, ЭБУ 4WD, BCM, Многофункциональный переключатель, Полуактивный блок управления подвеской двигателя
    CLUSTER 10A In Комбинация приборов, генератор, BCM, модуль иммобилайзера PIC
    START Реле охранной сигнализации 10A, блок управления задней дверью
    EPS 10A BCM, реостат, главный / вспомогательный переключатель стеклоподъемника
    A / CON 10A Передний блок управления кондиционером, реле вентилятора, задний блок управления кондиционером, реле заднего кондиционера, датчик дождя, блок управления люком, электрохромное зеркало
    FR S / HTR 15A Сиденье водителя / пассажира Выключатель обогрева
    RR S / HTR 15A Обогрев заднего стекла
    IMS 10A Модуль управления IMS, модуль наклона и телескопа, реле обогревателя PTC, модуль управления задней дверью с электроприводом
    H / LP, AQS 10A Реле ближнего света, датчик AQS
    ПЕРЕДНЯЯ ШАЙБА 15A Реле переднего стеклоочистителя, реле переднего стеклоочистителя
    15A Блок управления заднего стеклоочистителя, электродвигатель заднего стеклоочистителя
    TAIL LH 10A Левая фара, Задний левый комбинированный фонарь, Реле переднего противотуманного фонаря, Фонарь задней двери
    TAIL RH 10A Фара правая, Задний комбинированный фонарь правый, перчаточный фонарь, освещение
    DR LOCK 20A Главный выключатель стеклоподъемника, реле задней двери с электроприводом, привод крышки багажника
    STOP LP 15A Выключатель стоп-сигнала
    H / LP WASHER 20A Выключатель омывателя фар
    FUEL MEMBER 15A Выключатель крышки топливного бака
    RR FOG 15A Реле заднего противотуманного фонаря
    FR WIPER 30A Электродвигатель переднего стеклоочистителя
    TILT & TELE 15A Наклонно-телескопический модуль
    DRL 15A Модуль управления DRL
    P / WDW LH 90 014 25A Блок управления стеклоподъемником заднего левого стеклоподъемника, переключатель стеклоподъемника левой задней
    P / WDW RH ​​ 25A Переключатель электрического стеклоподъемника переднего / заднего правого стекла
    MIRR HTD 10A Левое / правое наружное зеркало с подогревом с электрической регулировкой, заднее стекло с подогревом
    P / SEAT 30A Модуль управления IMS, ручной переключатель сиденья водителя / пассажира
    KEY SOL 10A Электромагнит блокировки ключа банкомата, ЭБУ полного привода, звуковой сигнал заднего хода, PIC Механическое рулевое управление Замок колонки
    DEICER 15A Реле обогревателя лобового стекла
    S / ROOF 15A Модуль управления люком
    RSE, SMART KEY 10A PIC Immobilizer Module
    AUDIO 1 (MEMORY FUSE) 15A Аудиосистема
    ROOM LP (ПРЕДОХРАНИТЕЛЬ ПАМЯТИ) 15A Панель приборов, главный выключатель электрического стеклоподъемника, дверной светильник, комнатный светильник , разъем канала передачи данных, BCM, дверной выключатель
    ЗАПАСНОЙ 10A Запасной предохранитель

    Основы — Документация — CircuitLab

    Основы

    Режим сборки

    Редактор всегда запускается в режиме сборки.Вы можете переключиться в режим моделирования, нажав кнопку «Моделировать» на нижней панели инструментов.

    Щелкните компонент в поле сборки, чтобы выбрать его, а затем щелкните где-нибудь в сетке, чтобы вставить его в схему.

    Дважды щелкните любой компонент в вашей схеме, чтобы вызвать соответствующий редактор параметров.

    Удерживая нажатой клавишу Ctrl при щелчке и перетаскивании сетки, вы сможете панорамировать область просмотра. Использование колесика мыши увеличивает масштаб.

    (Примечание: пожалуйста, не удерживайте Ctrl при нажатии на колесо мыши, так как это обычно заставляет браузер пытаться увеличивать масштаб самостоятельно.CircuitLab несовместима с масштабированием браузера и в настоящее время не имеет возможности определить это условие.)

    Земля

    Каждое напряжение в CircuitLab рассчитывается относительно узла земли ( GND ), который по определению равен 0 вольт. Это означает, что каждая цепь должна иметь хотя бы один GND-элемент , иначе схема не будет имитировать.

    Концепция заземления в симуляторе схем похожа, но не идентична концепции электрического заземления в физическом мире.В реальной жизни незаземленные цепи с батарейным питанием работают нормально, потому что для схемы имеют значение только относительные напряжения. Однако внутри имитатора схемы (или даже при решении схемы на бумаге!) Мы должны выбрать один узел в качестве ориентира, чтобы рассчитать напряжения на других узлах.

    Узлы

    Узел в электрической цепи — это место, где встречаются два или более элемента схемы. Узел в CircuitLab — это то же самое: точка, в которой два или более элемента соединены проводом.По определению, две конечные точки элементов, соединенных проводом, имеют одинаковое напряжение.

    Совершенно верно (и часто более компактно) соединять две или более конечных точек элементов схемы вместе без явного протягивания провода между ними.

    Именованные узлы

    Часто очень полезно (и это хорошая практика) давать имена определенным узлам в вашей схеме. Это можно сделать с помощью элемента схемы Name Node . Узел имени может быть сброшен на провод или непосредственно на конечную точку любого элемента схемы.

    Вы можете «соединить» два узла в своей схеме, назвав их одинаковыми именами. Присвоение двум узлам одного и того же имени эквивалентно рисованию провода между двумя узлами.

    Допустимо иметь более одного имени на одном узле. В этом случае на узел можно ссылаться по любому из его явно созданных имен.

    Если узлу не присвоено имя с использованием элемента Name Node , тогда ему назначается имя CircuitLab. Неименованные узлы будут иметь префикс un .Не следует полагаться на эти автоматически назначаемые имена, чтобы они оставались согласованными при продолжении работы над схемой, поэтому рекомендуется называть узлы, напряжения которых вы хотите измерить или построить график.

    Вольтметр и амперметр

    Элементы вольтметра и амперметра могут использоваться для отображения напряжения или тока через элемент на схеме. Вы можете дважды щелкнуть элемент вольтметра или амперметра, чтобы открыть окно параметров, где вы можете выбрать «Показать напряжение» или «Показать ток».Это приведет к отображению постоянного напряжения на вольтметре или постоянного тока через амперметр рядом с элементом. Эти значения будут обновляться всякий раз, когда вы запускаете моделирование постоянного тока, и будут отображаться при экспорте вашей схемы.

    Примечание. Отображаемые значения будут обновляться только при запуске моделирования постоянного тока, поэтому необходимо запускать новое моделирование постоянного тока при каждом изменении цепи, чтобы отображаемые значения были точными.

    Элементы, удобные для человека

    CircuitLab позволяет использовать удобные для человека метрические префиксы для всех полей ввода числовых значений.Например, вы можете ввести «1k» для сопротивления вместо «1000» или «22p» вместо «22e-12» (что тоже работает!).

    Таблица префиксов
    Префикс 10 n
    T 12
    G 9
    M 6
    k или K 3
    m -3
    u -6
    n -9
    p -12
    f -15

    (Примечание: если вы привыкли к SPICE, где вводы нечувствительны к регистру, а «m» и «M» означают «милли», обратите внимание, что CircuitLab отличается и следует стандартным префиксам SI.Заглавная буква «M» означает «Мега» или 10 +6 , а «м» в нижнем регистре означает милли, или 10 -3 .)

    Вывод вывода на печать

    У каждого типа моделирования есть отдельное окно выходных данных, где вы можете выбрать, что вы хотите построить. Когда активен тип моделирования (поле «аккордеон» раскрыто), вы можете щелкнуть любой провод или Node Name , чтобы построить график напряжения в этом узле. Щелчок по клемме элемента схемы вызовет отображение тока на клемме, а также напряжения на клемме.Щелчок по точке, где встречаются несколько элементов схемы, приведет к отображению всех токов, идущих в элементы, а также напряжения в узле, где они встречаются.

    В некоторых случаях, когда вы щелкаете мышью вокруг своей схемы, чтобы выбрать выходы, вы можете захватить больше выходов, чем планировали. В этом случае рекомендуется просто удалить выражения, которые вам не интересны, чтобы ваши графики были чистыми.

    Вы также можете создавать собственные выражения.

    Щелкните и перетащите в пределах графика, чтобы увеличить масштаб до области графика.Дважды щелкните график, чтобы восстановить исходный масштаб.

    Перетащите вертикальные и горизонтальные курсоры на график, чтобы вычислить математические функции, такие как средние и интегралы.

    Моделирование постоянного тока

    Моделирование постоянного тока пытается найти стабильное решение постоянного тока вашей цепи. Когда присутствуют изменяющиеся во времени компоненты, их долговременное поведение приближается — например, конденсаторы превращаются в разомкнутые цепи, а катушки индуктивности — в короткие замыкания. После выполнения DC Solve вы можете навести указатель мыши на части ваших цепей, чтобы увидеть токи и напряжения в правом нижнем углу экрана.

    Моделирование постоянного тока аналогично проверке цепи мультиметром.

    Моделирование развертки постоянного тока

    Развертка по постоянному току построит решение по постоянному току вашей схемы для различных значений параметра элемента схемы. Вы можете просмотреть любой числовой параметр любого элемента схемы в вашей схеме.

    Параметр, подлежащий сканированию, указывается в форме NAME.PARAM, где NAME — это имя элемента схемы, а PARAM — имя параметра.Например, переход по V1.V будет проходить по параметру V элемента схемы с именем V1.

    Развертка по постоянному току аналогична выполнению измерений при использовании регулируемого источника питания или настройке потенциометра. (Конечно, в среде CircuitLab можно экспериментировать с гораздо более широким диапазоном параметров!)

    Моделирование во временной области

    Моделирование во временной области выполняет переходный анализ вашей схемы за определенный период времени.

    CircuitLab использует динамическую модель элементов в вашей схеме, рассчитывая напряжения и токи в вашей цепи на каждом временном шаге.Это означает, что очень важно выбрать подходящий временной шаг для моделирования переходных процессов. Если ваш временной шаг слишком велик, динамическая модель будет неточной, и симуляция потенциально может не выглядеть так, как реальная схема. Если ваш временной шаг слишком мал, симуляция вашей схемы может занять слишком много времени.

    Хорошее практическое правило при проведении анализа переходных процессов — выбирать временной шаг в 10 раз быстрее, чем самый быстрый сигнал в вашей симуляции.Например, если самым быстрым источником в вашей симуляции является синусоида с частотой 1 кГц, хорошей отправной точкой будет установка временного шага на 0,1 м (0,1 миллисекунды).

    Моделирование переходных процессов аналогично использованию осциллографа для наблюдения за цепью — наблюдения за полным нелинейным поведением в широком диапазоне временных масштабов.

    Моделирование в частотной области

    Частотное моделирование выполняет анализ небольшого сигнала вашей схемы. Вход может быть любым источником напряжения или источника тока. (Примечание: входом должно быть имя элемента, например «V1», а не имя узла.) CircuitLab превращает этот выбранный вход в синусоидальную волну с величиной 1 (по умолчанию) и будет сканировать частоту с выбранного начала. частота до конечной частоты в герцах.

    Линеаризованная модель вашей схемы с малым сигналом генерируется из рабочей точки постоянного тока. В зависимости от вашей схемы эта модель может быть точной только для очень слабых сигналов, поэтому анализ в частотной области обычно дополняется анализом во временной области для выявления нелинейных эффектов.

    Сообщаемые выходные напряжения и токи представляют собой величину напряжения или тока относительно входа, который по умолчанию имеет величину 1. Если ваш вход является источником напряжения, и вы измеряете напряжение другого узла в режиме частотной области, величина равна безразмерное усиление (вольт / вольт), и любой измеряемый вами ток является крутизной (амперы / вольт). Точно так же, если ваш вход является источником тока, то любой измеряемый ток является безразмерным усилением (амперы / ампер), а любое измеряемое вами напряжение является трансимпедансом (вольт / ампер).

    Существует три разрешенных формы спецификаций источника входных данных:

    • V1 — указывает один источник входного сигнала с именем V1, с величиной 1 и фазой 0. Это эквивалентно «V1 1 0».
    • V1 10 90 — указывает на один входной источник с именем V1, комплексный вектор с величиной 10 и фазой 90 градусов.
    • V1 10 90 V2 1 0 — указывает два источника входного сигнала: V1 (величина 10, фаза 90 градусов) и V2 (величина 1, фаза 0).В список ввода можно включить дополнительные источники помимо двух.

    Выходы V (…), I (…) и P (…) моделирования в частотной области являются комплексными числами — они имеют действительную и мнимую составляющие или величину и фазу. Этими комплексными величинами можно управлять с помощью различных выражений, таких как REAL (x), IMAG (x), MAG (x), PHDEG (x) и других.

    Курсоры графиков и математические функции

    Вы можете разместить до двух вертикальных и двух горизонтальных линий курсора на каждом графике.Эти линии курсора можно использовать для измерения абсолютной разницы между любыми двумя точками на графике. Положение двух курсоров также используется для вычисления различных математических функций, включая среднее, среднеквадратическое (RMS) и целое значения.

    Чтобы разместить новую линию курсора, наведите указатель мыши на края области сетки, где должны появиться две зеленые линии. Просто щелкните и перетащите линию курсора, чтобы разместить ее на графике. Переместите линию курсора, щелкнув прямоугольную ручку в середине линии.Чтобы удалить линию курсора, просто перетащите ее за пределы области сетки, и она исчезнет.

    Чтобы применить одну из встроенных математических функций к определенной кривой, щелкните ее правой кнопкой мыши в легенде и выберите нужный расчет из контекстного меню. Результат расчета будет отображаться в информационном поле в нижнем левом углу графика. Чтобы удалить примененную функцию, щелкните значок «X», который отображается рядом с ней в нижнем левом информационном поле.


    «Вернуться к содержанию

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.