Обозначения радиоэлементов на схеме: Страница не найдена

Содержание

Обозначение d1. Графическое обозначение радиодеталей на схемах

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру:

p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT

, BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление

R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля » — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее «…

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/ 0 С.

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Полупроводниковый диод – один из самых востребованных и распространённых компонентов в электронике. Какими параметрами обладает диод? Где он применяется? Каковы его разновидности? Об этом и пойдёт речь в этой статье.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Транзистор (от английских слов transfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы . Электропроводность эмиттера и коллектора всегда одинаковая (p или n), базы — противоположная (n или p). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 1. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см. рис. 1, VT1), то это означает, что эмиттер имеет электропроводность типа р, а база- типа n, если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная.

Рис.1. Условное обозначение транзисторов

Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа p-n-p. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.

Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 1). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3-VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 1, VT6).

Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 2, DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.

Рис.2. Условное обозначение транзисторных сборок

Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 2 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 3, VTl, VT2). При повороте обозначения транзистора на схеме положение этого знака должно оставаться неизменным.

Рис.3. Условное обозначение лавинных транзисторов

Иначе построено обозначение однопереходного транзистора: у него один p-n-переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3, VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).

На символ однопереходного транзистора похоже обозначение большой группы транзисторов с p-n-переходом, получивших название полевых . Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n или p-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 4, VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 4 условное графическое обозначение VT1 символизирует транзистор с каналом n-типа, VT2 — с каналом p-типа).

Рис.4. Условное обозначение полевых транзисторов

В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 4, VT3) — с каналом р-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три коротких штриха (см. рис. 4, VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это показывают внутри обозначения без точки (VT7, VT8).

В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).

Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (см. рис. 4, VT1). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КП303).

Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы . В качестве примера на рис. 5 показаны условные графические обозначения фототранзисторов с выводом базы (VT1, VT2) и без него (VT3). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с обозначением излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

Рис.5. Условное обозначение фототранзисторов и оптронов

Для примера на рис. 5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1). Аналогично строится обозначение оптрона с составным транзистором (U2).

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

обозначения на схеме. Узнаем как читать обозначения радиодеталей на схеме?

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных — резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Одна из разновидностей переменных конденсаторов – подстроечные. Они активно применяются в схемах, в которых имеется сильная зависимость от паразитных емкостей. И если установить конденсатор с постоянным значением, то вся конструкция будет работать неправильно. Следовательно, нужно установить универсальный элемент, который после окончательного монтажа можно настроить и зафиксировать в оптимальном положении. На схемах обозначаются точно так же, как и постоянные, но только параллельные пластины перечеркнуты стрелкой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго — в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах — в виде треугольника, а у его вершины — черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Виды маркировок и обозначение радиоэлементов на схеме > Флэтора

Контурные токи: калькулятор расчета, примеры применения метода

Определение и суть метода контурных токов. Контурные токи: особенности метода. Разновидности контурного представления. Пример расчета сложных цепей. Преимущества М К Т. Использование планарных графов и метод выделения максимального дерева….

22 04 2021 10:21:11

Определяем прямую и обратную полярности аккумуляторов

Разница между прямой и обратной полярностью. Что будет, если перепутать полярность аккумулятора? Определение полярности А К Б без маркировки. Рекомендации по определению и обслуживанию аккумуляторов в зависимости от полярностей….

21 04 2021 21:15:39

Монтаж встраиваемых и выдвижных розетки

Функционал места жительства сейчас на первом месте, именно поэтому стоит установить у себя выдвижные розетки их разновидности поражают воображение….

17 04 2021 5:21:54

Закон Ома для неоднородного участка цепи

Понятие и классическая формулировка закона Ома для неоднородного участка цепи. Что такое неоднородная цепь. Применение закона для неоднородных участков….

26 03 2021 15:44:52

Понятие (карта) селективности в электрических сетях: функции и виды защиты

Принцип селективности и понятие карты селективностей в электрических цепях. Абсолютная и относительная избирательность для электросети отдельного объекта. Методы построения и виды систем селективной защиты. Селективность по току и/или по временному интервалу срабатывания защиты….

20 03 2021 10:55:20

Тепловые действия электротоков: формула

Закон Джоуля- Ленца и переход энергии в теплоту. Формула, отражающая тепловое действие электрического тока. Применение тепловых действий электротоков. Применение теплового свойства электротока в специальных печах для получения определенных веществ….

16 03 2021 0:26:36

Измерение сопротивления заземления с помощью прибора М-416

Принцип работы и назначение прибора для измерения сопротивления заземления М416. Приделы измерений устройства для измерений сопротивлений в заземлениях М-416. М 416: подготовка к работе и проведение замеров по проверки исправности заземлений….

03 03 2021 20:50:18

Декор розеток — красота великая сила!

Сейчас на рынке большое разнообразие декоративных розеток, мы покажем лучшие решения для вас! Керамика, дерево, фарфор и многое другое….

21 02 2021 22:39:18

Проверка стабилитрона на плате с помощью мультиметра

Стабилитрон и его свойства. Проверка стабилитрона мультиметром на плате: порядок действий. Определение теплового пробоя. Проверка исправных стабилитронов. Пороговое значение напряжения. Можно ли проверить стабилитрон не выпаивая….

20 01 2021 12:43:50

Физическая формула расчета эквивалентного сопротивления в цепи

Определение эквивалентного сопротивления. Разница в методике определения эквивалентного сопротивления в цепях с последовательным и параллельным соединением элементов. Расчёт при смешанном соединении устройств. Физические формулы, примеры вычислений….

12 01 2021 21:30:30

Основы практической электроники для новичков

Пути совершенствования: микроминиатюризация и микросхемотехника. Практическая электроника для начинающих: основы и азы. Основные разделы и направления электроники как науки. Вакуумные среды и твёрдые тела….

10 01 2021 23:55:15

Разветвители для телевизионного кабеля: какие бывают

Какие разветвители для Т В антенны лучше использовать для разделения сигнала на 2, 3 и 4 телевизора. Что такое тройник для телевизионной антенны. Как правильно выбрать краб для антенны для телевизора. Принцип работы сплиттера для спутниковой антенны….

05 01 2021 23:20:17

Прикладные основы правил электрической безопасности

Опасности поражения электрическим током. Сопротивление тела и сила тока. Характеристика путей прохождения тока. Определение понятия заземления. Правила техники электробезопасности в промышленности и в быту….

02 01 2021 4:25:25

Умный дом — создаем автономную систему

Перечень функций которые выполняет умный дом, варианты применяемого оборудования, а также проектирование умного дома. Как работает система….

24 12 2020 0:35:47

Выпаиваем микросхемы из плат: распайка деталей паяльником

Принципы безопасной работы с полупроводниковыми радиодеталями. Типы микросхем и общие правила выпаивания деталей. Перетягивание припоя с места припайки на медные провода, смоченные флюсом. Использование паяльника с отсосом….

17 12 2020 9:32:14

Рисование электрических схем онлайн. Как читать принципиальные схемы

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.


И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.


Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Похожие записи:

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.


Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля » — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее «…

«Как читать электрические схемы?». Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это проводочки, по которым будет бежать электрический ток . Их задача — соединять радиоэлементы.

Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R — это значит резистор . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А — это различные устройства (например, усилители)

В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С — конденсаторы

D — схемы интегральные и различные модули

E — разные элементы, которые не попадают ни в одну группу

F — разрядники, предохранители, защитные устройства

H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

U — преобразователи электрических величин в электрические, устройства связи

V — полупроводниковые приборы

W — линии и элементы сверхвысокой частоты, антенны

X — контактные соединения

Y — механические устройства с электромагнитным приводом

Z — оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD — детектор ионизирующих излучений

BE — сельсин-приемник

BL — фотоэлемент

BQ — пьезоэлемент

BR — датчик частоты вращения

BS — звукосниматель

BV — датчик скорости

BA — громкоговоритель

BB — магнитострикционный элемент

BK — тепловой датчик

BM — микрофон

BP — датчик давления

BC — сельсин датчик

DA — схема интегральная аналоговая

DD — схема интегральная цифровая, логический элемент

DS — устройство хранения информации

DT — устройство задержки

EL — лампа осветительная

EK — нагревательный элемент

FA — элемент защиты по току мгновенного действия

FP — элемент защиты по току инерционнго действия

FU — плавкий предохранитель

FV — элемент защиты по напряжению

GB — батарея

HG — символьный индикатор

HL — прибор световой сигнализации

HA — прибор звуковой сигнализации

KV — реле напряжения

KA — реле токовое

KK — реле электротепловое

KM — магнитный пускатель

KT — реле времени

PC — счетчик импульсов

PF — частотомер

PI — счетчик активной энергии

PR — омметр

PS — регистрирующий прибор

PV — вольтметр

PW — ваттметр

PA — амперметр

PK — счетчик реактивной энергии

PT — часы

QF

QS — разъединитель

RK — терморезистор

RP — потенциометр

RS — шунт измерительный

RU — варистор

SA — выключатель или переключатель

SB — выключатель кнопочный

SF — выключатель автоматический

SK — выключатели, срабатывающие от температуры

SL — выключатели, срабатывающие от уровня

SP — выключатели, срабатывающие от давления

SQ — выключатели, срабатывающие от положения

SR — выключатели, срабатывающие от частоты вращения

TV — трансформатор напряжения

TA — трансформатор тока

UB — модулятор

UI — дискриминатор

UR — демодулятор

UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD — диод , стабилитрон

VL — прибор электровакуумный

VS — тиристор

VT — транзистор

WA — антенна

WT — фазовращатель

WU — аттенюатор

XA — токосъемник, скользящий контакт

XP — штырь

XS — гнездо

XT — разборное соединение

XW — высокочастотный соединитель

YA — электромагнит

YB — тормоз с электромагнитным приводом

YC — муфта с электромагнитным приводом

YH — электромагнитная плита

ZQ — кварцевый фильтр

Ну а теперь самое интересное: графическое обозначение радиоэлементов.

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы постоянные

а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варистор

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности

а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации

а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)

Предохранители

а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Полевой транзистор с управляющим P-N переходом

Сокращения в электрических схемах — Ремонт и стройка от Stroi-Sia.ru

11.2.1. Сокращения на электросхемах, идентификация проводов, цветовой код

ОБЩИЕ СВЕДЕНИЯ

AB – воздушная подушка безопасности

ABS – антиблокировочная тормозная система

AC – кондиционирование воздуха

ASP – внешнее зеркало

В – автоматическая трансмиссия

ATC – автоматическое регулирование температуры

AZV – дышло прицепа

BR – бортовой компьютер

CD – переключатель компакт-диска

CRC – управление круиз-контроля

DID – двойной информационный дисплей

DIM – регулятор освещенности

DIS – прямая система зажигания

DS – система защиты

DWA – противоугонная система

ЕЭС – электронный контроль климата

EFC – электрическая крыша (автомобиль типа «кабриолет» с откидным верхом)

EKP – топливный насос

EKS – охрана (окна с электрическим стеклоподъемником)

ETC – электронный контроль тяги

EZ + – плюс с самодиагностики

FH – окна с электрическим стеклоподъемником

FT – дверь водителя

FV – плавкий предохранитель

HRL – лампа багажного отделения

HS – обогреватель стекла

HSF – вещевой ящик

HW – стеклоочиститель заднего стекла

ID – показ информации

IRL – подсветка салона

KAT – каталитический конвертер

КБ – жгут проводов

KV – контакт, распределительный элемент

L3.1 – система впрыска топлива (Bosch L3.1-Jetronic)

LCD – LCD инструмент

LHD – левый двигатель

LWR – корректор фар

M1.5 – система впрыска топлива (Bosch Motronic M1.5)

M2.5 – система впрыска топлива (ESOSCH Motronic M2.5)

MID – многофункциональный дисплей

MOT – система впрыска топлива Motronic

MT – механическая коробка передач

MUL – система впрыска топлива (Multec)

NSL – задний потивотуманный фонарь

NSW – противотуманная фара

OEL – датчик давления масла

OPT – оборудование, поставляемое по особому заказу

Буквенные Обозначения В Электрических Схемах

Принципиальные — на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ.

Как читать электрические схемы

Заключение

Функциональные — здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.

Графические обозначения в электрических схемах Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами: 2. Пример такой схемы представлен ниже.
РАЗБОР ПРОСТОЙ СХЕМЫ — Читаем электрические схемы 2 ЧАСТЬ

Таблицы буквенных обозначений радиодеталей

Речь сейчас не об этом. Тип 1 — функциональная схема Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы.


Это также помогает читать схемы. Построение обозначения должно обеспечить возможность однозначного указания места любой части объекта в конструкции. Обозначение элемента в общем случае состоит из трех частей, указывающих вид элемента, его номер и функцию.

Мощность варьируется от 0. Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.

При разнесенном способе представления допускается к номеру добавлять условный номер изображений части элемента или устройства, отделяя его точкой. Указание функции элемента не служит для идентификации элемента и не является обязательным. Но начнем немного издалека После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
как научиться читать схемы

Графическое обозначение электроэнергетических объектов на схемах

Графические обозначения Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Для некоторых устройств управления источниками света обозначений нет — например, для кнопочных устройств и диммеров. Буквенные обозначения элементов на схемах: основные и дополнительные В таблице выше приведены международные обозначения.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2. Большая часть обозначений — графические. Это и будет полная принципиальная схема.

Обычно они представляют собой однолинейную схему с обозначением УЗО , автоматических выключателей, контакторов и другого защитного оборудования. D — Символ заземления. Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям. Следует заметить, что чаще в домашней практике используются всего три типа электросхем: Монтажные — для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям.

Парные галочки при изображении розеток — это количество проводов. В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. Вся информация представлена блоками с подписями — наименованиями устройств.

Как изображают выключатели, переключатели, розетки На некоторые виды этого оборудования утвержденных стандартами изображений нет. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Виды и типы. Импульсное реле — тоже довольно легко отличить по характерной форме знака. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны быть присвоены всем элементам и устройствам объекта.

Нормативные документы

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Есть отдельные обозначения для двухклавишных и трехклавшных выключателей.

Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. В — значок электричества, отображающий переменное напряжение. Характерная особенность такой схемы — минимальная детализация. Ко всем этим мелочам надо присматриваться и запоминать. Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания.
Условные графические обозначения радиоэлементов

Условные обозначения в электрических схемах: расшифровка графики и буквенно-цифровых знаков

Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.

Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.

В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.

Какие виды электросхем могут пригодиться?

Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.

Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг это знакомство с видами электрических схем.

Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».

Это дубликат более раннего документа ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна электрическая.

Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.

Тип #1 – функциональная схема

Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.

А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.

Тип #2 – принципиальная схема

Принципиальная схема, в отличие от функциональной это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними. Если схема сложная, содержащая, например, резервирующие цепи, то эксплуатационники пользуются оперативным схемами, дающими представление о “сегодняшнем положении коммутационных аппаратов”.

Если же нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.

Тип #3 – монтажная схема

Монтажная схема документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.

Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.

Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.

Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.

Графические изображения в электросхемах

Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.

Большая часть обозначений графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.

Основные базовые изображения

Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.

Самый простой пример обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие именно они и отображаются в схемах.

Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.

Символика однолинейных схем

Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.

Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.

Специальными символами обозначаются катушки реле во всех изображениях за основу взят прямоугольник.

Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».

При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.

Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток это количество проводов.

Как изображаются шины и провода?

Для обозначений шин, кабелей и проводов используется линейная графика практически все символы состоят из прямых линий.

Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.

Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.

Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.

Розетки и выключатели на схемах

Обозначение выключателей разбито на несколько групп по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.

Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.

Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.

Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.

При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.

Например, популярные виды розеток выглядят следующим образом:

На деле же электромонтажные устройства выглядят так:

Обозначение радиоэлементов на схемах

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL – прибор электровакуумный

VS – тиристор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Курсы по ремонту сотовых телефонов (и не только;). Обозначение на схемах радиодеталей

Обзор элементов и их обозначение на печатной плате мобильного телефона helpmymac wrote in December 9th, 2012

Сопротивление
Сопротивление по традиции обозначается буквой R (Resistor) и измеряется в Омах (Ом). На схеме оно обозначается прямоугольником, либо перечеркнутым прямоугольником (так обозначается термистор и его сопротивление зависит от температуры). R3 470 означает, что это сопротивление №3 на данной схеме и он имеет сопротивление 470 Ом

Конденсатор
Конденсатор обозначается буквой C и его емкость измеряется в Фарадах (F). Существует два типа конденсаторов — полярный и неполярный. На картинке внизу C4 — неполярный конденсатор, C5 — полярный. Слева вверху показан внешний вид полярного конденсатора. Неполярный конденсатор, значит, неполяризованный, — то есть не важно какой стороной он будет установлен на печатную плату. В отличие от полярного, который нужно устанавливать строго -плюс к плюсу, минус к минусу. Таблица значений конденсаторов .

Диод
Существует множество различных диодов , диод используется в качестве фильтра тока и напряжения, также в качестве выпрямителя и преобразователя. Диод это электронный прибор который обладает различной проводимостью в зависимости от приложенного напряжения (в одном направлении пропускает ток, в другом нет)


На печатной плате обычный диод похож на сопротивление, но на нем может быть маленькая точечка. Так как диод нельзя просто так взять и поставить на плату, надо определить по схеме какой стороной он должен быть установлен.

Светодиоды (LED — Light Emitting Diode). Данный тип диодов используются в качестве подсветки клавиатуры и экранов на всех современных мобильных устройствах

Также часто можно встретить фотодиоды (PhotoDiode Photo Cell). Их используют в качестве датчика света, например, в айФонах любого поколения есть такая функция, как регулировка яркости экрана, в зависимости от освещенности. Яркость регулируется как раз с помощью данного типа диодов.

Катушка индуктивности
Грубо говоря это кусок проволоки намотанной в спираль. Определить на схеме ее очень просто, она похожа на волну.

Предохранитель
Предохранитель необходим для защиты от внезапного увеличения силы тока и напряжения в конкретной схеме. В случае если сопротивление в цепи будет очень низким или появится короткое замыкание, предохранитель просто сгорит. Их специально изготавливают из таких материалов, что при прохождении через него большого тока они сильно нагреваются и сгорают. На печатной плате они похожи сопротивления. Обозначается на схеме буквой F:

Кварцевый генератор
Кварцевые генераторы используют для измерения времени, в качестве стандартов частоты. Кварцевые генераторы широко применяются в цифровой технике в качестве тактовых генераторов, то есть генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах. Кстати, кварцевый генератор на столько важный элемент, что при его поломке телефон просто не включится.

Если я забыл рассказать о чем-то, напишите мне в комментариях и я подправлю эту статью.

Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.

В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.

Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.

Основное обозначение Наименование элемента Дополнительное обозначение Вид устройства
АУстройствоАА
АК
AKS
Регулятор тока
Блок реле
Устройство
BПреобразователи
BF
BK
BL
BM
BS
Громкоговоритель
Телефон
Датчик тепловой
Фотоэлемент
Микрофон
Звукосниматель
СКонденсаторыСВ
CG
Батарея конденсаторов силовая
Блок конденсаторов зарядный
DИнтегральные схемы, микросборкиDA
DD
ИС аналоговая
ИС цифровая, логический элемент
EЭлементы разныеEK
EL
Теплоэлектронагреватель
Лампа осветительная
FРазрядники, предохранители, устройства защитыFA
FP
FU
FV
Дискретный элемент защиты по току мгновенного действия
Дискретный элемент защиты по току инерционного действия
Предохранитель плавкий
Разрядник искровой
GГенераторы, источники питанияGB
GC
GE
Батарея аккумуляторов
Синхронный компенсатор
Возбудитель генератора
HУстройства индикационные и сигнальныеHA
HG
HL
HLA
HLG
HLR
HLW
HV
Прибор звуковой сигнализации
Индикатор
Прибор световой сигнализации
Табло сигнальное
Лампа сигнальная с зелёной линзой
Лампа сигнальная с красной линзой
Лампа сигнальная с белой линзой
Индикаторы ионные и полупроводниковые
KРеле, контакторы, пускателиKA
KH
KK
KM
KT
KV
KCC
KCT
KL
Реле токовое
Реле указательное
Реле электротепловое
Контактор, магнитный пускатель
Реле времени
Реле напряжения
Реле команды включения
Реле команды отключения
Реле промежуточное
LКатушки индуктивности, дросселиLL
LR
LM
Дроссель люминисцентного освещения
Реактор
Обмотка возбуждения электродвигателя
МДвигателиМАЭлектродвигатели
РПриборы измерительныеPA
PC
PF
PI
PK
PR
PT
PV
PW
Амперметр
Счётчик импульсов
Частотомер
Счетчик активной энергии
Счетчик реактивной энергии
Омметр
Измеритель времени действия, часы
Вольтметр
Ваттметр
QВыключатели и разъединители силовыеQFВыключатель автоматический
RРезисторыRK
RP
RS
RU
RR
Терморезистор
Потенциометр
Шунт измерительный
Варистор
Реостат
SУстройства управления и коммутацииSA
SB
SF
Выключатель, или переключатель
Выключатель кнопочный
Выключатель автоматический
TТрансформаторы, автотрансформаторыTA
TV
Трансформатор тока
Трансформатор напряжения
UПреобразователиUB
UR
UG
UF
Модулятор
Демодулятор
Блок питания
Преобразователь частоты
VПриборы электровакуумные и полупроводниковыеVD
VL
VT
VS
Диод, стабилитрон
Прибор электровакуумный
Транзистор
Тиристор
XСоединители контактныеXA
XP
XS
XW
Токосъёмник
Штырь
Гнездо
Соединитель высокочастотный
YУстройства механические с электромагнитным приводомYA
YAB
Электромагнит
Замок электромагнитный

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача — соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R — это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А — это различные устройства (например, усилители)

В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С — конденсаторы

D — схемы интегральные и различные модули

E — разные элементы, которые не попадают ни в одну группу

F — разрядники, предохранители, защитные устройства

H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K — реле и пускатели

L — катушки индуктивности и дроссели

M — двигатели

Р — приборы и измерительное оборудование

Q — выключатели и разъединители в силовых цепях. То есть в цепях, где «гуляет» большое напряжение и большая сила тока

R — резисторы

S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T — трансформаторы и автотрансформаторы

U — преобразователи электрических величин в электрические, устройства связи

V — полупроводниковые приборы

W — линии и элементы сверхвысокой частоты, антенны

X — контактные соединения

Y — механические устройства с электромагнитным приводом

Z — оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD — детектор ионизирующих излучений

BE — сельсин-приемник

BL — фотоэлемент

BQ — пьезоэлемент

BR — датчик частоты вращения

BS — звукосниматель

BV — датчик скорости

BA — громкоговоритель

BB — магнитострикционный элемент

BK — тепловой датчик

BM — микрофон

BP — датчик давления

BC — сельсин датчик

DA — схема интегральная аналоговая

DD — схема интегральная цифровая, логический элемент

DS — устройство хранения информации

DT — устройство задержки

EL — лампа осветительная

EK — нагревательный элемент

FA — элемент защиты по току мгновенного действия

FP — элемент защиты по току инерционнго действия

FU — плавкий предохранитель

FV — элемент защиты по напряжению

GB — батарея

HG — символьный индикатор

HL — прибор световой сигнализации

HA — прибор звуковой сигнализации

KV — реле напряжения

KA — реле токовое

KK — реле электротепловое

KM — магнитный пускатель

KT — реле времени

PC — счетчик импульсов

PF — частотомер

PI — счетчик активной энергии

PR — омметр

PS — регистрирующий прибор

PV — вольтметр

PW — ваттметр

PA — амперметр

PK — счетчик реактивной энергии

PT — часы

QF

QS — разъединитель

RK — терморезистор

RP — потенциометр

RS — шунт измерительный

RU — варистор

SA — выключатель или переключатель

SB — выключатель кнопочный

SF — выключатель автоматический

SK — выключатели, срабатывающие от температуры

SL — выключатели, срабатывающие от уровня

SP — выключатели, срабатывающие от давления

SQ — выключатели, срабатывающие от положения

SR — выключатели, срабатывающие от частоты вращения

TV — трансформатор напряжения

TA — трансформатор тока

UB — модулятор

UI — дискриминатор

UR — демодулятор

UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD — диод , стабилитрон

VL — прибор электровакуумный

VS — тиристор

VT

WA — антенна

WT — фазовращатель

WU — аттенюатор

XA — токосъемник, скользящий контакт

XP — штырь

XS — гнездо

XT — разборное соединение

XW — высокочастотный соединитель

YA — электромагнит

YB — тормоз с электромагнитным приводом

YC — муфта с электромагнитным приводом

YH — электромагнитная плита

ZQ — кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.

Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Обозначения радиодеталей. Маркировка радиодеталей и радиоэлементов Цоколевка радиоэлементов

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.

Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

кликните по картинке чтобы увеличить

При практической работе, связанной в первую очередь с ремонтом электронной техники, возникает задача определить тип электронного компонента, его параметры, расположение выводов, принять решение о прямой замене или использовании аналога. В большинстве существующих справочников приводится информация по отдельным типам радиокомпонентов (транзисторы, диоды и т. д.). Однако ее недостаточно, и необходимым дополнением к таким книгам служит данное справочное пособие. Представляемая читателю книга по маркировке электронных компонентов содержит в отличие от издававшихся ранее подобных изданий, больший объем информации. В ней приведены данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа (SMD), приведены данные по маркировке некоторых ранее не освещавшихся типов зарубежных компонентов, даны рекомендации по использованию и проверке исправности электронных компонентов.


Предисловие

1. Резисторы
1.1. Общие сведения
1.2. Обозначение и маркировка резисторов
Система обозначения
Маркировка резисторов отечественного производства
Маркировка резисторов зарубежного производства
Маркировка резисторных сборок
1.3. Технические данные и маркировка бескорпусных SMD резисторов
Общие сведения
Маркировка SMD резисторов
1.4. Особенности применения и маркировки переменных резисторов
Переменные и подстроечные резисторы фирмы BOURNS
1.5. Резисторы с особыми свойствами
Термисторы
Варисторы
2. Конденсаторы
2.1. Общие сведения
2.2. Обозначение и маркировка конденсаторов
Отечественная система обозначения
Маркировка конденсаторов
Кодовая цифровая маркировка
Цветовая маркировка
2.3. Особенности маркировки некоторых типов SMD конденсаторов
Керамические 5МЭ конденсаторы
Оксидные SMD -конденсаторы
Танталовые SMD -конденсаторы
Маркировка электролитических конденсаторов фирмы ТRЕС
Конденсаторы фирмы HITANO
Советы по практическому применению
2.4. Подстроечные конденсаторы зарубежных фирм
2.5. Другие типы конденсаторов
3. Катушки индуктивности
3.1. Общие сведения
3.2. Маркировка катушек индуктивности
Маркировка катушек индуктивности для поверхностного монтажа
3.3. Дроссели серий Д, ДМ, ДП, ДПМ
4. Маркировка кварцевых резонаторов и пьезофильтров
4.1. Маркировка резонаторов и фильтров отечественного производства
4.2. Особенности маркировки резонаторов и фильтров зарубежного производства…
4.3. Особенности маркировки фильтров производства фирмы Murata
5. Маркировка полупроводниковых приборов
5.1. Отечественная и зарубежные системы маркировки
полупроводниковых приборов
Маркировка R-МОП транзисторов Harris (Intersil)
Маркировка IGBT транзисторов Harris (Intersil)
Маркировка транзисторов фирмы International Rectifier
Маркировка полупроводниковых приборов фирмы Мо1ого1а
5.2. Диоды общего назначения
Типы корпусов и расположение выводов диодов
Цветовая маркировка отечественных диодов
Цветовая маркировка зарубежных диодов
Цветовая маркировка отечественных стабилитронов и стабисторов
Цветовая маркировка отечественных варикапов
Буквенно-цифровая кодовая маркировка SMD диодов зарубежного
производства
Цветовая маркировка SMD диодов в корпусах SOD-80,DO-213АА, DО-213АВ
Фотодиоды
Транзисторы
Особенности кодовой и цветовой маркировки отечественных транзисторов
6. Маркировка полупроводниковых SMD радиокомпонентов
6.1. Идентификация SMD компонентов по маркировке
6.2. Типы корпусов SMD транзисторов
6.3. Как пользоваться системой
Эквиваленты и дополнительная информация
7. Особенности тестирования электронных компонентов
7.1. Тестирование конденсаторов
7.2. Тестирование полупроводниковых диодов
7.3. Тестирование транзисторов
7.4. Тестирование одноперeходных и программируемых однопереходных
транзисторов
7.5. Тестирование динисторов, тиристоров, симисторов
7.6. Определение структуры и расположения выводов транзисторов,
тип которых неизвестен
7.7. Тестирование полевых МОП-транзисторов
7.8. Тестирование светодиодов
7.9. Тестирование оптопар
7.10. Тестирование термисторов
7.11. Тестирование стабилитронов
7.12. Расположение выводов транзисторов
Приложение 1. Краткие справочные данные по зарубежным диодам
Приложение 2. Краткие справочные данные по зарубежным транзисторам
Приложение 3. Типы корпусов СВЧ транзисторов

В сборнике собраны книги по цветовой и кодовой маркировке радиоэлементов импортного и отечественного производства по номиналам, рабочему напряжению, допускам и другим характеристикам. В них вы найдете данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа, логотипы и буквенные сокращения при маркировке микросхем ведущих зарубежных производителей, а также рекомендации по использованию и проверке исправности электронных компонентов.

Список книг:

Нестеренко И.В., Панасенко В.Н. Цветовые и кодовые обозначения радиоэлементов
В.В.Мукосеев, И.Н.Сидоров. Маркировка и обозначение радиоэлементов. Справочник
Садченков Д.А. Маркировка радиодеталей отечественных и зарубежных. Справочное пособие

Нестеренко И.И. Маркировка радиоэлектронных компонентов. Карманный справочник
Перебаскин А.В. Маркировка электронных компонентов. 9-е издание
Маркировка электронных компонентов
Нестеренко И.И. Цвет, код, символика радиоэлектронных компонентов
Нестеренко И.И. Цветовая и кодовая маркировка радиоэлектронных компонентов, отечественных и зарубежных

Авторы: разные
Издательство: Запорожье: ИНТ, ЛТД; М.: Горячая Линия — Телеком; М.: Солон-Пресс; М: Додэка- XXI;
Год издания: 2001-2008
Страниц: 2677
Формат: pdf
Размер: 259 мб
Язык: русский

Скачать Маркировка радиодеталей и радиоэлементов. Сборник книг

Здравствуйте посетители сайта 2 Схемы . Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали — резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» — означает Омы
  • Буква «К» — означает Килоом
  • Буква «М» — означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 — это значит что сопротивление 1,5 Ома или 1М5 — это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем «0» и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется — так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его .

Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в пикофарадах .

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» — нанофарады
  • Буква «p» — пикофарады

На первом (большом) написано «2n7» — в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала — Свят.

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных — резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей — транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы — это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости — это Фарад. Она очень большая. На практике, как правило, используются которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S — это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости — начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр — максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения — минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном — 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное — суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное — в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное — в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается — одна часть содержит только параллельно соединенные элементы, вторая — только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции — хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода — в частности, сажи). Впрочем, можно нанести даже графит — эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя

Основная характеристика резистора — это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие — сокращенно МЛТ.
  2. Влагостойкие сопротивления — ВС.
  3. Углеродистые лакированные малогабаритные — УЛМ.

У резисторов два основных параметра — мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор — это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем — порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные — три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго — в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение — сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение — произведение сопротивлений делится на сумму.
  3. Смешанное — разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы — полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы — это один кристалл, на котором может находиться великое множество радиоэлементов — и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник — это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам — в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода — катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах — в виде треугольника, а у его вершины — черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором — в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой — это корпус. Основная характеристика транзисторов — коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора — вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

% PDF-1.4 % 700 0 объект > эндобдж xref 700 182 0000000016 00000 н. 0000004010 00000 н. 0000004238 00000 п. 0000004391 00000 п. 0000004447 00000 н. 0000006914 00000 н. 0000007072 00000 н. 0000007156 00000 н. 0000007240 00000 н. 0000007355 00000 н. 0000007461 00000 п. 0000007517 00000 н. 0000007660 00000 н. 0000007716 00000 н. 0000007868 00000 н. 0000007924 00000 н. 0000008080 00000 н. 0000008136 00000 н. 0000008253 00000 н. 0000008309 00000 н. 0000008365 00000 н. 0000008479 00000 н. 0000008657 00000 н. 0000008713 00000 н. 0000008822 00000 н. 0000008931 00000 н. 0000009106 00000 п. 0000009162 00000 п. 0000009266 00000 н. 0000009369 00000 н. 0000009540 00000 н. 0000009596 00000 н. 0000009709 00000 н. 0000009819 00000 н. 0000009991 00000 н. 0000010047 00000 п. 0000010166 00000 п. 0000010279 00000 п. 0000010469 00000 п. 0000010525 00000 п. 0000010620 00000 п. 0000010749 00000 п. 0000010953 00000 п. 0000011009 00000 п. 0000011108 00000 п. 0000011230 00000 н. 0000011397 00000 п. 0000011453 00000 п. 0000011569 00000 п. 0000011683 00000 п. 0000011860 00000 п. 0000011916 00000 п. 0000012027 00000 п. 0000012132 00000 п. 0000012298 00000 п. 0000012353 00000 п. 0000012457 00000 п. 0000012577 00000 п. 0000012728 00000 п. 0000012783 00000 п. 0000012888 00000 п. 0000012991 00000 п. 0000013093 00000 п. 0000013148 00000 п. 0000013250 00000 п. 0000013305 00000 п. 0000013359 00000 п. 0000013475 00000 п. 0000013530 00000 п. 0000013647 00000 п. 0000013702 00000 п. 0000013757 00000 п. 0000013812 00000 п. 0000013931 00000 п. 0000013986 00000 п. 0000014112 00000 п. 0000014167 00000 п. 0000014303 00000 п. 0000014358 00000 п. 0000014472 00000 п. 0000014527 00000 п. 0000014655 00000 п. 0000014710 00000 п. 0000014848 00000 п. 0000014903 00000 п. 0000015029 00000 п. 0000015084 00000 п. 0000015139 00000 п. 0000015194 00000 п. 0000015308 00000 п. 0000015364 00000 п. 0000015493 00000 п. 0000015548 00000 п. 0000015678 00000 п. 0000015733 00000 п. 0000015788 00000 п. 0000015843 00000 п. 0000015975 00000 п. 0000016031 00000 п. 0000016161 00000 п. 0000016217 00000 п. 0000016349 00000 п. 0000016405 00000 п. 0000016461 00000 п. 0000016517 00000 п. 0000016659 00000 п. 0000016715 00000 п. 0000016843 00000 п. 0000016899 00000 н. 0000017027 00000 п. 0000017083 00000 п. 0000017200 00000 н. 0000017256 00000 п. 0000017312 00000 п. 0000017368 00000 п. 0000017486 00000 п. 0000017542 00000 п. 0000017691 00000 п. 0000017747 00000 п. 0000017875 00000 п. 0000017931 00000 п. 0000017987 00000 п. 0000018043 00000 п. 0000018150 00000 п. 0000018206 00000 п. 0000018317 00000 п. 0000018373 00000 п. 0000018499 00000 п. 0000018555 00000 п. 0000018667 00000 п. 0000018723 00000 п. 0000018779 00000 п. 0000018835 00000 п. 0000018974 00000 п. 0000019030 00000 п. 0000019158 00000 п. 0000019214 00000 п. 0000019341 00000 п. 0000019397 00000 п. 0000019516 00000 п. 0000019572 00000 п. 0000019689 00000 п. 0000019745 00000 п. 0000019801 00000 п. 0000019857 00000 п. 0000019913 00000 п. 0000020030 00000 н. 0000020150 00000 п. 0000020206 00000 н. 0000020342 00000 п. 0000020398 00000 п. 0000020522 00000 п. 0000020578 00000 п. 0000020695 00000 п. 0000020751 00000 п. 0000020807 00000 п. 0000020863 00000 п. 0000020989 00000 п. 0000021045 00000 п. 0000021184 00000 п. 0000021240 00000 п. 0000021296 00000 п. 0000021352 00000 п. 0000021408 00000 п. 0000021634 00000 п. 0000022113 00000 п. 0000022316 00000 п. 0000022497 00000 п. 0000022999 00000 н. 0000023206 00000 п. 0000023465 00000 п. 0000023658 00000 п. 0000024062 00000 п. 0000024318 00000 п. 0000024665 00000 п. 0000025265 00000 п. 0000025462 00000 п. 0000026176 00000 п. 0000026323 00000 п. 0000027295 00000 п. 0000004598 00000 н. 0000006891 00000 н. трейлер ] >> startxref 0 %% EOF 701 0 объект > эндобдж 702 0 объект .~ P.p / 0> BdUUI ~ Q ݽ 7 G] l 30J ‘egx ݉ʖ` o {c9> dH # z7d | oʋ: \ — (M ac) ԫΤ3T @ rzi # B ~ t \ K! I 2ZWaHi? YZ61 * nD’jk4ZHjC9PViv6: 8 «

Радиоактивные элементы | Chem13 News Magazine

Хотя радиоактивные элементы уран и торий были открыты в самом начале истории этих элементов — в 1789 и 1828 годах, соответственно, за годы до появления периодической таблицы, — сама радиоактивность была неизвестна до 1896 года. когда Анри-Антуан Беккерель (1852–1908) в Париже обнаружил, что уран может открывать фотопластинки, даже когда он защищен черной непрозрачной бумагой.Знаменитая Мария Кюри (1867-1934) быстро изучила все элементы (известные в то время) и определила, что только два из них являются радиоактивными — уран и торий. Она и ее муж Пьер Кюри (1859–1906) приступили к изучению урановой руды из Санкт-Иоахимсталя, Богемия (ныне Яхимов, Чешская Республика), и в 1898 году открыли радий и полоний. В следующем году Андре Дебьерн (1874–1949) группа исследователей Кюри открыла актиний в той же руде, а в следующем году в Северной Америке радон был открыт в 1900 году Эрнестом Резерфордом (1871-1937) и Фредериком Содди (1877-1956) в Монреале, Канада.* Независимо протактиний был открыт в 1917 году Отто Ганом (1879-1968) и Лиз Мейтнер (1878-1968) в Берлине и Фредериком Содди и Джоном Крэнстоном (1891-1972) в Абердине, Шотландия. Все эти элементы, казалось, вписывались в таблицу Менделеева, заполняя оставшиеся пробелы. К 1920-м годам только элементы 43, 61, 85 и 87 оставались неизвестными (хотя было сделано несколько ложных заявлений).


Мария Кюри Пьер Кюри Эрнест Резерфорд Фредерик Содди

Основной метод отслеживания этих элементов заключался в простом отслеживании их радиоактивности в различных химических фракциях по мере разработки аналитических методик.Однако возникла трудность — появилось избыток элементов, каждый с разным периодом полураспада. Например, Резерфорд заметил, что радий распадается в несколько этапов, давая последовательность Ra (радий) → Rn (радон) → Ra-A → Ra-B → Ra-C → Ra-E → Ra-F → Ra-G. . Открытие Резерфорда привело к открытию другими исследователями множества новых элементов в других схемах распада в течение первого десятилетия 1900 года. Эти элементы включали «ионий», «бревий», «актиноураний», «радиоторий», «нитон», « актинон »,« торий-X »,« уран-X »и многие другие.Сбивающая с толку особенность всех этих недавно открытых элементов заключалась в том, что во многих случаях некоторые из них обладали очень похожими, а возможно, и идентичными химическими свойствами, хотя и имели разные периоды полураспада. Просто было слишком много элементов, чтобы поместиться в периодической таблице!

В 1913 году Фредерик Содди решил проблему. Он задумал идею «изотопа». Изотопы (от греческого «isos» — «одинаковый» и «topos» — «место») находятся «в одном месте» в периодической таблице, имеют одинаковые химические свойства, но при этом обладают разными ядерными свойствами.Термин «изотоп» был придуман во время званого обеда у Содди в Глазго доктором Маргарет Тодд, литературоведом (см. Рисунок выше). Когда в 1932 году Джеймс Чедвик (1891–1974) открыл нейтрон, источник изотопов стал ясен — тот же атомный номер, но другая атомная масса. Содди назвал эту последовательность радиоактивного распада, подобную той, что наблюдал Резерфорд, «величественным процессом химической эволюции», в котором атом может распасться, потеряв α-частицу (ядро гелия), которая переместит элемент вниз по периодической таблице на две части. единицы атомного номера или β-частица (электрон), которая переместит элемент на одну единицу атомного номера вверх.Теперь можно было понять последовательность Резерфорда: это была просто последовательность эволюционирующих элементов радия через ряд изотопов, окончательно оседающих с «радием-G», который на самом деле был стабильным свинцом (хотя это был свинец-206, составляющий только 24% естественного встречающийся свинец, который представляет собой смесь 204, 206, 207 и 208, с атомной массой, т. е. средней атомной массой земной коры 207,2).

Еще один природный радиоактивный элемент был открыт в 1939 году Маргаритой Перей, которая работала в Институте Кюри в Париже.Она обнаружила франций с удивительно коротким периодом полураспада 22 минуты в урановых рудах в 1939 году.

Все остальные радиоактивные элементы были произведены искусственно. Первым был технеций (ат. № 43), который был произведен бомбардировкой молибдена дейтронами на 37-дюймовом циклотроне в Беркли. Сам технеций был выделен химическим путем Карло Перье и Эмилио Сегре в 1937 году в Королевском институте экспериментальной физики в Палермо, Италия. Прометий редкоземельный (ат.нет. 61) была произведена в атомном реакторе в Ок-Ридже, штат Теннесси, Джейкобом Марински, Лоуренсом Гленденином и Чарльзом Кориеллом в 1945 году. С этими двумя элементами (43 и 61) периодическая таблица была окончательно завершена за счет урана.

Затем последовал искусственный синтез трансурановых элементов. Каждый из них, как правило, был обнаружен группой ученых, хотя один или два из них были названы первооткрывателями. Эта история началась в Калифорнийском университете в Беркли.Ключевыми людьми в Беркли были Гленн Т. Сиборг (1912–1999) и Альберт Гиорсо (1915–2010). Гиорсо, который начал свои исследования в Беркли в качестве технического специалиста Сиборга, был включен в книгу рекордов Гиннеса (2003 г., стр. 173) как первооткрыватель большинства элементов, а именно, америций через сиборгий для всего двенадцать (Сиборг был ответственен за «только» десять трансурановых элементов). Сиборг в то время был единственным человеком, в честь которого был назван элемент, когда он был еще жив, тем самым нарушив давнюю традицию химической номенклатуры.(С тех пор оганессон, дом № 118, носит имя Юрия Оганесяна, известного русского ученого (1933-).

Исследование Нильса Бора (1885-1962) в Копенгагене, Дания, прояснило периодическую таблицу для более тяжелых элементов. Модель атома Бора с оболочками s, p, d и f позволила Сиборгу способствовать введению актинидов, которые располагались отдельным рядом под редкоземельными элементами.


Альберт Гиорсо Гленн Сиборг

После расцвета исследований Беркли по трансурановым элементам Дармштадт, Германия (Центр исследований тяжелых ионов GSI), а затем Дубна, Россия (Объединенный институт ядерных исследований), заняли видное место в синтезе новых тяжелых элементов.Позднее участие Японии (Рикен, Вако, Япония) также было важным. Иногда открытия или проверки делались совместными предприятиями различных институтов. В честь этих четырех исследовательских центров в их честь названы элементы — берклий (ат. № 97), дубний (ат. № 105), дармштадтий (ат. № 110) и нихоний (ат. № 113). ).

Будет ли больше элементов, кроме 118? Трансурановые элементы образуют тенденцию к снижению стабильности по мере перехода к большим атомным номерам, и можно сомневаться в возможности.Однако предложение «Острова стабильности» обещает, что, возможно, элементы с «магическими числами» протонов и нейтронов могут обеспечить удивительную стабильность элементов за пределами оганесона. («Магические числа» как для протонов, так и для нейтронов — 2, 8, 20, 28, 50 и 82 — но неясно, каким должно быть следующее число в последовательности.) Были высказаны предположения, что сверхтяжелые элементы с половиной могут существовать миллиарды лет жизни. . . но нам придется подождать и посмотреть!

* Некоторые источники (например,грамм. Википедия, en.wikipedia.org/wiki/Radon) предполагает, что Роберт Оуэнс (1870-1940), сотрудник Резерфорда, должен разделить заслугу.

Возможность трансмутации радиоактивных элементов | Международный хранилище отработавшего ядерного топлива: исследование российского объекта в качестве прототипа: материалы международного семинара

Ядерные реакторы

, называемые реакторами поколения IV (GEN-IV), могут быть предпочтительнее нейтронов расщепления, генерируемых ускорителем, для трансмутации радиоактивных отходов.В соответствии со своей рекомендацией Подкомитет ATW изменил свое название на Подкомитет передовых технологий ядерной трансформации (ANTT), тем самым снизив роль ускорителей в американской программе трансмутации.

Совсем недавно Министерство энергетики решило, что его программы GEN-IV и трансмутации нуждаются в большей координации для поддержания согласованности между двумя наборами технологий. Для содействия этой координации Конгресс учредил в 2003 году новую программу под названием «Инициатива усовершенствованного топливного цикла» (AFCI), в соответствии с которой Министерство энергетики отвечает за разработку как усовершенствованных видов топлива для реакторов GEN-IV, так и технологий переработки и трансмутации отработавшего топлива.

Исследования трансмутации радиоактивных отходов находятся в зачаточном состоянии, и еще многое предстоит сделать, чтобы они стали реальностью.

ПОСТАНОВКА ЗАДАЧИ

Долгосрочное хранение, под которым я подразумеваю постоянное захоронение, высокорадиоактивных отходов ядерных реакторов является серьезным препятствием на пути полного использования потенциала ядерной энергии. В Соединенных Штатах высокоактивные отходы примерно 100 гражданских ядерных реакторов временно хранятся рядом с реакторами примерно на 130 объектах по всей стране, пока не будет введено в эксплуатацию какое-либо долговременное хранилище.Наиболее вероятным местом для постоянного хранилища является гора Юкка в штате Невада, примерно в 100 милях к северо-западу от Лас-Вегаса. Отходы будут захоронены примерно на 800 футов ниже поверхности и примерно на 1000 футов выше уровня грунтовых вод. 5000-футовая гора расположена в пустынном регионе, где выпадает около 6 дюймов осадков в год, большая часть которых испаряется. Ориентировочно отработанное топливо будет герметично закрыто внутри контейнеров, сделанных из коррозионно-стойкого стального сплава, содержащего никель, хром, молибден и вольфрам, а отработавшее топливо будет дополнительно защищено титановыми каплеуловителями.

Постановка проблемы долговременного хранения высокоактивных отходов ядерных реакторов:

Целью американской программы трансмутации является решение этой проблемы за счет снижения радиоактивности высокоактивных отходов в период, не превышающий 10 000 лет,

радиоактивных элементов | Департамент здравоохранения штата Вермонт

Радиоактивные материалы выделяют форму энергии, называемую ионизирующим излучением. Когда человек вступает в контакт с излучением, энергия может поглощаться телом.

Следующие радиоактивные элементы встречаются в окружающей среде естественным образом.

Альфа-излучение

Альфа-излучение — это тип энергии, выделяющейся при распаде или разрушении определенных радиоактивных элементов. Например, уран и торий — два радиоактивных элемента, которые естественным образом встречаются в земной коре. В течение миллиардов лет эти два элемента медленно меняют форму и производят продукты распада, такие как радий и радон. Во время этого процесса высвобождается энергия. Одна из форм этой энергии — альфа-излучение.

Подробнее об альфа-излучении в питьевой воде

Уран

Уран — радиоактивный элемент, который можно найти в почве, воздухе, воде, камнях, растениях и продуктах питания. Уран очень медленно распадается или распадается на другие элементы, включая радий и радон.

Узнать больше об уране в питьевой воде

Радий

Радий — это радиоактивный металл, который можно найти в различных количествах по всему Вермонту и на всей Земле — в почве, воде, камнях, растениях и продуктах питания.

Узнать больше о радии в питьевой воде

Радон

Радон — радиоактивный газ, не имеющий цвета, запаха и вкуса. Радон образуется в результате распада урана, который является радиоактивным элементом, естественным образом обнаруживаемым в земной коре. За миллиарды лет уран распадается на радий и, в конечном итоге, на радон.

Подробнее о радоне в воздухе помещений и питьевой воде

Полоний

Полоний (Po-210) — это радиоактивный материал, который в природе встречается в окружающей среде в очень низких концентрациях.Его можно производить на университетских или государственных ядерных реакторах, но для этого требуются специальные знания.

Po-210 становится радиационной опасностью только в том случае, если он попадает внутрь организма через дыхание, еду или попадание через рану. Это внутреннее загрязнение может вызвать облучение органов, что может привести к серьезным медицинским симптомам или смерти. По-210 и его излучение не проникают через неповрежденную кожу или мембраны. Это не внешняя опасность для тела. Большинство следов можно удалить путем тщательной мойки.

Узнать больше о полонии

Симметрия | Бесплатный полнотекстовый | Оценка концентрации естественных радионуклидов и редкоземельных элементов в породах кольцевого комплекса Абу-Хурук, Египет

1. Введение

Большинство материалов, существующих на поверхности земли, состоят из обнаруживаемого количества радиоактивных материалов естественного происхождения (NORM) , включая торий, уран и побочные продукты. Материалы с высоким содержанием NORM, как правило, канцерогены по своей природе [1].Гамма-излучение характеризуется энергией гамма-кванта и его интенсивностью. Это основной внешний источник радиационного облучения, и поэтому важно обнаруживать и оценивать радиоактивные элементы в материалах, используемых в нашей повседневной жизни, с целью радиационной защиты окружающей среды. Естественные радионуклиды ( 40 K, 232 Th и 226 Ra) являются источником внешнего и внутреннего облучения из-за гамма-излучения радона и его дочерних продуктов.Радионуклиды находятся в рассеянных количествах в окружающей среде [1]. Внешняя опасность возникает из-за прямого контакта с гамма-излучением, тогда как внутренняя опасность возникает из-за α-частиц, которые попадают в организм человека при тороне ( 220 Rn), радоне ( 222 Rn) и их продуктах. вдыхаются. Эти элементы имеют короткую продолжительность жизни, но откладываются в тканях дыхательных путей [2]. Радиоактивные материалы торон (T 1/2 : 56 с) и радон (T 1/2 : 3.82 дня) образуются в результате распада 224 Ra и 226 Ra, соответственно, которые образуются при распаде 238 U и 232 Th. Процесс выдоха важен для фракционного количества радона вне помещений и внутри помещений [3,4]. Присутствие радиоактивных элементов, таких как Ra, U и Th, часто встречается во многих типах горных пород. Некоторые типы гранита содержат больше радиоактивных элементов, что зависит от характеристик исходной расплавленной породы [5]. Такое поведение может быть связано с фракционной кристаллизацией и частичным плавлением магмы.Это помогает Th и U сходиться в жидкой фазе и концентрироваться в фазах, богатых кремнеземом. Таким образом, гранитные породы богаты Th и U (средние значения: 61,5 Бк · кг, −1 90 · 101 (15 ppm) Th и 62 Бк · кг −1 (5 ppm) U) по сравнению с земной корой. земли (средние значения: 29,52 Бк кг −1 (7,2 частей на миллион) для Th и 22,32 Бк кг −1 (1,8 частей на миллион) для U [6]. Верхняя часть континентальной коры имеет среднее значение 43,05 Бк кг −1 (10,5 м.д.) для Th и 33.48 Бк · кг −1 (2.7 частей на миллион) для U [7]. Для сравнения, базальтовые породы или породы с ультраосновным составом содержат 1,24 Бк кг -1 (0,1 частей на миллион) U и 0,82 Бк кг -1 (0,2 частей на миллион) Th [8]. Таким образом, радиологическое воздействие этих элементов можно оценить, исследуя концентрации природных радиоизотопов и их распределение в породах [9]. Кроме того, важно определить концентрацию радионуклидов в строительных материалах, изучив их радиационное воздействие на здоровье человека и для управления этими типами горных пород.Редкоземельные элементы (РЗЭ) широко используются в высоких технологиях, таких как ветровые турбины, электромобили, энергоэффективное освещение и каталитические преобразователи, в автомобильных и жидких катализаторах, медицинских устройствах, металлургии и системах военной обороны [10]. В соответствии с высокой экономичностью использования РЗЭ, мировой спрос на РЗЭ будет постоянно расти, что окажет большое давление на существующую цепочку поставок РЗЭ. РЗЭ были классифицированы в соответствии с рекомендациями Международного союза теоретической и прикладной химии (IUPAC) как группа из 17 элементов, включающая 15 элементов из группы лантанидов, а также скандий и иттрий [11].РЗЭ делятся на две группы: легкие (LREE) и тяжелые (HREE) редкоземельные элементы в зависимости от структуры электронной оболочки. К легким РЗЭ относятся лантан, церий, празеодим, неодим, прометий, самарий, европий и гадолиний, тогда как тербий, диспрозий, гольмий, эрбий, тулий, иттербий и лютеций составляют тяжелые РЗЭ [12]. Хорошо известно, что редкоземельные элементы сильно концентрируются в щелочных породах. Поэтому мы определили содержание РЗЭ в породах Абу-Хурук, чтобы оценить их потенциал и возможность их использования в будущем.

Это исследование было направлено на оценку концентраций активности исследуемых радиоизотопов (Радий-226, Торум-232 и Калий-40) в щелочных породах кольцевого комплекса Абу-Хурук, чтобы повысить осведомленность и снизить возможные опасности, связанные с концентрацией радона, излучаемого из этого области, а также для изучения пространственного распределения РЗЭ в щелочных породах кольцевого комплекса Абу-Хурук в Восточной пустыне Египта. Следовательно, эти данные могут служить основой для будущего картирования уровней РЗЭ в этом месте Восточной пустыни Египта

4.Выводы

Уровни активности природных радиоизотопов, таких как 40 K, 232 Th, 226 Ra и 222 Rn, и РЗЭ в пробах щелочных пород кольцевого комплекса Абу-Хурук были оценены с использованием различных экспериментальные методы.

Радиологически детектор из высокочистого германия (HPGe) был рассмотрен для измерения средних концентраций исследованных радионуклидов в породах Абу-Хурука, Египет. Наблюдались явные различия между рассчитанными индексами радиологической опасности по сравнению со средними мировыми показателями.Некоторые индексы показали более высокие значения по сравнению со средним мировым показателем, например, D R , AEDR, I α и I γ . Следовательно, при обращении с такими камнями следует использовать защитное покрытие, чтобы предотвратить чрезмерное воздействие радиации. Остальные индексы показали более низкие значения по сравнению со средним мировым показателем, например, H в , H ex и Ra экв . Таким образом, использование этих материалов представляет наименьшую вероятность каких-либо немедленных осложнений для здоровья, но следует проявлять осторожность в отношении долгосрочных кумулятивных эффектов.

Геохимически редкоземельная минерализация нефелиновых сиенитов находится в высокоразвитых интрузиях. Наше исследование показало, что РЗЭ образуются в результате магматических и гидротермальных процессов. Первичная магматическая минерализация была перекрыта позднемагматическими или гидротермальными флюидами, богатыми U, Th, HFSE и REE. Он дополнительно обогатил и ремобилизовал процесс первоначальной минерализации во время множественных метасоматических кругов и сформировался как вторичные фазы.

Обозначения на электросхемах.Условные графические обозначения в электрических схемах. Виды и типы электрических схем

Электрическая схема — это текст, описывающий содержание определенных символов и работу электрического устройства или комплекса устройств, который позволяет кратко изложить этот текст.

Чтобы читать любой текст, нужно знать алфавит и правила чтения. Итак, для чтения схем необходимо знать символы — символы и правила расшифровки их комбинаций.

Основой любой электрической схемы является условное графическое обозначение различных элементов и устройств, а также связей между ними.Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет элемент на схеме. Все правильные условные графические обозначения элементов электрических схем и отдельных их частей даны в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание в специальной системе, предусмотренной стандартом, позволяет легко отображать все, что требуется: различные электрические приборы, инструменты, электрические машины, механические и электрические связи, типы обмоток, генерацию, характер и методы управления, и т.п.

Кроме того, в условных графических обозначениях электрических понятий дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Например, есть три типа контактов — замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для уточнения дополнительной функциональности того или иного контакта со стандартом предусмотрено использование специальных знаков, наносимых на изображение подвижной части контакта.Дополнительные знаки позволяют найти на схеме контакты, реле времени, путевые переключатели и т. Д.

Отдельные элементы на электрических схемах имеют не один, а несколько вариантов обозначения на схемах. Например, существует несколько вариантов эквивалентности обозначений переключающих контактов, а также несколько стандартных обозначений обмотки трансформатора. Каждое из обозначений может применяться в определенных случаях.

Если в стандарте отсутствует необходимое обозначение, то в его основе лежит принцип элемента, обозначения, принятые для аналогичных типов аппаратов, устройств, машин с соблюдением принципов построения согласно стандарту.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматики:

ГОСТ 2.710-81 Обозначения буквенно-цифровых в электрических схемах:

Умение читать электрические удары — важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик должен уметь обозначать розетки электропроводки, выключатели, коммутационные аппараты и даже счетчик электроэнергии по ГОСТу.Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графика

Что касается графического обозначения всех элементов схемы, то этот обзор мы предоставим в виде таблиц, в которых товары будут сгруппированы по назначению.

В первой таблице вы можете увидеть, как электрические коробки, щиты, шкафы и консоли отмечены в электрических цепях:

Следующее, что следует знать, это условное обозначение розеток и выключателей питания (в том числе проходных) на типовых схемах квартир и частных домов:

Что касается осветительных элементов, то лампы и лампы по ГОСТу указывают:

В более сложных схемах, где используются электродвигатели, такие элементы могут обозначаться как:

Также полезно знать, как графически обозначить трансформаторы и дроссели в основных электрических цепях:

Электроинструменты по ГОСТ на чертежах имеют следующее графическое обозначение:

Но, кстати, для начинающего электрика пригодится таблица, в которой показано, как он выглядит на плоскости контура электропроводки земли, а также самой ЛЭП:

Кроме того, на диаграммах можно увидеть волнистую или прямую линию, «+» и «-», которые указывают на генерацию тока, напряжения и форму импульсов:

В более сложных схемах автоматизации можно встретить непонятные графические обозначения, например, контактные соединения.Вспомните, как это указывают приборы на электрических цепях:

Кроме того, следует знать, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условные графические обозначения в электрических схемах силовых цепей и освещения. Как они уже видели компонентов довольно много и помните, как это назначается только с опытом. Поэтому мы рекомендуем вам сохранить все эти таблицы, чтобы при чтении проекта планирования планировки проекта или квартиры вы могли сразу определить, какой элемент цепочки находится в определенном месте.

Интересное видео

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), конструкция которых должна соответствовать нормам ECC. Эти правила распространяются как на электропроводку или силовые цепи, так и на электронные устройства. Соответственно, чтобы «читать» такие документы, необходимо разбираться в условных обозначениях в электрических схемах.

Положения

Учитывая большое количество электрических элементов, для их буквенно-цифровых (далее Бо) и условно-графических обозначений (ОГО) разработан ряд нормативных документов, исключающих различия.Ниже представлена ​​таблица, в которой представлены основные стандарты.

Таблица 1. Нормы графического обозначения отдельных элементов монтажных и принципиальных электрических схем.

Номер Госта Краткое описание
2,710 81 Этот документ содержит требования ГОСТ к различным типам электрических элементов, в том числе электроприборов.
2,747 68 Требования к размеру отображения элементов в графическом виде.
21,614 88 Принятые нормы на электрооборудование и схемы подключения.
2,755 87 Индикация на коммутационных аппаратах и ​​контактных соединениях
2,756 76 Нормы восприятия частей электромеханического оборудования.
2,709 89 Настоящий стандарт регламентирует нормы, в соответствии с которыми на схемах указываются контактные соединения и провода.
21.404 85 Схематические обозначения оборудования, применяемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и нормативные документы, правда инертнее. Приведем простой пример, УДО и диффузоры широко эксплуатируются в России более десяти лет, но единого стандарта по ГОСТ 2.755-87 пока не было, в отличие от автоматических выключателей. Не исключено, что в ближайшее время этот вопрос будет решен.Чтобы быть в курсе таких новинок, профессионалы отслеживают изменения в нормативных документах, любители этого не делают, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии со стандартами ECC, схемы включают графические документы, на которых с использованием принятых обозначений отображены основные элементы или структурные узлы, а также совмещены их связи. Согласно принятой классификации их десять, из которых в электротехнике чаще всего используются три:

Если на схеме отображается только силовая часть установки, то она называется одножильной, если все элементы заданы, то — полной.



Если на чертеже изображена квартирная разводка, то на плане указывается расположение осветительных приборов, розеток и другого оборудования. Иногда можно услышать, как в таком документе называется схема электроснабжения, это неверно, так как в последней отображен способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем перейти к обозначениям указанных на них элементов.

Обозначения графические

Для каждого типа графического документа есть ссылки, регламентированные соответствующими нормативными документами.Приведем в качестве примера основные графические обозначения для различных типов электрических цепей.

Примеры объятий в функциональных схемах

Ниже представлена ​​картинка с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматики по ГОСТ 21.404-85

Описание обозначения:

  • A — основное (1) и допустимое (2) изображения устройств, установленных вне электрического колеса или распределительной коробки.
  • B — то же, что и элемент A, за исключением того, что элементы расположены на выносной или электрической защите.
  • C — дисплей исполнительных механизмов (im).
  • D — влияние регулирующего органа (далее РО) при отключении питания:
  1. Открытие РО происходит
  2. Закрытие RO
  3. Положение РО остается неизменным.
  • E — к ним дополнительно установлен ручной привод.Этот символ может использоваться для любых положений на поставку, указанных в параграфе D.
  • F-принятых строк дисплея:
  1. Общие.
  2. Нет связи при переходе.
  3. Наличие связи при переходе.

Hugo в монолитных и полных электрических ударах

Для этих схем существует несколько групп символов, мы приводим наиболее распространенные из них. Для получения полной информации необходимо обращаться в нормативные документы, количество ГОСТов будет указано для каждой группы.

Источники питания.

Для их обозначения взяты символы, показанные на рисунке ниже.


Источники питания Hugo по принципиальным схемам (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначения:

  • A — источник постоянного напряжения, его полярность обозначается символами «+» и «-».
  • B — значок электричества, отображающий переменное напряжение.
  • C — символ переменного и постоянного напряжения, используемый в случаях, когда устройство может быть установлено от любого из этих источников.
  • D — отображение батареи или гальванического источника питания.
  • E — обозначение батареи, состоящей из нескольких батареек.

Ссылки

Основные элементы электрических разъемов представлены ниже.


Обозначение линий связи по схемам (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначения:

  • A — это общая карта, адаптированная для различных типов электрических соединений.
  • B — Дачная или заземляющая шина.
  • C — обозначение экрана может быть электростатическим (обозначается символом «E») или электромагнитным («M»).
  • D — обозначение земли.
  • E — электрическое соединение с корпусом прибора.
  • F — в сложных схемах, из нескольких компонентов, обозначенных таким образом, связь, в таких случаях «x» — это информация о том, где будет продолжаться линия (как правило, указывается номер элемента).
  • G — перекресток без связи.
  • H — подключение на перекрестке.
  • I — филиалы.

Обозначения электромеханических устройств и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов устройств связи можно посмотреть ниже.


Hugo принят для электромеханических устройств и контакторов (ГОСТа 2.756-76, 2.755-74, 2.755-87)

Описание обозначения:

  • А — обозначение катушки электромеханического прибора (реле, магнитного пускателя и др.)).
  • B — Хьюго воспринимается как часть электротермической защиты.
  • C — дисплей катушки устройства с механической блокировкой.
  • D — Контакты коммутационных аппаратов:
  1. Схема.
  2. Ослепление.
  3. Переключаемый.
  • E — условное обозначение ручных переключателей (кнопок).
  • F — групповой переключатель (переключатель).

Хуго Электромашин

Приведем несколько примеров, отображение электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов по принципиальным схемам (ГОСТ 2.722-68)

Описание обозначения:

  1. Асинхронный (короткое замыкание ротора).
  2. Также, и пункт 1, только в двухскоростном исполнении.
  3. Асинхронный ЭМ с фазным исполнением ротора.
  4. Двигатели синхронные и генераторы.
  • B — Коллектор, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Hugo трансформаторы и дроссели

Примеры графического обозначения этих устройств можно найти на рисунке ниже.


Обозначения трансформаторов, катушек индуктивности и дросселей справа (ГОСТ 2.723-78)

Описание обозначения:

  • A — этот графический символ может обозначаться индукторами индуктивности или обмотками трансформаторов.
  • В — дроссель, имеющий ферримагнитный сердечник (магнитопровод).
  • C — дисплей двухвинтового трансформатора.
  • D — прибор с тремя катушками.
  • E — обозначение автотрансформатора.
  • F — графический дисплей TT (трансформатор тока).

Обозначение средств измерений и радиодеталей

Краткий обзор общих данных электронных компонентов показан ниже. Тем, кто желает более широко ознакомиться с данной информацией, рекомендуем ознакомиться с гостями 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и средств измерений

Описание обозначения:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Датчик температуры.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Емкость для электролита.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. Транзистор Гюго (в данном случае NPN).
  13. Обозначение предохранителя.

Hugo осветительные приборы

Рассмотрим, как электрические лампы отображаются на концепте.


Описание обозначения:

  • A — общий вид ламп накаливания (ЛН).
  • B — LN в качестве сигнала тревоги.
  • C — типовое обозначение газоразрядных ламп.
  • D — газоразрядный источник света высокого давления (на рисунке показан пример исполнения с двумя электродами)

Обозначение элементов в электросхеме

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображены другие типы розеток, их легко найти в нормативных документах, доступных в сети.



При проведении электротехнических работ каждый человек так или иначе сталкивается с символами, которые есть в любой электрической цепи.Эти схемы очень разнообразны, с разными функциями, однако все графические обозначения представлены в унифицированных формах и во всех схемах соответствуют одним и тем же элементам.

Основные условные обозначения в электрических схемах ГОСТ отображаются в таблицах.

В настоящее время в электротехнике и электронике используются не только отечественные элементы, но и продукция зарубежных фирм.Импортные электрические элементы составляют огромный ассортимент. Они обязательно отображаются на всех рисунках в виде символов. Они определяют не только значения основных электрических параметров, но и полный их перечень, входящий в то или иное устройство, а также взаимосвязь между ними.

Прочитать и понять содержание электрической схемы

Необходимо изучить все элементы, входящие в его состав и принцип работы устройства в целом.Обычно вся информация есть либо в справочниках, либо в спецификации, прилагаемой к схеме. Позиционные обозначения характеризуют соотношение элементов, входящих в комплект устройства, с их обозначениями на схеме. Для обозначения того или иного электрического элемента графически применяется стандартная геометрическая символика, где каждое изделие изображается отдельно или вместе с другими. Ценность каждого отдельного изображения зависит от сочетания символов между собой.

Отображается каждая диаграмма

Соединения между отдельными элементами и проводниками. В таких случаях важное значение имеет стандартное обозначение одних и тех же компонентов и элементов. Для этого существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, используемые в общем виде, обозначены на чертежах как квалифицирующие, характеризующие ток и напряжение, методы управления, типы соединений, форму импульсов, электронные средства связи и другие.

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом надо изучить, как выглядит тот или иной радиоэлемент на схеме. В принципе, ничего сложного в этом нет. Вся соль в том, что если в русском алфавите 33 буквы, то для того, чтобы узнать обозначение радиоэлементов, придется хорошо постараться.

До сих пор весь мир не может договориться, как обозначают тот или иной радиоэлемент или устройство. Поэтому имейте это в виду, когда собираете буржуйские схемы. В нашей статье мы рассмотрим наш российский ГОСТ-вариант обозначения радиоэлементов

.

Изучаем простую схему

Ладно, ближе к делу. Рассмотрим простую электрическую схему блока питания, которая использовалась для прошивки любого советского газетного издания:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда все сразу станет понятно.Но среди моих читателей есть те, кто впервые сталкивается с подобными рисунками. Поэтому эта статья в основном для них.

Что ж, давайте разберемся.

В основном все схемы читаются слева направо, как вы читаете книгу. Любую другую схему можно представить в виде отдельного блока, на который мы что-то наносим и из которого что-то удаляем. Вот у нас есть схема электроснабжения, на которую мы подаем 220 вольт от розетки вашего дома, а у нашего блока получается постоянное напряжение.То есть вы должны понимать , какую основную функцию выполняет ваша схема . Об этом можно прочитать в описании к нему.

Как подключены радиоэлементы в схеме

Итак, вроде определился с задачей данной схемы. Прямые линии — это провода или печатные проводники, по которым будет течь электрический ток. Их задача — подключить радиоэлементы.


Точка, в которой соединяются три и более проводника, называется узлом .Можно сказать, в этом месте припаяна проводка:


Если внимательно посмотреть на схему, можно заметить пересечение двух проводников


Такой перекресток часто заполняют схемы. Запомните раз и навсегда: в этом месте провода не соединены и их нужно изолировать друг от друга. . В современных схемах чаще всего можно увидеть такой вариант, который уже наглядно показывает, что между ними нет соединений:

Здесь как будто одна проводка перекрывает другие конверты, и они не соприкасаются друг с другом.

Если бы между ними была связь, то мы бы увидели такую ​​картинку:

Подписание радиоэлементов в схеме

Давайте еще раз посмотрим на нашу схему.

Как видите, схема состоит из каких-то непонятных иконок. Посмотрим на один из них. Пусть это будет значок R2.


Итак, сначала разберемся с надписями. Имеется в виду R. Поскольку мы не одни в схеме, разработчик этой схемы присвоил ему порядковый номер «2».В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева направо и сверху вниз. Прямоугольник с особенностью внутри уже явно указывает на то, что это постоянный резистор с рассеивающей способностью 0,25 Вт. Также рядом написано 10К, что означает его номинал в 10 киломов. Ну как-то так …

Как обозначаются другие радиоэлементы?

Для обозначения радиоэлементов используются одноканальные и многопозиционные коды.Коды SingleBook — это группа , к которой принадлежит тот или иной элемент. Вот основная группа радиоэлементов :

А — Это различные устройства (например усилители)

ИН — Преобразователи неэлектрических величин в электрические и наоборот. Могут быть разные микрофоны, пьезоэлементы, динамики и так далее. Генераторы и блоки питания здесь не относятся к .

ИЗ — конденсаторы

Д. — схемы интегральных и различных модулей

E. — Различные элементы, не попадающие ни в одну группу

F. — разрядники, предохранители, защитные устройства

H. — Устройства отображения и сигнальные устройства, такие как устройства звуковой и световой индикации

к. — Реле и пускатели

Л. — Катушки индуктивности и дроссели

м. — Двигатели

R — приборы и измерительное оборудование

Кв. — Выключатели и разъединители в силовых цепях. То есть в цепях, где «ходит» большое напряжение и большой ток

Р. — Резисторы

С. — Коммутационные аппараты в цепях управления, сигнализации и в цепях измерения

Т. — Трансформаторы и автотрансформаторы

U. — Преобразователи электрической величины в электрических устройствах связи

В. — полупроводниковые приборы

Вт — Линии и элементы сверхвысокой частоты, антенна

х. — Контактные соединения

Ю. — Устройства механические с электромагнитным приводом

З. — Клеммы, фильтры, ограничители

Для пояснения элемента после однозначного кода есть вторая буква, которая уже указывает на тип элемента . Ниже приведены основные типы предметов вместе с буквенной группой:

БД. — Детектор ионизирующего излучения

BE. — Приемник SelSIN

BL. — Фотоэлент

BQ. — Пьезоэлемент

Br. — датчик частоты вращения

BS. — пикап

Bv. — датчик скорости

BA. — Громкоговоритель

BB. — магнитострикционный элемент

Bk. — термодатчик

БМ. — Микрофон

л. — измеритель давления

до н.э. — Датчик Selsin

DA — схема интегральная аналог

DD — Схема интегрально-цифрового логического элемента

Ds. — устройство хранения информации

Дт. — Устройство задержки

Эл. — Лампа осветительная

EK — ТЭН

FA. — Элемент мгновенной защиты по току

FP. — Элемент защиты по инерционному действию

Fu. — предохранитель

FV — элемент защиты по напряжению

ГБ. — аккумулятор

рт. — символьный индикатор

Hl — Устройство световой сигнализации

HA — Устройство звуковой сигнализации

кв. — Реле напряжения

КА. — Реле тока

КК. — Реле Electroceplore

км. — магнитный выключатель

Кт. — Реле времени

шт. — Счетчик импульсов

ПФ — частотомер

PI — Счетчик активной энергии

Пар. — Омметр

шт. — Регистрирующее устройство

PV — Вольтметр.

Пв. — Ваттметр

PA — Амперметр

Кол. — счетчик реактивной энергии

Пт. — часы

QF.

QS. — Отключить

РК — Teremterestor

RP. — Потенциометр

RS. — Шунт измерительный

Ру — Варистор.

SA — Переключатель или переключатель

СБ. — Кнопка переключения

Sf. — Выключатель автоматический

СК — Выключатели, срабатывающие по температуре

SL. — Переключатели, работающие с уровня

Sp. — Выключатели, срабатывающие от давления

Кв. — Переключатели, работающие с позиции

Стар. — Выключатели, работающие от частоты вращения

ТВ. — Трансформатор напряжения

TA. — трансформатор тока

УБ. — Модулятор

UI — дискриминатор

Ур. — демодулятор

Уз. — Преобразователь частоты, инвертор, генератор частоты, выпрямитель

ВД. — Диод, Стабитрон

Вл — Аппарат электровакуальный

Вс. — Тиристор

Вт

WA. — Антенна

Вт. — этап

У. — Аттенюатор

Ха. — токоприемник, скользящий контакт

Xp. — Костер.

Хз. — Гнездо.

Xt. — Соединение разборное

Xw. — Разъем высокочастотный

Я. — Электромагнит

Ю.Б. — тормоз с электромагнитным приводом

г. — Муфта с электромагнитным приводом

ярдов — Плита электромагнитная

Zq. — Фильтр кварцевый

Графическое обозначение радиоэлемента на схеме

Постараюсь привести наиболее ходовые обозначения элементов, используемых в схемах:

Резисторы и их типы


но ) Общее обозначение

г. ) рассеивающая способность 0.125 Вт

дюйм ) мощность рассеяния 0,25 Вт

г. ) Рассеивающая способность 0,5 Вт

г. ) Мощность рассеивания 1 Вт

эл. ) Рассеивающая способность 2 Вт

Дж. ) Мощность рассеяния 5 Вт

з. ) Мощность рассеяния 10 Вт

и ) Рассеивающая способность 50 Вт

Резисторы переменные


Темморезисторы


Тезористоры


Варисторы

Шунт

Конденсаторы

а.) общее обозначение конденсатора

г. ) Варопонд

дюйм ) Полярный конденсатор

г. ) Ленточный конденсатор

г. ) Конденсатор переменного

Акустика

а. ) Головной телефон

г. ) Громкоговоритель (динамик)

в ) Общее обозначение микрофона

г. ) Электретный микрофон

Диоды

а ) диодный мост

г.) общее обозначение диода

дюйм ) Stabitron

г. ) Стабитрон двусторонний

г. ) двунаправленный диод

эл. ) диод Шоттки

Дж. ) Туннельный диод

з. ) адресный диод

и ) Варикап

от до ) Светодиод

л. ) Фотодиод

г. ) излучающий диод в optro

н.) приемный диод излучения в optro

Электрические измерители магнитуды

но ) Амперметр

г. ) Вольтметр

дюйм ) Вольтамперметр

г. ) Омметр

г. ) Частота

эл. ) Ваттметр.

Дж. ) Фарамометр

з. ) осциллограф

Катушки индуктивности


, но ) индуктивность индуктора без сердечника

г.) катушка индуктивности с сердечником

дюйм ) Мощная катушка индуктивности

Трансформаторы

но ) общее обозначение трансформатора

г. ) Трансформатор с выводом из обмотки

в ) трансформатор тока

г. ) Трансформатор с двумя вторичными обмотками (может и больше)

г. ) Трехфазный трансформатор

Коммутационные аппараты


но ) Кемпинг

г.) Размытие

в ) Отображение с возвратом (кнопка)

г. ) закрытие с возвратом (кнопка)

г. ) Переключение

эл. ) Герке

Реле электромагнитное с разными группами контактов


Автоматические выключатели


но ) Общее обозначение

г. ) Подсвечивается сторона, которая остается под напряжением при срабатывании предохранителя храброго

дюйм ) инерционный

г.) Рисунок

г. ) Тепловая катушка

эл. ) Выключатель-разъединитель с предохранителем

Тиристоры


Транзистор биполярный


Транзистор однопроходный


Радиофармацевтическая терапия рака: клинические достижения и проблемы

  • 1.

    Вонг, К. Х., Сиа, К. В. и Ло, А. В. Оценка показателей успешности клинических испытаний и связанных параметров. Биостатистика 20 , 273–286 (2018).

    PubMed Central Google Scholar

  • 2.

    Lin, A. et al. Нецелевое токсическое действие — это распространенный механизм действия противораковых препаратов, проходящих клинические испытания. Sci. Transl Med. 11 , eaaw8412 (2019).

    CAS PubMed Google Scholar

  • 3.

    Gill, M. R., Falzone, N., Du, Y. & Vallis, K. A. Целенаправленная радионуклидная терапия в комбинированных режимах. Ланцет Онкол. 18 , e414 – e423 (2017).

    CAS PubMed Google Scholar

  • 4.

    Долгин Э. Радиоактивные наркотики выходят из тени, чтобы штурмовать рынок. Nat. Biotechnol. 36 , 1125–1127 (2018).

    CAS PubMed Google Scholar

  • 5.

    Кнут Л. Радиосиновэктомия в лечении артрита. World J. Nucl. Med. 14 , 10–15 (2015).

    PubMed PubMed Central Google Scholar

  • 6.

    Кресник, Э. В: Местное лечение воспалительных заболеваний суставов: преимущества и риски (редакторы Кампен, У. У. и Фишер, М.) 81–93 (Springer International Publishing, 2015).

  • 7.

    Bentzen, S. M. et al. Количественный анализ воздействия на нормальные ткани в клинике (QUANTEC): введение в научные вопросы. Внутр. J. Radiat. Онкол. Биол. Phys. 76 , S3 – S9 (2010). Сводка данных о зависимости дозы облучения от реакции на радиотерапию .

    PubMed PubMed Central Google Scholar

  • 8.

    Дейл Р. и Карабе-Фернандес А. Радиобиология традиционной лучевой терапии и ее применение в радионуклидной терапии. Cancer Biother. Радиофарм. 20 , 47–51 (2005).

    CAS PubMed Google Scholar

  • 9.

    Amro, H., Wilderman, SJ, Dewaraja, YK & Roberson, PL Методология включения биологически эффективной дозы и эквивалентной однородной дозы в индивидуальную трехмерную дозиметрию для пациентов с неходжкинской лимфомой, нацеленную на 131 Терапия I-тозитумомабом. J. Nucl. Med. 51 , 654–659 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 10.

    Фаулер, Дж. Ф. Радиобиологические аспекты низких мощностей доз в радиоиммунотерапии. Внутр. J. Radiat. Онкол. Биол. Phys. 18 , 1261–1269 (1990). Радиобиологическая обработка RPT .

    CAS PubMed Google Scholar

  • 11.

    McDevitt, M. R. et al. Радиоиммунотерапия альфа-излучающими нуклидами. евро. J. Nucl. Med. 25 , 1341–1351 (1998).

    CAS PubMed Google Scholar

  • 12.

    Wessels, B. W. & Rogus, R. D. Выбор радионуклидов и расчет поглощенной дозы на модели для радиоактивно меченных опухолевых антител. Med. Phys. 11 , 638–645 (1984).

    CAS PubMed Google Scholar

  • 13.

    Блумер, У. Д., Маклафлин, У. Х., Адельштейн, С. Дж. И Вольф, А. П. Терапевтические применения оже- и альфа-излучающих радионуклидов. Strahlentherapie 160 , 755–757 (1984).

    CAS PubMed Google Scholar

  • 14.

    О’Донохью, Дж. А., Бардис, М. и Велдон, Т. Е. Взаимосвязь между размером опухоли и излечимостью для равномерно направленной терапии бета-излучающими радионуклидами. J. Nucl. Med. 36 , 1902–1909 (1995). Демонстрирует, что, в отличие от дистанционной лучевой терапии, при RPT меньшее количество клеток не приводит к большей вероятности контроля опухоли .

    CAS PubMed Google Scholar

  • 15.

    Черри С. Р., Соренсон Дж. А. и Фелпс М. Е. Электронная книга «Физика в ядерной медицине» (Elsevier Health Sciences, 2012).

  • 16.

    Behr, T. M. et al. Терапевтические преимущества Оже-электронов перед бета-излучающими радиометаллами или радиоактивным йодом при конъюгировании с интернализующими антителами. евро. J. Nucl. Med. 27 , 753–765 (2000).

    CAS PubMed Google Scholar

  • 17.

    Бодей, Л., Кассис, А. И., Адельштейн, С. Дж. И Мариани, Г. Радионуклидная терапия йодом-125 и другими радионуклидами, излучающими электроны Оже: экспериментальные модели и клиническое применение. Cancer Biother. Радиофарм. 18 , 861–877 (2003).

    CAS PubMed Google Scholar

  • 18.

    Howell, R. W. et al. in Biophysical Aspect of Auger Processes (Howell, R. W., Narra, V. R., Sastry, K.С. Р. и Рао, Д. В. Ред.). 290–318 (медицинская физика, 1991).

  • 19.

    Кассис, А. И., Адельштейн, С. Дж. И Мариани, Г. Радиоактивно меченные аналоги нуклеозидов в диагностике и терапии рака. Q. J. Nucl. Med. 40 , 301–319 (1996).

    CAS PubMed Google Scholar

  • 20.

    Kiess, A. P. et al. Радиофармацевтическая терапия Auger, направленная на простатоспецифический мембранный антиген. J. Nucl.Med. 56 , 1401–1407 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 21.

    Macapinlac, H.A. et al. Пилотное клиническое испытание 5- [ 125 I] йод-2’-дезоксиуридина в лечении колоректального рака, метастатического в печень. J. Nucl. Med. 37 (Дополнение 4), 25–29 (1996).

    Google Scholar

  • 22.

    Daghighian, F. et al. Фармакокинетика и дозиметрия йода-125-IUdR при лечении метастатического рака прямой кишки в печень. J. Nucl. Med. 37 (Дополнение 4), 29–32 (1996).

    Google Scholar

  • 23.

    Sgouros, G. et al. Математическая модель лечения 5- [ 125 I] йод-2’-дезоксиуридином: режимы непрерывной инфузии при метастазах в печени. Внутр. J. Radiat. Онкол. Биол. Phys. 41 , 1177–1183 (1998).

    CAS PubMed Google Scholar

  • 24.

    Rebischung, C. et al. Первое лечение резистентного неопластического менингита у человека путем интратекального введения метотрексата плюс 125 IUdR. Внутр. J. Radiat. Биол. 84 , 1123–1129 (2008).

    CAS PubMed Google Scholar

  • 25.

    Behr, T. M. et al. Терапевтическая эффективность и ограничивающая дозу токсичность оже-электрона vs.бета-излучатели в радиоиммунотерапии интернализующими антителами: оценка 125 I- по сравнению с 131 I-меченным CO17-1A на модели колоректального рака человека. Внутр. J. Рак. 76 , 738–748 (1998).

    CAS PubMed Google Scholar

  • 26.

    Ку, А., Факка, В. Дж., Кай, З. и Рейли, Р. М. Оже-электроны для лечения рака — обзор. EJNMMI Radiopharm. Chem. 4 , 27 (2019).

    PubMed PubMed Central Google Scholar

  • 27.

    Brooks, R.C. et al. Металлические комплексы блеомицина: оценка [Rh-105] -блеомицина для использования в направленной лучевой терапии. Nucl. Med. Биол. 26 , 421–430 (1999).

    CAS PubMed Google Scholar

  • 28.

    Мяо, Ю., Оуэн, Н. К., Фишер, Д. Р., Хоффман, Т. Дж. И Куинн, Т. П.Терапевтическая эффективность аналога пептида альфа-меланоцитстимулирующего гормона, меченного 188 Re, на мышиных моделях и мышах с меланомой человека. J. Nucl. Med. 46 , 121–129 (2005).

    CAS PubMed Google Scholar

  • 29.

    Champion, C., Quinto, MA, Morgat, C., Zanotti-Fregonara, P. & Hindié, E. Сравнение трех многообещающих ß-излучающих радионуклидов: 67 Cu, 47 Sc и 161 Tb, уделяя особое внимание дозам, направленным на минимальную остаточную болезнь. Theranostics 6 , 1611–1618 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 30.

    Хауэлл, Р. В., Годду, С. М. и Рао, Д. В. Применение линейно-квадратичной модели в радиоиммунотерапии: дальнейшее подтверждение преимуществ более долгоживущих радионуклидов. J. Nucl. Med. 35 , 1861–1869 (1994).

    CAS PubMed Google Scholar

  • 31.

    Уотсон, Э. Э., Стабин, М. Г., Дэвис, Дж. Л. и Экерман, К. Ф. Модель брюшной полости для использования во внутренней дозиметрии. J. Nucl. Med. 30 , 2002–2011 (1989).

    CAS PubMed Google Scholar

  • 32.

    Циммерманн, Р. Г. Почему инвесторам не интересен мой радиоактивный индикатор? Промышленные и нормативные ограничения в разработке радиофармпрепаратов. Nucl. Med. Биол. 40 , 155–166 (2013).

    CAS PubMed Google Scholar

  • 33.

    Михеев Н.Б. Радиоактивные коллоидные растворы и суспензии для медицинского применения. At. Energy Rev. 14 , 3–36 (1976).

    CAS PubMed Google Scholar

  • 34.

    Bayly, R.J., Peacegood, J. A. & Peake, S. C. 90 Y коллоид гидроксида железа. Ann. Реум. Дис. 32 (Доп.), 10 (1973).

    PubMed Central Google Scholar

  • 35.

    Washburn, L.C. et al. 90 Y-меченные моноклональные антитела для лечения рака. Внутр. J. Radiat. Прил. Instrum. Часть B Nucl. Med. Биол. 13 , 453–456 (1986).

    CAS Google Scholar

  • 36.

    Kozak, R. W. et al. Природа бифункционального хелатирующего агента, используемого для радиоиммунотерапии моноклональными антителами к иттрию-90: критические факторы в определении выживаемости in vivo и токсичности для органов. Cancer Res. 49 , 2639–2644 (1989).

    CAS PubMed Google Scholar

  • 37.

    Brechbiel, M. W. & Gansow, O.A. Замещенные остовно-замещенные лиганды DTPA для радиоиммунотерапии 90 Y. Биоконъюг. Chem. 2 , 187–194 (1991). Представляет новый хелат DTPA для радиоиммунотерапии металлическими радионуклидами .

    CAS PubMed Google Scholar

  • 38.

    Stewart, J. S. et al. Внутрибрюшинная радиоиммунотерапия рака яичников: фармакокинетика, токсичность и эффективность моноклональных антител, меченных I-131. Внутр. J. Radiat. Онкол. Биол. Phys. 16 , 405–413 (1989).

    CAS PubMed Google Scholar

  • 39.

    Oei, A. L. et al. Уменьшение рецидивов внутрибрюшинного заболевания у пациентов с эпителиальным раком яичников, получающих лечение внутрибрюшинной консолидации мышиного HMFG1, меченного иттрием-90, без улучшения общей выживаемости. Внутр. J. Cancer 120 , 2710–2714 (2007).

    CAS PubMed Google Scholar

  • 40.

    Waldmann, T. A. et al. Радиоиммунотерапия интерлейкин-2R альфа-экспрессирующего Т-клеточного лейкоза взрослых с меченными иттрием-90 антителами против Tac. Кровь 86 , 4063–4075 (1995).

    CAS PubMed Google Scholar

  • 41.

    Фосс, Ф. М.и другие. Фаза I исследования фармакокинетики радиоиммуноконъюгата, 90 Y-T101, у пациентов с CD5-экспрессирующим лейкозом и лимфомой. Clin. Cancer Res. 4 , 2691–2700 (1998).

    CAS PubMed Google Scholar

  • 42.

    Witzig, T. E. et al. Фаза I / II испытания радиоиммунотерапии IDEC-Y2B8 для лечения рецидивирующей или рефрактерной В-клеточной неходжкинской лимфомы CD20 + . Дж.Clin. Онкол. 17 , 3793–3803 (1999).

    CAS PubMed Google Scholar

  • 43.

    Ниса, Л., Савелли, Г. и Джуббини, Р. Иттрий-90 DOTATOC-терапия в GEP-NET и других опухолях, экспрессирующих SST2: избранный обзор. Ann. Nucl. Med. 25 , 75–85 (2011).

    CAS PubMed Google Scholar

  • 44.

    Салем, Р. и Терстон, К.G. Радиоэмболизация с использованием микросфер иттрия 90 : современная брахитерапия для лечения первичных и вторичных злокачественных новообразований печени. Часть 1: технические и методологические соображения. J. Vasc. Интерв. Радиол. 17 , 1251–1278 (2006).

    PubMed Google Scholar

  • 45.

    Lau, W. Y. et al. Селективная внутренняя лучевая терапия неоперабельной гепатоцеллюлярной карциномы с внутриартериальной инфузией 90 микросфер иттрия. Внутр. J. Radiat. Онкол. Биол. Phys. 40 , 583–592 (1998). Раннее сообщение о применении микросфер для инфузии печеночной артерии .

    CAS PubMed Google Scholar

  • 46.

    Popperl, G. et al. Селективная внутренняя лучевая терапия SIR-сферами у пациентов с неоперабельными опухолями печени. Cancer Biother. Радиофарм. 20 , 200–208 (2005).

    PubMed Google Scholar

  • 47.

    Mancini, R. et al. Мультицентрическое клиническое исследование фазы II внутриартериальной лучевой терапии печени с использованием 90 иттриевых SIR-сфер при неоперабельных колоректальных метастазах в печени, резистентных к внутривенным инъекциям. химиотерапия: предварительные результаты по токсичности и скорости ответа. In vivo 20 , 711–714 (2006).

    CAS PubMed Google Scholar

  • 48.

    Maleux, G. et al. Радиоэмболизация иттрием-90 для лечения химиорезистентных колоректальных метастазов в печени: технические результаты, клинические исходы и факторы, потенциально влияющие на выживаемость. Acta Oncol. 55 , 486–495 (2016).

    CAS PubMed Google Scholar

  • 49.

    Yue, J. et al. Сравнение количественной ОФЭКТ Y-90 и не времяпролетной ПЭТ-визуализации при радиоэмболизации рака печени после терапии. Med. Phys. 43 , 5779 (2016).

    PubMed PubMed Central Google Scholar

  • 50.

    Дас, Т.И Банерджи, С. Тераностическое применение лютеция-177 в радионуклидной терапии. Curr. Радиофарм. 9 , 94–101 (2016).

    CAS PubMed Google Scholar

  • 51.

    Тарасов В.А., Андреев О.И., Романов Е.Г., Кузнецов Р.А., Куприянов В.В., Целищев И.В. Производство лютеция-177 без добавления носителя путем облучения обогащенного иттербия-176. Curr. Радиофарм. 8 , 95–106 (2015).

    CAS PubMed Google Scholar

  • 52.

    Банерджи, С., Пиллаи, М. Р. и Кнапп, Ф. Ф. Лютеций-177 терапевтические радиофармпрепараты: связь химии, радиохимии и практического применения. Chem. Ред. 115 , 2934–2974 (2015).

    CAS PubMed Google Scholar

  • 53.

    Sgouros, G. et al. Монография MIRD: Радиобиология и дозиметрия для радиофармацевтической терапии с излучателями альфа-частиц (ред.Сгоурос, Г.). (СНММИ, 2015). Всесторонний обзор радиобиологии и дозиметрии для RPT с α-излучателем .

  • 54.

    Sgouros, G. et al. Брошюра MIRD № 22 (сокращено): радиобиология и дозиметрия излучателей альфа-частиц для таргетной радионуклидной терапии. J. Nucl. Med. 51 , 311–328 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 55.

    Parker, C. et al.Таргетная альфа-терапия, новый класс противораковых агентов. Обзор. JAMA Oncol. 4 , 1765–1772 (2018).

    PubMed Google Scholar

  • 56.

    Parker, C. et al. Альфа-излучатель радия-223 и выживаемость при метастатическом раке простаты. N. Engl. J. Med. 369 , 213–223 (2013). Отчет об испытании ASYMPCA, в результате которого радий-223 был одобрен для лечения пациентов с раком простаты с метастазами в кости .

    CAS PubMed Google Scholar

  • 57.

    Kratochwil, C. et al. 225 Ac-PSMA-617 для α-лучевой терапии метастатического кастрационно-резистентного рака простаты, нацеленной на ПСМА. J. Nucl. Med. 57 , 1941–1944 (2016). Поразительная демонстрация на основе изображений замечательного отклика, который может быть получен с помощью RPT с α-излучателем .

    CAS PubMed Google Scholar

  • 58.

    Kratochwil, C., Haberkorn, U. & Giesel, F. L. Радионуклидная терапия метастатического рака простаты. семин. Nucl. Med. 49 , 313–325 (2019).

    PubMed Google Scholar

  • 59.

    Паркер К., Хайденрайх А., Нильссон С. и Шор Н. Современные подходы к внедрению радия-223 в клиническую практику. Prostate Cancer Prostatic Dis. 21 , 37–47 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 60.

    Subbiah, V. et al. Альфа-частица дихлорида радия 223 при остеосаркоме высокого риска: испытание фазы I повышения дозы. Clin. Cancer Res. 25 , 3802–3810 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 61.

    Geva, R. et al. Радий-223 в комбинации с паклитакселом у онкологических больных с метастазами в кости: результаты безопасности открытого многоцентрового исследования фазы Ib. евро.J. Nucl. Med. Мол. Imaging 46 , 1092–1101 (2019).

    CAS PubMed Google Scholar

  • 62.

    Takalkar, A., Paryani, B., Adams, S. & Subbiah, V. Терапия дихлоридом радия-223 при раке груди с костными метастазами. BMJ Case Rep. 2015 , bcr2015211152 (2015).

    PubMed PubMed Central Google Scholar

  • 63.

    Eckerman, K. F. & Enzo, A. MIRD: данные по радионуклидам и схемы распада , 2-е изд. (Общество ядерной медицины, 2008 г.).

  • 64.

    Хеллман С., Девита В. Т. и Розенберг С. А. Рак: принципы и практика онкологии . 265–288 (Lippincott Williams & Wilkins, 2001).

  • 65.

    Longcor, J. & Oliver, K. Фаза 1, открытое исследование повышения дозы I-131-CLR1404 (CLR 131) у пациентов с рецидивирующей или рефрактерной множественной миеломой. Кровь 134 , 1864 (2019).

    Google Scholar

  • 66.

    Ciernik, I. F. et al. Протонная лучевая терапия при неоперабельной или не полностью удаленной остеосаркоме. Рак 117 , 4522–4530 (2011).

    PubMed PubMed Central Google Scholar

  • 67.

    Oertel, S. et al. Лучевая терапия в лечении первичной остеосаркомы — единый центр опыта. Тумори 96 , 582–588 (2010).

    PubMed Google Scholar

  • 68.

    Senthamizhchelvan, S. et al. Дозиметрия опухолей и ответ на лечение остеосаркомы высокого риска 153 Sm-этилендиаминтетраметиленфосфоновой кислотой. J. Nucl. Med. 53 , 215–224 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 69.

    Hobbs, R.F. et al. Метод планирования лечения для последовательного сочетания радиофармацевтической терапии и внешней лучевой терапии. Внутр. J. Radiat. Онкол. Биол. Phys. 80 , 1256–1262 (2011).

    PubMed Google Scholar

  • 70.

    Wessels, B. W. et al. Брошюра MIRD № 20: влияние допущений модели на дозиметрию почек и последствия для радионуклидной терапии. J. Nucl. Med. 49 , 1884–1899 (2008).

    PubMed Google Scholar

  • 71.

    Kiess, A. P. et al. (2S) -2- (3- (1-Карбокси-5- (4- 211 Ат-астатобензамидо) пентил) уреидо) пентандиовая кислота для PSMA-направленной радиофармацевтической терапии альфа-частицами. J. Nucl. Med. 57 , 1569–1575 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 72.

    Jentzen, W. et al. Дозиметрия ПЭТ (/ КТ) I-124 до начала лечения подтверждает низкие средние поглощенные дозы при введении активности I-131 в слюнные железы при радиойодтерапии дифференцированного рака щитовидной железы. евро. J. Nucl. Med. Мол. Imaging 37 , 884–895 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 73.

    Hobbs, R.F., Jentzen, W., Bockisch, A. & Sgouros, G. Трехмерная дозиметрия слюнных желез на основе Монте-Карло при лечении радиоактивным йодом дифференцированного рака щитовидной железы, оцененная с использованием 124 I PET. Q. J. Nucl. Med. Мол. Imaging 57 , 79–91 (2013).

    CAS PubMed PubMed Central Google Scholar

  • 74.

    Hobbs, R.F. et al. Модель токсичности костного мозга для радиофармацевтической терапии альфа-излучателем 223 Ra. Phys. Med. Биол. 57 , 3207–3222 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 75.

    Бэк, Т. и Якобссон, Л. Альфа-камера: метод количественной цифровой авторадиографии с использованием устройства с зарядовой связью для биоизображения альфа-частиц с высоким разрешением ex vivo. J. Nucl. Med. 51 , 1616–1623 (2010). Метод визуализации α-камерой для оценки распределения α-частиц в тканях .

    PubMed Google Scholar

  • 76.

    Miller, B. W. et al. Количественная цифровая авторадиография одиночных частиц с излучателями альфа-частиц для направленной радионуклидной терапии с использованием камеры iQID. Med. Phys. 42 , 4094–4105 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 77.

    Миллер, Б. У. Устройства формирования изображений излучения для количественной одночастичной цифровой авторадиографии альфа- и бета-излучателей. семин. Nucl. Med. 48 , 367–376 (2018).

    PubMed Google Scholar

  • 78.

    Юнгберг, М.И Глейснер, К.С. Дозиметрия на основе трехмерных изображений в радионуклидной терапии. IEEE Trans. Radiat. Plasma Med. Sci. 2 , 527–540 (2018).

    Google Scholar

  • 79.

    Sgouros, G. & Hobbs, R.F. Дозиметрия для радиофармацевтической терапии. семин. Nucl. Med. 44 , 172–178 (2014).

    PubMed PubMed Central Google Scholar

  • 80.

    Девараджа, Ю. К., Юнгберг, М., Грин, А. Дж., Занзонико, П. Б. и Фрей, Э. К. Брошюра MIRD No. 24. Руководство по количественной ОФЭКТ 131 I в дозиметрии. J. Nucl. Med. 54 , 122390 (2013).

    Google Scholar

  • 81.

    Bolch, W. E., Eckerman, K. F., Sgouros, G. & Thomas, S. R. MIRD, брошюра № 21: обобщенная схема номенклатуры радиофармацевтической дозиметрии-стандартизации. J. Nucl. Med. 50 , 477–484 (2009). Математический аппарат для радиофармацевтической дозиметрии .

    CAS PubMed Google Scholar

  • 82.

    Вазири, Б., Ву, Х., Дхаван, А. П., Ду, П. и Хауэлл, Р. В. МИРД, брошюра №. 25: программный инструмент MIRDcell V2.0 для дозиметрического анализа биологической реакции многоклеточных популяций. J. Nucl. Med. 55 , 1557–1564 (2014).

    PubMed Google Scholar

  • 83.

    Dewaraja, Y. K. et al. Брошюра MIRD № 23: количественная ОФЭКТ для индивидуальной трехмерной дозиметрии пациента при внутренней радионуклидной терапии. J. Nucl. Med. 53 , 1310–1325 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 84.

    Bolch, W. E. et al. Брошюра MIRD № 17: дозиметрия неоднородных распределений активности — значения радионуклида S на уровне вокселов.Медицинский комитет по дозировке внутренней радиации. J. Nucl. Med. 40 , 11S – 36S (1999).

    CAS PubMed Google Scholar

  • 85.

    Furhang, E. E., Chui, C. S., Kolbert, K. S., Larson, S. M. & Sgouros, G. Внедрение метода дозиметрии Монте-Карло для индивидуальной терапии внутренними излучателями. Med. Phys. 24 , 1163–1172 (1997).

    CAS PubMed Google Scholar

  • 86.

    Kolbert, K. S. et al. Внедрение и оценка трехмерной внутренней дозиметрии для конкретного пациента. J. Nucl. Med. 38 , 301–308 (1997).

    CAS PubMed Google Scholar

  • 87.

    Cremonesi, M. et al. Корреляция дозы с токсичностью и ответом опухоли на Y-90- и Lu-177-PRRT обеспечивает основу для оптимизации посредством индивидуального планирования лечения. евро. J. Nucl. Med.Мол. Imaging 45 , 2426–2441 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 88.

    Pacilio, M. et al. Отчет о клиническом случае дозиметрии костных метастазов на основе изображений с терапией альфарадином (Ra-223-дихлорид): межфракционная изменчивость поглощенной дозы и последующее наблюдение Ann. Nucl. Med. 30 , 163–168 (2016).

    PubMed Google Scholar

  • 89.

    Stokke, C. et al. Планирование лечения для молекулярной лучевой терапии на основе дозиметрии: краткое изложение отчета Целевой группы по внутренней дозиметрии за 2017 год. EJNMMI Phys. 4 , 27 (2017).

    PubMed PubMed Central Google Scholar

  • 90.

    Dewaraja, Y. K. et al. Поглощенная опухолью доза позволяет прогнозировать выживаемость без прогрессирования заболевания после радиоиммунотерапии 131 I-тозитумомабом. J. Nucl. Med. 55 , 1047–1053 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 91.

    O’Donoghue, J. A. et al. Гематологическая токсичность при радиоиммунотерапии: зависимость доза-ответ для терапии антителами, меченными I-131. Cancer Biother. Радиофарм. 17 , 435–443 (2002).

    CAS PubMed Google Scholar

  • 92.

    Сгоурос, Г. и Гольденберг, Д. М.Радиофармацевтическая терапия в эпоху точной медицины. евро. J. Cancer 50 , 2360–2363 (2014).

    PubMed PubMed Central Google Scholar

  • 93.

    Герц С. и Робертс А. Радиоактивный йод в изучении физиологии щитовидной железы. 7. Применение терапии радиоактивным йодом при гипертиреозе. JAMA 131 , 81–86 (1946). Способность радиойода лечить заболевания щитовидной железы .

    CAS Google Scholar

  • 94.

    Кэмпбелл, Дж. Э., Робайдек, Э. С. и Энтони, Д. С. Метаболизм Ac-227 и его дочерних Th-227 и Ra-223 крысами. Radiat. Res. 4 , 294–302 (1956).

    CAS PubMed Google Scholar

  • 95.

    Джоши, Д. П., Сири, У. Х., Голдберг, Л. Г. и Голдман, Л. Оценка содержания фосфора 32 при трудноизлечимой боли, вызванной метастазами карциномы предстательной железы JAMA 193 , 621–623 (1965).

    CAS PubMed Google Scholar

  • 96.

    Harrison, GE, Carr, TE, Sutton, A. & Rundo, J. Концентрация в плазме и экскреция кальция-47, стронция-85, бария-133 и радия-223 после последовательных внутривенных доз здоровому человеку. человек. Nature 209 , 526–527 (1966).

    CAS PubMed Google Scholar

  • 97.

    Foss, C.A. et al. Радиоактивно меченные низкомолекулярные лиганды для простатоспецифического мембранного антигена: визуализация in vivo в экспериментальных моделях рака простаты. Clin. Cancer Res. 11 , 4022–4028 (2005).

    CAS PubMed Google Scholar

  • 98.

    Zechmann, C.M. et al. Дозиметрия облучения и первые результаты терапии с помощью малой молекулы, меченной 124 I / 131 I (MIP-1095), нацеленной на ПСМА для лечения рака простаты. евро. J. Nucl. Med. Мол. Изображения 41 , 1280–1292 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 99.

    Конг, Г. и Хикс, Р. Дж. Радиотерапия рецепторами пептидов: текущие подходы и будущие направления. Curr. Удовольствие. Комплектация Онкол. 20 , 77 (2019).

    PubMed Google Scholar

  • 100.

    Мюллер, К., Влахов, И. Р., Сантхапурам, Х. К. Р., Лимон, С. П. и Шибли, Р. Таргетирование опухолей с использованием Ga-67-DOTA-Bz-фолата — исследования методов улучшения тканевого распределения радиофолатов. Nucl. Med. Биол. 38 , 715–723 (2011).

    PubMed Google Scholar

  • 101.

    Muller, C., Struthers, H., Winiger, C., Zhernosekov, K. & Schibli, R. Конъюгат DOTA с альбуминсвязывающим веществом обеспечивает первую нацеленную на фолиевую кислоту 177 Lu- радионуклидная терапия опухолей у мышей. J. Nucl. Med. 54 , 124–131 (2013).

    CAS PubMed Google Scholar

  • 102.

    Амброзини В., Фани М., Фанти С., Форрер Ф. и Маек Х. Р. Радиопептидная визуализация и терапия в Европе. J. Nucl. Med. 52 , 42S – 55S (2011 г.).

    CAS PubMed Google Scholar

  • 103.

    Сонг, Х. и Сгоурос, Г. Радиоиммунотерапия солидных опухолей: поиск правильной цели. Curr. Препарат Делив. 8 , 26–44 (2011).

    CAS PubMed PubMed Central Google Scholar

  • 104.

    Leaman Alcibar, O. et al. Время для радиоиммунотерапии: обзор улучшения клинической практики. Clin. Перевод Онкол. 21 , 992–1004 (2019).

    CAS PubMed Google Scholar

  • 105.

    Ларсон, С.М., Карраскильо, Дж. А. и Рейнольдс, Дж. К. Радиоиммунодетекция и радиоиммунотерапия. Рак Инвест. 2 , 363–381 (1984).

    CAS PubMed Google Scholar

  • 106.

    Голденберг, Д. М. Нацеливание на рак с помощью радиоактивно меченных антител. Перспективы визуализации и терапии. Arch. Патол. Лаборатория. Med. 112 , 580–587 (1988).

    CAS PubMed Google Scholar

  • 107.

    Jeon, J. Обзор терапевтического применения функциональных наноматериалов с радиоактивной меткой. Внутр. J. Mol. Sci 20 , 2323 (2019).

    CAS PubMed Central Google Scholar

  • 108.

    Sofou, S. & Sgouros, G. Липосомы, нацеленные на антитела в терапии рака и визуализации. Эксперт. Opin. Лекарственное средство Deliv 5 , 189–204 (2008).

    CAS PubMed Google Scholar

  • 109.

    Lee, E. J., Chung, H. W., Jo, J. H. & So, Y. Радиоэмболизация для лечения первичного и метастатического рака печени. Nucl. Med. Мол. Imaging 53 , 367–373 (2019).

    CAS PubMed Google Scholar

  • 110.

    Ву, А. М. и Сентер, П. Д. Вооружение антител: перспективы и проблемы для иммуноконъюгатов. Nat. Биотех. 23 , 1137–1146 (2005).

    CAS Google Scholar

  • 111.

    Hu, S. Z. et al. Minibody: новый сконструированный фрагмент антитела против карциноэмбрионального антигена (одноцепочечный Fv-C H 3), который демонстрирует быстрое и высокоуровневое нацеливание на ксенотрансплантаты. Cancer Res. 56 , 3055–3061 (1996).

    CAS PubMed Google Scholar

  • 112.

    Wu, A. M. et al. Локализация в опухоли одноцепочечных Fv против CEA: улучшенное нацеливание с помощью нековалентных димеров. Immunotechnology 2 , 21–36 (1996).

    CAS PubMed Google Scholar

  • 113.

    Cheung, N. K. V. et al. Одноцепочечный Fv-стрептавидин существенно улучшает терапевтический индекс при многоступенчатом нацеливании, направленном на дизиалоганглиозид GD2. J. Nucl. Med. 45 , 867–877 (2004).

    CAS PubMed Google Scholar

  • 114.

    Boerman, O.C. et al. Предварительное нацеливание на почечно-клеточную карциному: улучшенное нацеливание на опухоль с помощью двухвалентного хелата. Cancer Res. 59 , 4400–4405 (1999).

    CAS PubMed Google Scholar

  • 115.

    Chang, C.H. et al. Молекулярные достижения в радиоимунотерапии с предварительным нацеливанием биспецифических антител. Мол. Рак Тер. 1 , 553–563 (2002).

    CAS PubMed Google Scholar

  • 116.

    McBride, W. J. et al. ПЭТ с предварительным нацеливанием биспецифических антител (ImmunoPET) с гаптен-пептидом, меченным I-124. J. Nucl. Med. 47 , 1678–1688 (2006).

    CAS PubMed Google Scholar

  • 117.

    Catz, B. et al. Послеоперационное лечение рака щитовидной железы с помощью подавляющих тиреоидных препаратов, радиоактивного йода и тиреотропного гормона. Рак 12 , 371–383 (1959).

    CAS PubMed Google Scholar

  • 118.

    Гамильтон, Дж. Г. и Соли, М. Х. Исследования метаболизма йода в щитовидной железе in situ с использованием радиоактивного йода у здоровых субъектов и у пациентов с различными типами зоба. г. J. Physiol. 131 , 0135–0143 (1940).

    CAS Google Scholar

  • 119.

    Бенуа Р. С., Роусон Р. В., Соненберг М. и Чикале Н. Р. Связь дозиметрии радиоактивного йода с результатами и осложнениями при лечении метастатического рака щитовидной железы. г. J. Roentgenol. Radium Ther. Nucl. Med. 87 , 171–182 (1962).

    CAS PubMed Google Scholar

  • 120.

    Maxon, H.R. et al. Связь между эффективной дозой облучения и исходом радиойодтерапии при раке щитовидной железы. N. Engl. J. Med. 309 , 937–941 (1983).

    CAS PubMed Google Scholar

  • 121.

    Ливингуд, Дж. Дж. И Сиборг, Г. Т. Радиоактивные изотопы йода. Phys. Ред. 53 , 1015 (1938).

    CAS Google Scholar

  • 122.

    Кнапп, Р. Ф. и Дэш, А. Радиофармацевтические препараты для терапии — 2016 . (Springer, 2016).

  • 123.

    Герц, С., Робертс, А., Средство, Дж. Х. и Эванс, Р. Д. Радиоактивный йод как индикатор физиологии щитовидной железы — накопление йода нормальной и гиперпластической щитовидной железой у кроликов. г. J. Physiol. 128 , 565–576 (1940).

    Google Scholar

  • 124.

    Cooper, D. S. et al. Пересмотренные рекомендации Американской ассоциации по лечению щитовидной железы для пациентов с узлами щитовидной железы и дифференцированным раком щитовидной железы. Щитовидная железа 19 , 1167–1214 (2009).

    PubMed PubMed Central Google Scholar

  • 125.

    Fagin, J.А. и Уэллс, С. А. Младший. Биологические и клинические перспективы рака щитовидной железы. N. Engl. J. Med. 375 , 1054–1067 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 126.

    Gao, W. et al. Внутренняя лучевая терапия с использованием коллоида или микросферы 32 P для рефрактерных солидных опухолей. Ann. Nucl. Med. 22 , 653–660 (2008).

    PubMed Google Scholar

  • 127.

    Моррис, М. Дж. И др. Механизм действия радия-223: значение для использования в лечебных комбинациях. Nat. Преподобный Урол. 16 , 745–756 (2019).

    CAS PubMed Google Scholar

  • 128.

    Leung, C. N. et al. Дозозависимая задержка роста ксенотрансплантатов рака молочной железы в костном мозге мышей, получавших 223 Ra: роль сторонних эффектов и их потенциал для терапии. J. Nucl.Med. 61 , 89–95 (2020).

    CAS PubMed PubMed Central Google Scholar

  • 129.

    Tombal, B. F. et al. Снижение частоты переломов за счет применения защитных средств для костей в исследовании EORTC 1333 / PEACE III, в котором сравнивали энзалутамид и Ra223 с одним энзалутамидом: промежуточный анализ безопасности. J. Clin. Онкол. 37 , 5007 (2019).

    Google Scholar

  • 130.

    Smith, M. R. et al. ERA 223: испытание фазы 3 дихлорида радия-223 (Ra-223) в сочетании с абиратерона ацетатом (абиратерон) и преднизоном в лечении бессимптомных или слабо симптоматических пациентов (пациенты), ранее не получавших химиотерапию (пациенты) с преобладающими метастатическими метастатическими кастрациями простаты в кости рак (mCRPC). J. Clin. Онкол. 33 , TPS5082 (2015).

    Google Scholar

  • 131.

    Далла Вольта, А., Форменти, А.М. и Беррути, А. Повышенный риск хрупких переломов у пациентов с раком простаты, получающих комбинированное лечение радием-223 и абиратероном: виновником может быть преднизон. евро. Урол. 75 , 894–895 (2019).

    PubMed Google Scholar

  • 132.

    Sartor, O. Обзор Samarium Sm 153 lexidronam в лечении болезненного метастатического поражения костей. Ред. Урол. 6 , S3 – S12 (2004).

    PubMed PubMed Central Google Scholar

  • 133.

    Андерсон П. М., Суббиа В. и Рорен Э. В: Текущие достижения в области остеосаркомы . 291–304 (Springer International Publishing, 2014).

  • 134.

    Longo, J., Lutz, S. & Johnstone, C. Самарий-153-этилендиаминтетраметиленфосфонат, бета-излучающий радиофармпрепарат, нацеленный на кости, полезный для пациентов с остеобластическими метастазами в кости. Cancer Manag. Res. 5 , 235–242 (2013).

    PubMed PubMed Central Google Scholar

  • 135.

    Чирби Д., Франк С. и Траутнер Д. Э. Адсорбция 153 Sm-EDTMP на гидроксиапатите кальция. Внутр. J. Radiat. Прил. Instrum. Часть А Прил. Radiat. Изотопы 39 , 495–499 (1988).

    CAS Google Scholar

  • 136.

    Eary, J. F. et al. Биораспределение и дозиметрическая оценка самария-153-ЭДТМП. J. Nucl. Med. 34 , 1031–1036 (1993).

    CAS PubMed Google Scholar

  • 137.

    Гоял, Дж. И Антонаракис, Э. С. Радиофармацевтические препараты, нацеленные на кости, для лечения рака простаты с метастазами в кости. Cancer Lett. 323 , 135–146 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 138.

    Simon, J. J. et al. Доклиническая оценка Sm-153-DOTMP как терапевтического радиофармпрепарата для поиска костей. J. Nucl. Med. 52 , 1751 (2011).

    Google Scholar

  • 139.

    Simón, J. et al. Доклиническое исследование насыщения и дозиметрии 153 Sm-DOTMP в качестве радиофармпрепарата для поиска костей. Nucl. Med. Биол. 39 , 770–776 (2012).

    PubMed PubMed Central Google Scholar

  • 140.

    Шмидт, М., Херо, Б. и Саймон, Т. Терапия I-131-mIBG при нейробластоме: установленная роль и перспективные применения. Clin. Transl Imaging 4 , 87–101 (2016).

    Google Scholar

  • 141.

    Schoot, R.A. et al. Роль терапии 131 I-метайодобензилгуанидином (MIBG) в неоперабельной и компрометирующей локализованной нейробластоме. евро. J. Nucl. Med. Мол. Imaging 40 , 1516–1522 (2013).

    CAS PubMed PubMed Central Google Scholar

  • 142.

    Джордж, С. Л. и др. Индивидуальная терапия I-131-mIBG при лечении рефрактерной и рецидивирующей нейробластомы. Nucl. Med. Commun. 37 , 466–472 (2016).

    PubMed PubMed Central Google Scholar

  • 143.

    Эйзенхут, М. М. У. в справочнике по ядерной химии . (ред. Вертеш, А. Н. С., Кленчар, З., Ловас, Р. Г., Рёш, Ф.) (Springer, 2011).

  • 144.

    Инаки, А.и другие. Фаза I клинических испытаний [ 131 I] мета-йодобензилгуанидиновой терапии у пациентов с рефрактерной феохромоцитомой и параганглиомой: протокол исследования. J. Med. Вкладывать деньги. 64 , 205–209 (2017).

    PubMed Google Scholar

  • 145.

    Modak, S. et al. Триоксид мышьяка как радиационный сенсибилизатор для терапии 131 I-метайодобензилгуанидином: результаты исследования фазы II. J. Nucl.Med. 57 , 231–237 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 146.

    Шилкрут, М., Бар-Дерома, Р., Бар-Села, Г., Бернигер, А. и Кутен, А. Терапия низкими дозами метайодобензилгуанидина йода-131 для пациентов со злокачественной феохромоцитомой и параганглиомой: единый центр опыта. г. J. Clin. Онкол. 33 , 79–82 (2010).

    CAS PubMed Google Scholar

  • 147.

    Coleman, R.E. et al. Дозиметрия излучения, фармакокинетика и безопасность Иобенгуана I-131 ultratrace у пациентов со злокачественной феохромоцитомой / параганглиомой или метастатическим карциноидом. Cancer Biother. Радиофарм 24 , 469–475 (2009).

    CAS PubMed Google Scholar

  • 148.

    Gonias, S. et al. Фаза II исследования терапии высокими дозами [ 131 I] метайодобензилгуанидина для пациентов с метастатической феохромоцитомой и параганглиомой. J. Clin. Онкол. 27 , 4162–4168 (2009).

    CAS PubMed PubMed Central Google Scholar

  • 149.

    Fitzgerald, P.A. et al. Злокачественные феохромоцитомы и параганглиомы: исследование II фазы терапии высокими дозами 131 I-метайодобензилгуанидин ( 131 I-MIBG). Ann. NY Acad. Sci. 1073 , 465–490 (2006).

    CAS PubMed Google Scholar

  • 150.

    Sisson, J. C. et al. Лечение злокачественных феохромоцитом 131-I метайодобензилгуанидином и химиотерапия. г. J. Clin. Онкол. 22 , 364–370 (1999).

    CAS PubMed Google Scholar

  • 151.

    Мундшенк, Дж., Копф, Д. и Ленерт, Х. Терапия злокачественной феохромоцитомы. Приглашение к участию в рандомизированном многоцентровом исследовании. Dtsch. medizinische Wochenschr. 123 , 32–33 (1998).

    CAS Google Scholar

  • 152.

    Noto, R. B. et al. Исследование фазы 1 высокоспецифической активности I-131 MIBG для метастатической и / или рецидивирующей феохромоцитомы или параганглиомы. J. Clin. Эндокринол. Метаб. 103 , 213–220 (2017).

    Google Scholar

  • 153.

    Pinto, J. T. et al. Простатоспецифический мембранный антиген: новая фолат-гидролаза в клетках карциномы предстательной железы человека. Clin. Cancer Res. 2 , 1445–1451 (1996).

    CAS PubMed Google Scholar

  • 154.

    Heston, W. D. Характеристика и предпочтение глутамила карбоксипептидазной функции простатоспецифического мембранного антигена: новая фолатгидролаза. Урология 49 (Приложение 3A), 104–112 (1997).

    CAS PubMed Google Scholar

  • 155.

    Мерфи, Д. Г., Сатианатен, Н., Хофман, М. С., Азад, А., Лоурентчук, Н. Куда обратиться по поводу тераностики при раке простаты? евро. Урол. Онкол. 2 , 163–165 (2019).

    PubMed Google Scholar

  • 156.

    Татейши, У. Простатоспецифический мембранный антиген (PSMA) — лигандная позитронно-эмиссионная томография и радиолигандная терапия (RLT) рака простаты. яп. J. Clin. Онкол. 50 , 349–356 (2020).

    Google Scholar

  • 157.

    Новакова З. и др. Дизайн композитных ингибиторов, нацеленных на глутаматкарбоксипептидазу II: важность эффекторных функций. FEBS J. 283 , 130–143 (2016).

    CAS PubMed Google Scholar

  • 158.

    Banerjee, S. R. et al. 68Ga-меченные ингибиторы простатоспецифического мембранного антигена (PSMA) для визуализации рака простаты. J. Med. Chem. 53 , 5333–5341 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 159.

    Barinka, C. et al. Структурное понимание фармакофорного кармана человеческой глутаматкарбоксипептидазы II. J. Med. Chem. 50 , 3267–3273 (2007).

    CAS PubMed Google Scholar

  • 160.

    Bařinka, C., Рохас, К., Слашер, Б. и Помпер, М. Глутаматкарбоксипептидаза II в диагностике и лечении неврологических расстройств и рака простаты. Curr. Med. Chem. 19 , 856–870 (2012).

    PubMed PubMed Central Google Scholar

  • 161.

    Kozikowski, A. P. et al. Синтез ингибиторов на основе мочевины в качестве зондов активного центра глутаматкарбоксипептидазы II: эффективность в качестве анальгетиков. J. Med. Chem. 47 , 1729–1738 (2004). Раннее сообщение о низкомолекулярных ингибиторах ПСМА .

    CAS PubMed Google Scholar

  • 162.

    Чжоу, Дж., Нил, Дж. Х., Помпер, М. Г. и Козиковски, А. П. Ингибиторы пептидазы NAAG и их потенциал для диагностики и терапии. Nat. Rev. Drug Discov. 4 , 1015–1026 (2005).

    CAS PubMed Google Scholar

  • 163.

    Wu, L. Y. et al. Молекулярная обрезка фосфорамидатного пептидомиметического ингибитора простатоспецифического мембранного антигена. Bioorg. Med. Chem. 15 , 7434–7443 (2007).

    CAS PubMed PubMed Central Google Scholar

  • 164.

    Лю Т., Ториябе Ю., Казак М. и Беркман С. Е. Псевдо необратимое ингибирование простатоспецифического мембранного антигена фосфорамидатными пептидомиметиками. Биохимия 47 , 12658–12660 (2008).

    CAS PubMed Google Scholar

  • 165.

    Choy, C.J. et al. Ингибиторы PSMA на основе фосфорамидата, меченные Lu-177: влияние связывающего альбумина на биораспределение и терапевтическую эффективность у мышей с опухолями предстательной железы. Theranostics 7 , 1928–1939 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 166.

    Хофман, М.S. et al. Радионуклидное лечение [ 177 Lu] -PSMA-617 у пациентов с метастатическим устойчивым к кастрации раком простаты (испытание LuPSMA): одноцентровое исследование фазы 2 в одной группе. Ланцет Онкол. 19 , 825–833 (2018). Эффективность и токсичность терапии анти-ПСМА при раке простаты с использованием лютеция-177 .

    CAS PubMed Google Scholar

  • 167.

    Derlin, T. & Schmuck, S. [ 177 Lu] -PSMA-617 радионуклидная терапия у пациентов с метастатическим устойчивым к кастрации раком простаты. Ланцет Онкол. 19 , e372 (2018).

    PubMed Google Scholar

  • 168.

    Rahbar, K., Ahmadzadehfar, H., Seifert, R. & Boegemann, M. [ 177 Lu] -PSMA-617 Радионуклидная терапия у пациентов с метастатическим устойчивым к кастрации раком простаты. Ланцет Онкол. 19 , e371 (2018).

    PubMed Google Scholar

  • 169.

    Хофман, М. С., Вайолет, Дж., Хикс, Р. Дж. И Сандху, С. [ 177 Lu] -ПСМА-617 радионуклидная терапия у пациентов с метастатическим устойчивым к кастрации раком простаты — ответ автора. Ланцет Онкол. 19 , e373 (2018).

    PubMed Google Scholar

  • 170.

    Muzio, V. et al. Оценка биораспределения in vivo и эффективности лечения Lu-177 PSMA-R2 и Lu-177-PSMA-617 на мышах с опухолями рака простаты. евро. J. Nucl. Med. Мол. Imaging 46 (Приложение 1), 17 (2019).

  • 171.

    Nedrow-Byers, J. R. et al. Агент ОФЭКТ, нацеленный на простатоспецифический мембранный антиген на основе фосфорамидата. Простата 72 , 904–912 (2012).

    CAS PubMed Google Scholar

  • 172.

    Choy, C.J. et al. 177 Lu-меченные ингибиторы PSMA на основе фосфорамидата: влияние альбумин-связывающего вещества на биораспределение и терапевтическую эффективность у мышей с опухолями предстательной железы. Theranostics 7 , 1928–1939 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 173.

    Гурни Э. и Хенриксен Г. Металлические радиолиганды ПСМА. Молекулы 22 , 523 (2017).

    PubMed Central Google Scholar

  • 174.

    Wester, H.-J. И Шоттелиус, М. Радиофармпрепараты, нацеленные на ПСМА, для визуализации и терапии. семин. Nucl. Med. 49 , 302–312 (2019).

    PubMed Google Scholar

  • 175.

    Росс, Дж. Ф., Чаудхури, П. К. и Ратнам, М. Дифференциальная регуляция изоформ фолатных рецепторов в нормальных и злокачественных тканях in vivo и в установленных клеточных линиях. Физиологические и клинические последствия. Рак 73 , 2432–2443 (1994).

    CAS PubMed Google Scholar

  • 176.

    Cheung, A. et al. Ориентация на альфа-фолиевый рецептор для лечения рака. Oncotarget. 7 , 52553–52574 (2016).

    PubMed PubMed Central Google Scholar

  • 177.

    Kettenbach, K. et al. Сравнительное исследование двух различных 18 F-фолатов — липофильность играет ключевую роль. Фармацевтические препараты 11 , 30 (2018).

    PubMed Central Google Scholar

  • 178.

    Siwowska, K. & Müller, C. Доклиническая разработка низкомолекулярных радиоконъюгатов на основе фолиевой кислоты: фармакологическая перспектива. Q. J. Nucl. Med. Мол. Imaging 59 , 269–286 (2015).

    CAS PubMed Google Scholar

  • 179.

    Siwowska, K. et al. Терапевтический потенциал 47 Sc по сравнению с 177 Lu и 90 Y: доклинические исследования. Фармацевтика 11 , 424 (2019).

    CAS PubMed Central Google Scholar

  • 180.

    Gupta, A. et al. Дозиметрия на основе вокселей конъюгированной наночастицами оксида железа 177 Lu-меченой фолиевой кислоты с использованием ОФЭКТ / КТ-визуализации мышей. Мол. Фармацевтика. 16 , 1498–1506 (2019).

    CAS Google Scholar

  • 181.

    Müller, C. et al. Прямое сравнение in vitro и in vivo 161 Tb и 177 Lu с использованием нацеленного на опухоль конъюгата фолиевой кислоты. евро. J. Nucl. Med. Мол. Imaging 41 , 476–485 (2014).

    PubMed Google Scholar

  • 182.

    Снайдер Ф. и Вуд Р. Алкиловые и алк-1-ениловые эфиры глицерина в липидах нормальных и опухолевых тканей человека. Cancer Res. 29 , 251–257 (1969).

    CAS PubMed Google Scholar

  • 183.

    Снайдер, Ф., Бланк, М.L. & Morris, H.P. Возникновение и природа O-алкильных и O-алк-I-енильных фрагментов глицерина в липидах гепатомы, трансплантированной Моррисом, и нормальной печени крысы. Biochim. Биофиз. Acta 176 , 502–510 (1969).

    CAS PubMed Google Scholar

  • 184.

    Консул, Р. Э., Швенднер, С. В., Мейер, К. Л., Харадахира, Т. и Гросс, М. Д. Визуализация опухолей с помощью радиоактивного йодированного фосфолипидного эфира. Дж.Nucl. Med. 31 , 332–336 (1990).

    CAS PubMed Google Scholar

  • 185.

    Мейер, К. Л., Швенднер, С. В. и Конселл, Р. Е. Возможные опухоли или агенты визуализации органов. 30. Радиоийодированные эфиры фосфолипидов. J. Med. Chem. 32 , 2142–2147 (1989).

    CAS PubMed Google Scholar

  • 186.

    Пинчук, А.N. et al. Влияние синтеза и взаимосвязи структура-активность на опухолевую авидность аналогов радиоактивного йода фосфолипидного эфира. J. Med. Chem. 49 , 2155–2165 (2006).

    CAS PubMed Google Scholar

  • 187.

    Weichert, J. P. et al. Аналоги алкилфосфохолина для визуализации и лечения рака широкого спектра действия. Sci. Transl Med. 6 , 240ra75 (2014). RPT на основе фосфохолина .

    PubMed PubMed Central Google Scholar

  • 188.

    Baiu, D. C. et al. Направленная молекулярная лучевая терапия солидных опухолей у детей с использованием аналога эфира радиоактивного йода. J. Nucl. Med. 59 , 244–250 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 189.

    Hall, L. T. et al. ПЭТ / КТ-изображение диапевтического аналога алкилфосфохолина I-124-CLR1404 в опухолях головного мозга высокой и низкой степени злокачественности.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *