Последовательное соединение лампочек схема с выключателем: Параллельное подключение лампочек

Содержание

Параллельное подключение лампочек

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.

Параллельное подключение светильников к проводам питания

В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.

На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.

Схема подключений

Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:

  • проводники графически обозначаются прямыми неразрывными линиями;
  • соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
  • электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.

Параллельное и последовательное соединение

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.

Схема параллельного соединения лампочек

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):

I = I1 + I2 + I3.

Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):

Р = Р12 + Р3.

Сопротивление (R) для трех нагрузок определяется из выражения:

1/R = 1/R1 + 1/R2 + 1/R3,

где R1, R2, R3 – сопротивления лампочек.

Типы ламп и схемы подключения

Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.

Галогенные

Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).

Схема подключения галогенной лампы

Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках. Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.

Схема подключения галогенных ламп

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).

Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.

Пример расчета

Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.

Потери в проводах питания лампочек

Напряжение на первой и второй лампочках составят:

V1 = VR(2r + R)/(4r2 +6rR + R2) = 10,34 В,

V2 = VR2/(4r2 +6rR + R2) = 9,54 В.

Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.

Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.

Люминесцентные

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше. Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается.

На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L1) и (L2). Но к лампе (2) подключен дополнительный балластный конденсатор (Сб), благодаря которому создается сдвиг тока по фазе на 600.

Схема двухлампового светильника

В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

Видео про подключения

Про особенности параллельного и последовательного подключения рассказывает видео ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.
Оцените статью:

Параллельное соединение.

Для проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.
Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.



Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.


Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.


Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1. Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1. Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя.

Втыкаем эл. вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.

Эл. схема параллельного подключения выглядит вот так.

Особенностью такого соединения, является возможность, задействовать одновременно несколько потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.

На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно. Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода. Что бы предотвратить возгорание изоляции, при превышении эл. током определенного порога, срабатывает автоматический выключатель, и все гаснет.

В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными параллельно, к жилам вводного питающего кабеля.

В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения, дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике. Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа и Ома, со всеми формулами и выкладками. Несколько упрощенный вариант этой темы вы можете посмотреть здесь

Перейти к 4-му занятию

Необязательное лирическое дополнение.

В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки. Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н. Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт. Их покрывали разноцветными лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво. К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона. Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное желание что-нибудь сделать.

Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало. Что же делать? Тут и пришло на помощь параллельное соединение. Паять к тому времени, я уже немного умел (научили на уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил зелеными чернилами, половину красными. Прилепил это все пластилином к большой стекляшке от старой люстры, найденной на помойке — настоящая получилась вещь!

Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен. Соединял я в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга, таких издевательств не вынес — сдох. Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело. Можно брать их хоть четыре(светильников), хоть шесть — да и подключать, к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.

Как подключить надежно, Вы можете посмотреть на странице»Контакты и соединения»
В начало.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Как соединены между собой лампы на схемах

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Люстра с большим числом лампочек

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно.

Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.

Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Параллельное соединение лампочек

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

параллельное, последовательное соединение, последовательность работ

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше. 

Содержание статьи

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

  1. Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

    Принцип последовательного соединения

  2. Если перегорает одна лампочка — не работают все. Найти причину неисправности можно только последовательно меняя лампочки во всей цепочке.

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

    Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Подробнее о способах соединения электрических проводов читаем тут.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники  на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм2. Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

 Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят  в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Способы подключения ламп: последовательное, параллельное

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки. Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

  • Где же можно в быту, применить такую казалось бы не практичную схему?
  • Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
  • Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

  1. Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
  2. При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
  3. А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В.

А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы. Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева.

То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

  • И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
  • Напряжение на них подается одновременно и всегда составляет номинальные 220В.
  • Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Источник: https://svetosmotr.ru/posledovatelnoe-i-parallelnoe-soedinenie-lampochek/

Последовательное подключение лампочек: схема, смешанное подключение, плюсы и минусы

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель.

Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например.

Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая.

Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине.

Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

  • Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
  • При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
  • Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения.

Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения.

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-luchshe-podklyuchit-lampochki-posledovatelno-ili-parallelno/

Основные схемы подключения ламп | Полезные статьи — Кабель.РФ

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Источник: https://cable.ru/articles/id-404.php

Правила параллельного и последовательного соединения ламп

  • В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
  • При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
  • Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.

Особенности и характеристики схем подключения ламп

Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.

Параллельной

При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем.  Перегорание отдельного элемента не влияет на функциональность остальных.

Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.

Параллельное подключение может быть:

  • лучевое – на каждый светильник отдельный кабель;
  • шлейфное – фаза и ноль сначала идут на первый осветительный прибор, потом часть кабеля идет в остальные (кроме последнего, к которому подключаются две части).

При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.

При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.

Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.

Последовательной

  Где плюс и минус: определяем полярность светодиода

Сравнение достоинств и недостатков схем

Преимущества и недостатки последовательного подключения

Вид лампы Преимущества Недостатки
Накаливания, галогеновые, люминесцентные Продлевается срок службыСнижается мерцание люминесцентных ламп Падение напряженияПри выходе из строя отдельного элемента остальные не работаютУ источников света должна быть одинаковая мощность
Светодиодная Оптимальный вариант для обеспечения одинакового тока на всех источниках Для большого количества лампочек требуется источник питания с большой мощностиПри выходе из строя отдельного элемента перестают работать остальные

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме
  1. Перегорание отдельного элемента лучевой модели не влияет на работу остальных
  2. Накал полный на всех лампочках
  3. Можно подключить люстру с несколькими лампами
  4. Немного соединительных контактов
Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодкеПри щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питанияПри перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резисторКонструкция громоздкая и дорогая из-за большого количества деталейПри выходе из строя отдельного элемента на остальных увеличивается нагрузка

В какой схеме лампочки одинаковой мощности будут светить ярче и почему

При использовании последовательной схемы вольтаж снижается с увеличением количества элементов. Лампочки горят в полнакала или даже меньше, так как напряжение делится равномерно. Общая мощность при последовательном соединении 2-х элементов по 100 Вт ниже, чем у одного (уровень освещенности снижается).

При параллельном соединении двух светильников на каждый подается 220 В, они работают в полный накал. Общая мощность увеличивается в 2 раза (уровень освещенности повышается).

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

Справка! Опытные электрики данное свойство используют для определения фаз в трехфазной сети.

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Важно! Ноль всегда уходит на осветительный прибор.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Как выполнить фазировку вводов лампочками накаливания

Фазировка выполняется при необходимости параллельно подключить к источнику питания 2 трехфазных ввода. Путать фазы нельзя, чтобы не создалось межфазное короткое замыкание.

Используются 2 лампы накаливания с последовательным соединением. Один конец провода подключается к фазе, вторым нужно коснуться остальных жил. Если фазы одинаковые, лампочки не горят.

Важно! Не стоит подобным образом экспериментировать с одной лампочкой – она в сети 380 В сразу перегорит. Последовательное соединение двух элементов снижает напряжение в 2 раза.

Основные выводы

Некоторые владельцы городских квартир проводят ремонт самостоятельно. В процессе требуется монтаж новой электропроводки. Для проведения этой работы необходимо ориентироваться в основах электрики и уметь определять оптимальные варианты подключения, учитывающие особенности интерьера и предпочтения членов семьи.

Хотя большинства электроприборов в жилых помещениях подключаются параллельно, знания о том, как подключить лампочки последовательно, тоже не помешают. Они помогут, если появится желание устроить дешевую систему освещения в стиле лофт или сэкономить на покупках.

При самостоятельном выполнении работ важно обладать знаниями о видах проводов, кабелей, выключателей, способах их соединения, сферах использования. Если не ни знаний, ни опыта, подключение лампочек лучше доверить специалисту.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/parallelnoe-podklyuchenie-lampochek.html

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого.

Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток.

Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям.

Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры.

Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно.

Если их соединить последовательно, то при включении одной лампочки мы включим все остальные.

При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока
  • Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
  • А = I х U х t, где А – работа тока, t – время течения по проводнику.
  • Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
  • А=I х (U1 + U2) х t
  • Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения.

Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока
  1. При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
  2. Р=U х I
  3. После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
  4. Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

  • qобщ= q1 = q2 = q3
  • Для определения напряжения на любом конденсаторе, необходима формула:
  • U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

  1. С= q/(U1 + U2 + U3)
  2. Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
  3. 1/С= 1/С1 + 1/С2 + 1/C3
  4. Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

  • С= (q1 + q2 + q3)/U
  • Это значение рассчитывается как сумма каждого прибора в схеме:
  • С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов.

Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Параллельное и последовательное соединение лампочек

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное – схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.

Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.

Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.

Типы ламп и схемы подключения

Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.

Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.

Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.

Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.

Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.

В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.

Видео на тему

Последовательное и параллельное соединение светильников

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

    Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

Принцип последовательного соединения

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм 2 . Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Самое правильное подключение нескольких светодиодов – последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя – быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток – это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно – 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс – от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи – почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

UпитILED
5 мА10 мА20 мА30 мА50 мА70 мА100 мА200 мА300 мА
5 вольт340 Ом170 Ом85 Ом57 Ом34 Ом24 Ом17 Ом8.5 Ом5.7 Ом
12 вольт1.74 кОм870 Ом435 Ом290 Ом174 Ом124 Ом87 Ом43 Ом29 Ом
24 вольта4.14 кОм2.07 кОм1.06 кОм690 Ом414 Ом296 Ом207 Ом103 Ом69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ – конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток – это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) – либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов – это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов – 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

СветодиодыКакой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835)см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730)драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W)драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды)драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6)драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • класс 7А

        • Марка 7Б

        • Класс 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 8A

        • марка 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • Оценка 9 (комбинированные A и B)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 4A

        • класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (комбинированные A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 6А

        • класс 6Б

        • Класс 6 (вместе A и B)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Серия

и параллельные соединения Серия

и параллельные соединения Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки

Следующая страница: Напряжение и ток
См. Также: Условные обозначения и электрические схемы.

Соединительные компоненты

Есть два способа подключения компонентов:

Последовательно

так что каждый компонент имеет тот же ток .

Напряжение аккумулятора делится между двумя лампами.
Каждая лампа будет иметь половину напряжения батареи, если лампы идентичны.

Параллельно

так что каждый компонент имеет одинаковое напряжение .

Обе лампы имеют полное напряжение батареи.
Ток батареи делится между двумя лампами.


Большинство цепей содержат сочетание последовательных и параллельных соединений

Иногда используются термины последовательная цепь и параллельная цепь , но только самые простые схемы полностью относятся к тому или иному типу.Лучше обратиться к конкретным компонентам и сказать, что они соединены последовательно или соединены параллельно .

Например: на схеме справа показаны резистор и светодиод, соединенные последовательно . (справа) и две параллельно соединенные лампы (в центре). Выключатель соединен последовательно с двумя лампами.

См. Еще один пример в разделе «Параллельные лампы» ниже.


Лампы серии

Если несколько ламп соединены последовательно, все они будут включаться и выключаться одновременно. переключателем, подключенным в любом месте цепи.Напряжение питания делится поровну между лампами (при условии, что все они идентичны). Если перегорит одна лампа, все лампы погаснут из-за разрыва цепи.
Рождественские огни
Лампы на елке соединены последовательно.

Обычно можно ожидать, что все лампы погаснут, если задует одна из них, но лампы на рождественской елке особенные! Они предназначены для короткого замыкания (ведут себя как проволочная перемычка) при перегреве, поэтому цепь не разрывается, а другие лампы продолжают гореть, что упрощает поиск неисправная лампа.В комплект также входит одна лампа-предохранитель, которая нормально перегорает.

Если имеется 20 ламп и напряжение в сети составляет 240 В, каждая лампа должна быть подходящей. для источника питания 12 В, потому что 240 В поровну делится между 20 лампами: 240 В ÷ 20 = 12 В.

ВНИМАНИЕ! Лампы для новогодней елки могут показаться безопасными, потому что они используют только 12 В, но они подключены к электросети, что может привести к летальному исходу. Перед заменой лампы всегда отключайте ее от сети.Напряжение на держателе Отсутствует лампа — это полные 240В питающей сети! (Да, действительно!)


Параллельные лампы

Если несколько ламп соединены параллельно, каждая из них имеет полное напряжение питания. Лампы можно включать и выключать независимо, подключив выключатель последовательно с каждая лампа , как показано на принципиальной схеме. Такое расположение используется для управления лампами. в зданиях.

Этот тип схемы часто называют параллельной схемой , но вы можете видеть, что это не совсем так просто — переключатели идут последовательно с лампами, а именно эти Пары переключателя и лампы соединены параллельно.


Коммутаторы серии

Если несколько двухпозиционных переключателей подключены последовательно, все они должны быть замкнуты (включены). чтобы замкнуть цепь.

На схеме показана простая схема с двумя переключателями, подключенными последовательно к управлять лампой.

Переключатель S1 И Переключатель S2 должен быть замкнут, чтобы зажечь лампу.


Параллельные переключатели

Если несколько двухпозиционных переключателей подключены параллельно, необходимо замкнуть (включить) только один. чтобы замкнуть цепь.

На схеме показана простая схема с двумя переключателями, включенными параллельно для управления лампой.

Выключатель S1 ИЛИ Выключатель S2 (или оба) должны быть замкнуты, чтобы зажечь лампу.


Следующая страница: Напряжение и ток | Изучение электроники

© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker.v________ | | = короткое замыкание аккумулятора | | _____________________________________________________________________________ |

(Простите за ужасную диаграмму ASCII.)

История, которую мы рассказываем детям об электрических токах — о том, что энергия в электрических цепях переносится движущимися электрическими зарядами — находится где-то между чрезмерным упрощением и выдумкой.Это проблема с линией передачи. Лампочки загораются в порядке от $ A \ до B \ to C $, но отражение сигнала в линии передачи усложняет проблему.

Скорость сигнала в линии передачи определяется индуктивностью и емкостью $ L, C $ между проводниками, которые, в свою очередь, зависят от их геометрии и материалов, находящихся поблизости. Для линии передачи, состоящей из коаксиальных кабелей или смежных параллельных проводов, типичные скорости сигнала составляют $ c / 2 $, где $ c = 30 \ rm \, cm / ns = 1 \ rm \, фут / наносекунда $ — это скорость вакуума свет.

Итак, давайте представим, что вместо того, чтобы замкнуть переключатель в точке $ x = 0 $ и оставить его замкнутым, мы замкнем переключатель на десять наносекунд и снова откроем его. (Это несложно сделать с переключением транзисторов, и это несложно измерить с помощью хорошего осциллографа.) Мы создали импульс на линии передачи, длина которого составляет около 1,5 метра, или 5% расстояния между переключателем и $ A $. Импульс достигает $ A $ около $ 200 \ rm \, ns $ после того, как переключатель замкнут, и загорается $ A $ в течение $ 10 \ rm \, ns $; он достигает $ B $ около $ 400 \ rm \, ns $ после закрытия переключателя и $ C $ при $ 600 \ rm \, ns $.

Когда импульс достигает короткого замыкания на отметке $ 100 \ rm \, m $, примерно на $ 670 \ rm \, ns $ после того, как переключатель был замкнут, вы получаете ограничение, которое отсутствует в остальной части линии передачи: разность потенциалов между два проводника на коротком замыкании должны быть нулевыми. Электромагнитное поле подчиняется этому граничному условию, создавая движущийся влево импульс того же знака и противоположной полярности: отражение. Предполагая, что ваши лампы двунаправленные (в отличие, скажем, от светодиодов, которые проводят только в одном направлении), они снова загораются, когда отраженный импульс проходит мимо них: $ C $ при $ 730 \ rm \, ns $, $ B $ при $ 930 \ rm \, ns $, $ A $ при $ 1130 \ rm \, ns $.

Вы получаете дополнительное отражение от разомкнутого переключателя, где ток должен быть равен нулю; Я позволю вам выяснить полярность второго импульса, направленного вправо, но лампы снова загорятся при $ A, 1530 \, \ mathrm {ns}; B, 1730 \, \ mathrm {ns}; C, 1930 \, \ mathrm {ns} $.

(Если вы не измените геометрию кабеля у ламп, вы также будете получать отражения от изменений импеданса каждый раз, когда импульс проходит через $ A $, $ B $ или $ C $; эти отражения будут мешать друг с другом сложным образом.)

Как мы применим этот анализ к вашему вопросу, где мы замыкаем переключатель и оставляем его включенным? Увеличивая длительность импульса. Если длительность импульса превышает $ 1330 \ rm \, ns $, отражения, приближающиеся к переключателю, видят граничное условие постоянного напряжения, а не условие нулевого тока; адаптация токового выхода для поддержания постоянного напряжения — это то, как батарея в конечном итоге заполняет цепь установившимся постоянным током.

Обратите внимание, что если ваша схема не длинная и тонкая, но имеет другую геометрию, то приближение линии передачи к постоянным $ L, C $ на единицу длины не выполняется, и может возникнуть один из ваших других ответов.

Серия

и параллельная серия

и параллельная

Существует множество схем переключения между последовательной и параллельной работой. Но выбор конкретная схема переключения зависит от того, какие устройства переключаются, а также от различных ограничения, накладываемые каждым типом устройства.

Вот список различных типов устройств, которые обычно переключаются, и ограничения для каждого типа. накладывает на дизайн:

  • Низковольтные лампы накаливания или галогенные лампы
  • Сопротивления или импедансы
  • Лампы накаливания или галогенные лампы с линейным напряжением
  • Батареи
  • Звукосниматели для гитар
  • Схемы динамиков

Таким образом, любая коммутационная цепь этого типа должна быть спроектирована для фактического предполагаемого использования.

Расчеты для последовательных и параллельных цепей

Формулы для расчета параметров последовательных и параллельных цепей могут быть найдено здесь:

Расчет параметров последовательной и параллельной цепи

Сравнение различных последовательных и параллельных схем коммутации

На следующей странице сравниваются различные схемы для последовательного / параллельного переключения:

Сравнение последовательных / параллельных цепей

Последовательно-параллельная коммутация со всеми комбинациями


не может быть безопасным по полярности или нейтрали

На следующей странице показано доказательство:

Доказательство того, что переключение всех комбинаций не может быть безопасным по полярности или нейтральный сейф

Дополнительная отметка у каждой лампы (в виде короткой дуги) на этих схемах указывает на провод который должен быть подсоединен к корпусу винта лампы (изображение справа):

  • В простых схемах полярность лампы меняется, и выбранный провод подключен к нейтрали, когда лампы включены параллельно.
  • В цепях сетевого напряжения с соблюдением полярности и защитой нейтрали маркированный конец лампы всегда поддерживается при более низком напряжении относительно нейтрали, чем на другом выводе лампы, независимо от того, как переключатели установлены.

На схемах, предлагаемых в качестве доказательства, дополнительные отметки не используются, чтобы показать, что соблюдение полярности и нейтрально-безопасные невозможны.

Проектирование последовательно-параллельных коммутационных цепей

На следующей странице показаны принципы проектирования:

Проектирование последовательно-параллельной коммутации

Простые цепи ламп низкого напряжения

Описанные здесь схемы представляют собой простые схемы, которые можно использовать для цепей низкого напряжения.Они также использовались для схем освещения фотовспышкой до того, как стало известно о необходимости кожух винта лампы с питанием от сети на нейтральной стороне (для безопасности, если колба удаленный). Требование наличия поляризованных вилок с резьбовой частью, соединенной с нейтралью. Blade делает эти схемы (кроме SEPAR 204) несовместимыми с сегодняшним кодексом для сетевого напряжения. схемы.

Используемые здесь номера цепей SEPAR уже много лет используются автором страницы для каталогизации. различные схемы.

Вот ограничения, которые налагают на конструкцию лампы накаливания:

  1. Источник питания никогда не должен замыкаться накоротко при любой комбинации положений переключателя.
  2. Если используются гнезда с резьбовыми отверстиями, напряжение не должно быть достаточно высоким, чтобы быть опасным для людей. если случайно связались.
  3. Необходимо использовать переключатели без короткого замыкания.

При последовательном-параллельном использовании низковольтных ламп разрешены следующие варианты. коммутационные схемы.

  • Изменение полярности питания лампы при изменении переключателей.
  • Одна сторона лампы подключена к горячему выводу, а другая сторона открыта.
  • Лампочка может закоротиться, пока на нее не подается питание.

Те же цепи можно использовать для переключения сопротивлений, импедансов и неполяризованного нагрева. элементы.

Нет никаких ограничений на цепи, используемые для переключения сопротивлений и импедансов, кроме требуемые используемой схемой и схемой, в которой она используется.Но следующие предостережения с этими цепями необходимо соблюдать.

  1. Любой источник питания, питающий цепь, никогда не должен замыкаться накоротко с помощью любой комбинации выключатель позиции.
  2. Если используются фронтальные выключатели (например, рубильники), напряжение не должно быть достаточно высоким, чтобы опасно для людей.
  3. Необходимо использовать переключатели без короткого замыкания.

ПРОСТЫЕ ЦЕПИ ВЫБОРА СЕРИИ ИЛИ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ЛАМП И ИМПЕДАНСЫ

Усовершенствованные схемы электрических ламп линейного напряжения

Описанные здесь схемы представляют собой усовершенствованные схемы, которые можно использовать для цепей линейного напряжения.Их можно использовать в схемах освещения фотовспышкой, при необходимости наличия винтовой кожух лампы с питанием от сети на нейтральной стороне (для безопасности, если колба удаленный).

Используемые здесь номера цепей SEPAR уже много лет используются автором страницы для каталогизации. различные схемы.

Номера цепей SP-STD — это новые обозначения автора страницы для новых цепей.

Вот ограничения, накладываемые нагрузкой линейного напряжения на конструкцию:

  1. Запрещается закорачивать питание при любой комбинации положений переключателя.
  2. Запрещается менять полярность питания лампочек.
  3. Винтовая гильза лампы всегда должна находиться на конце нити накала ближе к нейтральный.
  4. Запрещается подключать лампу к горячему источнику без цепи, ведущей к нейтрали.
  5. Непроводящий кожух должен окружать любую оболочку винта, чтобы предотвратить контакт с винтом. оболочка контактирует с гнездом при установке или удалении.
  6. Необходимо использовать переключатели без короткого замыкания.
  7. Эти цепи нельзя использовать с компактными люминесцентными лампами или светоизлучающими диодами. лампы.

При использовании последовательно-параллельных ламп разрешены следующие варианты. коммутационные схемы.

  • Одна сторона лампы подключена к нейтральному проводу, а другая сторона открыта.
  • Лампочка может закоротиться, пока на нее не подается питание.

Эти же цепи можно использовать для переключения сопротивлений и нагревательных элементов.

Это ограничения на цепи, используемые для переключения сопротивлений, импедансов и нагревателей:

  1. Источник питания никогда не должен замыкаться накоротко при любой комбинации положений переключателя.
  2. Если используются фронтальные выключатели (например, рубильники), напряжение не должно быть достаточно высоким, чтобы опасно для людей.
  3. Необходимо использовать переключатели без короткого замыкания.

ЦЕПИ НАПРЯЖЕНИЯ ЛИНИИ ВЫБОРА СЕРИИ ИЛИ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ЛАМП И ИМПЕДАНСЫ

Схемы батарей

Описанные здесь схемы представляют собой схемы, которые можно использовать для переключения батарей для замены ёмкости по напряжению и ампер-часам.Их можно использовать для изменения конфигурации для зарядки и использования аккумуляторов. Большинство из них — простые схемы.

Номера цепей SP-STD — это новые обозначения автора страницы для новых цепей.

Вот ограничения, накладываемые батареями на конструкцию:

  1. Батареи должны быть идентичными.
  2. Никакая комбинация положений переключателя не может привести к короткому замыканию батареи.
  3. Никакая комбинация положений переключателя не может привести к короткому замыканию зарядного тока.
  4. Запрещается менять полярность каждой батареи.
  5. Если используются последовательно-параллельные цепи, каждая параллельная группа в серии должна иметь одинаковые количество батарей.
  6. Если используются параллельные последовательные цепи, каждая последовательная группа должна иметь одинаковые количество батарей.
  7. Необходимо использовать переключатели без короткого замыкания.

При последовательном параллельном использовании батарей разрешены следующие варианты. коммутационные схемы.

  • Одна сторона аккумулятора подключена, а другая открыта.

ЦЕПИ ВЫБОРА СЕРИИ ИЛИ ПАРАЛЛЕЛЬНОЙ РАБОТЫ АККУМУЛЯТОРОВ

Цепи звукоснимателей для гитар

Описанные здесь схемы — это схемы, которые можно использовать для переключения гитарных звукоснимателей на изменить звук гитары.

Номера цепей SP-STD — это новые обозначения автора страницы для новых цепей.

Вот ограничения, накладываемые гитарными звукоснимателями на конструкцию:

  1. Полярность датчика не должна быть изменена (если это не требуется для эффекта).
  2. Заземляющий конец звукоснимателя не должен быть разомкнут, когда токоведущий конец подключен к усилителю.
  3. Щит звукоснимателя должен иметь отдельную проводку. Он не должен быть привязан к пикапу.
  4. Нельзя оставлять активный провод усилителя открытым (вызывает гудение).
  5. Должны использоваться закорачивающие выключатели.

При последовательном параллельном подключении гитарных звукоснимателей разрешены следующие варианты. коммутационные схемы.

  • Возможно короткое замыкание датчика.
  • Полярность звукоснимателя может быть изменена на обратную для особого эффекта.

Эти же цепи можно использовать для переключения импедансов и неполяризованных нагревательных элементов.

ЦЕПИ ВЫБОРА СЕРИИ ИЛИ ПАРАЛЛЕЛЬНАЯ РАБОТА СЪЕМНИКОВ ГИТАР

Схемы динамиков

Описанные здесь схемы представляют собой схемы, которые можно использовать для переключения динамиков на изменить количество динамиков, сохраняя импеданс усилителя рядом с комплектом сопротивление.

Вот ограничения, которые эта нагрузка накладывает на конструкцию:

  1. Выход усилителя не должен закрываться накоротко с помощью какой-либо комбинации переключателя. настройки.
  2. Выход усилителя ни в коем случае нельзя оставлять без нагрузки с помощью любой комбинации переключателей. настройки.
  3. Запрещается менять полярность динамика при любой комбинации настроек переключателя.
  4. Не замыкающие переключатели необходимы, если перемещение переключателя может на мгновение замкнуть усилитель. выход.
  5. Закорачивающие переключатели необходимы, если перемещение переключателя может на мгновение оставить выход усилителя. открыто.
  6. Нагрузка на усилителе должна поддерживаться как можно ближе к идеальному импедансу.
  7. Переключение на другой динамик не должно изменять громкость других динамиков.

При последовательном параллельном использовании динамиков разрешены следующие варианты. коммутационные схемы.

  • Один или оба конца динамика могут оставаться открытыми.
  • Акустическая система может быть закорочена до тех пор, пока на нее не подается полный выход усилителя.
  • Другое решение — линия 25 вольт или линия 70 вольт. Смена нагрузки с единицы динамик не влияет на другие динамики.

Эти же цепи можно использовать для переключения импедансов и неполяризованных нагревательных элементов.

ЦЕПИ ВЫБОРА СЕРИИ ИЛИ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ДИНАМИКОВ

ССЫЛКИ

ССЫЛКИ:

  1. РАСЧЕТ ПАРАМЕТРОВ СЕРИИ И ПАРАЛЛЕЛЬНОЙ ЦЕПИ
  2. ПРОСТОЙ ВЫБОР СЕРИИ ИЛИ ПАРАЛЛЕЛЬНАЯ РАБОТА
  3. ЛАМПОЧКИ, СПЕКТРЫ И ВИДЕНИЕ ЧЕЛОВЕКА
  4. Компьютеры, наука и измерения

Последовательные и параллельные лампы — Научные проекты

Сбор информации:

Узнайте об электричестве, напряжении и токе.Прочтите книги, журналы или спросите профессионалов, которые могут знать, чтобы узнать, как соединительные цепи влияют на распределение электричества между различными устройствами. Следите за тем, откуда вы получили информацию. Ниже приведены образцы информации, которую вы можете найти:

Что такое электричество? Электричество — это поток электронов в проводнике, таком как медный провод. (Это почти как поток воды в трубе. Чтобы вода текла с одной стороны на другую, с одной стороны должно быть некоторое избыточное давление.

Что такое напряжение? Напряжение — это разница в давлении или концентрации электронов между двумя точками. Откройте водопроводный кран и попытайтесь остановить воду рукой. Вы увидите, что давление высокое. Это давление, которое заставляет воду выходить с высокой скоростью. Когда мы говорим об электричестве, это давление называется напряжением.

Что сейчас? Текущее количество электронов, текущих в секунду. Представьте себе широкую реку. Хотя вода движется медленно, каждую секунду мимо вас проходит большое количество воды.Теперь о шланге для воды, которым вы поливаете свой сад. Хотя вода внутри шланга движется очень быстро, общее количество воды, проходящей через одну точку шланга, невелико. Заполнение бассейна одним шлангом может занять несколько дней; в то время как медленный поток воды в большой реке может заполнить тот же бассейн за несколько секунд. Таким образом, поток воды в реке высокий, а в шланге — низкий.

Что такое нагрузка? Нагрузка или резистор — это все, что потребляет электричество.Например, лампа в электрической цепи — это нагрузка.

Что такое параллельная цепь? Параллельная схема имеет более одного резистора (все, что использует электричество для работы) и получила свое название от наличия нескольких (параллельных) путей для движения. Заряды могут перемещаться по любому из нескольких путей. Если один из элементов в цепи сломан, то заряды не будут перемещаться по этому пути, но другие пути будут продолжать пропускать заряды через них. Параллельные цепи встречаются в большинстве бытовых электропроводок.Это сделано для того, чтобы свет не переставал работать только потому, что вы выключили телевизор.

Что такое последовательная цепь?

Цепи серии

иногда называют токовой или гирляндной связью. Ток, протекающий в последовательной цепи, должен проходить через каждый компонент в цепи. Следовательно, все компоненты в последовательном соединении проводят одинаковый ток.

Обозначения компонентов и простые схемы

В этой главе вы пересмотрите работу, которую вы проделали по электрическим системам и контролю в 8-м классе.Ты также будет пересматривать простые схемы, принципиальные схемы и соединяющие ячейки, а также лампы и переключатели последовательно и параллельно. Затем вы проведете практическое исследование эффектов изменение напряжения в цепи.

Рисунок 1: Горелка

Версия 1: символы компонентов

«Компоненты» — это детали, которые мы подключить в электрическую цепь.

Вы помните символы для клетки, лампы и выключатели?

Вы помните разницу между соединением компонентов последовательно и параллельно? Посмотрим что вы можете вспомнить.

Вы уже узнали, что электрическая цепь — это замкнутый путь, по которому течет ток.

Самая простая схема имеет:

  • мощность источник, такой как ячейка,
  • а проводник, и
  • груз который обеспечивает сопротивление, например, лампа.

Ячейки серии

Можно соединить две или более ячеек последовательно от до увеличить напряжение в цепи.На рисунке 2 ниже показаны два ячеек, соединенных последовательно по цепи. Положительный терминал ячейки А подключен к лампе.

Отрицательный вывод ячейки A подключен к положительному выводу ячейки B, а отрицательный клемма ячейки B подключена к другой клемме фонарь.

В серии означает, что ячейки соединены встык, и ток течет через каждую ячейку в очереди.

1. Нарисуйте схему схема схемы на рисунке 3 в пространстве справа от Это.

Рисунок 2: Две последовательно соединенные ячейки к лампе

2. Рисунок 3 ниже показаны три ячейки, последовательно включенные в цепь. Нарисовать принципиальная схема контура в пространстве справа от Рисунок 3.

Рисунок 3: Три ячейки последовательно подключены к лампе

При последовательном соединении ячеек их общее Напряжение — это сумма напряжений трех ячеек: 1,5 В + 1,5 В + 1, 5 В = 4,5 В

Ячейки параллельно

Две или более ячейки также могут быть подключены «в параллели».Параллельная схема имеет два или более разных пути, по которым течет течение.

На рисунке 4 ниже показаны две ячейки. соединены параллельно в цепь. Положительные клеммы обе ячейки соединены друг с другом и с лампой. В отрицательные клеммы обеих ячеек подключены друг к другу и к другому выводу лампы.

3. Нарисуйте схему схема схемы на рисунке 4 в пространстве справа от Это.

Рисунок 4: Три ячейки параллельно подключен к лампе

При параллельном соединении ячеек общая напряжение ячеек такое же, как у одиночного ячейка (1,5 вольта).

Лампы серии

Также можно подключить две или более лампы последовательно.

На рисунках ниже показана схема схемы двух и трех ламп, включенных последовательно с аккумулятор. Положительный полюс аккумуляторной батареи (+ B) подключен к лампе 1, другая сторона лампы 1 подключена к лампе 2, другая сторона лампы 2 подключена к отрицательной клемме (B-) батареи и так далее.

Рисунок 5: Две последовательно соединенные лампы

Рисунок 6: Три лампы последовательно

4.Как увеличивается количество ламп в серии изменяет ток и напряжение в схема?


Если все лампы имеют одинаковое сопротивление, падение напряжения на каждой лампе будет равно 1,5 В. Когда падение напряжения всех ламп складывается, получается общее напряжение аккумуляторной батареи 4,5 В. Ток одинаковый через каждую лампу.

Лампы параллельно

Также можно подключить две или более лампы к батарее параллельно, как показано на рисунках ниже.В положительный полюс батареи напрямую подключен к одному сторона каждой лампы и отрицательный вывод на другую сторону каждой лампы.

Рисунок 7: Принципиальная схема двух ламп параллельно

Рисунок 8: Принципиальная схема трех ламп параллельно

Приложенное напряжение одинаково для каждой лампы. Ток делится на каждую лампу, и общий ток — это сумма тока через каждый фонарь: Я т = Я 1 + Я 2 + Я 3

5.Посмотрите на схему диаграмму ниже и ответьте на следующие вопросы:

Рисунок 9

(а) Что такое падение напряжения на лампах 1 и 2?


(б) Итого ток в цепи 10 А. Если лампа 1 имеет ток 4 А протекает через него, какой ток будет через лампу 2?


Коммутаторы последовательно и параллельно

В схеме с одним переключателем переключатель контролирует, течет ли ток через цепь или нет.Если переключатель разомкнут, ток не течет, так как цепь не завершена. Замкнутый переключатель позволяет току поток.

Рисунок 10: Символы разомкнутого выключателя и замкнутый выключатель

Мы можем использовать два или более переключателя для управлять компонентами в цепи более сложными способами.

В логической схеме разомкнутый переключатель рассматривается как имеющий значение 0, а замкнутый переключатель — имеющий значение 1.

Переключатели — это входы, которые управляют окончательной состояние цепи.

Если цепь не замкнута, выход находится в Состояние ВЫКЛ. И имеет значение 0. Если цепь замкнута, выход находится в состоянии ВКЛ. состояние и имеет значение 1.

Переключатели в серия

В схеме ниже два переключатели последовательно. Это дает нам четыре разных переключателя комбинации. Их:

  • Переключатель A и B оба открыты,
  • Переключатель A открытый и закрытый B,
  • Переключатель A закрыто и B открыто, и
  • оба переключатели замкнуты.

Рисунок 11: Схема с двумя переключателями в серия

Вы видите, что ток не может поток через контур, если выключатель A или выключатель B открыто? Оба они должны быть закрыты, чтобы лампа горела.

6. В таблице ниже «0» означает выключен или открыт, а «1» означает включен или закрыт. Завершить таблицу, чтобы показать все возможные комбинации в схему на рисунке 11. Чтобы помочь вам, первые два ряда таблица уже заполнена.Убедитесь, что вы понимаете эти две строки перед заполнением остальной части таблицы

Ввод А

Ввод В

Выход

0

0

0

0

1

0

1

0

1

1

Стол отображение этих комбинаций называется таблицей истинности .

Оба переключателя A и B должны быть замкнуты для цепь, которую необходимо завершить (выход 1). Итак, мы видим, что переключатели, соединенные последовательно дайте нам функцию И .

Переключатели в параллельно

В схеме ниже два переключается параллельно. Это также дает нам четыре разных переключателя комбинации.

Рисунок 12: Схема с двумя переключателями в параллельно

Вы видите, что ток может идти? через замкнутый переключатель, даже если другой переключатель открыто?

7.Завершите правду приведенная ниже таблица для схемы на Рисунке 12.

Таблица истинности показывает, что когда переключатель A или переключатель B закрыт, на выходе будет 1 (лампа будет гореть). Мы вызываем переключатели параллельно функцией ИЛИ .

Вопросы к домашнему заданию

1. Будет ли лампа загораются в каждой из этих цепей? Поясните свой ответ.

(а)

Рисунок 13


б)

Рисунок 14


(в)

Рисунок 15


2.Чайник должен быть включается сначала в розетке, а затем в чайнике сам.

(a) Заполните таблица истинности, чтобы показать все возможные комбинации.

Стена штекерный выключатель

Чайник переключатель

Выход

(b) Является ли это И функция или функция ИЛИ? Поясните свой ответ.


Ревизия 2: простые схемы

В этом уроке вы настроите простую схем, пересматривая то, что вы узнали о настройке схем в 8 класс.

Для этого вам понадобится следующее активность:
  • два AA ячеек в кюветодержателях,
  • подключение провода,
  • выключатель, и
  • два лампы.

Обратите внимание, что вы можно использовать самодельный выключатель и кюветодержатель из утеплителя лента для этой деятельности.

1. Посмотрите на схему ниже.

Рисунок 16

Установите эту схему и убедитесь, что она работает, замыкая выключатель.

(а) Лампа загораться?


Когда у вас работает цепь правильно, переходите к вопросу 2. При необходимости вы можете устраните неисправность в вашей цепи, посмотрев на следующее:

  • Если лампа не загорается, но провода нагреваются, возможно, у вас короткое замыкание.Это означает, что лампа не подключена правильно в цепи, или что она неисправна. Проверь это лампа правильно подключена в цепь.
  • Если лампа по-прежнему не загорается, проверьте каждый компонент и соединительный провод, заменяя их по очереди. Ты можешь таким образом определите, какой из них неисправен.

2. Добавьте еще одну лампу в цепь последовательно с первой.

(а) Нарисуйте схему схема для этой схемы.


(б) Чем вы занимаетесь заметили про яркость ламп?


3. Установить по той же цепи, но добавьте еще одну лампочку последовательно с первая лампочка.

(а) Нарисуйте схему диаграмма для этой новой схемы.

(b) Напишите, что вы Обратите внимание на лампы в этой цепи.


4. Запишите свой выводы об изменении количества ячеек и количества ламп в цепи.


Испытательное напряжение и ток в цепях

На этом уроке вы исследовать взаимосвязь между значением напряжения и ток в цепи.Вам нужно будет использовать мультиметр, который можно установить для измерения напряжения, сопротивления или ток в цепи.

В : вольт (потенциал)

A : амперы (ток)

Ω: Ом (сопротивление)

Начните с чтения приведенного ниже текста на как правильно пользоваться мультиметром.

Измерение сопротивление

Найдите раздел, обозначенный «Ω» на мультиметре на рисунке ниже.

  • Подключиться красный измерительный провод к клемме «V ΩmA», а черный измерительный провод к клемме «COM».
  • Отрегулируйте переключатель функций в положение «Ω».
  • Подключиться концы измерительных проводов через неизвестный резистор, как показано. Убедитесь, что резистор изолирован от других компонент или блок питания.
  • Прочитать значение резистора с дисплея, и при необходимости отрегулируйте шкалу на Ом, Ом, чтобы получить хорошее чтение. Делайте это целыми числами, а не в десятичные дроби.

Рисунок 17: Мультиметр установлен и подключен для измерения сопротивления

Измерительное напряжение

Найдите раздел с надписью «DCV» на мультиметр на картинке ниже.

  • Подключиться красный измерительный провод к клемме «VΩ mA», а черный измерительный провод к клемме «COM».
  • Отрегулируйте переключатель диапазона в положение «DCV».
  • Установите метр на самом высоком диапазоне.
  • Подключиться другие концы измерительных проводов параллельны части цепь, в которой необходимо измерить напряжение: красный тест приводит к положительному (+), а черный тестовый провод к отрицательному (-).
  • Читать напряжение с дисплея. Возможно, вам придется отрегулировать селектор напряжения до тех пор, пока не будет отображаться хорошее значение Сделай это целыми числами, а не десятичными.

Рисунок 18: Мультиметр установлен и подключен для измерения силы тока

Измерительный ток

Найдите раздел, помеченный «DCA» на мультиметр на Рисунке 18.

  • Подключиться красный измерительный провод к клемме «VΩmA» и черный тестовый привести к клемме «COM».Если измеряемый ток между 200 мА и 10 А, подключите красный измерительный провод к «10 Терминал А «.
  • Отрегулируйте переключатель диапазона в область «А» (ампер). Если ты измерение неизвестного тока, начните с самого высокого диапазона, затем отрегулируйте до правильного более низкого диапазона для наилучшего точность.
  • Подключиться другие концы измерительных проводов последовательно с частью цепь, в которой должен быть измерен ток.(Отключить цепи и включите счетчик последовательно.)
  • Прочитать текущее значение с дисплея.

Исследование деятельности

Вам понадобится следующие для этой деятельности:

  • три ячейки для фонарей (AA) в держатели,
  • 500 Ом резистор с цветными полосами, как на рисунке 19, и
  • два мультиметры, или амперметр и вольтметр .

Рисунок 19: A Резистор 500 ом

Установите схему, как показано на Рисунок 20 ниже, с использованием ячейки, резистора и амперметра. Если вы используете мультиметр вместо амперметра поставил на амперах шкала.

В следующей главе вы вы узнаете, как цветные полосы на резисторе сообщают вам сопротивление (Ом).

Рисунок 20: Схема с одной ячейкой, резистор и амперметр

Теперь подключите вольтметр к резистор, как показано на рисунке 21.Если вы используете мультиметр вместо вольтметра выставить по шкале вольт.

Амперметр всегда подключен к серии с частью схемы, для которой вы измеряете ток, так что он измеряет полный ток через это часть схемы. У него очень маленькое сопротивление, так что он не меняет ток в цепи.

Рисунок 21: Схема с одной ячейкой, резистор, амперметр и вольтметр на резисторе

Вольтметр всегда подключен параллельно с той частью схемы, для которой он измеряет разность потенциалов между двумя точками.Очень через вольтметр протекает небольшой ток, так как у него очень высокая стойкость.

1. Запишите чтение:


Теперь подключите вторую ячейку последовательно. как показано на схеме ниже:

Рисунок 22: Схема с двумя ячейками в серия, резистор, амперметр и вольтметр на резисторе

2. Запишите чтение:


Теперь подключите последовательно третью ячейку, как показано на Рисунке 23.

Рисунок 23

3.Запишите чтение:


4. Заливка в ваших показаниях в таблице ниже:

С одним ячейка

С двумя ячейки

с три ячейки

Напряжение

Текущий

5.Постройте показания на миллиметровой бумаге ниже.

Рисунок 24: График зависимости между разностью потенциалов и током

6. Опишите соотношение между напряжением и током для 500 Вт резистор.


  • Вы обратите внимание, что по мере увеличения напряжения ток увеличивается?
  • Ваш график по прямой?

Имеется прямая пропорциональная зависимость между напряжением и током.Поскольку напряжение удвоится, ток удвоится; и как напряжение утроится, ток утроится.

На следующей неделе

На следующей неделе вы посмотрите на другие виды резисторов, используемых в схемах. Вы также будете практиковать выполнение расчетов по формулам закона Ома.

Цепи серии

— недостатки, яркость и последовательно-параллельные комбинации

Введение

Если две лампочки включены последовательно, вам нужно пройти через обе, чтобы добраться от одной клеммы батареи до другой.Другими словами, есть только один проводящий путь.

Простое упражнение, показывающее преимущества параллельных цепей перед последовательными цепями.

В этом уроке мы увидим, в чем проблемы с последовательными цепями. Мы узнаем о токе, напряжении и сопротивлении, а также рассмотрим особый вид последовательной цепи, называемой делителем потенциала.

Проблема с последовательными цепями

Анимация, объясняющая, почему последовательно включенные лампы тускнеют из-за изменений в и тока, и напряжения .

Если две лампы соединены последовательно, то есть две проблемы

  1. Обе лампы светлее, чем были бы сами по себе
  2. Нельзя выключить одну лампочку, не выключив обе

Почему последовательные лампы диммерные

Лампы тусклые по двум причинам:

  1. Ток, проходящий через них, меньше, потому что две последовательно соединенные лампочки имеют более высокое сопротивление, чем одна лампочка.
  2. Каждый заряд отдает только часть своей энергии в каждой лампочке, т.е.е. п.д. по каждой лампочке меньше

Если лампочки одинаковые, то каждый заряд отдаст половину своей энергии. Помните, что нет «первой» лампочки. Заряды уже есть, и они текут повсюду одновременно. Ток во всей последовательной цепи одинаков.

Представьте, что вы полностью тормозите колесо велосипеда. Нельзя сказать, что какие-то тормоза были первыми.

Яркость зависит от мощности. Мощность зависит как от напряжения, так и от силы тока.С двумя последовательно включенными лампочками вы уменьшаете вдвое напряжение и примерно вдвое ток, поэтому мощность, рассеиваемая в каждой лампочке, и, следовательно, яркость, составляет примерно четверть того, что было бы, если бы лампочка была подключена отдельно.

Как заряды «знают», что нужно сохранять энергию для второй лампочки?

Суть в том, что ток должен быть одинаковым везде в цепи. Вы не знаете, каким будет этот ток на самом деле, если не рассчитаете его, но вы знаете, что он не может быть разным в каждой лампочке.

Чтобы ток был одинаковым, необходимо большое напряжение на большом сопротивлении и небольшое напряжение на небольшом сопротивлении. Эти два напряжения должны в сумме равняться напряжению батареи.

Когда вы подключаете цепь, электронам требуется несколько миллионных долей секунды, чтобы установить стабильный ток. В течение этой крошечной доли секунды ток в разных частях цепи может быть разным.

Анимация, объясняющая, как заряды в последовательной цепи «знают» о «второй лампочке».

Но это вызывает некоторое скопление, поскольку большие токи догоняют малые токи. Когда электроны группируются, они больше отталкиваются друг от друга, и это снова приводит к выравниванию тока. Таким образом, ток быстро стабилизируется до стабильного значения с правильным распределением напряжения. Помните, что хотя процесс оседания происходит очень быстро, скорость дрейфа электронов очень мала.

Если вы посмотрите на этот процесс более подробно, то увидите, что распределение электронов на самом деле происходит на поверхности проводов.

Лампы с высоким сопротивлением становятся ярче в последовательных цепях

Если две последовательно соединенные лампы не идентичны, одна лампа будет ярче другой. Яркость зависит как от тока, так и от напряжения.

Помните, что ток через обе цепи должен быть одинаковым, потому что ток одинаковый везде в последовательной цепи. Это означает, что напряжение на лампах должно быть разным, чтобы их яркость была разной.

Анимация, объясняющая, что происходит, когда две разные лампочки соединяются последовательно.

Самая яркая лампа будет иметь самый большой диод. через это. Если лампочке нужен большой п.д. для данного тока он должен иметь высокое сопротивление. Таким образом, последовательно включенные лампы с высоким сопротивлением ярче, потому что они имеют больший p.d. через них.

В параллельных цепях лампы с низким сопротивлением ярче, потому что через них проходит больший ток при том же п.д.

Игра Верные или ложные утверждения о последовательных и параллельных цепях. Вы должны нацелить заявление на тележку для покупок или мусорный бак.

Переменные резисторы, включенные последовательно, изменяют как напряжение, так и ток

Вы можете использовать переменный резистор, например реостат, чтобы изменить яркость лампы, подключив ее последовательно. Когда резистор имеет высокое сопротивление, лампа тусклая. Когда сопротивление низкое, лампа горит.

Задание, показывающее, как переменный резистор, включенный последовательно с лампочкой, может изменять свою яркость.

По мере увеличения сопротивления переменного резистора общее сопротивление цепи увеличивается, и, следовательно, уменьшается ток.Но есть и другой эффект: переменный резистор забирает все большую и большую долю напряжения батареи, поэтому лампочка занимает все меньшую и меньшую долю.

Таким образом, лампа становится тусклее по двум причинам. Ток через него уменьшается И п.д. поперёк также уменьшен.

Анимация, объясняющая, как переменный резистор изменяет яркость лампы в зависимости от напряжения и тока.

Вы обнаружите, что очень трудно плавно регулировать яркость лампы, используя последовательно включенный переменный резистор.Единственный способ сделать это — подключить цепь как делитель потенциала.

Резистор п.д. плюс лампочка п.о. равно напряжению АКБ

Когда напряжение на резисторе велико, напряжение на лампочке невелико. Эти два напряжения всегда складываются с напряжением батареи (если не учитывать внутреннее сопротивление).

График, иллюстрирующий закон напряжения Кирхгофа.

Это просто пример закона напряжения. Вы должны быть осторожны, применяя закон напряжения, когда смотрите на схемы, которые объединяют последовательные и параллельные части.

Определение эффективного сопротивления последовательных цепей

Определить эффективное сопротивление последовательно соединенных резисторов очень просто: просто сложите отдельные сопротивления. Вы можете довольно легко показать, почему это так.

Анимация, демонстрирующая вывод формулы эффективного сопротивления последовательно включенных резисторов.

Последовательное добавление резисторов всегда увеличивает эффективное сопротивление. Очень большое последовательное сопротивление с очень маленьким сопротивлением фактически совпадает с большим сопротивлением.

Расчет напряжения и тока для резисторов серии

Есть несколько способов решения этой проблемы. Довольно надежный способ —

  1. Рассчитайте общее сопротивление, R , эффективное
  2. Используйте V = IR , эффективный для всей цепи, чтобы вычислить ток, который везде одинаковый
  3. Используйте V = IR для каждого резистора, чтобы рассчитать напряжение на каждом резисторе
Анимация, демонстрирующая, как рассчитать напряжение и ток для последовательных цепей.

Для проверки убедитесь, что сумма напряжений на каждом резисторе равна напряжению батареи.

Вы также можете использовать коэффициенты для непосредственного определения напряжений.

Делители потенциалов

Мы видели, что последовательное подключение переменного резистора к лампочке может изменить ее яркость, но при таком подходе есть проблемы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *