Что такое реле времени и как оно работает. Какие бывают виды реле времени. Как правильно подключить реле времени. Схемы подключения реле времени на 12В и 220В.
Что такое реле времени и принцип его работы
Реле времени — это электрическое устройство, предназначенное для автоматической коммутации электрических цепей с заданной выдержкой времени. Основное назначение реле времени — обеспечить включение или отключение какого-либо оборудования через определенный промежуток времени.
Принцип работы реле времени заключается в следующем:
- При подаче питания на реле запускается отсчет заданного интервала времени
- По истечении этого времени происходит переключение контактов реле
- Контакты замыкают или размыкают управляемую электрическую цепь
Таким образом, реле времени позволяет автоматизировать процессы включения/выключения различного оборудования по заданному временному алгоритму.
Основные виды реле времени
По принципу действия и конструкции различают следующие основные виды реле времени:

- Электромеханические — используют часовой механизм для отсчета времени
- Пневматические — действуют за счет перетекания воздуха через калиброванное отверстие
- Электронные аналоговые — работают на основе заряда/разряда конденсатора
- Электронные цифровые — используют микроконтроллер для отсчета времени
По функциональным возможностям выделяют:
- Однофункциональные — с одной фиксированной выдержкой времени
- Многофункциональные — с несколькими режимами работы и диапазонами времени
- Программируемые — с возможностью задания сложных алгоритмов работы
Схемы подключения реле времени
Схема подключения реле времени зависит от его типа и назначения. Рассмотрим типовые схемы для наиболее распространенных применений.
Подключение реле времени на 12В
Схема подключения простого реле времени на 12В для управления маломощной нагрузкой:
«` «`В данной схеме:
- Реле времени подключается к источнику питания 12В
- Нормально разомкнутый контакт реле подключается к нагрузке
- При срабатывании реле контакт замыкается и подает питание на нагрузку
Подключение реле времени 220В
Схема подключения реле времени на 220В для управления мощной нагрузкой:

Особенности данной схемы:
- Реле времени подключается к сети 220В
- Силовые контакты реле коммутируют цепь питания нагрузки
- Для мощных нагрузок используется промежуточное силовое реле
Применение реле времени
Реле времени широко применяются в различных областях для автоматизации процессов:
- Управление освещением (подсветка рекламных вывесок, уличное освещение)
- Системы вентиляции и кондиционирования
- Автоматический полив в теплицах и на дачных участках
- Управление нагревательными элементами в промышленности
- Циклическая работа оборудования на производстве
- Бытовая техника (стиральные и посудомоечные машины)
Преимущества использования реле времени
Применение реле времени в системах автоматики дает ряд важных преимуществ:
- Повышение энергоэффективности за счет отключения оборудования в нерабочее время
- Автоматизация рутинных процессов включения/выключения
- Повышение безопасности работы электрооборудования
- Увеличение ресурса работы приборов за счет оптимизации режимов
- Экономия времени на ручном управлении устройствами
Как выбрать подходящее реле времени
При выборе реле времени следует учитывать следующие факторы:

- Напряжение питания (12В, 24В, 220В)
- Коммутируемый ток и мощность нагрузки
- Требуемый диапазон выдержек времени
- Необходимые функции и режимы работы
- Условия эксплуатации (температура, влажность)
- Габариты и способ монтажа
Правильно подобранное реле времени обеспечит надежную и эффективную работу автоматизированной системы.
Настройка и программирование реле времени
Процесс настройки реле времени зависит от его типа:
- Механические реле настраиваются вращением циферблата или переключателями
- Электронные аналоговые — потенциометрами на корпусе
- Цифровые — кнопками на панели или через интерфейс
- Программируемые — с помощью специального ПО на компьютере
Для сложных алгоритмов работы используются программируемые реле времени. Они позволяют задавать:
- Различные интервалы включения/выключения
- Циклические режимы работы
- Зависимость от дня недели и времени суток
- Учет праздничных дней
Типичные неисправности реле времени
При эксплуатации реле времени могут возникать следующие проблемы:

- Не срабатывает в заданное время — проверьте питание и настройки
- Ложные срабатывания — возможны помехи в сети питания
- Быстрый разряд батареи — неисправность схемы или низкое качество элемента питания
- Сбивается время — слабый заряд батареи или неисправность кварцевого генератора
- Подгорание контактов — превышена коммутируемая мощность
При обнаружении неисправностей рекомендуется обратиться в сервисный центр для диагностики и ремонта реле времени.
Схемы реле времени и задержки выключения нагрузки
Принципиальные схемы реле задержки времени, автоматических включателей и выключателей нагрузки 220В с заданым интервалом времени. Схемы просты в сборке и построены на основе микросхемы LM555.
Реле времени для автоматического отключения нагрузки
Иногда бывает необходимо выключить приемник или лампу подсветки через определенный интервал времени. Эту задачу может решить схема, приведенная на рис. 1.
Рис. 1. Схема таймера для автоматического отключения нагрузки.
При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 минут (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).
В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1.
Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.
Таймер с увеличенным временным интервалом
Схема устройства аналогичного назначения показана на рис. 2. Она позволяет дискретно изменять время задержки отключения нагрузки от 5 до 30 мин (с шагом 5 мин) при помощи переключателя SA1. Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + . .. + Rn).
Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.
Схемы реле времени на симисторах
Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис. 3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.
В схеме на рис. 3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 секунд). Цепь R1-C1 обеспечивает запуск одновибратора при включении.
Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.
Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.
Во второй схеме (рис. 4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме).
Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор C3 обязательно должен иметь маленькую утечку.
Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.
принцип действия, виды реле, изготовление и монтаж своими руками
Где бы ни находился человек, его постоянно окружают те или иные электрические приборы. Благодаря им наша жизнь значительно упрощается и множество повседневных бытовых решений уже не требуют столько времени, как это было раньше.
Научно-технический прогресс не стоит на месте и поэтому сегодня нам доступна такая возможность, как автоматическая система управления. К одной из таких систем, относят реле времени. Именно его наличие в том или ином устройстве делает возможным автоматическое включение и выключение холодильника, установку циклов в стиральной машине, мигание поворотника в автомобиле, подсветку рекламных щитов, витрин, регулярный автополив на огороде т.п. Взять хотя бы обычный аквариум, где свет и воздух подается согласно определенному режиму.
Что такое реле времени
Если сказать совсем простым языком, то назначение реле времени — создавать временную задержку включения или выключения сигналов и осуществлять определенную последовательность в работе этих сигналов.
Обычно этот прибор используют, когда требуется выполнить определенное действие спустя установленный промежуток времени. И устанавливается оно в схемы автоматического управления.
Виды
По своему конструктивному исполнению реле времени подразделяют на:
Моноблок — полностью независимое устройство, с собственным корпусом, встроенным питанием и специальными гнездами для подключения какой-либо техники. Хорошо знакомы с этим типом реле те, кто занимается фотопечатью.
Встраиваемые— это упрощенный вариант моноблочных реле. У них нет собственного корпуса и питания, поскольку они нужны для того, чтобы создавать более сложные устройства. Они используются как дополнительные элементы и поэтому их помещают в один корпус с другими элементами изготовляемого прибора. Классический пример — таймер в стиральной машинке, микроволновой печи, духовке и пр.
Модульные (с управляющим контактом) — этот тип имеет стандартные размеры и устанавливается на DIN-рейку в распределительный щиток.
Помимо этого, реле времени также классифицируют в зависимости от принципа работы (как именно создается временной интервал):
- Реле времени с часовым механизмом. Этот вид был изготовлен первым и до сих пор считается одним из самых надежных, так как по своим свойствам не уступает пневматическим приборам. Их работа практически не зависит ни от мощности напряжения, ни от того как часто оно подается, ни от изменения температуры.
В быту такой тип реле встречается в механических будильниках, кухонных таймерах, в некоторых стиральных машинах также встречается механическое реле программ.
- С электромагнитным замедлением. Используется в цепях, ориентированных на постоянное напряжение. Задержка осуществляется за счет создания вспомогательного магнитного потока, регулируемая изменением величины натяжения возвратной пружины. Регулируемое значение составляет до пяти секунд. Существенный минус этого типа реле в том, что задержка времени зависит от изменения температуры.
Электро реле
- Вакуумное (электромеханическое). Этот вид используется там, где требуется электрический или пневматический сигнал, контролирующий достижение уровня вакуума.
- Моторные. Включает в себя двигатель с редуктором и электрическим контактом. Способность задержки времени составляет от 10 секунд и до десятков часов.
- Реле с гидравлическим или с пневматическим замедлением. Временные интервалы здесь регулируются за счет увеличения или уменьшения подачи жидкости, воздуха в рабочий процесс.
Из плюсов можно также выделить то, что замедление не зависит от величины напряжения, частоты питания и изменения температуры. Также регулировка задержки не составляет особого труда.
- Электронное реле. Самый широко используемый вид реле времени, постепенно вытесняющий механические аналоги. Достоинствами такого вида считаются его небольшие размеры, вес, высокая точность работы, надежность и широкий выбор программ функционирования.
Между собой электронные реле подразделяют исходя из технологии отсчета срабатывания времени:
- Цифровые— напряжение оказывается на блок питания, из-за чего запускается задающий генератор, который затем подает импульсы на счетчик. Последний, в свою очередь, высчитывает эти импульсы до тех пор, пока они не сравнятся с нужным числом импульсов, которое задано в системе. Затем, на контролирующий реле выходной усилитель, посылается сигнал и счетчик перестает подсчитывать импульсы. Как только с блока питания снимется напряжение, реле вернется в свое изначальное состояние.
Такие РВ способны задерживать время на десятки часов при минимальной погрешности. Главный минус в высокой стоимости.
- Аналоговые — для задержки времени используется конденсатор, на который при замыкании контактов подается напряжение. Следит за этим напряжением специальное устройство, которое сравнивает его и ранее указанное. В случае их совпадения, устройство подает сигнал, чтобы реле переключилось. Максимальная выдержка здесь равна 10 секунд. Этот тип превосходит цифровое в том, что он не требует точного программирования и проще в использовании.
Схема и принцип работы электромагнитного реле
Рассмотрим, как устроен этот механизм изнутри.
- В катушке индуктивности находится подвижный стальной якорь.
- Когда на катушку подается напряжение, вокруг нее образуется электромагнитное поле, которое притягивает этот якорь к катушке.
- Частота и время подачи напряжения регулируется электрическим или механическим способом.
Структура прибора состоит из трех основных элементов:
- Воспринимающий или первичный — по сути это обмотка катушки.
Здесь импульс преобразуется в электромагнитную силу.
- Замедляющий или промежуточный — стальной якорь с возвратной пружиной и контактами. Здесь исполнительный механизм приводится в рабочее состояние.
- Исполнительный — в этой части контактной группой оказывается непосредственное воздействие на силовое оборудование.
Принцип работы
Теперь самое время по пунктам рассмотреть принцип работы данного устройства:
- Подвижный стальной якорь, который находится в катушке индуктивности, отжат специальной возвратной пружиной.
С внешней стороны якоря закреплена группа контактов, с другой тоже находятся контакты, находящиеся на определенном расстоянии от первой в статичном состоянии.
- Когда на катушку подается импульс, якорь, притягиваясь к ней, тем самым делает возможным соприкосновение также и контактов.
- Как только напряжение прекращается, пружина возвращает якорь на место и контакты снова размыкаются.
Советы по монтажу и настройке
- Перед тем как производить монтаж, заранее определитесь в какой сети вы будете работать (например, трехфазной или однофазной).
- Немаловажно также точно знать, какая нагрузка будет требовать включения или отключения.
- Уже после того, как вы будете точно знать, чего вы хотите, смело идите в магазин и покупайте соответствующий прибор.
- Перед тем как вы установите прибор и обесточите освещение, проверьте правильно ли работает устройство: подключите к нему шнур с вилкой и выставьте минимальное время для срабатывания. Напряжение на контактах выхода проверьте тестером.
- При установке к DIN-рейке плотно затягивайте болты, чтобы исключить нагревание прибора, его поломку или даже возникновение пожара.
- Помните, что максимальная влажность, при которой прибор способен работать исправно — не более 80%, и температура от 10-50 градусов.
Настройка
- Настройка таймера в приборе зависит от того, какой тип устройства перед нами. Если мы имеем дело с механическим реле, то его настройка состоит просто в переключении положений согласно надписи.
- В электронном же, есть меню, через которое и осуществляются все настройки.
Как правило ее начинают с установки дня недели и текущего времени, и затем уже программируют само устройство.
- Если это электромеханическое реле, то настраивают его с помощью специальных измерительных приборов — потенциометров.
Схема подключения
Как правило, подключение реле исключает использование сложных схем. Главное, как было сказано, знать какая нагрузка будет требоваться.
Рассмотрим самую простую схему:
- Строго вертикально и достаточно плотно закрепите устройство на стене.
- Снимите крышку и заземлите реле.
- Подключите электрическую сеть к контактам (см. рисунок)
- Контакты 1 и 2 — предназначены для подачи напряжения в 220 Вольт.
- Обозначение 4 — используется для подачи фазы от электрического щита и способна коммутироваться с 3 и 5.
- 4 и 5 — нормально открытые, тогда как 3 и 4 — нормально замкнутые.
Схемы подключения реле времени
Реле времени применяются повсеместно и могут быть, как простейшими механическими устройствами, так и электронными с программируемой системой управления.
Механические реле
Такие устройства могут исполнять роль таймеров, которые популярны среди домохозяек, для отсчета времени во время приготовления пищи. Они имеют заводную пружину и шкалу для установки интервала времени. Обычно до одного часа. По истечении заданного времени таймер оповестит об этом звуковым сигналом.
Более сложные устройства имеют одну или несколько групп контактов, которые включают или отключают различные бытовые устройства с заданным интервалом.
Такие реле времени устроены по принципу часов. Контакт, двигающийся по кругу, как часовая стрелка, по очереди замыкается на клеммы, коммутируя различные приборы. Привод бывает заводной, с пружиной, или с электрическим двигателем. Период коммутации может составлять от долей секунд до нескольких часов. Коммутаторы с высокой скоростью переключения в 70-е годы прошлого века использовались для создания световых эффектов на дискотеках и концертах.
Реле с электромагнитным замедлением
Такие реле применяются там, где необходимо обеспечить последовательность включения электрических приборов с небольшим промежутком до двух секунд. Принцип действия реле с электромагнитным замедлением основан на том, что помимо основной обмотки, которая создает магнитное поле для замыкания и размыкания контактов, поверх катушки наматывается один короткозамкнутый виток, которой снижает скорость изменения магнитного поля. Этим создается задержка коммутации. Реле работает только с постоянным напряжением.
Если необходимо увеличить время срабатывания, в схему включают дополнительное промежуточное реле, полупроводниковый вентиль или последовательный резистор.
- Включение «a». Обмотка реле КТ в нормальном состоянии находится под напряжением через замкнутый контакт К. При подаче напряжения на обмотку реле К, реле КТ обесточивается, и контакты КТ замыкается. Такое включение обеспечивает увеличение задержки вдвое за счет времени нарастания и снижения электромагнитного поля в двух реле.
- Включение «б». Резистор выполняет роль добавочной нагрузки, чтобы не создавать короткозамкнутую цепь при замыкании включателя S.
После замыкания контактаS, реле КТ обесточивается, создавая замкнутый контур через включатель S, что значительно снижает скорость спада магнитной напряженности в обмотке и увеличивает время до размыкания контактов КТ.
- Включение «с». Диод VDвыступает в качестве полупроводникового вентиля. При срабатывании включателя S, диод VDнаходится в запертом состоянии и ток в нем равен нулю. При разрыве цепи контактом S, в катушке реле наводится ЭДС, создающее напряжение в цепи с обратной полярностью. Диод открывается и образует короткозамкнутый виток, который снижает скорость снижения напряженности магнитного поля.
Аналоговые реле времени
В аналоговых реле используют эффект разряда времязадающей цепочки из конденсатора и резистора. Такие реле имеют период задержки коммутации от долей секунды до нескольких минут.
Схема обеспечивает задержку включения подключенного устройства к контактам реле.
При подаче напряжения на диод VD2,начинает заряжаться конденсатор C1.
По мере его заряда повышается напряжение на базе транзистора VT1. Как только уровень напряжения будет достаточным для открытия npn-перехода транзистора VT1, он откроется и откроет более мощный транзистор VT2. В результате замкнется цепь через катушку реле Rel1, что вызовет переключение его контактов. Время задержки в устройстве, построенном по такой схеме, зависит от емкости конденсатораC1 и величины сопротивления резистораR3. Рассчитать время срабатывания можно по формуле T(время) = С(емкость) х R(Сопротивление). Например, установив в схему конденсатор емкостью 1000 мкф и резистор 4,7 кОм, задержка будет равна 0,001 Ф х 4700 Ом = 4,7 минуты.
Если требуется создать устройство, которое будет периодически включать и отключать ведомый прибор, то можно воспользоваться схемой основанной на свойствах мультивибратора.
Конденсаторы, поочередно заряжаясь и разряжаясь, открывают и закрывают транзисторы V1 и V2. Последний управляет транзистором V3, через который, питается обмотка катушки реле. В результате, с периодичностью, определяемой RC-цепочками R2/C1 и R3/C2 контакты реле К1.1 будут коммутировать, подключаемое устройство.
Аналоговые устройства были достаточно популярны, но имели существенные недостатки:
- невысокая точность;
- зависимость времени срабатывания от температуры;
- потеря емкости конденсаторов со временем и сокращение времени коммутации.
Цифровые реле
Первые цифровые реле, появившиеся во второй половине прошлого века, основывались на генераторах импульсов, счетчиках и логических элементах.
Реле времени, построенные по таким схемам, являются точными устройствами со ступенчатой регулировкой времени срабатывания. Генератор тактовой частоты устройства,который стабилизируется кварцевым резонатором, построен на базе микросхемы К176ИЕ12. Счетчики К176ИЕ12 вырабатывают временные импульсы, которые через логические элементы 4И-НЕ формирует управляющее напряжение для реле Rel1, коммутирующее подключение приборов. Переключателями SA1, SA2 регулируется время срабатывания.
Программируемые цифровые реле
Появившиеся, в середине 90-х годов, pic-контроллеры (PeripheralInterfaceController), произвели революцию в схемотехнике. Одна микросхема с разными прошивками меняла свою функциональность и заменяла собой сразу целые блоки элементов.
В этой схеме роль основных элементов реле времени выполняет 12-битный контроллер PIC12F629. В зависимости от прошивки чипа, время задержки включения и выключения может варьироваться от долей секунды до нескольких часов. Интервал задается кнопкой B1 Taster. Четыре светодиода указывают на состояние таймера: активное, неактивное, режим программирования.
Но устройства, в которых используются pic-контроллеры имеют существенный недостаток. Чип является лишь полуфабрикатом. Для его правильной работы понадобится написать программу действий на языке MPLAB IDE и прошить ее в памяти микросхемы. Для этого придется приобрести программатор. Хотя в продаже есть уже готовые наборы с прошитыми контроллерами для самостоятельного изготовления реле времени.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
ПохожееСхема подключения реле времени — Ремонт220
Автор Фома Бахтин На чтение 3 мин. Просмотров 2.5k. Опубликовано Обновлено
Многие сталкивались с понятием «реле времени», однако неправильно его истолковывали, принимая за нечто из фантастических романов. На деле же все гораздо проще – реле времени присутствует повсеместно вокруг нас. Это прибор, предназначенный для управления потребителями в приборах промышленной и бытовой автоматики. Подобные реле могут быть использованы для управлением времени, например, различными механизмами в системах вентиляции, отопления и так далее. Реле бывают очень разными, а потому различаются и по способу их включения. В нашей статье мы рассмотрим схему подключения реле времени на 12 Вольт. По аналогии вы сможете подключить реле и с другим напряжением. Смотрите обозначение реле времени на схеме.
Простая схема реле времени 12 В
Такое реле можно собрать самостоятельно, так как для него не требуется никаких сложных и дорогих деталей. Работать оно будет по следующему принципу: время заряда должно определяться произведением сопротивления цепи заряда на емкость конденсатора. При этом конденсатор должен быть заряжен полностью.
Сначала к схеме нужно подключить источник питания. Затем к нему следует подсоединить конденсатор, который должен идти через два резистора и эмиттерный транзистор. Когда заряд откроется, на одном из резисторов напряжение упадет. Причина тому – эмиттерный ток, протекающий через него. Благодаря этому падению отопрется второй транзистор. Заработает реле. Своими контактами оно должно подать питание к светодиоду. Резистор светодиода, в свою очередь, будет ограничивать электрический ток.
С нарастанием заряда будет нарастать и напряжение на конденсаторе. Ток заряда, напротив, постепенно будет уменьшаться. Одновременно уменьшится и ток эмиттера, а вместе с ним напряжение на резисторе также упадет. Как результат, электрический ток заряда на конденсаторе окажется достаточно мал, что запрет конденсатор, а затем и транзистор. И как итог – опустится реле и погаснет светодиод. Если вы захотите запустить реле времени еще раз, для этого необходимо нажать кнопку на приборе, чтобы конденсатор полностью разрядился.
Необходимый промежуток времени, во время которого реле находится в сработавшем состоянии, очень легко установить: для этого следует подобрать емкость конденсатора и сопротивления резисторов. В том случае если реле задержки времени имеет еще несколько контактов, не теряйтесь, а используйте их для других потребителей, которые также можно будет включать и выключать. Только не забудьте замкнуть и вторую пару контактов – прибор можно очень легко испортить. И, самое главное, помните, что напряжение питания устройства, к которому вы решили подсоединить реле времени, должно быть равным рабочему напряжению реле. Напомним, что мы с вами рассматривали принципиальную схему простого реле времени на 12 Вольт. Соответственно, и у устройства напряжение должно быть 12 Вольт.
Теперь вы можете своими руками собрать подобное устройство, если вам оно необходимо.
Электронный таймер Feron ТМ41 на DIN рейку
Реле времени THC15A. Обзор и схема подключения.
Как подключить реле времени ST3P
Схема реле времени фотопечати » Паятель.Ру
Реле времени рассчитано на установку выдержки в пределах 1…999 секунд. Индикация цифровая в секундах. При помощи кнопок грубо и точно устанавливается необходимый временной период (число секунд на цифровом индикаторе), затем реле запускается при помощи кнопки «пуск» и начинается обратный отсчет (индикатор, при этом показывает сколько секунд осталось до окончания установленной выдержки). Как только на индикаторе устанавливается «000» включается электромагнитное реле и либо включает нагрузку в электросеть, либо выключает её (в зависимости от того, в какой из двух штепселей включена вилка нагрузки).
Кроме кнопок «пуск», «грубо», «точно» и «пуск» реле имеет еще кнопку : «+» — эта кнопка изменяет направление счета и может использоваться при установке временного интервала, кнопку «0» — эта кнопка сбрасывает показания и исполнительный триггер в нуль, и два тумблера «гаш» — гашение индикаторов и «вкл» — выключатель питания всего реле.
Принцип работы реле
Работают с реле так: после включения питания тумблером «вкл» устанавливают счетчики реле в нуль нажатием на кнопку «0», при этом на индикаторе будет высвечиваться «000» (индикатор должен быть включен тумблером «гаш»). Затем нужно нажатием на кнопки «грубо» и «точно» (но не одновременным нажатием) установить выдержку — число секунд. При нажатиях на «грубо» или «точно» показания счетчика будут убывать.
Если в процессе установки выдержки Вы перескочили через нужное число секунд, можно «вернутся» нажав кнопку «+». Удерживая «+» в нажатом положении и манипулируя кнопками «грубо» и «точно». При этом показания индикатора будут расти. Затем нужно включить вилку нагрузки (например фотоувеличителя) в штепсель «выкл» (если нужно, чтобы после отработки выдержки нагрузка выключилась) или в штепсель «вкл» (если нужно, чтобы после выдержки нагрузка включилась), и нажать на кнопку «пуск».
Принципиальная схема реле показана на рисунке. Она построена на основе десятичных реверсивных счетчиков К561ИЕ14. Три счетчика D4-D6 включены последовательно и образуют трехразрядный десятичный счетчик. В рабочем режиме на выводы 10 D4-D6 поступает логическая единица через резистор R7 и счетчики работают в реверсивном режиме. То есть, когда на их входы С поступают импульсы они считают на вычитание и их числовые состояния на выходах уменьшаются.
Микросхемы К561ИЕ14 при построении многоразрядного счетчика включаются немного необычно, счетные входы С (выводы 15) всех трех разрядов соединяются вместе и на них входные импульсы поступают одновременно, но работает в счетном режиме только тот счетчик, на вход переноса Р (вывод 5) которого поступает нуль. То есть младший разряд D4 работает всегда, поскольку на его вход Р всегда поступает ноль. Вход Р среднего разряда D5 (десятки секунд) соединен с выходом переноса Ро D4.
На этом выходе у счетчиков К561ИЕ14 всегда единица, и только в момент перехода через «0000» появляется короткий отрицательный импульс. Этот импульс поступает на вход Р D5 одновременно с очередным импульсом на его вход С и состояние счетчика D5 меняется каждый раз, когда состояние D4 будет «0000». Таким образом реализуется последовательный счет. Таким же образом взаимодействуют и счетчики D6 (сотни секунд) и D5. Как только последний счетчик D6 установится в нуль (в этот момент, при реверсивном счете, все остальные счетчики также установятся в нули) на его выходе Ро появится отрицательный импульс, который, в данной схеме используется для активизации исполнительного устройства и остановки счета.
Генератор секундных импульсов выполнен на микросхеме D2 — К176ИЕ12. Используется только часть микросхемы, содержащая кварцевый генератор и счетчик-делитель на 32768, на выходе которого следуют импульсы с секундным периодом. При подаче логической единицы на вход R (вывод 5) работа делителя прекращается и на выводе 4 устанавливается логический нуль. При подаче на R нуля генерация секундных импульсов возобновляется. Во время отсутствия счетных импульсов на входах С счетчиков должны быть единицы, поэтому на выходе D2 включен дополнительный инвертор на D3.4.
Для предварительной установки счетчиков D4-D6 служат два мультивибратора — на элементах D1.1 и D1.2, вырабатывающий импульсы частотой около 500 Гц, и на элементах D1.3 и D1.4, вырабатывающий импульсы частотой около 2 Гц. Запускаются мультивибраторы кнопками «грубо» и «точно», соответственно. Импульсы от этих мультивибраторов поступают на счетные входы счетчиков D4-D6 через элемент «монтажное ИЛИ», построенный на резисторе R6 и диодах VD1-VD3.
При помощи мультивибратора на D1.1 и D1.2 производится предварительная грубая установка счетчиков, в основном среднего и старшего разрядов. Нажатием на «точно» запускается мультивибратор на D1.3 и D1.4 и дает возможность точно установить нужное время. При этом можно менять направление счета счетчиков во время предустановки. Для этого нужно нажать кнопку «+» и удерживать её в таком положении все время пока требуется положительный счет.
Исполнительный триггер выполнен на элементах D3.1-D3.3. При установке счетчиков в нуль (нажатие на «0») триггер на D3.1 и D3.2 устанавливается в единичное состояние и блокирует генератор секундных импульсов на микросхеме D2. После установки счетчиков на нужное время нажимают кнопку «пуск» и этот триггер переходит в нулевое состояние, запуская генератор секундных импульсов D2.
Как только выдержка времени отработана на выходе Ро D6 появляется отрицательный импульс, который инвертируется элементом D3.3 и через диод VD5 поступает на вход триггера. Триггер устанавливается в единичное состояние и блокирует D2. Одновременного единица с его выхода поступает на вход транзисторного ключа на VT1 и VT2, в коллекторной цепи которого включено реле Р1, контакты которого управляют нагрузкой.
Двоичные коды с выходов счетчиков D4-D6 поступают на дешифраторы D7-D9, которые их преобразуют в сигналы управления семисегментными цифровыми светодиодными индикаторами Н1-НЗ. Отключение индикации (гашение) производится подачей логической единицы на входы «К» D7-D9 тумблером «гаш» (в разомкнутом состоянии этого тумблера на входы «К» подается нуль через R12).
Источник питания выполнен на трансформаторе Т1, постоянное напряжение на конденсаторе С29 должно быть в пределах 15-20В. Это напряжение непосредственно используется для питания электромагнитного реле Р1, коммутирующего нагрузки. Микросхемы и индикаторы питаются напряжением 8-10В, получаемым при помощи параметрического стабилизатора на транзисторе VT3.
пусковые реле времени
PCG-417«Звезда- треугольник». Напряжение 230 В; 50 Гц, 24 В AC/DC, Время пуска 1-1000 сек. Для переключения обмоток трёхфазных двигателей большой мощности со схемы «звезда» в «треугольник» при пуске.
Назначение
Электродвигатель при запуске потребляет ток, многократно превышающий номинальный. Поэтому пуск электродвигателя большой мощности при слабой питающей сети сопровождается падением напряжения в фазах, что приводит к сбоям в работе другого оборудования. Реле времени программируемое PCG-417 управляет контакторами, переключающими обмотки электродвигателя со схемы «ЗВЕЗДА» при пуске на схему «ТРЕУГОЛЬНИК» в рабочем режиме и значительно снижает пусковой ток.
Принцип работы:
Реле времени программируемое PCG-417 имеет два релейных выхода. Каждый управляет отдельным контактором. В момент пуска его первый выход включает контактор Sзвезда {контакты 7-9 замыкаются) и обмотки электродвигателя подключаются по схеме «ЗВЕЗДА». Поэтому напряжение на них в 1,73 раза меньше номинального, что снижает пусковой ток. По истечении времени t1 выхода двигателя в рабочий режим контактор Sзвезда отключается (контакты 7-9 размыкаются), наступает пауза длительностью t2, затем включается контактор Sтреуг (контакты 10-12 замыкаются), включающий обмотки по схеме «ТРЕУГОЛЬНИК».
Напряжение питания: 230 В; 50 Гц, 24 В AC/DC
Максимальный ток катушки контактора: 2 А
Контакт: 2NO/NC
Время пуска в режиме звезда: 1-1000 сек.
Время переключения: 75 мс или 150 мс
Диапазон рабочих температур: от -25°С до +50°С
Потребляемая мощность: 0.6 Вт
Габариты (ШхВхГ): 18х90х65 мм
RV-05
Для автоматического повторного включения в работу пускателей и контакторов. Напряжение питания 80-420 В AC. Коммутируемый ток 16 А.
Назначение
Для автоматического повторного включения в работу пускателей и контакторов при отключении из работы после кратковременного (на время работы АВР или АПВ) исчезновения или просадки напряжения питания 0,4 кВ.
Область применения
Область применения охватывает все производственные циклы в промышленности и быту, где требуется автоматизировать процессы управления оборудованием, связанным с временными задержками.
— Автоматический перезапуск оборудования при кратковременном отключении или падении напряжения питания при срабатывании автоматики АВР, АПВ, включение нагрузки большой мощности и т.п.;
— Защита сетей питания от больших пусковых токов последовательным подключением нагрузок через установленные выдержки времени.
Принцип работы
При восстановлении питания за промежуток времени меньше заданного («Т3»), если на момент отключения пускатель был включен (на контрольном контакте 6 присутствовало напряжение питания), устройство ожидает появления напряжения на контакте 4 затем начинается отсчет времени восстановления питания («ТАПВ»), по истечении которого производится повторное включение пускателя (кратковременно замыкаются контакты 11–12 на 0,5с). Контакт 4 предназначен для последовательного подключения устройств (каскадного включения нагрузок). Отсчет времени повторного включения осуществляется после подачи напряжения на данный контакт. Если во время отсчета времени АПВ («ТАПВ») сигнал на зажиме исчезнет — повторное включение будет отменено. Повторный пуск не производится если: — перед отключением напряжения питания пускатель был отключен вручную или устройствами защиты; — напряжение питания ниже 0,8Uн; — отключение напряжения питания не привело к отключению пускателя; — отсутствует напряжение на контакте 4. При отключении пускателя кнопкой «СТОП» реле формирует контрольный импульс защиты от дребезга контактов (контакты 11–12 замыкаются на 0,2с).
Особенности
Три номинальных напряжения питания.
Номинальное напряжение питания: 110, 230, 400 В AC
Диапазон питающих напряжений: 80-420 В АС
Номинальный коммутируемый ток:
— АС-1: 16 А
— AC-15: 3 А
Диапазон времени контроля провала напряжения: 0,5-5 с
Диапазон времени повторного включения: 1-40 с
Длительность импульса включения: 0,5 с
Длительность контрольного импульса: 0,2 с
Время выхода на рабочий режим (после отключения устройства на время >T3), не более: 3 с
Индикация: 2 светодиода
Потребляемая мощность, не более: 1,5 Вт
Диапазон рабочих температур: от -25°С до +50°С
Коммутационная износостойкость: 100000 циклов
Степень загрязнения среды: 2
Категория перенапряжения: III
Габариты (ШхВхГ): 18х90х65 мм
Пусковое реле РВП-3
Плавный пуск электродвигателей
Уменьшение пусковых токов электродвигателей
Регулируемое время разгона
Переключение со «ЗВЕЗДЫ» на «ТРЕУГОЛЬНИК» с задержкой 40 или 80мс
5 диапазонов установки времени срабатывания
Индикация рабочего состояния реле «ЗВЕЗДА» и «ТРЕУГОЛЬНИК»
Корпус шириной 18мм
НАЗНАЧЕНИЕ РЕЛЕ
Реле времени пусковое РВП-3 предназначено для обеспечения плавного пуска мощных трёхфазных асинхронных электродвигателей, а также для уменьшения пусковых токов при включении двигателей. Уменьшение пусковых токов позволяет использовать в цепи пуска двигателя автоматы защиты на меньший ток срабатывания, что повышает надёжность защиты двигателя при перегрузках или аварии электропитания.
Реле управляет питанием обмоток пускателей обеспечивающих подключение электродвигателя по схеме «ЗВЕЗДА» или «ТРЕУГОЛЬНИК» в процессе разгона и рабочего режима электродвигателя соответственно.
Для управления электродвигателем используется два пускателя и реле. Пускатель для работы по схеме «ЗВЕЗДА» подключается на контакты 15 (16-18), пускатель для работы по схеме «ТРЕУГОЛЬНИК» — на контакты 25 (26-28). При подаче напряжения питания реле включается (загорается индикатор «U»), замыкаются контакты 15-18, начинается отсчёт времени разгона (Тр). По окончании времени разгона контакты 15-18 реле размыкаются, через время паузы (tп) замыкаются контакты реле 25-28.
Реле имеет 5 диапазонов выдержки времени. Временной диапазон выбирается с помощью переключателя «множитель». Время разгона (Тр) определяется путём умножения числа установленного потенциометром «Тр» на множитель выбранного диапазона. Одновременно с этим задаётся фиксированное время переключения (tп) 40мс или 80мс в зависимости от зоны установки указателя переключателя «множитель». Реле выпускается в нескольких исполнениях по напряжению питания. Напряжение питания АС подаётся на клеммы «А1» и «А2». Для исполнения на напряжение питания DC «+Uпит» подаётся на клемму «А1», а «-Uпит» на клемму «А2».
Параметр | Ед.изм. | РВП-3 AC230В | РВП-3 AC110В | РВП-3 AC400В | РВП-3 ACDC24В |
Напряжение питания | В | АС230 ± 10% | АС110 ± 10% | АС400 ± 10% | АСDC24 ± 10% |
Диапазон выдержки времени |
| 0,1-1с; 1-10c; 0,1-1мин; 1-10мин; 0,1-1ч | |||
Погрешность установки выдержки времени, не более | % | ±5 | |||
Погрешность отсчета выдержки времени, не более | % | 2 | |||
Время готовности, не более | с | 0,15 | |||
Время повторной готовности, не более | с | 0,1 | |||
Максимальное коммутируемое напряжение | В | 400 (AC1/5А) | |||
Максимальный коммутируемый ток АС250В 50 Гц (АС1)/DC30B (DC1) | А | 16 | |||
Максимальная коммутируемая мощность АС250В 50Гц (АС1)/DC30В (DC1) | ВА/Вт | 4000/480 | |||
Максимальное напряжение между цепями и контактами реле | В | AC2000 (50Гц — 1мин) | |||
Потребляемая мощность | Вт | 2 | |||
Механическая износостойкость, не менее | циклов | 10х106 | |||
Электрическая износостойкость, не менее | циклов | 100000 | |||
Количество и тип контактов |
| 2 переключающие группы | |||
Диапазон рабочих температур | 0С | -25…+55 |
Пусковое реле. При подаче питания включается реле «звезда» на время разгона tр, после паузы tп — включается реле «треугольник» до снятия питания. |
Реле времени пусковое РВП-4
Циклический пуск дизельных и бензиновых генераторов
Регулируемое время пуска и регулируемое время паузы между пусками
Количество пусковых циклов — 10
Индикатор напряжения питания, индикаторы состояния выходов
2 релейных выхода 16А/250В
Корпус шириной 18мм
НАЗНАЧЕНИЕ РЕЛЕ
Пусковое реле времени РВП-4 предназначено для обеспечения пуска двигателя дизель (бензо) генератора и выдачи команды в случае сбоя запуска. Реле имеет два независимых релейных выхода К1 и К2.
РАБОТА РЕЛЕ
При подаче напряжения питания включается реле К1, контакты 15-18 замыкаются, загорается жёлтый индикатор «К1», начинается отсчёт времени «tи». По окончании времени «tи» контакты 15-18 реле размыкаются, жёлтый индикатор «К1» гаснет, начинается отсчёт времени паузы «tп». По завершении времени паузы цикл повторяется. По окончании десятого отсчёта «tи» происходит включение реле К2, загорается красный индикатор «К2», контакты 25-28 замыкаются и остаются замкнутыми до снятия питания. При этом отсчёт циклов для реле К1 прекращается, контакты 15-16 замкнуты, 15-18 разомкнуты. Напряжение питания DC12В — подаётся на клеммы «+А1» и «А2».
Параметр | Ед.изм. | РВП-4 DC12В | РВП-4 AC230В |
Напряжение питания | В | DC9-15 | AC170-240 |
Диапазон выдержки времени команды пуск (tи) | с | 1 -10 | |
Диапазон выдержки времени команды пауза (tп) | с | 5 –50 | |
Погрешность установки выдержки времени | % | ±5 | |
Погрешность отсчета выдержки времени, не более | % | 2 | |
Время готовности, не более | с | 0,15 | |
Время повторной готовности, не более | с | 0,1 | |
Максимальный коммутируемый ток: АС250В 50Гц (АС1)/DC30В (DC1) | А | 16 | |
Максимальное коммутируемое напряжение | В | 400 (AC1/5А) | |
Максимальная коммутируемая мощность: АС250В 50Гц (АС1)/DC30В (DC1) | ВА/Вт | 4000/480 | |
Максимальное напряжение между цепями питания и контактами реле | В | AC2000 (50Гц — 1мин) | |
Потребляемая мощность, не более | ВА | 2 | |
Механическая износостойкость, не менее | циклов | 10х106 | |
Электрическая износостойкость, не менее | циклов | 100000 | |
Количество и тип контактов К1 |
| 1 переключающая группа | |
Количество и тип контактов К2 |
| 1 переключающая группа | |
Диапазон рабочих температур | 0C | -25 … +55 |
ДИАГРАММЫ РАБОТЫ РЕЛЕ
Реле времени: устройство и принцип работы
Чтобы обеспечить правильную работу схем автоматического управления, часто бывает необходимо осуществить срабатывание отдельных аппаратов в определенной последовательности с соблюдением нужных интервалов времени. Для этого предназначено реле времени.
Схема реле времени.
Реле времени работают либо по принципу механического замедления и изготовляются с применением маятников или электродвигателей, либо по принципу электромагнитного замедления.
Маятниковые реле дают выдержку времени в пределах 1-15 сек, двигательные – до 24 ч, реле с электромагнитным замедлением – до 5 сек. Реле с электромагнитным замедлением изготовляют только для работы в цепях управления постоянного тока, это реле работает по принципу увеличения времени спадания магнитного потока в магнитной системе при отключении реле.
Рассмотрим устройство и схему включения электромагнитного реле времени типа РЭ-500, которое находит широкое применение при автоматизации электропривода. Это реле (рис. 1) состоит из катушки 1, неподвижного магнитопровода2, якоря 3, регулировочного винта 5, траверсы6 с блок-контактами и оттяжной пружиной 4.
В месте соприкосновения сердечника с якорем помещена немагнитная прокладка, она служит для предотвращения возможного прилипания якоря к сердечнику, при отсутствии прокладки отбрасывающая пружина может не преодолеть удерживающего усилия остаточного магнетизма сердечника, и реле не отключится.
Рисунок 1. Электромагнитное реле времени постоянного тока РЭ-500.
Якорь втягивается под действием потока, создаваемого катушкой 1, насаженной на сердечник. На якоре укреплена траверса 6 с подвижными контактами мостикового типа, которые образуют замыкающие контакты реле.
Для улучшения проводимости контакты изготовляются с серебряными накладками.
Время от момента подачи импульса на катушку реле до срабатывания контактов называется выдержкой времени реле. Регулирование выдержки времени производится в пределах каждого типа реле изменением толщины немагнитной прокладки и натяжением оттяжной пружины при помощи регулировочного винта 5. Чем тоньше прокладка и меньше натяжение пружины, тем больше выдержка времени реле. Кроме того, выдержка времени на реле времени РЭ-511, РЭ-513 и РЭ-515 может быть получена следующими способами: 1) закорачиванием катушки; 2) отключением катушки реле.
Закорачивание катушки
Рисунок 2. Схема получения выдержки времени у электромагнитных реле времени с различными вариантами включения втягивающей катушки.
При включении реле РВ якорь притягивается очень быстро (время заряда реле 0,8 сек). При отключении создается выдержка времени, при этом отключение реле может осуществляться как путем разрыва цепи катушки, так и путем ее закорачивания (рис. 2а). Выдержка времени при закорачивании катушки получается по следующей причине. Для отпадения якоря (и, следовательно, срабатывания контактов реле) необходимо, чтобы поток в магнитной системе исчез или уменьшился до определенной величины, что и происходит при прекращении питания катушки реле, т. е. при ее отключении.
Если же шунтировать катушку реле (например, параллельным включением каких-либо контактов другого промежуточного реле РП), то вследствие самоиндукции в контуре, образуемом катушкой реле и контактом РП, поддерживается некоторое время ток. Следовательно, магнитный поток и сила притяжения якоря к сердечнику тоже будут затухать постепенно. Сопротивление R в цепи катушки должно быть предусмотрено для предотвращения короткого замыкания (в том случае, если в этой цепи нет других потребителей).
Отключение катушки реле
При отключении катушки реле можно также достичь замедленного спадания магнитного потока в магнитопроводе (рис. 2 б). Для этого применяются различные демпферы. Демпфером называется толстая гильза, выполненная из меди или алюминия, которая насаживается на общий сердечник со втягивающей катушкой. Эта гильза создает вторичный контур. При исчезновении основного магнитного потока при размыкании РП в гильзе индуктируется ток, который по правилу Ленца стремится поддержать основной поток. Чем больше масса демпфера, тем больше выдержка времени реле. Роль демпфера одновременно выполняет также и алюминиевое основание реле. Различные диапазоны выдержки реле (0,3—5,5 сек) достигаются за счет применения дополнительных съемных демпферов.
Следует иметь в виду, что реле типа РЭ-500 предназначено для постоянного тока, и в цепь управления двигателями переменного тока оно включается через выпрямители.
Основы реле задержки: схема реле и приложения
Введение
Реле времени относится к типу реле, выходная цепь которого должна произвести очевидное изменение (или контактное действие) после добавления (или удаления) входного сигнала действия в заданное и точное время. Это электрический компонент, используемый в цепи с более низким напряжением или меньшим током для включения или выключения цепи с более высоким напряжением и большим током.
С развитием электронной техники электронные реле времени стали основным продуктом в реле времени. Электронные интеллектуальные реле времени с цифровым дисплеем, использующие технологию крупномасштабных интегральных схем, имеют множество рабочих режимов, которые могут не только обеспечивать длительное время задержки, но также иметь высокую точность задержки времени, небольшой размер, удобную настройку и длительный срок службы, что упрощает систему управления и надежнее. Реле времени также имеет функцию автоматического контроля.Реле времени и другое оборудование вместе могут сформировать программный космический маршрут для реализации автоматической работы оборудования.
Основные сведения о реле времени
Каталог
Ⅰ Основы работы с реле времени
1.1 Что такое реле с задержкой времени?
Реле времени — очень важный компонент в системе электрического управления. Во многих системах управления используйте реле времени для управления задержкой. Реле времени — это электрическое устройство с автоматическим управлением, которое использует принцип электромагнитного или механического действия для задержки замыкания или размыкания контактов.Его особенностью является задержка от момента получения сигнала катушкой притяжения до действия контакта. Реле времени обычно используется для управления процессом запуска двигателя с функцией времени.
Как упоминалось выше, основная функция временной задержки — это исполнительное устройство в простом программном управлении. Когда он получает сигнал запуска, он начинает отсчет времени. По окончании отсчета времени его рабочий контакт размыкается или замыкается, что способствует последующей работе схемы.Вообще говоря, характеристики задержки реле времени можно регулировать в пределах диапазона конструкции, чтобы облегчить регулировку времени задержки. Кроме того, реле времени само по себе может не выполнить замыкание. После закрытия на какое-то время он снова откроется. Это цикл закрытия и открытия с задержкой времени. Однако настройка определенного количества реле времени и промежуточных реле может сделать это.
1.2 Принцип работы реле задержки времени
Реле времени широко используется в дистанционном управлении, телекоммуникациях, автоматическом управлении и другом электронном оборудовании и является одним из наиболее важных компонентов управления.Когда катушка находится под напряжением, якорь и поддон притягиваются сердечником и мгновенно опускаются вниз, замыкая или размыкая рабочий контакт. Однако шток поршня и рычаг не могут упасть с якорем одновременно, потому что верхний конец штока поршня соединен с резиновой пленкой в воздушной камере.
Когда шток поршня начинает двигаться вниз под действием отпущенной пружины, резиновая пленка вогнута вниз. Воздух в воздушной камере становится более разреженным, в результате чего шток поршня амортизируется и медленно опускается.По прошествии определенного периода времени шток поршня опускается в определенное положение, а затем действие задерживающего контакта проталкивается через рычаг, заставляя подвижные контакты открываться и закрываться. Время от момента подачи питания на катушку до завершения срабатывания контакта задержки — это время задержки реле. Продолжительность времени задержки можно изменить, регулируя размер отверстия для впуска воздуха в воздушную камеру с помощью винта. После обесточивания всасывающей катушки реле использует пружину для восстановления.И воздух быстро вытесняется через воздуховыпускное отверстие.
1.3 Структура реле времени
Рисунок 1. Реле времени демпфирования воздуха
1 катушка | 5 Прижимная пластина | 9 Слабая пружина | 13 Регулировочный винт |
2 железных сердечника | 6 Шток поршня | 10 Резиновая пленка | 14 Воздухозаборник |
3 Арматура | 7 Рычаг | 11 Стенка воздушной камеры | 15 Микропереключатель |
4 Реакционная пружина | 8 Пружина | 12 Поршень | 16 Микропереключатель |
1.4 Параметры реле времени
Технические параметры включают номинальное напряжение, рабочий ток контакта, тип и количество контактов, время задержки, точность, температуру окружающей среды, механический и электрический срок службы и т. Д. Теперь возьмем воздушное реле времени серии SJ23 в качестве примера. , его технические параметры следующие:
1) Номинальная управляющая способность: AC300VA, DC60W (блок контактов с задержкой 30 Вт).
2) Номинальный уровень напряжения: AC380V, 220V; DC220V, 110V.
3) Номинальное напряжение катушки: 110 В переменного тока, 220 В и 380 В.
4) Максимальный рабочий ток контакта: 0,79 А при 380 В переменного тока, 0,27 А (мгновенно) и 0,14 А (задержка) при 220 В постоянного тока.
5) Ошибка повторения задержки: ≤9%.
6) Напряжение втягивания в горячем состоянии: не более 85% от номинального напряжения реле. Когда напряжение падает с номинального значения до 10% номинального значения в холодном состоянии, его можно надежно снять. И он может надежно сработать после достижения 110% номинального напряжения.
7) Механический срок службы составляет не менее 1 миллиона раз, а электрический ресурс — 1 миллион раз (срок службы по постоянному току узла контактов задержки составляет 500 000 раз).
1.5 Четыре контакта реле времени
Рис. 2. Обозначения реле времени
NOTC (нормально открытый, закрытый по времени): когда катушка не находится под напряжением, контакт NOTC нормально разомкнут. Он замыкается при подаче питания на катушку реле, но только в течение определенного времени после того, как катушка находится под постоянным напряжением. Направление движения контакта (закрытый или открытый) такое же, как и у стандартного нормально открытого контакта. Поскольку задержка происходит в том направлении, в котором катушка находится под напряжением, этот тип контакта обычно разомкнут и с задержкой включения. NOTO (нормально разомкнутый, разомкнутый по времени): в отличие от контакта NOTC , синхронизированное действие происходит, когда катушка обесточена. Поскольку задержка происходит, когда катушка обесточена, этот тип контакта нормально разомкнут и с задержкой отключения.
NCTO (нормально замкнутый, разомкнутый по времени): когда на катушку не подается питание, контакт NCTO нормально замкнут. При подаче питания на катушку реле контакт размыкается, но только в течение определенного времени после того, как катушка находится под постоянным напряжением.Направление движения контакта (замкнутый или разомкнутый) такое же, как у стандартного нормально замкнутого контакта, но есть задержка в направлении открытия. NCTC (нормально закрытый, закрытый по времени): Контакт NCTC аналогичен контакту NCTO , потому что, когда катушка нормально замкнута в обесточенном состоянии и размыкается при подаче питания на катушку.
Ⅱ Значение задержки в цепи реле
Установите время задержки реле. Вообще говоря, характеристика задержки реле времени может быть отрегулирована в пределах диапазона конструкции, чтобы облегчить регулировку его времени задержки в цепи.
Цепь реле задержки времени (отключение питания)
Если вы используете реле задержки включения, задержка начнется сразу после получения входного сигнала. По окончании задержки исполнительная часть выдаст сигнал на схему управления. Когда входной сигнал исчезнет, реле немедленно вернется в состояние предварительного действия. Это противоположно реле задержки выключения. Когда входной сигнал получен, исполнительная часть немедленно получает выходной сигнал. После исчезновения входного сигнала реле требуется определенное время, чтобы вернуться в состояние до действия.
Рисунок 3. Структура реле времени
Ⅲ Классификация реле времени
3.1 В соответствии с принципом работы
В соответствии с различными принципами работы, реле времени можно разделить на реле времени с воздушным демпфированием, электрические реле времени, электромагнитные реле времени, электронные реле времени пр.
(1) Реле времени демпфирования воздуха
Тип получен за счет использования принципа демпфирования при прохождении воздуха через небольшое отверстие.Его конструкция состоит из трех частей: электромагнитной системы, механизма задержки и контакта. Электромагнитный механизм представляет собой двухпортовый механизм прямого действия, система контактов представляет собой микровыключатель, а в механизме задержки используется амортизатор подушки безопасности.
(2) Электронное реле времени
Используйте принцип, согласно которому напряжение конденсатора в RC-цепи не может скачкообразно изменяться и может изменяться только постепенно по экспоненциальному закону, то есть задержка достигается за счет характеристик электрического демпфирования.
Характеристики: Широкий диапазон задержки, высокая точность (обычно около 5%), небольшой размер, ударопрочность и простая регулировка.
(3) Электрическое реле времени
Используйте миниатюрный синхронный двигатель для привода редуктора, чтобы получить задержку по времени.
Особенности: Диапазон задержки широкий, до 72 часов, а точность задержки может достигать 1%. В то же время на значение задержки не влияют колебания напряжения и температура окружающей среды.
Его диапазон задержки и точность не имеют себе равных среди других реле времени.Его недостатками являются сложная конструкция, большие размеры, короткий срок службы, высокая цена, а точность зависит от частоты сети.
(4) Реле времени электромагнитное
Используйте принцип медленного ослабления магнитного потока после отключения электромагнитной катушки, чтобы задержать отпускание якоря магнитной системы, чтобы получить задерживающее действие контактов. Он отличается большой контактной емкостью, поэтому регулирующая способность велика. Однако диапазон времени задержки небольшой, а точность немного хуже.Таким образом, он в основном используется для управления цепями постоянного тока.
3.2 По режимам задержки
На основании этого реле времени можно разделить на два типа: тип задержки включения и тип задержки выключения.
(1) Реле времени с задержкой включения начинает задерживать сразу после получения входного сигнала. После завершения задержки ее исполнительная часть выдает сигнал для манипулирования схемой управления. Когда входной сигнал пропадает, реле сразу возвращается в состояние до действия.
(2) Реле времени с задержкой выключения работает как раз наоборот. Когда входной сигнал получен, исполнительная часть немедленно получает выходной сигнал. После исчезновения входного сигнала реле требуется определенная задержка для восстановления состояния до действия.
Ⅳ Как подключить реле времени?
Реле времени — очень важный компонент в системе электрического управления. Существуют типы задержки включения и типы задержки отключения питания.В зависимости от типа действия различают электронный тип, электрический тип и т. Д. Между ними электронный тип использует принцип заряда и разряда конденсатора в сочетании с электронными компонентами для достижения действия задержки. Есть много электрических стилей с использованием подушек безопасности и пружин.
Рисунок 4. Схема электрических соединений реле времени
Подключение реле времени:
1) Управляющая проводка: считайте это реле постоянного тока.
2) Управление работой: Хотя напряжение управления подключено, то, играет ли оно роль управления, определяется таймером на панели.
3) Понимание функций: это однополюсный двухпозиционный переключатель с активной точкой, как и активный рычаг обычного рубильника.
4) Подключение нагрузки: Подключите нейтральный провод источника питания или отрицательную клемму.
5) Принцип работы: Когда таймер недействителен, он эквивалентен нормальному свету в выключенном состоянии. Во время отсчета сработает реле, и электрические приборы будут активированы для работы, что эквивалентно нормальному свету во включенном состоянии.
В качестве примера возьмем реле времени задержки включения:
Рисунок 5. Подключение контактов реле задержки
Ⅴ Приложения реле времени
In Flash Control
- Двухкратные реле взаимодействуют друг с другом, чтобы обеспечить постоянную частоту импульсов включения / выключения контактов, посылая прерывистое питание на свет.
в блоке управления безопасной продувкой печи
- Прежде чем печь для сжигания можно будет безопасно зажечь, вентилятор должен работать в течение определенного периода времени, чтобы очистить весь горючий или взрывоопасный пар в камере печи.Реле времени обеспечивает необходимые временные части для работы управления печью.
В электрическом управлении задержкой плавного пуска
- Нет необходимости запускать большой электродвигатель, переключая полную мощность из полностью остановленного состояния, и можно плавно снизить напряжение при запуске с меньшим пусковым током.
Задержка последовательности движения конвейерной ленты
- Когда для транспортировки материалов установлено несколько конвейерных лент, конвейерные ленты должны запускаться в обратном порядке (последняя — первая, первая — последняя), чтобы предотвратить накопление материалов на движущемся конвейере, который может останавливаться или двигаться. медленно.
Ⅵ Выбор реле времени
Выбор реле времени в основном обусловлен режимом задержки и согласованием параметров. При выборе следует учитывать следующие аспекты.
(1) Выбор режима задержки
Его следует выбирать в соответствии с требованиями схемы управления. Время сброса после действия больше, чем собственное время действия, чтобы избежать неправильной работы или даже отсутствия задержки. Это особенно важно в случаях повторяющихся цепей задержки и частых операций.
(2) Выбор типа
В случаях, когда точность задержки невысока, всегда используются более дешевые электромагнитные реле времени или реле времени с воздушным демпфированием. Напротив, в случаях, когда точность задержки высока, можно использовать электронные реле времени.
(3) Выбор напряжения катушки
В зависимости от напряжения цепи управления выбирается напряжение, при котором реле притягивает катушку.
(4) Выбор параметров источника питания
В случаях, когда напряжение источника питания сильно колеблется, лучше использовать воздушное демпфирование или электрические реле времени, чем реле транзисторного типа.А в тех случаях, когда частота сети колеблется, не следует использовать электрические реле времени. Кроме того, при сильных перепадах температуры нельзя использовать воздушно-демпфирующий тип.
При выборе реле времени обратите внимание на тип тока и уровень напряжения его катушки (или источника питания), а также другие факторы, такие как режим задержки, форма контакта, точность задержки и метод установки в соответствии с требованиями управления.
Ⅶ Инструкции по эксплуатации реле таймера
7.1 Общие идеи
1) Держите реле времени в чистоте, иначе погрешность возрастет.
2) Перед использованием проверьте, соответствуют ли напряжение и частота источника питания напряжению и частоте реле времени.
3) Выберите время управления реле времени в соответствии с требованиями пользователя. Независимо от типа реле времени, пока время отсчета времени равно установленному времени, его выходные контакты будут действовать для достижения цели схемы управления временем.
4) Для продуктов постоянного тока обратите внимание на подключение согласно принципиальной схеме и обратите внимание на полярность источника питания.
5) После того, как реле времени выйдет из рабочего состояния, его следует немедленно сбросить для следующего использования. Если интервал повторного использования меньше установленного времени, цепь управления будет ненормальной. Более того, тип задержки включения автоматически сбрасывается после выключения; и тип задержки выключения автоматически сбрасывается после включения.
6) Старайтесь не использовать его в местах с явной вибрацией, прямым солнечным светом, влажностью и контактом с почвой.
7.2 Две точки внимания при использовании реле времени
1) Начальная точка отсчета времени
С одной стороны, при выборе точки синхронизации реле времени задержки включения, вы должны выбрать подачу питания на реле времени, когда сигнал синхронизации отправляется схемой управления, которая должна выполнять синхронизацию. С другой стороны, при выборе точки синхронизации реле времени с задержкой отключения питания, вы должны выбрать отключение питания реле времени, когда схема управления, которая должна отправить сигнал синхронизации, чтобы время может быть выполнено.
2) Конечная точка отсчета времени
Конечная точка отсчета времени имеет два значения: первое относится к точке, в которой установленное время равно времени отсчета времени; другой относится к моменту действия контракта.
3) Точка сброса отсчета времени
Сброс реле времени предназначен для очистки последнего временного содержания для следующего использования. Если его не сбросить, при следующем использовании произойдет сбой. Особое внимание следует обратить на следующее: интервал между двумя использованиями должен быть больше, чем время возврата в исходное положение, что особенно важно для электрических реле времени.
- Взаимосвязь между начальной точкой, конечной точкой и точкой сброса отсчета времени
1) После использования реле времени возникает проблема сброса. Таким образом, большинство цепей управления находятся в цепи следующего уровня по выходу реле времени. После того, как сигнал завершения отсчета времени получен точно, он используется для отключения питания реле времени (тип задержки включения) или питания реле времени (тип задержки отключения питания).
2) В верхней и нижней цепях управления реле времени есть компоненты, которые не могут работать одновременно.Если реле времени не может точно управлять верхними и нижними цепями управления в этих точках, это приведет к ненормальной работе устройства.
Ⅷ Пример: реле времени в цепи освещения
Требования к управлению: свет 1 и свет 2 горят одновременно, а свет 2 выключается через 30 секунд после того, как свет 1 выключенный. Когда индикатор 1 горит, индикатор 2 может быть выключен в любое время.
В соответствии с требованиями к управлению поясните на следующей принципиальной схеме.
Рисунок 6. Выключатель реле времени в цепи освещения
1) Нажмите SB2 , контактор KM находится под напряжением и самоблокируется, и в то же время KT также запитывается, а KT замыкается.
2) После включения KT промежуточное реле KA также запитывается для работы.
3) Одновременно замыкаются контакт KM и контакт KA , горят свет 1 и свет 2 .
4) При нажатии кнопки остановки SB1 контактор KM отключается, контакт KM размыкается, и одновременно гаснет свет 1 . Из-за наличия реле задержки отключения питания KT все еще горит, а также световой индикатор 2 . Он гаснет по истечении времени, установленного реле времени.
5) Когда горит индикатор 1 , а контакт KA1 включен в любое время, реле времени сбрасывается. KT отключается и свет выключается.
Это типичное применение реле задержки выключения. Однако в реальной схеме логика управления может быть более сложной, чем эта, поэтому мы должны глубоко понимать принцип работы и применение реле времени.
Часто задаваемые вопросы по основам работы с реле задержки
1. Что такое реле с выдержкой времени?
Реле с выдержкой времени или реле времени, позволяющее необходимым действиям происходить в определенное время в электрическом устройстве, потому что они, по сути, действуют как таймер.
2. Как работает реле с выдержкой времени?
Реле с выдержкой времени управляют потоком электроэнергии и могут использоваться для управления питанием многих различных типов электрических нагрузок. Сочетая в себе возможности электромеханического выходного реле со схемой управления, эти реле предварительно спроектированы для выполнения до одиннадцати функций задержки времени.
3. Что такое схема реле с выдержкой времени?
Реле с выдержкой времени. Реле с выдержкой времени. Реле — это переключатели, которые управляются цепью.Реле, по сути, отправляют сообщения, которые говорят, что что-то нужно запустить. Когда автомобиль заводится, зажигание только косвенно взаимодействует с аккумулятором автомобиля, потому что реле посылает сигнал, который сообщает автомобилю о запуске.
4. Как работает реле с выдержкой времени?
При подаче входного напряжения реле с выдержкой времени готово принимать сигналы запуска. При подаче триггерного сигнала реле включается и начинается заданное время. … Непрерывное переключение триггерного сигнала со скоростью, превышающей заданное время, приведет к тому, что реле останется под напряжением.
5. Как сделать реле с выдержкой времени?
Эти реле обеспечивают «временную задержку» между включением или отключением питания катушки и перемещением якоря. Такие реле называются реле с выдержкой времени. Реле с временной задержкой состоит из обычного электромеханического реле вместе со схемой управления для управления работой реле и синхронизацией.
6. Что такое реле задержки выключения?
Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени.Также называемые нормально разомкнутыми реле задержки выключения. 3: нормально закрытый, открытый по времени.
7. Как работает реле таймера задержки выключения?
Действие функции задержки выключения
При подаче входного напряжения реле с выдержкой времени готово к срабатыванию триггера. При срабатывании триггера на выход подается напряжение. После снятия спускового крючка начинается отсчет времени (t). По истечении времени задержки (t) выход обесточивается.
8. В чем разница между задержкой выключения и таймером задержки включения?
Что касается задержки включения таймера, таймер запускается включением бита триггера таймера, а выходной бит таймера включается по истечении времени настройки.Что касается задержки выключения таймера, выходной бит таймера выключается, когда время настройки прошло после того, как входной бит таймера был выключен.
9. Как проверить реле таймера?
Burden Test
Настройте таймер с большим временем задержки, например: 2 минуты.
Включите реле напряжением 125 В и измерьте постоянный ток.
Запишите ток перед срабатыванием таймера.
Через 2 минуты реле сработает. Запишите ток после операции.
Рассчитайте мощность реле (Вт) = 125 В x измеренный ток.
10. Какова функция реле с выдержкой времени?
Типичные функции временной задержки включают задержку включения, цикл повторения (запуск), интервал, задержку выключения, повторный запуск одного импульса, цикл повторения (запуск), генератор импульсов, один выстрел, задержку включения / выключения и защелку памяти.
Реле задержки времени
Некоторым прикладным проектам требуется питание после некоторой задержки или необходимо отключить питание после некоторой задержки, для этой цели мы можем использовать эту простую схему реле с временной задержкой.
Цепь реле с выдержкой временисодержит электромеханическое реле и схему управления, эта схема определяет время задержки для подачи питания на катушку электромеханического реле по пути к нагрузке, подключенной к реле.
Принципиальная схема
Строительно-монтажные
Первая секция этой схемы — это элементы задержки времени, такие как последовательный резистор делителя напряжения и два электролитических конденсатора, а вторая секция — реле со светодиодным индикатором.
Резистор R1, потенциометр и R2 подключены последовательно и параллельно к входу постоянного тока, выход переменного резистора (потенциометра) подключен к конденсатору C1 и смещенному в обратном направлении стабилитрону, затем конденсатор C2, наконец, к базе транзистора SL100.
Реле12 В подключено к клемме коллектора транзистора SL100, клемма двухцветного светодиода зеленого цвета подключена к эмиттеру Q1, а клемма красного цвета подключена к коллектору.
Когда питание, подаваемое на эту схему, зависит от значения напряжения малого уровня потенциометра, передаваемого на C1, и он заряжается, когда он завершается и превышает предел отсечки стабилитрона, напряжение передается на конденсатор C2, и он получает заряд, наконец, базовый эмиттер предел напряжения транзистора Q1 устанавливается C2, затем Q1 включается, и катушка реле получает полное питание постоянного тока, после чего реле активируется для завершения вышеуказанного процесса, требуется некоторая задержка времени, в зависимости от значения потенциометра, времени заряда C1-C2 и напряжения пробоя стабилитрона, следовательно мы можем добиться задержки от нескольких секунд до нескольких минут.
Изменяя значение потенциометра или значение C1-C2, мы можем достичь различных уровней задержки по времени. Мы можем использовать эту схему для включения или выключения некоторых чувствительных электрических приложений с временной задержкой.
Реле с задержкой временис использованием таймера 555 IC
В этом уроке мы покажем вам, как сделать схему реле с временной задержкой, используя микросхему таймера 555. Эта схема может запускать реле от нескольких секунд до нескольких минут после нажатия переключателя S1.Его легко сделать, и в нем используется всего несколько компонентов.
Реле — это переключатель, который управляется электрически между двумя клеммами: нормально замкнутым и нормально разомкнутым. Это зависит от включения и выключения катушки реле. Есть некоторые реле, в которых процесс переключения не является немедленным и требует времени, они обеспечивают «временную задержку» между включением и выключением катушки. Эти реле называются реле с временной задержкой, которые мы собираемся использовать сегодня.
Основное различие между этими реле заключается в том, что нормальные реле переключаются с нормально замкнутого контакта на нормально разомкнутый сразу, тогда как в реле с выдержкой времени контакты замыкаются или размыкаются только по истечении заданного временного интервала.
Компоненты оборудования
Принципиальная схемарабочая
Рабочее напряжение этой цепи составляет 9-12 В постоянного тока. Мы используются электролитический конденсатор емкостью 1000 мкФ, который отвечает за настройку время задержки примерно 2 минуты.Время задержки может быть увеличено на увеличение емкости конденсатора. Например, конденсатор 220 мкФ даст вы задержка ок. 5 минут.
Переключатель используется на входном контакте микросхемы таймера 555 вместе с конденсатором, когда мы включим переключатель, реле будет активировано и обеспечит временную задержку.
В этой схеме мы также используем светодиод с резистором 470 Ом, чтобы указать, находится ли реле в состоянии ВКЛ или ВЫКЛ. Использование светодиода и резистора совершенно необязательно, вы можете пропустить этот шаг, если хотите сделать эту схему еще проще.
Применение и использование
Апрель 1967 г. Мир электроники Таблица содержанияВоск, ностальгирующий по истории ранней электроники.См. Статьи из Electronics World , опубликовано в мае 1959 г. — Декабрь 1971 г. Все авторские права подтверждаются. |
Реле — еще одна тема, которая никогда не устаревает. Даже с появление полностью твердотельных реле, использующих полупроводники в тракте проводимости все еще есть много приложений, которые только механические контакты могут удовлетворить. Очень высокая мощность, будь то это будет высокое напряжение, сильный ток или и то, и другое, еще не могут быть обработаны полупроводниками — по крайней мере, не экономически.Да это так переключающие диодные матрицы, которые могут работать с очень большими мощностями, но они обычно очень дороги. Эта статья — одна из группа статей о реле в Апрель 1967 г. Электроника Мир. В конечном итоге все будет повторно размещено здесь, в RF Cafe.
Вот ссылки на другие статьи о реле: Время срабатывания и отключения реле, Герконовые реле, Реле времени задержки, Определение времени срабатывания и отключения реле, Подавление дуги, перенапряжения и шума
Реле с выдержкой времени
Джерри Э.Эльперс
Твердотельные продукты, Potter & Brumfield (Div. American Машины и Литейное производство)
Автор в настоящее время работает как Solid State Products Менеджер по продажам. До этого он занимался схемотехникой в Solid Устаревшая группа коммутации. Он имеет степень бакалавра естественных наук в Эвансвиллском колледже. Эвансвилл, штат Индиана, и закончил аспирантуру Purdue. Он член IEEE и Sigma Pi Sigma.
Факторы, которые следует учитывать при выборе реле, производящего предопределенная задержка.Включены данные о тепловых, моторных, пневматический, RC, пробковый, гидравлический, спусковой и твердотельный типы.
Фантастический рост в области промышленной автоматики. контроль увеличил спрос на новые и более универсальные устройства для выполнения основных электрических коммутационных функций обязательный. Использование реле с выдержкой времени быстро выросло до идти в ногу со спросом на основные функции, которые они может выполнять: получение заданной задержки от одного переключить операцию на другую.
Реле с выдержкой времениработают аналогично реле с выдержкой времени. стандартное реле в том, что у них есть контакты, которые открываются и закрываются когда питание подается и снимается с входных клемм. Основное отличие состоит в том, что задержка включена в размыкание контактов или дозирование. Реле с выдержкой времени используются в широком диапазон применения: от определения степени наполнения вашего кофе чашка будет, когда вы положите десятицентовик в торговый автомат, чтобы закрыть от смазочно-охлаждающей жидкости на фрезерном станке.
Самым популярным реле задержки времени является задержка при срабатывании, или обесточивание, при котором нормально разомкнутое переключение нагрузки контакты переключаются в заданное время после подачи питания ко входу. Контакты выпадают сразу после удаления входной мощности (рис. 1А).
Часто требуется выдержка времени при расцеплении или обесточивании. В этом случае срабатывают нормально разомкнутые контакты переключения нагрузки. сразу после подачи питания и оставаться в этом положение, пока входное питание остается включенным.При удалении этой мощности начинается отсчет времени, и после заданной задержки контакты выпадают (рис. 1Б).
Используются несколько вариантов этих двух основных режимов синхронизации, такие как интервал «вкл», автоматический повторный цикл, комбинированный «вкл» и таймеры выключения и таймеры последовательности. Многие из них можно сделать простыми соединениями двух основных типов.
Выбор типичной твердотельной выдержки времени реле, многие из которых обеспечивают регулировку количества задержка предусмотрена.
Факторы, которые следует учитывать
Существует много типов реле с выдержкой времени, которые обеспечит желаемое временное действие, включая тепловое. моторный, пневматические, RC-цепи, твердотельные, пробивные, гидравлические и спусковой механизм.
При выборе необходимо учитывать множество факторов. один из этих типов реле с выдержкой времени. Следует учитывать дано тому, как каждый из них соответствует следующим критериям: точность, время сброса, повторяемость, возможность переключения нагрузки, цена, срок службы, варианты монтажа, размер, время задержки, температура эффекты, а также регулируемое или фиксированное время задержки.
Также различные реле с выдержкой времени имеют определенные особенности. в их работе, которые следует определить, чтобы выбрать тип, который выполнит работу надежно и экономично, Некоторые Об этих особенностях рассказывается ниже.
Температурные выдержки времени
Основная работа этого таймера использует преимущества разница в тепловом расширении двух металлов. Биметаллический элемент размещается в непосредственной близости от нагревательного элемента, и при подаче питания биметаллический элемент деформируется и закрывается или открывается контакт.Время, необходимое для срабатывания контакта, обычно составляет определяется физическими характеристиками биметаллического полоса и количество мощности, приложенной к нагревательному элементу.
Тепловые реле с выдержкой времени обычно используются там, где при включении требуется и точность выдержки времени период не критичен. Один производитель заявляет точность ± 30% для миниатюрного или восьмеричного вставного таймера, с возможны задержки от 2 до 180 секунд.Другой производитель дает точность ± 20% от 0,75 до 1 секунды, ± 15% от От 1 до 4 секунд и ± 10% для задержек до 360 секунд. Этот также является восьмеричным вставным реле с выдержкой времени.
Контактные формы обычно ограничиваются s.p.s.t., N.0. или N.C. с номиналами, которые обычно не превышают 5 ампер, 115 вольт переменный ток, резистивный (100000 срабатываний). Поскольку тепловое время задержка использует эффект нагрева I 2 R, устройство несколько чувствителен к колебаниям входного напряжения.Вариации напряжения ± 10% изменит период задержки примерно на ± 5%.
Самый большой недостаток тепловых реле с выдержкой времени — их долгое время сброса (время, необходимое для того, чтобы контакты открывать и достигать заметного процента от номинальной время задержки в последующем цикле работы). Этот сброс может составлять от 50 до 200 процентов задержки срабатывания в чтобы достичь 80% номинального периода задержки на следующем цикл.
Один производитель реле тепловой задержки рекомендует использовать вспомогательное реле для преодоления этой проблемы времени сброса. Этот устройство использует два набора контактов, один из которых замыкается в конце интервал нагрева, который включает вспомогательное реле и прерывает подачу питания. Затем начинается интервал охлаждения, после чего выпадает второй набор контактов, завершая схема переключения нагрузки. Используя этот метод, примерно 85% номинального времени срабатывания достигается в следующем цикле.
Большинство наиболее известных тепловых реле с выдержкой времени имеют Тип плагина и цена колеблются от 2 до 20 долларов.
Рис. 1. (A) Задержка включения. (B) Задержка по обесточиванию.
Пневматический или пневматический
Термин «пневматический» (то есть с пневматическим приводом) сразу указывает основной принцип работы этого типа выдержки времени.Используется механизм, в котором контролируемое количество воздуха под давление перемещается с одного места на другое. (Это может быть блок, изолированный от окружающего воздуха, в котором воздух перемещается из одной камеры в другую или куда втягивается воздух из атмосферы или рассеивается в атмосфере.) Типичное устройство использует диафрагма, катушка, плунжер и отверстие. Когда сила применяется к катушке. плунжер (который механически связан к диафрагме) втягивается в катушку.Скорость плунжера движение контролируется скоростью выхода воздуха из диафрагмы, который контролируется регулировкой диафрагмы. Когда заранее определенное положение достигнуто, набор контактов срабатывает в результате поршневое движение.
Пневматическое реле выдержки времени эксплуатируется 25 лет. и имеет прочную репутацию в тяжелой промышленности. У некоторых производителей есть доступные устройства. к этим типам приложений.Они доступны для панели управления крепления, имеют винтовые клеммы и предназначены для использования в тяжелые промышленные среды. Этот тип временной задержки доступен как регулируемое устройство: некоторые с циферблатами с калибровкой по времени, а некоторые с регулировкой паза под отвертку. Точность повторения обычно составляет ± 10%, а время сброса составляет примерно 25 миллисекунд (это сброс также применяется в случае сбоя питания).
Доступны блоки с выдержкой времени при включении, задержка при обесточивании, а также с обеими этими функциями упакованы в тот же корпус.Некоторые могут быть преобразованы в поле от задержки включения до отключения простым механическое изменение. Доступны номиналы контактов до 20 ампер, 120 В переменного тока, 60 Гц, резистивный (срок службы 100000 срабатываний).
Доступны периоды задержки от 0,2 секунды до 30 минут от одного производителя и от 0,050 секунды до 3 минут От другого. Температурный диапазон эксплуатации находится в районе от -50 ° С до + 65 ° С. Напряжение питания 6 В а.c. до 550 В переменного тока, 60 Гц и 6 В постоянного тока до 250 В постоянного тока доступны. Вход Требования к мощности колеблются от 5 до 8 Вт. Цены варьируются от От 18 до 100 долларов.
Многие пневматические агрегаты достаточно большой из-за места, необходимого для механического механизма, хотя некоторые меньшие версии также доступны с более низким номиналы контактов (10 ампер) и более короткие задержки (180 секунд) по более высокой цене. Пневматические задержки могут вызвать проблемы в применении где царит грязная атмосфера.Любое засорение отверстия вызовет изменения в периоде задержки.
с приводом от двигателя
Синхронный двигатель обычно используется в моторных приводах. таймеры для привода зубчатой передачи, которая контролирует переключение нагрузки контакты. При подаче питания механизм работает до тех пор, пока истекло заданное время, по истечении которого выходные контакты переключаются. Этот метод синхронизации зависит от входной строки частота для его базовой точности, аналогично стандартной 12-часовой, 120-В а.c., частота 60 Гц. Большинство этих таймеров использовать магнитную муфту в сочетании с часовым механизмом который выполняет функцию включения механизма, когда мощность применяется и позволяет ему сбрасываться при отключении питания. При отпускании сцепления устройство возвращается в исходное положение возвратной пружиной.
Период задержки устанавливается на этих блоках с помощью указателя. на передней или верхней части реле (можно плавно регулировать или с шагом).Второй указатель обычно используется для обозначения затраченное время. Точность настройки плавно регулируемого таймеры обычно составляют ± 0,5% от полной шкалы, а точность повторения составляет ± 1% от полной шкалы или лучше. Время сброса пропорционально на время, необходимое для возврата в исходное положение подпружиненного механизма и будет меньше 500 миллисекунд, в зависимости от настройки времени относительно натурного.
Реле с выдержкой времени с моторным приводом доступны как с задержкой при подаче питания, так и с задержкой при обесточивании.Нагрузочные контакты задержки обесточивания срабатывают немедленно. при подаче питания на сцепление и отключении сцепления запускает временной интервал. Когда этот интервал закончится, контакты выпадают. Задержка обесточивания будет сброшена. при кратковременной потере мощности.
Длины задержки От 5 секунд до 60 часов доступны от одного производителя и От 5 минут до 5 часов от другого. Жизненные рейтинги этих таймеров диапазон от 500 000 операций для одного производителя до контакта рейтинг жизни 5 млн операций для другого.Жизнь обычно ограничивается поломкой сцепления, а не сроком службы контактов. Входная мощность от 5 до 15 ВА, включая катушку сцепления и двигатель. Контакт Возможны номинальные значения коммутации до 15 ампер непрерывного действия. Большинство доступных устройств рассчитаны на работу при напряжении 120/240 В переменного тока, 60 Гц. Округ Колумбия. единицы обычно не доступны. Температурный диапазон эксплуатации от -20 ° C до + 50 ° C. Цены колеблются от 5 до 50 долларов.
Большинство реле с выдержкой времени для моторных приводов имеют какая-то функция регулировки, некоторые из которых предназначены для передней панели монтажные, с ручкой для установки времени задержки и предназначены для использования в промышленных пультах управления.Другие доступны с указатели, которые можно установить для настройки времени с шагом и не предназначены для приложений, требующих передней панели монтаж.
Реле задержки
Время задержки
может производиться на телефонном аппарате постоянного тока. реле, разместив один
или больше закороченных витков вокруг магнитной цепи (обычно
сердечник), чтобы создать противодействующий МДС. что замедляет наращивание
рабочего потока, а при обесточивании обеспечивает
м.м.ф. чтобы замедлить схлопывание флюса. Этот короткий поворот.
или повороты. называется слизняком. Обычно он состоит из котла.
хомут на сердечнике реле. В некоторых конструкциях медная гильза
используется по всей длине сердечника, а катушка намотана
на рукаве.
Принцип работы пули выглядит следующим образом: Когда катушка реле находится под напряжением, нарастание магнитного потока проходит через пробку и за счет самоиндукции производит m.м.ф что противостоит катушке м.м.д. Этот противостоящий m.m.f. задерживает наращивание магнитного поля в воздушном зазоре до напряженности это приведет к закрытию якоря. Время задержки при отключении происходит наоборот. Когда катушка реле обесточена, поле начинает схлопываться, вызывая ток в пуля, обеспечивающая м.м.д. ориентированы так, чтобы поддерживать магнитный поле и, таким образом, отсрочить отсев.
Пикап задерживается до 120 миллисекунд и задержка отключения до 500 миллисекунд может быть достигнуто за счет использования пули.Время задержки может меняться из-за механического износа в течение срока службы и температуры окружающей среды и этот тип не предназначен для высокоточных приложений. Забит реле обычно не входят в комплект поставки и доступны только по спецзаказу у большинства производителей телефонной связи реле.
RC Circuit
Различные методы были используется для разработки временных задержек с использованием комбинаций резисторов, конденсаторы и реле.Все эти схемы используют базовый принцип заряда и разряда конденсатора и одного из простейшие схемы, использующие этот принцип, показаны на рис. 2А.
Когда переключатель замкнут, конденсатор заряжается к приложенному напряжению и по истечении определенного периода времени по сопротивлению и емкости (при условии, что сопротивление катушки реле быть очень большим по сравнению с резистором) реле тянет дюйм. При отключении питания конденсатор разряжается через реле со скоростью, контролируемой размером конденсатора, индуктивность и сопротивление катушки реле.Эта схема не обеспечивает точную задержку времени, так как время зависит по многим факторам. Вариации сопротивления, емкости, входное напряжение и напряжение втягивания реле вызовут изменения в период задержки тайла. Точность периода задержки ± 30% следует ожидать. Время сброса также велико из-за высокоомный путь разряда конденсатора. На практике эти таймеры можно приобрести с задержкой до 30 секунд и в оба а.c. и d.c. версии.
Варианты этого базового доступны схемы, в которых используются дополнительные компоненты для увеличения точность и ускорение времени сброса. Одна популярная трасса использует неоновую лампу для определения уровня напряжения на конденсаторе и фоторезистивный элемент для управления реле. Фотоэлемент предлагает низкое сопротивление последовательно с реле, когда неоновая лампа лампа загорается, и реле втягивается (рис. 2B).
Эта схема имеет ряд преимуществ по сравнению с предыдущей схемой. в том, что неоновая лампа определяет точный уровень напряжения и не полагаться на напряжение втягивания реле для точности задерживать.Также реле сразу отключается при подаче питания удаляется, и время можно сбросить с помощью другого набора контакты через конденсатор, если это необходимо.
Эта схема используется в нескольких коммерчески доступных реле с выдержкой времени. Единицы обычно регулируемые (используется потенциометр. последовательно с резистором), а корпус весь восьмеричный плагин типа. Точность этого устройства обычно указывается как ± 10% в ограниченном диапазоне температур.Релейные выходы на этих Таймеры обычно бывают d.p.d.t., 5 ампер, 120 В переменного тока, резистивные.
Solid-State
Последние записи в
Реле с выдержкой времени являются твердотельными. Есть
в настоящее время доступны два основных типа, использующие совершенно разные
принципы работы. Один производитель продает реле
который использует точный осциллятор и счетчик для выполнения
функция времени. Выход из этого генератора инициируется
когда питание подается и подается в схему усилителя.Этот усилитель формирует импульсы и направляет их на магнитопровод.
прилавок. Когда будет достигнут заранее установленный счетчик. выходная нагрузка
переключающие контакты управляются логической схемой. В
время задержки определяется логикой и количеством
счетчики используются после осциллятора.
Эта задержка реле предназначено для приложений, где высокая степень точности требуется (± 2%). Стандартное рабочее напряжение от От 18 до 82 В d.c, он имеет либо реле, либо твердотельный выход и требуется 0,4 секунды для сброса задержки до заявленной точности. Корпуса доступны с популярным плагином или с крючковыми выводами под пайку и боковым монтажным кронштейном. Этот устройство стоит дорого, поскольку идут реле с выдержкой времени и продается за 100 долларов или больше.
Самая популярная схема, используемая в твердотельных реле с выдержкой времени используют принцип заряда RC, упомянутый ранее.Причина популярности этого метода кроется в от использования однопереходного транзистора.
Однопереходный транзистору присуща способность обеспечивать высокий входной импеданс. до напряжения конденсатора, пока не будет достигнуто заданное напряжение. В этот момент устройство срабатывает и разряжает конденсатор синхронизации.
Схема на рис. 2C может быть использована для иллюстрации этого.
операция. Когда переключатель замкнут, конденсатор заряжается.
со скоростью, контролируемой продуктом RC.На контролируемом уровне напряжения
однопереходным транзистором конденсатор разряжается через
катушки реле и заставляет реле срабатывать. Этот пульс
только кратковременный, а набор контактов реле служит для фиксации
реле.
Однопереходная схема имеет ряд преимуществ перед неоновой лампой. схема в которой уровень стрельбы пропорционален входу Напряжение. Таким образом, любые колебания входного напряжения компенсируются. для пропорционального изменения напряжения зажигания.Другие устройства необходимо добавить в эту схему, чтобы преодолеть некоторые недостатки из предыдущих схем. Стабилитроны добавлены для лучшего компенсация временных изменений из-за колебаний входного напряжения. Можно добавить SCR, чтобы дать реле больше втягивания и удержания. мощность.
Рис. 2. (A) RC-цепь может использоваться для обеспечения временная задержка. (B) Неоновая лампа и фотоэлемент или (C) однопереходный транзистор может быть использовано.
Схема, показанная на рис. 2C, также имеет тот недостаток, что конденсатор немедленно разрядится через катушку реле если питание прерывается, и это приводит к срабатыванию реле мгновенно. Добавление SCR устраняет эту проблему.
Line Transients
Одна проблема, характерная для твердотельных временные задержки связаны с переходными процессами в линии, особенно на реле с выдержкой времени, используемые на 120-В перем.c. линейное напряжение. Эти переходные процессы, или условия кратковременного перенапряжения. обычны для 120-вольтного переменного тока. линия. Их можно производить в самых разных условиях. в том числе молния, поражающая линию, переключение индуктивного нагрузки на линии или включение и отключение трансформатора вход питания реле с выдержкой времени. Эти переходные процессы обычно не серьезная проблема, потому что они не содержат много энергии.
Твердотельные реле с выдержкой времени, используемые на 120-В перем.c. линия обычно используют кремниевый выпрямитель на входе, чтобы создать необходимое напряжение постоянного тока для работы с выдержкой времени. Этот выпрямитель чувствителен к энергии, содержащейся в этих переходные процессы, если разрешено превышение напряжения обратного номинала. В более совершенных твердотельных устройствах обычно используются два метода: подавить эти переходные процессы. Один из методов — использование контролируемого схода лавины. выпрямитель для этого входного выпрямителя.Когда обратное входное напряжение превышает обратное напряжение выпрямителя, устройство сходит в лавину. и рассеивает переходную энергию. Разложение специального селена также используются устройства, способные выдерживать еще больше энергии. Временные проблемы теперь поняты лучше, чем в прошлом и может быть обеспечена адекватная защита.
С твердотельным
реле временной задержки используют транзисторы в части синхронизации, и
транзисторы имеют долгий срок службы, можно построить очень надежный таймер
с помощью этих устройств.: Многие из доступных устройств имеют встроенный
реле переключения нагрузки; обычно, d.p.d.t., 10 ампер, 120 В
переменный ток резистивный. В этом случае жизнь ограничивается жизнью
реле, обычно 10 миллионов механических операций.
Несколько производителей продают твердотельный модуль синхронизации.
для управления внешним реле переключения нагрузки. В этом случае
срок службы таймера почти бесконечен и очень полезен для приложений
где наблюдаются высокие циклы.
Доступные типы
Твердотельные блоки доступны с фиксированной задержкой,
внутренний потенциометр регулируемые задержки и внешний резистор
регулируемые задержки. Внешний резистор может быть потенциометром.
установлен дистанционно, и провода идут к блоку задержки.
Доступен широкий спектр монтажных конфигураций, в том числе:
пылезащитные крышки для винтовых клемм, вставные, герметичные
военного типа и панельного типа.Единицы доступны
в постоянном токе напряжение от 12 до 100 В постоянного тока и от 24 до 240 В переменного тока,
60 Гц и потребляет примерно 3 Вт мощности. Время
диапазон обычно ограничен задержками от 0,10 секунды до 5 минут
на имеющихся в продаже единицах. Точность задержки варьируется от
от одного производителя к другому и может превышать ± 5%
диапазон температур от -40 ° C до + 55 ° C, а диапазон напряжения
± 10%.
Некоторые производители продают регулируемую ручку
твердотельные реле с выдержкой времени с калиброванными по времени циферблатами.В
время сброса варьируется, но обычно оно быстрое — от 40 миллисекунд
до 100 миллисекунд — в зависимости от конфигурации схемы.
Реле с выдержкой времени доступны в обоих вариантах с задержкой включения.
и по обесточиванию. (Задержка обесточивания требует
вспомогательный источник питания в период задержки для удержания
в реле переключения нагрузки и не может использоваться в течение кратковременного
задержка отключения питания.)
Полупроводниковые реле с выдержкой времени. доступны в небольших корпусах и варьируются по цене примерно от От 10 до 60 долларов.
ШАГОВЫЕ РЕЛЕ
Есть два типа приводных механизмов, используемых в шаговых реле (часто называемых шаговые переключатели): косвенный и прямой.
Когда комбинация якоря и собачки воздействует непосредственно на храповик под мощность электромагнита, устройство называется непосредственно с приводом, как показано на рис. A. Когда собачка воздействует на храповой механизм колеса от силы, накопленной в приводной пружине, механизм говорят, что они косвенно управляются.Показан пример этого метода. на рис. B. Система с косвенным приводом является наиболее распространенной. использовал. Система с пружинным приводом более стабильна в производительности, более эффективен и способен к более быстрому шагу, чем прямой приводного типа, помимо более длительного срока службы.
В блоке с косвенным приводом, когда правильное напряжение и на катушку магнита двигателя подается питание, якорь притягивается и удерживает приводную пружину во «взведенном» положении.Когда катушка обесточена, энергия накапливается в приводной пружине прижимает собачку к зубу храпового колеса, в результате чего стеклоочиститель сборка сделать шаг. Повторяющиеся импульсы вызовут переключение сделать столько шагов, сколько получено дискретных импульсов. Продолжительность времени, в течение которого цепь замкнута (и разомкнута) последовательно быстрых импульсов критично.
Самостоятельная работа, такой, как показано на рис. B, используется для быстрого переключения переключателя. из одной точки в другую без использования дискретных импульсов из внешних источников.В этом методе цепь замкнута на катушку через набор контактных пружин прерывателя, которые открывается рычагом якоря до того, как он полностью встанет на место. Разрыв цепи катушки вызывает выпадение якоря, приведение в действие стеклоочистителя на один шаг и одновременное повторное включение контакты прерывателя. Якорь снова притягивается, взводится заново. выключатель и, таким образом, вызывая повторное размыкание прерывателя контакты.Переключатель работает без прерывания до тех пор, пока цепь снова открывается.
Опубликовано 09.09.2011
Длинная петельная антенна
Намотанная на трубку из ПВХ длиной 3 фута, длинная петельная антенна представляла собой эксперимент, чтобы попытаться улучшить радиоприем AM без использования длинного провода или земля. Он работает достаточно хорошо и значительно улучшает прием слабого станции в 130 милях отсюда. Более длинная стержневая антенна, вероятно, будет работать лучше, если пространство позволяет.2) / ((9 * радиус) + (10 * длина))
, где размеры указаны в дюймах, а индуктивность — в микрогенри. Индуктивность
должно быть около 230 микрогенри для работы со стандартной настройкой AM-радио
конденсатор (33-330 пФ). 3-футовая ПВХ-труба наматывается примерно 500
равномерно расположенные витки медного провода № 24, который образует индуктивность примерно 170
microhenrys, но у меня получилось немного больше (213uH), потому что обмотка
интервал был не совсем ровным. Вторичная обмотка примерно на 50 витков намотана по длине
труба наверху первичной, а затем подключенная к 4 виткам проволоки, намотанной
прямо вокруг радио.Обмотки вокруг магнитолы ориентированы так, чтобы
стержень внутренней антенны радиостанции проходит через внешние обмотки. Лучше
метод соединения будет заключаться в том, чтобы намотать несколько витков непосредственно вокруг внутреннего
стержневая антенна внутри самого радио, но вам придется открыть радио, чтобы сделать
что. Во время работы антенна должна располагаться горизонтально к земле и справа.
углы к направлению интересующей радиостанции. Настройте радио на
слабую станцию, чтобы вы могли слышать определенный шум, а затем настройте
конденсатор антенны и поверните антенну для лучшего отклика.Антенна
также следует располагать подальше от регуляторов освещенности, компьютерных мониторов и других
устройства, вызывающие электрические помехи.
Цепь зажигания разряда конденсатора (CDI)
Цепь зажигания CDI создает искру от катушки зажигания. разряд конденсатора через первичную обмотку. Конденсатор емкостью 2 мкФ заряжен примерно до 340 вольт, а разряд контролируется тиристором. Генератор триггера Шмитта (74C14) и MOSFET (IRF510) используются для управления сторона низкого напряжения небольшого (120/12 В) силового трансформатора и напряжение Устройство удвоения используется на стороне высокого напряжения для увеличения емкости конденсатора напряжение примерно до 340 вольт.Аналогичный генератор триггера Шмитта используется для запускайте SCR примерно 4 раза в секунду. Электропитание отключено во время время разряда, чтобы SCR перестал проводить и вернулся в свое состояние блокировки. Диод, подключенный от 3904 к выводу 9 74C14, вызывает генератор источника питания остановится во время разряда. Схема рисует всего около 200 миллиампер от источника 12 вольт и обеспечивает почти вдвое больше нормальная энергия обычной цепи зажигания.Высокое напряжение с катушки около 10 кВ с использованием разрядника 3/8 дюйма при нормальной температуре и давлении воздуха. Частота искры может быть увеличена до 10 Гц без потери искры. интенсивность, но ограничена низкочастотным силовым трансформатором и рабочим циклом осциллятора. Для более высокой скорости искры, более высокой частоты и меньшего потребуется источник импеданса. Учтите, что катушка зажигания не заземлена. и представляет опасность поражения электрическим током на всех своих клеммах. Используйте ВНИМАНИЕ, когда управляя схемой.Альтернативный способ подключения катушки — заземление. клемму (-) и переместите конденсатор между катодом выпрямительный диод и положительный вывод катушки. Затем SCR помещается между землей и стороной конденсатора +340 В. Это снижает опасность поражения электрическим током и является обычной конфигурацией в автомобильных приложениях. Меню
Низкое напряжение, сильноточная цепь задержки времени
В этой схеме счетверенный компаратор напряжения LM339 используется для генерации выдержка времени и управление сильнотоковым выходом при низком напряжении.Приблизительно 5 ампер тока можно получить, используя пару свежих щелочных батареек D. Три компаратора подключены параллельно для управления PNP средней мощности. транзистор (2N2905 или аналогичный), который, в свою очередь, управляет сильноточным NPN транзистор (TIP35 или аналогичный). 4-й компаратор используется для генерации времени задержка после размыкания нормально замкнутого переключателя. Два резистора (36К и 62К) используются как делитель напряжения, на который приходится около двух третей батареи напряжение на входе (+) компаратора, или около 2 вольт.Время задержки после переключатель открыт, будет примерно одна постоянная времени с использованием конденсатора 50 мкФ и переменный резистор 100 кОм, или примерно (50u * 100 кОм) = 5 секунд. Время может можно уменьшить, установив резистор на меньшее значение или используя меньшее конденсатор. Более продолжительное время можно получить с помощью резистора или конденсатора большего размера. Для работы схемы при более высоких напряжениях резистор 10 Ом должен быть увеличивается пропорционально (4,5 В = 15 Ом).
МенюРеле задержки включения
Вот схема реле задержки времени включения, которая использует преимущества напряжение пробоя эмиттер / база обычного биполярного транзистора.В используется обратный переход эмиттер / база транзистора 2N3904 как стабилитрон на 8 В, который создает более высокое напряжение включения для Дарлингтон подключил пару транзисторов. Практически любой биполярный транзистор может быть используется, но напряжение стабилитрона будет варьироваться от 6 до 9 вольт в зависимости от конкретный используемый транзистор. Задержка времени составляет примерно 7 секунд при использовании Резистор 47 кОм и конденсатор 100 мкФ и может быть уменьшен за счет уменьшения сопротивления R или Ценности C. Более длинные задержки могут быть получены с большим конденсатором, резистор синхронизации, вероятно, не следует увеличивать выше 47 кОм.Схема должен работать с большинством любых реле постоянного тока на 12 В с сопротивлением катушки 75 Ом или больше. Резистор 10 кОм, подключенный к источнику питания, обеспечивает путь разряда конденсатора при отключенном питании и не необходимо, если в блоке питания уже есть спускной резистор.
Меню
Реле задержки отключения питания
Две схемы ниже иллюстрируют размыкание контакта реле на короткое замыкание. время после выключения зажигания или выключателя света.Конденсатор заряжается и реле замыкается, когда напряжение на аноде диода поднимается до +12 вольт. Схема слева — обычный коллектор или эмиттер-повторитель и имеет преимущество на одну часть меньше, так как резистор не нужен последовательно с базой транзистора. Тем не менее напряжение на катушке реле будет на два диода меньше, чем напряжение питания напряжение, или около 11 вольт для входа 12,5 вольт. Общий эмиттер конфигурация справа предлагает преимущество полного напряжения питания через нагрузку в течение большей части времени задержки, что приводит к срабатыванию реле и выпадающее напряжение меньше беспокоит, но требует дополнительного резистора в серия с транзисторной базой.Общий эмиттер (схема справа) — это лучшая схема, поскольку можно выбрать последовательный базовый резистор чтобы получить желаемое время задержки, тогда как конденсатор должен быть выбран для общего коллектора (или дополнительного резистора, используемого параллельно с конденсатор). Временная задержка для общего эмиттера будет примерно 3 постоянные времени или 3 * R * C. Значения конденсатора / резистора можно определить. от тока катушки реле и усиления транзистора. Например 120 Ом катушка реле потребляет 100 мА при 12 вольт и при условии, что коэффициент усиления транзистора составляет 30, базовый ток будет 100/30 = 3 мА.Напряжение на резисторе будет напряжение питания минус два диодных падения или 12-1,4 = 10,6. Резистор значение будет напряжение / ток = 10,6 / 0,003 = 3533 или около 3,6 К. В Емкость конденсатора для 15-секундной задержки будет 15 / 3R = 1327 мкФ. Мы можем используйте стандартный конденсатор емкостью 1000 мкФ и пропорционально увеличивайте резистор чтобы получить 15 секунд. МенюЦепь реле таймера и реле, 9 секунд
Эта схема обеспечивает визуальную 9-секундную задержку с использованием 10 светодиодов перед замыкание реле на 12 вольт.Когда переключатель сброса замкнут, 4017 Десятилетний счетчик будет сброшен на 0, при этом Светодиод работает от контакта 3. Выход таймера 555 на контакте 3 будет высоким и напряжение на выводах 6 и 2 таймера будет чуть меньше нижняя точка срабатывания, или около 3 вольт. Когда переключатель открыт, транзистор параллельно с конденсатором выдержки времени (22uF) выключается, позволяя конденсатору начать зарядку, а 555 схема таймера для создания примерно 1-секундного тактового сигнала до декады прилавок.Счетчик продвигается при каждом положительном изменении на выводе 14 и включен, когда на выводе 13 установлен низкий уровень. Когда будет достигнут 9-й счет, закрепите 11 и 13 будут в высоком уровне, остановив счетчик и включив реле. Более длительное время задержки может быть получено с конденсатором большего или большего размера. резистор на выводах 2 и 6 таймера 555.
Меню
Таймер обратного отсчета 9 секунд цифрового отсчета
Эта схема обеспечивает визуальную 9-секундную задержку с использованием 7-сегментного цифрового светодиод индикации.Когда переключатель замкнут, счетчик обратного / обратного отсчета CD4010 предварительно установлено значение 9, и таймер 555 отключается с высоким выходным сигналом. Когда переключатель разомкнут, таймер показывает примерно 1 секунду. тактовый сигнал, уменьшающий счетчик до тех пор, пока не будет достигнут нулевой счет. Когда достигается нулевой счетчик, сигнал выполнения на выводе 7 счетчик движется к низкому уровню, запитывая реле 12 вольт и останавливая часы при низком уровне сигнала на линии сброса (вывод 4). Реле останется под напряжением. пока переключатель снова не замкнется, сбрасывая счетчик на 9.1 секунда тактовый сигнал от таймера 555 можно отрегулировать немного длиннее или короче путем увеличения или уменьшения значения резистора на выводе 3 таймера.
CD4510 — это предварительно настраиваемый счетчик BCD в формате CMOS, который может быть предварительно установленным на любое число от 0 до 9 с высоким уровнем на PRESET ENABLE line (контакт 1) или сбросить на 0 с высоким уровнем на Линия RESET (вывод 9). Входы для предварительной настройки счетчика (P1, P2, P3, P4) находятся на штифтах (4, 12, 13, 3) соответственно.Счетчик продвигается вверх или вниз на каждом положительном тактовом переходе (вывод 15) и направление счета (вверх или вниз) контролируется логическим уровнем на входе UP / DOWN (контакт 10, высокий = вверх, низкий = вниз). Сигнал CARRY-IN (вывод 5) отключает счетчик с высоким логическим уровнем.
CD4511 — это 7-сегментный CMOS BCD-декодер с защелкой,
до 25 мА, что позволяет напрямую управлять светодиодами и другими дисплеями.
Линия LATCH-ENABLE (контакт 5, активный низкий уровень) хранит данные с входа BCD.
линии.Вход LAMP-TEST (контакт 3, активный низкий уровень) может использоваться для освещения
все 7 сегментов, а также вход BLANKING (контакт 4, активный низкий уровень) можно использовать для
выключить все сегменты. Светодиодный дисплей должен быть с обычным катодом, чтобы
что сегменты освещены положительным напряжением на их
соответствующие подключения. Полные спецификации для CD4510 и CD4511 можно получить по адресу
ответ на факс от
Harris Semiconductors (поиск)
Электронный термостат и цепь реле
Вот простая схема термостата, которую можно использовать для управления реле и подавать питание на небольшой обогреватель через контакты реле.Контакты реле должны иметь номинал выше текущие требования к обогревателю.
Температурные изменения регистрируются термистором (1,7K при 70F). последовательно с потенциометром 5K, который дает около 50 милливольт на градус F на входе компаратора напряжения LM339. Два 1К резисторы, подключенные к выводу 7, устанавливают опорное напряжение на половину напряжение питания и диапазон гистерезиса примерно до 3 градусов или 150 милливольт. Диапазон гистерезиса (диапазон температур, в котором реле включения и выключения) можно регулировать с помощью резистора 10 кОм между контакты 1 и 7.Более высокое значение сузит диапазон.
В процессе работы резистор регулируется таким образом, чтобы реле просто
выключается при желаемой температуре. Падение на три градуса
температура должна привести к тому, что реле снова включится и останется
до тех пор, пока температура снова не поднимется до заданного уровня.
Действие реле можно изменить, чтобы оно отключалось на нижнем конце.
диапазона, поменяв местами потенциометр 5K и термистор.
5.Стабилитрон на 1 вольт регулирует напряжение в цепи так, чтобы
изменения напряжения питания 12 В не повлияют на работу. Напряжение на
термистор должен быть наполовину ниже напряжения питания или около 2,6 вольт, когда
температура находится в пределах диапазона 3 градусов, установленного потенциометром.
Можно использовать практически любой термистор, но сопротивление должно быть выше
1 кОм при интересующей температуре. Выбранный резистор серии
должно быть примерно в два раза больше сопротивления термистора, поэтому регулировка
заканчивается рядом с центром элемента управления.
Термостат для обогревателя помещения мощностью 1 кВт (управление SCR)
Ниже представлена схема термостата, которую я недавно построил для управления обогревателем на 1300 Вт. Нагревательный элемент (не показан) соединен последовательно с двумя спина к спине на 16 ампер. SCR (не показаны), которые управляются небольшим импульсным трансформатором. Пульс трансформатор имеет 3 одинаковые обмотки, две из которых используются для питания триггера. импульсы на тиристоры, а третья обмотка подключена к паре транзисторов PNP которые поочередно подают импульсы на трансформатор в начале каждого переменного тока. полупериод.Импульсы запуска применяются к обоим тиристорам ближе к началу каждый полупериод переменного тока, но только один работает в зависимости от полярности переменного тока.
Мощность постоянного тока для схемы показана в нижнем левом разделе чертежа. и использует неполяризованный конденсатор 1,25 мкФ, 400 В, чтобы получить около 50 мА тока от сети переменного тока. Ток выпрямляется двумя диодами и используется для зарядите пару больших низковольтных конденсаторов (3300 мкФ), которые обеспечивают около 6 вольт постоянного тока для цепи.Напряжение постоянного тока регулируется стабилитроном на 6,2 вольт. и резистор 150 Ом, включенный последовательно с линией, ограничивает импульсный ток, когда сначала подается питание.
Нижний компаратор (выход на выводе 13) служит детектором пересечения нуля. и генерирует прямоугольный сигнал частотой 60 Гц в фазе с линией переменного тока. Фаза немного сдвинут на 0,33 мкФ, 220К и 1К, так что SCR запускающий импульс поступает, когда линейное напряжение на несколько вольт выше или ниже нуль.SCR не сработает точно при нуле, так как не будет напряжение для поддержания проводимости.
Два верхних компаратора работают так же, как описано в Схема «Электронный термостат и реле». Низкий уровень на контакте 2 производится, когда температура выше желаемого уровня, и препятствует прямоугольная волна на выводе 13 и предотвращает срабатывание SCR. Когда температура упадет ниже желаемого уровня, контакт 2 перейдет в состояние разомкнутой цепи, позволяющее срабатывать меандр на выводе 13 SCR.
Используется компаратор в центре рисунка (контакты 8,9,14). чтобы обогреватель включился вручную в течение нескольких минут и автоматически выключить. Тумблер мгновенного действия (показан подключенным к резистору 51 Ом) используется для разряда конденсатора 1000 мкФ, так что вывод 2 верхнего компаратор переходит в состояние разомкнутой цепи, разрешая меандр 60 Гц для срабатывания тиристоров и питания нагревателя. Когда конденсатор достигает около 4 вольт цепь возвращается в нормальный режим работы, когда термистор управляет работой.Мгновенный переключатель также может быть переключается так, что конденсатор заряжается выше 4 вольт и отключает нагреватель, если температура выше установленной для кастрюли.
МенюINDUSTRIAL CONTROLS — прикладное промышленное электричество
Хотя может показаться странным освещать элементарную тему электрических переключателей на столь позднем этапе этой серии книг, я делаю это потому, что в следующих главах исследуется более старая область цифровых технологий, основанная на контактах механического переключателя, а не на твердотельных затворах. цепей, и для этого необходимо доскональное понимание типов переключателей.Изучение функций схем на основе переключателей одновременно с изучением полупроводниковых логических вентилей упрощает понимание обеих тем и создает основу для расширенного опыта обучения булевой алгебре, математике, лежащей в основе цифровых логических схем.
Что такое электрический выключатель?
Электрический выключатель — это любое устройство, используемое для прерывания потока электронов в цепи. Переключатели по сути являются бинарными устройствами: они либо полностью включены («замкнуты»), либо полностью выключены («разомкнуты»).Существует много различных типов переключателей, и в этой главе мы рассмотрим некоторые из них.
Изучите различные типы переключателей
Самый простой тип переключателя — это переключатель, в котором два электрических проводника приводят в контакт друг с другом за счет движения исполнительного механизма. Другие переключатели более сложны и содержат электронные схемы, которые могут включаться или выключаться в зависимости от какого-либо физического стимула (например, света или магнитного поля). В любом случае конечным выходом любого переключателя будет (как минимум) пара клемм для подключения проводов, которые будут либо соединены вместе внутренним контактным механизмом переключателя («замкнут»), либо не соединены вместе («разомкнуты»). .Любой переключатель, предназначенный для управления человеком, обычно называется ручным переключателем , и они производятся в нескольких вариантах:
Тумблеры
Рисунок 9.1 ТумблерТумблеры приводятся в действие рычагом, находящимся под углом в одном из двух или более положений. Обычный выключатель света, используемый в бытовой электропроводке, является примером тумблера. Большинство тумблеров остановятся в любом из своих положений рычага, в то время как другие имеют внутренний пружинный механизм, возвращающий рычаг в определенное нормальное положение , что позволяет выполнять так называемое «мгновенное» действие.
Кнопочные переключатели
Рисунок 9.2 Кнопочный переключательКнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «не нажатое» положение для мгновенного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в своем «нажатом» или «нажатом» положении до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания.
Селекторные переключатели
Рисунок 9.3 Селекторный переключательСелекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы с пружинным возвратом для мгновенного срабатывания.
Джойстик-переключатели
Рисунок 9.4 Джойстик-переключательПереключатель-джойстик приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения.Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в каком направлении нажимается рычаг, а иногда и от того, насколько на дальше он нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом.
Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , потому что они часто используются для ограничения движения машины путем отключения исполнительной мощности компонента, если он перемещается слишком далеко.
Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей:
Концевые выключатели
Рисунок 9.5 Концевой выключатель рычажного приводаЭти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым деталью машины.Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины.
Бесконтактные переключатели
Рисунок 9.6 Бесконтактный переключательБесконтактные переключатели распознают приближение металлической части машины либо с помощью магнитного, либо высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлоискатель, запитывая катушку с проволокой током высокой частоты и электронным способом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Показанный здесь символ бесконтактного переключателя относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Неэлектронный бесконтактный переключатель будет использовать тот же символ, что и концевой переключатель с рычагом.Другой вид бесконтактного переключателя — это оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется по прерыванию или отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону.
Различные типы переключателей процесса
Во многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Существует много различных типов переключателей процесса.
Переключатели скорости
Рисунок 9.7 Переключатель скорости.Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо вида бесконтактного обнаружения движения вала, такого как оптическое или магнитное.
Реле давления
Рисунок 9.8 Реле давления
Давление газа или жидкости может использоваться для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, что преобразует давление в механическую силу.
Реле температуры
Рисунок 9.9 Температурный выключательНедорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунный баллон, наполненный жидкостью или газом, с крошечной трубкой, соединяющей баллон с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое приводит в действие механизм переключения.
Реле уровня жидкости
Рисунок 9.10 Реле уровня жидкости.Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость является электропроводной, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем.Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический зубец в форме «камертона», вставляемый в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой.
Реле расхода жидкости
Рисунок 9.11 Реле расхода жидкости.Вставленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле потока сконструированы как реле перепада давления, измеряющие падение давления на дросселе, встроенном в трубу.
Ядерный датчик уровня
Рисунок 9.12 Ядерный переключатель уровня.Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного исходного материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения в детекторе можно использовать для запуска релейного механизма для обеспечения переключающего контакта для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде.
Источник и детектор находятся вне судна, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала.
Все коммутаторы имеют несколько приложений
Как обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.
- Переключатель — электрическое устройство, обычно электромеханическое, используемое для контроля непрерывности между двумя точками.
- Ручные переключатели приводятся в действие от прикосновения человека.
- Концевые выключатели срабатывают при движении машины.
- Процесс Переключатели срабатывают при изменении какого-либо физического процесса (температуры, уровня, расхода и т. Д.).
Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так же просто, как соприкосновение двух медных проводов друг с другом движением рычага или непосредственное соприкосновение двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части в переключателе, используемом для включения и отключения электрического соединения, называются контактами и . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления.Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную токонесущую способность и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие:
- Тепло, выделяемое током через металлические контакты (в замкнутом состоянии).
- Искра, возникающая при размыкании или замыкании контактов.
- Напряжение на разомкнутых контактах переключателя (потенциал скачка тока через зазор).
Одним из основных недостатков стандартных переключающих контактов является воздействие на них окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятным является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие экологические проблемы, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и, следовательно, не имеют тех же проблем воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и просыпанием ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя там, где есть проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы:
Рисунок 9.13 Рисунок 9.14Здесь тот же переключатель показан в закрытом положении. Теперь гравитация удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя непрактично строить в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичными контактами — это герконовый переключатель. Как и у ртутного переключателя, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, геркон представляет собой просто пару очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом путем приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма.Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконовые переключатели обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, которая могла бы разбрызгиваться. Обычно номинальное напряжение и ток контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится в следующий раз. пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный непрерывный поток электронов, который имеет тенденцию гораздо лучше поддерживать дугу в воздушном зазоре.
Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, поскольку при размыкании цепи на контактах переключателя возникают очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например:
Рисунок 9.15Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контакта, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это дополнение к схеме помогает уменьшить контактную дугу, оно не лишено недостатков: главным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже когда контакт разомкнут и ток не желателен.Риск этого отказа и серьезность возникающих в результате последствий должны быть приняты во внимание с учетом повышенного износа контактов (и неизбежного выхода из строя контактов) без демпфирующей цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей годами делали это в системах зажигания двигателей, сводя к минимуму искрение через «точки» контакта переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор.При всем этом обсуждении уменьшения дугового разряда контактов переключателя можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Однако есть приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу в такой слаботочной среде!
- Части переключателя, отвечающие за включение и отключение непрерывной цепи, называются «контактами». Обычно сделанные из коррозионно-стойкого металлического сплава, контакты соприкасаются друг с другом с помощью механизма, который помогает поддерживать правильное выравнивание и расстояние. В ртутных выключателях
- в качестве подвижного контакта используется кусок жидкой металлической ртути. Запечатанный в стеклянной трубке искра ртутного контакта изолирована от внешней среды, что делает этот тип переключателя идеально подходящим для атмосфер, потенциально содержащих взрывоопасные пары.
- Герконы — это еще один тип устройства с герметичным контактом, контакт осуществляется двумя тонкими металлическими «язычками» внутри стеклянной трубки, соединенными друг с другом под действием внешнего магнитного поля.
- Переключающие контакты подвергаются большему воздействию постоянного тока, чем переменного тока.Это в первую очередь связано с самозатуханием дуги переменного тока.
- Сеть резистор-конденсатор, называемая «демпфер», может быть подключена параллельно переключающему контакту, чтобы уменьшить искрение контакта.
- Смачивающий ток — это минимальная величина электрического тока, необходимая для прохождения переключающего контакта, чтобы он мог самоочищаться. Обычно это значение намного ниже максимального номинального тока переключателя.
Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании.Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Следовательно, контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ выяснить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения и не установлен.Вот несколько примеров «нормальных» условий переключения процесса:
- Переключатель скорости : Вал не вращается
- Реле давления : нулевое приложенное давление
- Реле температуры : Температура окружающей (комнатной) температуры
- Реле уровня : пустой бак или бункер
- Реле потока : нулевой расход жидкости
Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе.Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока на замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, что он находится на полке. Схематические символы переключателей различаются в зависимости от назначения и срабатывания переключателя. Нормально открытый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое к закрытию при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при срабатывании. Обратите внимание на следующие символы:
Рисунок 9.16 Кнопочный переключательСуществует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально открытые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей эти две линии. Сравните два:
Рисунок 9.17 Общее обозначение переключающего контактаПереключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , чтобы его можно было спутать с символом конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом:
Рисунок 9.18 КонденсаторВ стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символах логики управления этот символ конденсатора используется для любого типа конденсатора , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов.
Рисунок 9.19 Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается с до происходит контакт со следующей позицией. Эта конфигурация называется «разрыв перед сборкой» . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно поворачивался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба контура цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Есть приложения, в которых недопустимо полностью разомкнуть цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть построена конструкция переключателя с перерывом перед разрывом , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4 в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкания переключателя между соседними позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение.Такой переключатель показан здесь: Рисунок 9.20.Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений со стационарными контактами, эти положения иногда называют бросками . Количество подвижных контактов иногда называют полюсов, . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если два идентичных однополюсных пятипозиционных переключателя механически соединить вместе так, чтобы они приводились в действие одним и тем же механизмом, весь узел будет называться «двухполюсным пятипозиционным переключателем»:
Рисунок 9.21 годВот несколько распространенных конфигураций коммутаторов и их сокращенные обозначения:
Рисунок 9.22 Двухполюсный, одноходовой Рисунок 9.23 Двухполюсный, двунаправленный Рисунок 9.24 Четырехполюсный, одноходовой- Нормальное состояние переключателя — это то, где он не сработал. Для переключателей процесса это состояние, в котором они находятся на полке без установки.
- Переключатель, который разомкнут, когда не сработал, называется нормально разомкнутым .Переключатель, который замкнут, когда не сработал, называется нормально замкнутым . Иногда термины «нормально открытый» и «нормально закрытый» обозначаются аббревиатурой N.O. и N.C. соответственно.
- Многопозиционные переключатели могут быть как размыкающими перед размыканием (наиболее распространенные), так и переключающими перед размыканием.
- «Полюса» переключателя относятся к количеству подвижных контактов, в то время как «ходы» переключателя относятся к количеству неподвижных контактов на один подвижный контакт.
Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях:
Рисунок 9.25 Рисунок 9.26 Рисунок 9.27Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с индукторами и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид .Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открывания дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть настолько полезное устройство, что оно заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо управлять большим током и / или напряжением с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять только доли ватта мощности, в то время как контакты, замкнутые или разомкнутые этим магнитным полем, могут передавать нагрузку в сотни раз больше энергии.
Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный (SPST) контакт прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел обмотка реле / якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае с переключателями, «нормальным» состоянием контактов реле является то состояние, когда катушка обесточена, точно так же, как вы могли бы найти реле на полке, не подключенное к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (примерно два дюйма в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции: показанные здесь блоки реле называются «восьмеричным», потому что они подключаются в соответствующие розетки, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле.Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются двоичными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того, чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток.Эта минимальная величина называется втягивающим током и аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако, когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется падающим током , и он аналогичен максимальному входному напряжению, которое вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис или разница между токами включения и отключения приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи включения и отключения (и напряжения) сильно различаются от реле к реле и указываются производителем.
- Соленоид — это устройство, которое вызывает механическое движение за счет подачи питания на катушку электромагнита.Подвижная часть соленоида называется якорем .
- Реле — это соленоид, настроенный для приведения в действие контактов переключателя, когда его катушка находится под напряжением.
- Втягивающий ток — это минимальная величина тока катушки, необходимая для приведения в действие соленоида или реле из его «нормального» (обесточенного) положения.
- Падение тока — это максимальный ток катушки, ниже которого включенное реле вернется в свое «нормальное» состояние.
Что такое реле с задержкой времени?
Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с задержкой по времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при включении катушки, отключении питания или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени.
Нормально открытый, закрытый по времени контакт
Во-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на — задержка:
Рисунок 9.28Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.29Нормально открытый контакт
с синхронизацией по времениЗатем у нас есть нормально разомкнутый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка:
Рисунок 9.30Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.31Нормально замкнутый, открытый по времени контакт
Затем у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта обычно замкнут, когда катушка обесточена (обесточена).Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания и направления. Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на — задержка:
Рисунок 9.32Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.33Нормально закрытый, закрытый по времени контакт
Наконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается при подаче питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка:
Рисунок 9.34Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.35 Использование реле с выдержкой временив промышленных логических схемах управления
Реле с выдержкой времениочень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:
- Управление мигающим светом (время включения, время выключения): два реле задержки времени используются вместе друг с другом для обеспечения включения / выключения с постоянной частотой импульсов контактов для подачи прерывистой энергии на лампу.
- Управление автоматическим запуском двигателя: Двигатели, которые используются для питания аварийных генераторов, часто оснащены элементами управления «автозапуском», которые позволяют автоматически запускать двигатель в случае отказа основного источника электроэнергии. Чтобы правильно запустить большой двигатель, сначала необходимо запустить некоторые вспомогательные устройства и дать им некоторое время для стабилизации (топливные насосы, масляные насосы предварительной смазки) перед подачей питания на стартер двигателя. Реле с выдержкой времени помогают упорядочить эти события для правильного запуска двигателя.
- Управление безопасной продувкой печи: перед тем, как топку сжигания можно будет безопасно зажечь, необходимо запустить воздушный вентилятор на определенное время, чтобы «очистить» топочную камеру от любых потенциально воспламеняющихся или взрывоопасных паров.Реле с выдержкой времени обеспечивает логику управления печью с этим необходимым элементом времени.
- Управление задержкой плавного пуска двигателя: вместо запуска больших электродвигателей путем переключения полной мощности из состояния полной остановки можно переключить пониженное напряжение для более «мягкого» пуска и уменьшения пускового тока. После заданной задержки времени (обеспечиваемой реле задержки времени) подается полная мощность.
- Задержка последовательности конвейерной ленты: когда несколько конвейерных лент расположены для транспортировки материала, конвейерные ленты должны запускаться в обратной последовательности (последняя первая и первая последняя), чтобы материал не складывался в стопу или медленно -подвижной конвейер.Чтобы разогнать большие ремни до полной скорости, может потребоваться некоторое время (особенно, если используются средства управления двигателем с плавным пуском). По этой причине на каждом конвейере обычно имеется схема задержки по времени, чтобы дать ему достаточно времени для достижения полной скорости ленты перед запуском следующей подачи конвейерной ленты.
Расширенные функции таймера
В более старых механических реле с выдержкой времени использовались пневматические датчики или поршневые / цилиндровые устройства, заполненные жидкостью, для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в под напряженный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала до тех пор, пока входное соединение остается запитан) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно).
Рисунок 9.36 Рисунок 9.37 Рисунок 9.38 Реле «сторожевого таймера»«Сторожевой» таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальная остановка выполнения программы из-за любого количества причин). Простой способ настроить такую систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «рециркуляции»).Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в том или ином состоянии. Через некоторое время реле сторожевого таймера отключится и сигнализирует о проблеме.
- Реле с выдержкой времени построены в следующих четырех основных режимах работы контактов:
- 1: нормально открытый, закрытый по времени. Сокращенно «NOTC», эти реле открываются сразу после обесточивания катушки и замыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально разомкнутыми контактами и задержкой включения .
- 2: нормально открытый, открытый по времени. Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально разомкнутыми контактами и задержкой выключения .
- 3: нормально закрытый, открытый по времени. Сокращенно «NCTO», эти реле замыкаются сразу после обесточивания катушки и размыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально замкнутыми контактами и задержкой включения .
- 4: нормально закрытый, закрытый по времени. Сокращенно «NCTC», эти реле открываются сразу после подачи питания на катушку и закрываются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально замкнутыми контактами и задержкой выключения .
- Одноразовые таймеры обеспечивают однократный контактный импульс заданной длительности для каждого включения катушки (переход от катушки от к катушке на ).
- Recycle Таймеры обеспечивают повторяющуюся последовательность импульсов включения-выключения до тех пор, пока катушка находится под напряжением.
- Watchdog Таймеры приводят в действие свои контакты только в том случае, если катушка не может непрерывно последовательно включаться и выключаться (включаться и выключаться) с минимальной частотой.
Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. В действительности схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все контакты переключателя и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с участием.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут обозначены «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком стыке или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок цепи с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы для многих различных устройств: на диаграммах — нагрузочное устройство (лампа, катушка реле, катушка соленоида и т. Д.).) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где расположена катушка реле внутри ступени, не имеет значения, какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 случайно соприкоснулся с землей, причем изоляция этого провода была стерта, так что оголенный провод вступил в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получить питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что произойдет с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, в то время как выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному проводу питания на лестничной диаграмме.
Рисунок 9.42 Рисунок 9.43 Рисунок 9.44- Релейные диаграммы (иногда называемые «релейной логикой») представляют собой тип электрических обозначений и символов, часто используемых для иллюстрации того, как электромеханические переключатели и реле связаны между собой.
- Две вертикальные линии называются «рельсами» и прикрепляются к противоположным полюсам источника питания, обычно 120 вольт переменного тока. L 1 обозначает «горячий» провод переменного тока, а L 2 — «нейтральный» (заземленный) провод.
- Горизонтальные линии на лестничной диаграмме называются «ступеньками», каждая из которых представляет уникальную параллельную ветвь цепи между полюсами источника питания.
- Обычно провода в системах управления маркируются цифрами и / или буквами для идентификации.Правило состоит в том, что все постоянно подключенные (электрически общие) точки должны иметь одну и ту же этикетку.
Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».Если мы будем использовать стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или запитанного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится горит, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа активируется, только если одновременно срабатывают контакт A и контакт B.Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба переключающих контакта замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не срабатывает, а срабатывает, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет исследована более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет, только если оба контакта задействованы одновременно. Аналогичным образом, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логического элемента:
- Параллельные контакты эквивалентны логическому элементу ИЛИ. Контакты серии
- эквивалентны логическому элементу AND.
- Нормально замкнутые контакты эквивалентны вентилю НЕ (инвертору).
Мы также можем создавать функции комбинационной логики, группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) эквивалентен комбинации нижнего элемента НЕ / И. Параллельное соединение между двумя ступенями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя запитать лампу либо ступенькой 1 , либо ступенью 2 . Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на лестничной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемом на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2» вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от такой сложной маркировки в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход любой логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим активировать нагрузку на основе инверсии или НЕ нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкает , таким образом обесточивая лампу. От переключателя A к катушке CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей к катушке CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.
- Параллельные контакты логически эквивалентны логическому элементу ИЛИ. Контакты серии
- логически эквивалентны логическому элементу И.
- Нормально замкнутые (Н.З.) контакты логически эквивалентны вентилю НЕ.
- Реле должно использоваться для инвертирования выхода функции логического элемента, в то время как простых нормально замкнутых переключающих контактов достаточно для представления инвертированного элемента входов .
Практическое применение логики переключателя и реле в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топочных печей. Для безопасного запуска горелок в большой печи система управления запрашивает «разрешение» от нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздуха от вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим , и каждый разрешающий контакт переключателя подключается последовательно, так что, если какой-либо из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все разрешительные условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы запитано больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещали бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «хороши», то есть все замкнуты. .Если какое-либо из разрешающих условий не выполнено, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии.Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к тому, что двигатель вращается в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 посылает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой и достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 находится под напряжением, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Аналогичным образом, включение M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы оснащены опцией механической блокировки : рычагом, соединяющим якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности можно по-прежнему использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.
- Переключающие контакты, установленные в ступени релейной логики, предназначенные для прерывания цепи, если определенные физические условия не выполняются, называются разрешающими контактами , потому что системе требуется разрешение от этих входов для активации. Контакты переключателя
- , предназначенные для предотвращения одновременного выполнения системой управления двух несовместимых действий (например, одновременное включение электродвигателя вперед и назад), называются блокировками , .
Защита вашего компрессора — эффективность нагрева и охлаждения
Реле с выдержкой времени для систем отопления, вентиляции и кондиционирования воздуха
Реле с выдержкой времени— отличный способ защитить ваш блок переменного тока от постоянного включения и выключения. Это может быть сделано для предотвращения механических проблем с HVAC, из-за которых кондиционер быстро запускается и останавливается — или в случае некоторых домашних хозяйств, где есть дети, которые любят играть с кнопками и тумблерами.
Получение различий между всеми легко доступными характеристиками с помощью реле задержки времени часто может быть сложной задачей.При создании цепей с использованием реле с выдержкой времени следует задавать такие вопросы, как: что срабатывает безжизненное реле времени, будет ли синхронизация сосредоточена на форме приложения или сбросе напряжения, когда реле результата срабатывает и т. Д.
Реле с выдержкой времени— это просто управляющие реле со встроенным в цепь отсчетом времени. Их функция — управлять событием по времени. Разница между реле и сообщением безжизненного времени заключается в том, когда контакты результата размыкаются и замыкаются: на реле управления это происходит, когда напряжение используется и исчезает с катушки; реле быстрого отключения, соединения могут размыкаться или замыкаться до или с течением времени.
Чаще всего реле с выдержкой времени запускаются или срабатывают одним из двух способов:
- приложение Insight Voltage
- открытие или закрытие результата по сигналу
Эти триггерные знаки могут быть одного из двух стилей:
- управляющее изменение (высохший контакт), то есть ограничительный выключатель, кнопка движения, смена поплавка и т. Д.
- напряжение (широко известное как результат питания).
Реле блокировки в любое время, которое создается для запуска с триггером переключения управления с сухим контактом, может быть повреждено, если на клеммы переключения триггера подается напряжение.Только предметы, у которых есть «причина питания», должны использоваться с напряжением в результате.
Чтобы лучше понять идею, необходимо изучить некоторые термины.
Insight Voltage — управляющее напряжение, подаваемое на клеммы Insight. Что касается функции, Insight Voltage либо запустит машину, либо подготовит ее к запуску всякий раз, когда будет применен результат.
Результат в сигнале для определенных функций синхронизации, результат используется для запуска системы после того, как было использовано напряжение Insight.Как помните выше, эту причину можно рассматривать либо как изменение управления (пересыхание контакта), либо как результат мощности (напряжение).
Выход (вес) — каждое реле с выдержкой времени имеет результат (механическое реле или сильное состояние), который открывается и закрывается для управления нагрузкой.
Примите во внимание, что человек должен подавать напряжение для питания деформации, изменяемой результирующими контактами этого реле задержки времени.