Как выглядит рубильник на однолинейной схеме. Какие бывают типы рубильников и их обозначений. Какие стандарты регламентируют обозначение рубильников на электрических схемах. Как правильно читать схемы с рубильниками.
Основные типы рубильников и их назначение
Рубильник — это коммутационный аппарат, предназначенный для неавтоматического включения и отключения электрических цепей. Существует несколько основных типов рубильников:
- Перекидные — позволяют переключать питание между разными цепями
- Разрывные — служат для подключения/отключения отдельных участков сети
- Реверсивные — применяются в трехфазных сетях для изменения направления вращения электродвигателей
Выбор типа рубильника зависит от конкретных задач и особенностей электрической схемы. Правильное обозначение рубильника на схеме позволяет однозначно определить его тип и функциональное назначение.
Стандарты обозначения рубильников на электрических схемах
Обозначение рубильников и других элементов на электрических схемах регламентируется следующими основными стандартами:

- ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем»
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения»
Данные стандарты устанавливают единые правила обозначения электротехнических устройств, в том числе различных типов рубильников. Это обеспечивает однозначность понимания схем всеми специалистами.
Особенности обозначения рубильника на однолинейной схеме
На однолинейной схеме рубильник обозначается упрощенно, так как такие схемы предназначены для общего представления о составе оборудования и принципе его соединения. Основные особенности обозначения:
- Рубильник изображается одной линией вне зависимости от числа полюсов
- Положение рубильника (включено/отключено) показывается наклоном линии
- Для перекидного рубильника добавляется вторая линия, показывающая альтернативное положение
- Реверсивный рубильник обозначается с добавлением точки посередине
Такое упрощенное обозначение позволяет быстро считывать информацию о наличии и типе рубильника в конкретном месте схемы.

Как правильно читать обозначение рубильника на схеме?
Для правильного чтения обозначения рубильника на электрической схеме необходимо:
- Определить тип схемы (однолинейная, многолинейная и т.д.)
- Найти условное обозначение рубильника на схеме
- По форме обозначения определить тип рубильника
- Обратить внимание на положение контактов (включено/отключено)
- Проанализировать связи рубильника с другими элементами схемы
Умение быстро и правильно читать обозначения рубильников на схемах — важный навык для электротехнического персонала. Это позволяет оперативно разбираться в работе электроустановок.
Отличия обозначений рубильника на разных типах схем
Обозначение рубильника может отличаться в зависимости от типа электрической схемы:
- На однолинейной схеме — максимально упрощенное обозначение
- На принципиальной схеме — более детальное изображение контактной системы
- На монтажной схеме — обозначение с указанием габаритов и способа крепления
- На функциональной схеме — обозначение в виде функционального блока
Выбор типа схемы и соответствующего обозначения рубильника зависит от назначения документации и степени требуемой детализации.

Обозначение многополюсных рубильников на схемах
Многополюсные рубильники (двух-, трех- и более полюсные) имеют свои особенности обозначения на электрических схемах:
- На однолинейной схеме обозначаются одной линией с указанием числа полюсов
- На многолинейной схеме показываются все полюса рубильника
- Механическая связь между полюсами обозначается штриховой линией
- Для синхронного переключения полюсов добавляется объединяющая планка
Правильное обозначение многополюсных рубильников позволяет однозначно определить схему коммутации трехфазных и других многофазных цепей.
Дополнительные обозначения на схемах с рубильниками
Кроме самого рубильника, на электрических схемах могут присутствовать дополнительные обозначения:
- Буквенно-цифровые обозначения (маркировка) рубильника
- Номинальные параметры (ток, напряжение)
- Обозначения вспомогательных контактов
- Указание способа управления (ручное, дистанционное)
- Обозначения блокировок и защитных устройств
Эти дополнительные обозначения предоставляют важную информацию для правильного выбора, монтажа и эксплуатации рубильников в составе электроустановок.

Как обозначается рубильник на однолинейной схеме
Условные графические обозначения (УГО) элементов электрических схем проектов электроснабжения необходимы для упрощения понимания содержания документации. Символы и УГО на однолинейных схемах электроснабжения помогают проектировщикам и монтажникам без применения дополнительных манипуляций правильно читать графические чертежи.
Умение понимать обозначения на электрических схемах – одна из ключевых составляющих, без которой невозможно стать грамотным специалистом. На начальном этапе все проектировщики, монтажники, а также инженеры сектора ПТО и сметчики должны изучить техническую документацию, ознакомиться с действующими ГОСТами для составления и понимания содержания проектов. Главный документ ГОСТ 2.702-2011 – правила составления электросхем в единой системе конструкторской документации (ЕСКД).
Однолинейная схема электроснабжения
Условно-графические обозначения в электросхемах ГОСТ незаменимы при проектировании вводно-распределительных устройств, распределительных подстанций, шкафов управления и учета, этажных щитов, блок-схем и схем замещения.
Полные данные по условно-графическим и буквенным обозначениям можно скачать в файле.
Обозначения розеток и выключателей на чертежах
Проект внутреннего электроснабжения – совокупность схем и чертежей силовых розеточных сетей и сети освещения. В электропроводках используют однополюсные, двухполюсные и трехполюсные выключатели. Бывают для открытой и скрытой проводки, с различными степенями защиты – для нормальных условий эксплуатации, влаго- пылезащищенные и т.д. Трех- и двухклавишные устройства также имеют визуальные различия на электросхемах. что важно при составлении ведомостей потребности материалов. В противном случае из-за невнимательности инженера повышается риск закупки неподходящего либо более дорогостоящего оборудования.
Также узел может быть совмещенным – одна розетка и несколько бытовых выключателей, сдвоенные включатели или розетки. УГО переключателя схоже на обычный выключатель, имеет два направления действия, что отображено на схемах.
Обозначение выключателей на схемах
Распределительные коробки на схеме обозначаются аналогично.
Обозначения выключателей на схемах
Выключатели – самое распространенное устройство в электротехнике, т.к. выполняет главные функции – включения и выключения цепей.
На электросхемах подстанций всегда указываются, какие цепи в нормальном режиме должны быть разомкнуты (резервные), а какие запитаны – основные линии.
Магнитные контакторы имеет схожее с автоматическим выключателем изображение. Ввиду различий принципа действия и более широко функционала имеет соответствующее УГО.
Предохранители конструктивно и технически отличаются от автоматических выключателей. Имеют более широкий спектр применения – чаще используются для электроснабжения промышленных объектов ввиду более высокой надежности и меньшей рыночной стоимости. На однолинейных схемах выполнены в виде прямоугольника с продольной чертой посреди – изображение плавкой вставки.
Обозначение трехполюсного рубильника на однолинейной схеме имеет кардинальные отличия от однополюсных моделей.
На принципиальных электросхемах содержится другая информация и содержат другую элементную базу. Для правильного чтения технической документации необходимо помнит разницу между однолинейной и принципиальной электросхемами: последняя содержит информацию о наличии элементов, без указания их физического расположения.
Как обозначаются трансформаторы на схемах
Для каждого вида трансформатора есть отдельное УГО. Используются на первичных, однолинейных схемах, опросных листах, листах расчетов токов короткого замыкания и т.д.
Обозначение заземлений на схемах
Заземление на электросхемах выполняют в зависимости от типа. Заземляющие контуры используются абсолютно на всех электрических схемах, т.к. главным свойством нормальной работы электросети является ее безопасность.
Общее заземление |
Чистое (бесшумное) заземление |
Защитное заземление |
Буквенные обозначения на электрических схемах
На электросхемах применяется буквенная аббревиатура на латинице, где виды элементов указывают одной буквой. Многобуквенная кодировка используется для уточнения кода конкретного элемента. Первая буква в таких обозначениях всегда указывает на тип устройства.
Устройства общего назначения имеют код A. К ним относят мазеры усилители различного рода и т.д.
Буквой B на электросхемах выполняют преобразователи неэлектрической величины в электрическую (микрофоны, фотоэлементы, тепловые датчики, пьезоэлементы, датчики давления, датчики скорости, звукосниматели, детекторы).
Схемы интегральные, микросборки обозначают символом D. К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации.
Элементы различного назначения (электрические лампочки, пиропатроны, элементы нагрева) идентифицируют символом E.
Предохранители, разрядники, дискретные элементы защиты по току мгновенного и инерционного действия, по напряжению и др. кодируются буквой F.
G – батареи и другие источники питания.
H – индикаторы и сигнальные элементы (приборы световой, символьной и звуковой сигнализации).
Буквой K обозначают реле на схеме (токовые, электротепловые, указательные) времени и напряжения, магнитные пускатели.
Дроссели и катушки индуктивности имеют обозначение L.
M – буквенное обозначение двигателей постоянного и переменного тока.
Измерительные приборы (измерители импульсов, амперметры, счетчики активной и реактивной электроэнергии, вольтметры, фиксаторы времени, омметры, ваттметры) идентифицируют буквой P, за исключением аббревиатуры PE.
Q – обозначения в электротехнике короткозамыкателей, разъединителей и автоматов в силовых цепях.
На однолинейных схемах резисторы обозначают символом R (шунты, варисторы, терморезисторы, потенциометры).
S – обозначение на схеме автоматических выключателей без контактов силовых цепей, коммутационных устройств (кнопочные выключатели, пакетные переключатели).
T – трансформаторы (тока, напряжения), автотрансформаторы, электромагнитные стабилизаторы.
U – преобразователи (модуляторы и демодуляторы), устройства связи, выпрямители, инверторы, генераторы частоты.
V – полупроводники (диоды, тиристоры, транзисторы), электровакуумные приборы.
Антенны, элементы сверх высоких частот (ответвители, короткозамыкатели, вентили, фазовращатели, трансформаторы) имеют условный символ W.
X – контактные соединения и соединители (гнезда, штыри, токосъемники).
Устройства механические с электромагнитным приводом (электромагниты, тормоза, муфты, электромагнитные плиты и патроны) идентифицируются символом Y.
Z – фильтры, ограничители.
Символьное обозначение применяется на равне с графическим, на узкопрофильных электросхемах используются оба типа одновременно. Буквенные обозначения элементов на зарубежных схемах аналогичны. Для лучшего запоминания каждому специалисту необходима своя таблица электрика, с описаниями именно тех элементов, которые используются в работе.
Условные обозначения элементов электрических схем
Стандартные условные графические и буквенные обозначения элементов электрических схем
Таблица. Условные обозначения в электрических схемах
Резистор, активное сопротивление
Генератор переменного тока, питающая система
Электродвигатель переменного тока
Силовой выключатель (на напряжение выше 1 кВ)
Сборные шины с присоединениями
Автоматический выключатель на напряжение до 1 кВ
Контактор, магнитный пускатель
Трансформатор тока нулевой последовательности
Трехфазный или три однофазных трансформатора напряжения
КА, KV, KT, KL
КА, KV, KT, KL
Контакт замыкающий реле
КА, KV, KT, KL
Контакт размыкающий реле
Контакт реле времени, замыкающий с выдержкой на срабатывание
Контакт реле времени, замыкающий с выдержкой на возврат
Прибор измерительный показывающий
Прибор измерительный регистрирующий
Выше представлены условные обозначения в электрических схемах.
2007-2019 © baurum.ru
All rights reserved.
Строительство и ремонт
О строительстве – для строителей, застройщиков,
заказчиков, проектировщиков, архитекторов
Каждый специалист-электротехник должен обладать навыками чтения электрических схем. При помощи специальных условных знаков легко отображаются любые типы розеток, выключателей, коммутационной аппаратуры, электроприборов и оборудования. В нормативных документах предусмотрено и обозначение перекидного рубильника на схеме. Отечественные и зарубежные стандарты практически не отличаются, поэтому данные устройства свободно идентифицируются в проектной документации.
Нормативные документы и типы электрических схем
Электрические схемы являются наиболее востребованными при составлении проектов и выполнении практических работ. Их основой служат многочисленные варианты условного – графического обозначения – УГО, определяемые ГОСТ 2.702-2011. Этот документ известен среди специалистов под названием «ЕСКД. Правила выполнения электрических схем. Он создан на основе нескольких норм и правил, определяемых другими видами ГОСТ.
Все представленные нормативы отображаются в виде четких требований, касающихся подробностей всех типов электрических схем. Документ содержит не только перечень обозначений, касающийся приборов и изделий, но и отображает взаимные связи между ними, а также основные принципы работы каждого устройства, использующего электроэнергию. Здесь же определяются правила, в соответствии с которыми можно узнать, как обозначается то или иной вид контактных соединений, особенности в маркировке проводников, буквенные и графические отображения используемых элементов.
В практической деятельности электротехники пользуются тремя основными видами электрических схем.
Монтажная схема. Как правило отображается в виде печатной платы с точным указанием мест расположения деталей и элементов. С помощью специальных знаков указываются их номинальные значения, принципы соединений, креплений и подводки к соседним компонентам. В электрических схемах, отображающих проводку жилого помещения, точно показываются места установки розеток и выключателей, осветительных и других приборов. Здесь же наносятся линии кабелей и проводников, с указанием их технических характеристик.
На принципиальных схемах (рис. 1), наносятся подробные обозначения всех контактных соединений и других связей, а также параметры элементов и сетей. Полная схема отображает процессы управления и контроля над компонентами и всю силовую цепь. Линейная схема отображает только цепь, детали которой наносятся на отдельные листы.
Функциональные схемы (рис. 2) составляются в виде основных узлов, используемых во всей цепи или в отдельно взятом приборе. В этом случае не указываются в деталях физические размеры и прочие параметры деталей. Они обозначаются как отдельные блоки с необходимой маркировкой, дополненные связями с другими составляющими цепи или устройства.
Отображение электрических сетей на разных схемах
Перекидные рубильники отображаются на разных электрических схемах, в том числе и на однолинейной схеме, каждая из которых имеет свои специфические особенности. Знание этих отличий позволит правильно прочитать и расшифровать нанесенные изображения, безошибочно определить то или иное устройство. Подобные схемы могут быть многолинейными и однолинейными.
Наиболее подробно состояние электрической цепи отображается в виде графического чертежа на многолинейных схемах. Поскольку передача электричества осуществляется по трехфазной сети, то и на чертежах фиксируется каждая фаза со всеми подключенными устройствами и оборудованием. Такие схемы получили название трехлинейных.
В четырехлинейных схемах, используемых в сетях с низким напряжением, к фазным проводам добавляется нулевой проводник PEN или N. При наличии провода защитного заземления РЕ, схема превращается в пятилинейную.
В соответствии с Правилами устройства электроустановок, однофазные сети оборудуются фазным, нулевым и заземляющим проводником. Эти три провода составляют трехлинейную схему. При отсутствии заземления нередко обходятся двумя проводами – фазным и нулевым, собранными в двухлинейную схему. Такая же схема используется в сетях постоянного тока, где используется два провода – плюс и минус.
В случае слишком разветвленных сетей, использование подробных многолинейных схем становится не совсем удобным. Для этого предусмотрены однолинейные схемы, на которых трехфазная электрическая сеть отображается в виде одного общего проводника.
Основные виды рубильников
Согласно электротехнической терминологии, рубильник относится к устройствам, обеспечивающим течение по цепи электрического тока. Его отличительной особенностью является уникальная система, действие которой направлено на быстрый разрыв контакта. Все функции устройства осуществляются ручным приводом, надежно отключающим напряжение во время выполнения ремонтных и профилактических работ.
Существует несколько типов рубильников, среди которых можно выделить следующие:
- Перекидные (рис. 1). С помощью этих устройств напряжение перекидывается с одной цепи на другую. В основном они используются, когда возникает необходимость переключить подачу тока с аварийного участка цепи на рабочий. Для установки приборов предусматриваются специальные щитовые помещения. Данный тип рубильников имеет высокие эксплуатационные и технические показатели.
- Разрывные (рис. 2). Подключается к общим выходным цепям, идеально подходят для частных домов, квартир, офисных зданий. С помощью этого прибора осуществляется подключение какого-либо объекта к общей сети. Устанавливаются в электрическом щите с выводом наружу переключающего рычага. На рынке представлены широким модельным рядом.
- Реверсивные (рис. 3). Используются в трехфазных электрических сетях, обеспечивая их нормальное функционирование. С помощью этих приборов нагрузка распределяется между линиями, а ток бесперебойно поступает потребителям. Установка рубильников выполняется в горизонтальном или вертикальном положении, все переключения производятся вручную. Отдельные виды приборов могут управляться дистанционно.
Основной деталью рубильника является поворотная контактная система. Конструкция подвижного контакта представляет собой нож или подпружиненную вилку, а неподвижного – нож или две пластины, подпружиненные посредством стального рассеченного кольца. Кроме того, рубильник оборудуется рукояткой или ручным приводом, контактными выводами для подключения проводов. Разрывной рубильник на 1 направление с тремя полюсами оборудуется тремя входными и тремя выходными контактами, а у перекидного изделия на 2 направления – шесть входных и шесть выходных контактов. Для каждого полюса предусмотрены 1 или 2 дугогасительные камеры, в соответствии с количеством направлений.
Конструкция контактной группы не позволяет подвижному контакту самопроизвольно выпадать под действием вибрации или под собственным весом. Для всех переключений требуется только физическая сила персонала.
Перекидные рубильники на электрических схемах
Существуют различные варианты отображения перекидных и других рубильников. Разница между ними зависит от параметров электрической сети и конкретного места в схеме каждого из них. При использовании однолинейной схемы, обозначение на схеме прибора выполняется так, как это показано на рисунке 1. Такой же вариант используется в многолинейной схеме, когда рубильник устанавливается на какую-то одну фазу.
На рисунке 2 отображается трехфазный рубильник, обеспечивающий поочередное включение и отключение фаз. Точно такие же рубильники (рис. 3) оборудуются специальной планкой, позволяющей одновременно замыкать все три фазы. Эта важная деталь обязательно отображается на трехлинейных схемах и вариантах с большим количеством линий. Данная схема подходит и для двухфазных рубильников, когда отображается два прибора, соединяемых общей планкой. На рисунке 4 хорошо просматривается обозначение перекидного рубильника на схеме в однолинейном варианте. В этом случае вместо трех фаз указана всего лишь одна, которая называется условно средней.
Существуют варианты (рис. 5), обозначений рубильника на однолинейной схеме, в которой она превращается в многолинейную. Такое изображение используется при необходимости более подробного рассмотрения некоторых участков цепи.
Отдельное обозначение предусмотрено для реверсивных рубильников перекидного типа, устанавливаемых вместе с трехфазными асинхронными двигателями. Данные приборы характеризуются наличием трех положений, в том числе – 2 положения на включение и 1 – на отключение. Эти обозначения применяются чаще всего, но при использовании редких видов сетевых соединений, в нормативной документации вполне возможно подобрать УГО или скомбинировать наиболее подходящий вариант.
Даже если вы рисуете схему своими руками, то вы должны придерживаться определенных норм. Эти нормы вы можете увидеть на наших картинках. Перед вами обозначение рубильника на однолинейной схеме, либо на многолинейных схемах при установке рубильника только на одной из фаз. | |
Разбирая рубильники, мы уже отмечали, что в трехфазном исполнении они могут как содержать планку крепления, обеспечивающую одновременное замыкание всех трех фаз, так и не иметь ее. На данном фото представлен рубильник с возможностью пофазного отключения. | |
Если трехфазный рубильник имеет данную планку, то это обязательно должно быть отраженно на схеме. Поэтому на всех трех и более линейных схемах, эта планка отображается. То есть, перед нами рубильник с одновременной коммутацией всех трех фаз. Внимание: Тут хотелось бы отметить, что подобным образом отображаются и двухфазные рубильники. На которых соответственно отображается два рубильника, соединенных планкой. Дабы не засорять нашу таблицу, мы не будем указывать такое обозначение рубильника на схеме. | |
Отдельным вариантом является обозначение так называемых перекидных рубильников. Это рубильники, которые имеют три положения – «включено» положение 1, «включено» положение 2 и «отключено». Как обозначается такой рубильник на трехлинейной схеме, вы можете видеть на приведенном рисунке. | |
Обозначение на схемах рубильника перекидного типа для однолинейных схем, представлено на картинке слева. Отличие состоит лишь в том, что указываются не все три фазы, а лишь одна условно средняя. | |
Мы уже говорили, что в некоторых случаях вы можете встретить переход однолинейной схемы в многолинейную. Приведенное обозначение рубильника на электрической схеме, как раз и является таким вариантом. |
Изображение рубильника на однолинейной схеме. Секреты зарубежных радиосхем
Наряду с выключателями и переключателями в радиоэлектронной технике для дистанционного управления и различных развязок широко применяют электромагнитные реле (от французского слова relais ). Электромагнитное реле состоит из электромагнита и одной или нескольких контактных групп. Символы этих обязательных элементов конструкции реле и образуют его условное графическое обозначение .
Электромагнит (точнее, его обмотку) изображают на схемах в виде прямоугольника с присоединенными к нему линиями электрической связи, символизирующими выводы. Условное графическое обозначение контактов располагают напротив одной из узких сторон символа обмотки и соединяют с ним линией механической связи (пунктирной линией). Буквенный код реле — буква K (K1 на рис.6.1 )
Выводы обмотки для удобства допускается изображать с одной стороны (см. рис. 6.1 , К2), а символы контактов — в разных частях схемы (рядом с УГО коммутируемых элементов). В этом случае принадлежность контактов тому или иному реле указывают обычным образом в позиционном обозначении условным номером контактной группы (К2.1, К2.2, K2.3).
Внутри условного графического обозначения обмотки стандарт допускает указывать ее параметры (см. рис. 6.1 , КЗ) или конструктивные особенности. Например, две наклонные линии в символе обмотки реле К4 означают, что она состоит из двух обмоток.
Поляризованные реле (они обычно управляются изменением направления тока в одной или двух обмотках) выделяют на схемах латинской буквой Р, вписываемой в дополнительное графическое поле УГО и двумя жирными точками (см. рис. 6.1 , К5). Эти точки возле одного из выводов обмотки и одного из контактов такого реле означают следующее: контакт, отмеченный точкой, замыкается при подаче напряжения, положительный полюс которого приложен к выделенному таким же образом выводу обмотки. Если необходимо показать, что контакты поляризованного реле остаются замкнутыми и после снятия управляющего напряжения, поступают так же, как и в случае с кнопочными переключателями (см. ): на символе замыкающего (или размыкающего) контакта изображают небольшой кружок. Существуют так же реле, в которых магнитное поле, создаваемое управляющим током обмотки, воздействует непосредственно на чувствительные к нему (магнитоуправляемые) контакты, заключенные в герметичный корпус (отсюда и название геркон — ГЕРметизированный КОНтакт). Чтобы отличить контакты геркона от других коммутационных изделий в его УГО иногда вводят символ герметичного корпуса — окружность. Принадлежность к конкретному реле указывают в позиционном обозначении (см. рис. 6.1 , К6.1). Если же геркон не является частью реле, а управляется постоянным магнитом, его обозначают кодом автоматического выключателя — буквами SF (рис. 6.1, SF1).
Большую группу коммутационных изделий образуют всевозможные соединители. Наиболее широко используют разъемные соединители (штепсельные разъемы, см. рис. 6.2 ). Код разъемного соединителя — латинская буква X. При изображении штырей и гнезд в разных частях схемы в позиционное обозначение первых вводят букву Р (см. рис. 6.2 , ХР1), вторых — S (XS1).
Высокочастотные (коаксиальные) соединители и их части обозначают буквами XW (см. рис. 6.2 , соединитель XW1, гнезда XW2, ХW3). Отличительный признак высокочастотного соединителя — окружность с отрезком касательной линии, параллельной линии электрической связи и направленной в сторону соединения (XW1). Если же с другими элементами устройства штырь или гнездо» соединены коаксиальным кабелем, касательную продляют и в другую сторону (XW2, XW3). Соединение корпуса соединителя и оплетки коаксиального кабеля с общим проводом (корпусом) устройства показывают присоединением к касательной (без точки!) линии электрической связи со знаком корпуса на конце (XW3).
Разборные соединения (с помощью винта или шпильки с гайкой и т. п.) обозначают на схемах буквами XT, а изображают — небольшим кружком (см. рис. 6.2; ХТ1, ХТ2, диаметр окружности — 2 мм). Это же условное графическое обозначение используют и в том случае, если необходимо показать контрольную точку.
Передача сигналов на подвижные узлы механизмов часто осуществляется с помощью соединения, состоящего из подвижного контакта (его изображают в виде стрелки) и токопроводящей поверхности, по которой он скользит. Если эта поверхность линейная, ее показывают отрезком прямой линии с выводом в виде ответвления у одного из концов (см. рис. 6.2 , X1), а если кольцевая или цилиндрическая — окружностью {X2).
Принадлежность штырей или гнезд к одному многоконтактному соединителю показывают на схемах линией механической связи и нумерацией в соответствии с нумерацией на самих соединителях (рис. 6.3 , XS1, ХР1). При изображении разнесенным способом условное буквенно-цифровое позиционное обозначение контакта составляют из обозначения, присвоенного соответствующей части соединителя и его номера (XS1.1 — первое гнездо розетки XS1; ХР5,4 — четвертый штырь вилки ХР6 и т. д.).
Для упрощения графических работ стандарт допускает заменять условное графическое обозначение контактов розеток и вилок многоконтактных соединителей небольшими пронумерованными прямоугольниками с соответствующими символами (гнезда или штыря) над ними (см. рис. 6.3 , XS2, ХР2). Расположение контактов в символах разъемных соединителей может быть любым — здесь все определяется начертанием схемы; неиспользуемые контакты на схемах обычно не показывают.
Аналогично строятся условные графические обозначения многоконтактных разъемных соединителей, изображаемых в состыкованном виде (рис. 6.4 ). На схемах разъемные соединители в таком виде независимо от числа контактов обозначают одной буквой X (исключение — высокочастотные соединители). В целях еще большего упрощения графики стандарт допускает обозначать многоконтактный соединитель одним прямоугольником с соответствующими числом линий электрической связи и нумерацией (см. рис. 6.4 , X4).
Для коммутации редко переключаемых цепей (делителей напряжения с подборными элементами, первичных обмоток трансформаторов сетевого питания и т. п.) в электронных устройствах применяют перемычки и вставки. Перемычку, предназначенную для замыкания или размыкания цепи, обозначают отрезком линии электрической связи с символами разъемного соединения на концах (рис. 6.5 , X1), для переключения — П-образной скобой (X3). Наличие на перемычке контрольного гнезда (или штыря) показывают соответствующим символом {X2).
При обозначении вставок-переключателей, обеспечивающих более сложную коммутацию, используют способ для изображения переключателей. Например, вставка на рис. 6.5 , состоящая из розетки XS1 и вилки XP1, работает следующим образом: в положении 1 замыкатели вилки соединяют гнезда 1 и 2, 3 и 4, в положении 2 — гнезда 2 и 3, 1 и 4, в положении 3 — гнезда 2 и 4. 1 и 3.
Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.
Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.
Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?
Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .
Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.
Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.
Обозначение узо на однолинейной схеме
Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.
Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.
В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .
На какие нормативные документы следует ссылаться?
Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:
- — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
- — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».
Графическое обозначение УЗО на схеме
Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.
Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.
Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:
Или к примеру УЗО от Schneider Electric:
Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.
По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.
Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.
В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.
Как обозначается дифавтомат на схеме?
По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.
Буквенное обозначение узо на электрических схемах
Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.
Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.
Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .
Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.
Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.
То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.
Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.
Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий ».
Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.
Какие можно сделать выводы из вышеописанного?
Как обозначается узо на однолинейной схеме — пример реального проекта
Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.
Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:
Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:
Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:
Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.
Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.
Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).
Планирование размещения электрической проводки в помещении является серьёзной задачей, от точности и правильности выполнения которой зависят качество последующего её монтажа и уровень безопасности людей, находящихся на этой территории. Для того чтобы электропроводка была размещена качественно и грамотно, требуется предварительно составить подробный план.
Он представляет собой чертёж, выполненный с соблюдением выбранного масштаба, в соответствии с планировкой жилья, отражающий расположение всех узлов электропроводки и основных её элементов, таких, как распределительные группы и однолинейная принципиальная схема. Только лишь после того, как чертёж составлен можно вести речь о подключении электрики.
Однако, важно не только иметь в распоряжении такой чертёж, надо ещё и уметь его читать. Каждый человек, имеющий дело с работами, предполагающими необходимость проведения электромонтажа, должен ориентироваться в условных изображениях на схеме, обозначающих различные элементы электрооборудования. Они имеют вид определённых символов и их содержит практически каждая электрическая схема.
Но сегодня речь пойдет не о том, как начертить план схему, а о том, что на ней отображено. Скажу сразу сложные элементы, такие как резисторы, автоматы, рубильники, переключатели, реле, двигатели и т.п. мы рассматривать не будем, а рассмотрим лишь те элементы которые встречаются любому человеку каждый день т.е. обозначение розеток и выключателей на чертежах. Я думаю, это будет интересно всем.
По каким документам регламентируется обозначение
Разработанные ещё в советское время ГОСТы чётко определяют соответствие на схеме и в конструкторской документации элементов электрической цепи определённым установленным графическим символам. Это необходимо для ведения общепринятых записей, содержащих информацию о конструкции электрической системы.
Роль графических обозначений выполняют элементарные геометрические фигуры: квадраты, окружности, прямоугольники, точки и линии. В разнообразных стандартных сочетаниях эти элементы отображают все составные части электроприборов, машин и механизмов, применяющихся в современной электротехнике, а также принципы управления ними.
Нередко возникает естественный вопрос о нормативном документе, регламентирующем все вышеизложенные принципы. Методы построения условных графических изображений электрической проводки и оборудования на соответствующих схемах определяет ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах». Из него можно узнать, как обозначаются розетки и выключатели на электрических схемах .
Обозначение розеток на схеме
Нормативная техническая документация даёт конкретное обозначение розетки на электрических схемах. Её общий схематичный вид представляет собой полукруг, от выпуклой части которого вверх отходит черта, её внешний вид и определяет тип розетки. Одна черта — двухполюсная розетка, две — сдвоенная двухполюсная, три, имеющие вид веера, — трёхполюсная розетка.
Подобные розетки характеризуются степенью защиты в диапазоне IP20 — IP23. Наличие заземления обозначается на схемах плоской чертой, параллельной центру половины окружности, что отличает обозначения всех розеток открытых установок.
В том случае если установка скрытая, схематические изображения розеток меняются посредством добавления ещё одной черты в центральной части полукруга. Она имеет направление от центра к черте, обозначающей число полюсов розетки.
Сами розетки при этом вмуровываются в стену, уровень их защиты от воздействия влаги и пыли находится в диапазоне, приведенном выше (IP20 — IP23). Стена не становится от этого опасной, поскольку все части, проводящие ток, надёжно скрыты в ней.
На некоторых схемах обозначения розеток имеют вид чёрного полукруга. Это влагостойкие розетки, степень защиты оболочки которых IP 44 — IP55. Допускается их внешняя установка на поверхностях зданий, выходящих на улицу. В жилых помещениях такие розетки устанавливаются во влажных и сырых помещениях, например ванные комнаты и душевые помещения .
Обозначение выключателей на электрических схемах
Все типы выключателей имеют схематическое изображение в виде окружности с чертой в верхней части. Окружность с чёрточкой, содержащей крючок на конце, обозначает одноклавишный выключатель освещения открытой установки (степень защиты IP20 — IP23). Два крючка на конце чёрточки означают двухклавишный выключатель, три — трёхклавишный.
Если на схематическом обозначении выключателя над чёрточкой ставится перпендикулярная линия, речь идёт о выключателе скрытой установки (степень защиты IP20 — IP23). Линия одна — выключатель однополюсный, две — двухполюсный, три — трёхполюсный.
Окружностью чёрного цвета обозначается влагостойкий выключатель открытой установки (степень защиты IP44 — IP55).
Окружность, пересекаемая линией с чёрточками на концах, применяется для изображения на электрических схемах проходных выключателей (переключателей) с двумя положениями (IP20 — IP23). Изображение однополюсного переключателя напоминает зеркальное отображение двух обычных. Влагостойкие переключатели (IP44 — IP55) обозначаются на схемах в виде закрашенной окружности.
Как обозначается блок выключателей с розеткой
Для экономии места и с целью компоновки в общем блоке устанавливают розетку с выключателем или несколько розеток и выключатель. Наверное, многие такие блоки встречали. Такое размещение коммутационных аппаратов очень удобно, так как находится в одном месте, к тому же при монтаже электропроводки можно сэкономить на штробах (провода на выключатель и розетки прокладываются в одной штробе).
В общем, компоновка блоков может быть любой и все как говорится, зависит от вашей фантазии. Можно установить блок выключателей с розеткой, несколько выключателей или несколько розеток. В данной статье не рассмотреть в таких блоках я просто не имею права.
Итак, первый из них блок розетка выключатель. Обозначение для скрытой установки.
Второй более сложный, блок состоит из одноклавишного выключателя, двухклавишного выключателя и розетки с заземлением.
Последнее обозначения розеток и выключателей в электрических схемах отображено в виде блока два выключателя и розетка.
Для наглядности представлен лишь один небольшой пример, собрать (начертить) можно любую комбинацию. Еще раз повторюсь все зависит от вашей фантазии).
Человек, не знающий графического обозначения элементов радиосхемы, никогда не сможет её «прочесть». Этот материал предназначен для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал встречается очень редко. Именно этим он и ценен. В разных изданиях встречаются «отклонения» от государственного стандарта (ГОСТа) в графическом обозначении элементов. Эта разница важна только для органов государственной приёмки, а для радиолюбителя практического значения не имеет, лишь бы был понятен тип, назначение и основные характеристики элементов. Кроме того, в разных странах и обозначение может быть разным. Поэтому, в этой статье приводятся разные варианты графического обозначения элементов. Вполне может быть, что здесь вы увидите не все варианты обозначения.
Любой элемент на схеме имеет графическое изображение и его буквенно-цифровое обозначение. Форма и размеры графического обозначения определены ГОСТом, но как я писал ранее, не имеют практического значения для радиолюбителя. Ведь если на схеме, изображение резистора будет по размеру меньше чем по ГОСТам, радиолюбитель не перепутает его с другим элементом. Любой элемент обозначается на схеме одной, или двумя буквами (первая обязательно — прописная), и порядковым номером на конкретной схеме. Например R25 обозначает, что это резистор (R), и на изображённой схеме – 25-й по счёту. Порядковые номера, как правило, присваиваются сверху вниз и слева направо. Бывает, когда элементов не больше двух десятков, их просто не нумеруют. Встречается, что при доработках схем, некоторые элементы с «большим» порядковым номером могут стоять не в том месте схемы, по ГОСТу – это нарушение. Явно, заводскую приёмку подкупили взяткой в виде банальной шоколадки, или бутылкой необычной формы дешёвого коньяка. Если схема большая, то найти элемент, стоящий не по порядку бывает затруднительно. При модульном (блочном) построении аппаратуры, элементы каждого блока имеют свои порядковые номера.
Графическое обозначение (варианты) | Наименование элемента | Краткое описание элемента |
Элемент питания | Одиночный источник электрического тока, в том числе: часовые батарейки; пальчиковые солевые батарейки; сухие аккумуляторные батарейки; батареи сотовых телефонов | |
Батарея элементов питания | Набор одиночных элементов, предназначенный для питания аппаратуры повышенным общим напряжением (отличным от напряжения одиночного элемента), в том числе: батареи сухих гальванических элементов питания; аккумуляторные батареи сухих, кислотных и щелочных элементов | |
Узел | Соединение проводников. Отсутствие точки (кружочка) говорит о том, что проводники на схеме пересекаются, но не соединяются друг с другом – это разные проводники. Не имеет буквенно-цифрового обозначения | |
Контакт | Вывод радиосхемы, предназначенный для «жёсткого» (как правило — винтового) подсоединения к нему проводников. Чаще используется в больших системах управления и контроля электропитанием сложных многоблочных электросхем | |
Гнездо | Соединительный легкоразъёмный контакт типа «разъём» (на радиолюбительском сленге — «мама»). Применяется преимущественно для кратковременного, легко разъединяемого подключения внешних приборов, перемычек и других элементов цепи, например в качестве контрольного гнезда | |
Розетка | Панель, состоящая из нескольких (не менее 2-х) контактов «гнездо». Предназначена для многоконтактного соединения радиоаппаратуры. Типичный пример – бытовая электророзетка «220В» | |
Штекер | Контактный легкоразъёмный штыревой контакт (на сленге радиолюбителей — «папа»), предназначенный для кратковременного подключения к участку электрорадиоцепи | |
Вилка | Многоштеккерный разъем, с числом контактов не менее двух предназначенный для многоконтактного соединения радиоаппаратуры. Типичный пример — сетевая вилка бытового прибора «220В» | |
Выключатель | Двухконтактный прибор, предназначенный для замыкания (размыкания) электрической цепи. Типичный пример – выключатель света «220В» в помещении | |
Переключатель | Трёхконтактный прибор, предназначенный для переключения электрических цепей. Один контакт имеет два возможных положения | |
Тумблер | Два «спаренных» переключателя — переключаемых одновременно одной общей рукояткой. Отдельные группы контактов могут изображаться в разных частях схемы, тогда они могут обозначаться как группа S1.1 и группа S1.2. Кроме того, при большом расстоянии на схеме они могут соединяться одной пунктирной линией | |
Галетный переключатель | Переключатель, в котором один контакт «ползункового» типа, может переключаться в несколько разных положений. Бывают спаренные галетные переключатели, в которых имеется несколько групп контактов | |
Кнопка | Двухконтактный прибор, предназначенный для кратковременного замыкания (размыкания) электрической цепи путём нажатия на него. Типичный пример – кнопка дверного звонка квартиры | |
Общий провод | Контакт радиосхемы, имеющий условный «нулевой» потенциал относительно остальных участков и соединений схемы. Обычно, это вывод схемы, потенциал которого либо самый отрицательный относительно остальных участков схемы (минус питания схемы), либо самый положительный (плюс питания схемы). Не имеет буквенно-цифрового обозначения | |
Заземление | Вывод схемы, подлежащий подключению к Земле. Позволяет исключить возможное появление вредоносного статического электричества, а также предотвращает поражение от электрического тока в случае возможного попадания опасного напряжения на поверхности радиоприборов и блоков, которых касается человек, стоящий на мокром грунте. Не имеет буквенно-цифрового обозначения | |
Лампа накаливания | Электрический прибор, применяемый для освещения. Под действием электрического тока происходит свечение вольфрамовой нити накала (её горение). Не сгорает нить потому, что внутри колбы лампы нет химического окислителя – кислорода | |
Сигнальная лампа | Лампа, предназначенная для контроля (сигнализирования) состояния различных цепей устаревшей аппаратуры. В настоящее время, вместо сигнальных ламп используют светодиоды, потребляющие более слабый ток и более надёжные | |
Неоновая лампа | Газоразрядная лампа, наполненная инертным газом. Цвет свечения зависит от вида газа-наполнителя: неон – красно-оранжевое, гелий – синее, аргон – сиреневое, криптон – сине-белое. Применяют и другие способы придать определённый цвет лампе наполненной неоном – использование люминесцентных покрытий (зелёного и красного свечения) | |
Лампа дневного света (ЛДС) | Газоразрядная лампа, в том числе колба миниатюрной энергосберегающей лампы, использующая люминесцентное покрытие – химический состав с послесвечением. Применяется для освещения. При одинаковой потребляемой мощности, обладает более ярким светом, чем лампа накаливания | |
Электромагнитное реле | Электрический прибор, предназначенный для переключения электрических цепей, путём подачи напряжения на электрическую обмотку (соленоид) реле. В реле может быть несколько групп контактов, тогда эти группы нумеруются (например Р1.1, Р1.2) | |
Амперметр, миллиамперметр, микроамперметр | Электрический прибор, предназначенный для измерения силы электрического тока. В своём составе имеет неподвижный постоянный магнит и подвижную магнитную рамку (катушку), на которой крепится стрелка. Чем больше ток, протекающий через обмотку рамки, тем на больший угол стрелка отклоняется. Амперметры подразделяются по номинальному току полного отклонения стрелки, по классу точности и по области применения | |
Вольтметр, милливольтметр, микровольтметр | Электрический прибор, предназначенный для измерения напряжения электрического тока. Фактически ничем не отличается от амперметра, так как делается из амперметра, путём последовательного включения в электрическую цепь через добавочный резистор. Вольтметры подразделяются по номинальному напряжению полного отклонения стрелки, по классу точности и по области применения | |
Радиоприбор, предназначенный для уменьшения тока, протекающего по электрической цепи. На схеме указывается значение сопротивления резистора. Рассеиваемая мощность резистора изображается специальными полосками, или римскими символами на графическом изображении корпуса в зависимости от мощности (0,125Вт – две косых линии «//», 0,25 – одна косая линия «/», 0,5 – одна линия вдоль резистора «-«, 1Вт – одна поперечная линия «I», 2Вт – две поперечных линии «II», 5Вт – галочка «V», 7Вт – галочка и две поперечных линии «VII», 10Вт – перекрестие «Х», и т.д.). У Американцев обозначение резистора – зигзагообразное, как показано на рисунке | ||
Резистор, сопротивление которого на его центральном выводе регулируется с помощью «ручки-регулятора». Номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется. Переменные резисторы бывают спаренные (2 на одном регуляторе) | ||
Резистор, сопротивление которого на его центральном выводе регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Как и у переменного резистора, номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется | ||
Полупроводниковый резистор, сопротивление которого изменяется в зависимости от окружающей температуры. При увеличении температуры, сопротивление терморезистора уменьшается, а при уменьшении температуры наоборот, увеличивается. Применяется для измерения температуры в качестве термодатчика, в цепях термостабилизации различных каскадов аппаратуры и т.д. | ||
Резистор, сопротивление которого изменяется в зависимости от освещённости. При увеличении освещённости, сопротивление терморезистора уменьшается, а при уменьшении освещённости наоборот – увеличивается. Применяется для измерения освещенности, регистрации колебаний света и т.д. Типичный пример – «световой барьер» турникета. В последнее время вместо фоторезисторов чаще используются фотодиоды и фототранзисторы | ||
Варистор | Полупроводниковый резистор, резко уменьшающий своё сопротивление при достижении приложенного к нему напряжения определённого порога. Варистор предназначен для защиты электрических цепей и радиоприборов от случайных «скачков» напряжения | |
Элемент радиосхемы, обладающий электрической ёмкостью, способный накапливать электрический заряд на своих обкладках. Применение в зависимости от величины ёмкости разнообразно, самый распространённый радиоэлемент после резистора | ||
Конденсатор, при изготовлении которого применяется электролит, за счет этого при сравнительно малых размерах обладает намного большей ёмкостью, чем обыкновенный «неполярный» конденсатор. При его применении необходимо соблюдать полярность, в противном случае электролитический конденсатор теряет свои накопительные свойства. Используется в фильтрах питания, в качестве проходных и накопительных конденсаторов низкочастотной и импульсной аппаратуры. Обычный электролитический конденсатор саморазряжается за время не более минуты, обладает свойством «терять» ёмкость вследствие высыхания электролита, для исключения эффектов саморазряда и потери ёмкости используют более дорогие конденсаторы – танталовые | ||
Конденсатор, у которого ёмкость регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Используется в высокочастотных контурах радиоаппаратуры | ||
Конденсатор, ёмкость которого регулируется с помощью выведенной наружу радиоприёмного устройства рукоятки (штурвала). Используется в высокочастотных контурах радиоаппаратуры в качестве элемента селективного контура, изменяющего частоту настройки радиопередатчика, или радиоприемника | ||
Пьезоэлектрический резонатор | Высокочастотный прибор, обладающий резонансными свойствами подобно колебательному контуру, но на определённой фиксированной частоте. Может применяться на «гармониках» — частотах, кратных резонансной частоте, указанной на корпусе прибора. Часто, в качестве резонирующего элемента используется кварцевое стекло, поэтому резонатор называют «кварцевый резонатор», или просто «кварц». Применяется в генераторах гармонических (синусоидальных) сигналов, тактовых генераторах, узкополосных частотных фильтрах и др. | |
Обмотка (катушка) из медного провода. Может быть бескаркасной, на каркасе, а может исполняться с использованием магнитопровода (сердечника из магнитного материала). Обладает свойством накопления энергии за счёт магнитного поля. Применяется в качестве элемента высокочастотных контуров, частотных фильтров и даже антенны приёмного устройства | ||
Катушка с регулируемой индуктивностью, у которой имеется подвижный сердечник из магнитного (ферромагнитного) материала. Как правило, мотается на цилиндрическом каркасе. При помощи немагнитной отвёртки регулируется глубина погружения сердечника в центр катушки, тем самым изменяется её индуктивность | ||
Катушка индуктивности, содержащая большое количество витков, которая исполняется с использованием магнитопровода (сердечника). Как и высокочастотная катушка индуктивности, дроссель обладает свойством накопления энергии. Применяется в качестве элементов низкочастотных фильтров звуковой частоты, схем фильтров питания и импульсного накопления | ||
Индуктивный элемент, состоящий из двух и более обмоток. Переменный (изменяющийся) электрический ток, прикладываемый к первичной обмотке, вызывает возникновение магнитного поля в сердечнике трансформатора, а оно в свою очередь наводит магнитную индукцию во вторичной обмотке. В результате на выходе вторичной обмотки появляется электрический ток. Точки на графическом обозначении у краёв обмоток трансформатора обозначают начала этих обмоток, римские цифры – номера обмоток (первичная, вторичная) | ||
Диод | Полупроводниковый прибор, способный пропускать ток в одну сторону, а в другую нет. Направление тока можно определить по схематическому изображению – сходящиеся линии, подобно стрелке указывают направление тока. Выводы анода и катода буквами на схеме не обозначаются | |
Стабилитрон (стабистор) | Специальный полупроводниковый диод, предназначенный для стабилизации приложенного к его выводам напряжения обратной полярности (у стабистора – прямой полярности) | |
Варикап | Специальный полупроводниковый диод, обладающий внутренней ёмкостью и изменяющий её значение в зависимости от амплитуды приложенного к его выводам напряжения обратной полярности. Применяется для формирования частотно-модулированного радиосигнала, в схемах электронного регулирования частотными характеристиками радиоприемников | |
Светодиод | Специальный полупроводниковый диод, кристалл которого светится под действием приложенного прямого тока. Используется как сигнальный элемент наличия электрического тока в определённой цепи. Бывает различных цветов свечения | |
Фотодиод | Специальный полупроводниковый диод, при освещении которого на выводах появляется слабый электрический ток. Применяется для измерения освещенности, регистрации колебаний света и т.д., подобно фоторезистору | |
Тиристор (тринистор) | Полупроводниковый прибор, предназначенный для коммутации электрической цепи. При подаче небольшого положительного напряжения на управляющий электрод относительно катода, тиристор открывается и проводит ток в одном направлении (как диод). Закрывается тиристор только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока. Выводы анода, катода и управляющего электрода буквами на схеме не обозначаются | |
Симистор | Составной тиристор, способный коммутировать токи как положительной полярности (от анода к катоду), так и отрицательной (от катода к аноду). Как и тиристор, симистор закрывается только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока | |
Динистор | Вид тиристора, который открывается (начинает пропускать ток) только при достижении определённого напряжения между его анодом и катодом, и запирается (прекращает пропускать ток) только при уменьшении тока до нуля, или смены полярности тока. Используется в схемах импульсного управления | |
Биполярный транзистор, который управляется положительным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). При этом при повышении входного напряжения база-эмиттер от нуля до 0,5 вольта, транзистор находится в закрытом состоянии. После дальнейшего повышения напряжения от 0,5 до 0,8 вольта транзистор работает как усилительный прибор. На конечном участке «линейной характеристики» (около 0,8 вольта) транзистор насыщается (полностью открывается). Дальнейшее повышение напряжения на базе транзистора опасно, транзистор может выйти из строя (происходит резкий рост тока базы). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в n-p-n транзисторе – от коллектора к эмиттеру. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются | ||
Биполярный транзистор, который управляется отрицательным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в p-n-р транзисторе – от эмиттера к коллектору. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются | ||
Фототранзистор | Транзистор (как правило — n-p-n), сопротивление перехода «коллектор-эмиттер» которого уменьшается при его освещении. Чем выше освещённость, тем меньше сопротивление перехода. Применяется для измерения освещенности, регистрации колебаний света (световых импульсов) и т.д., подобно фоторезистору | |
Транзистор полевой | Транзистор, сопротивление перехода «сток-исток» которого уменьшается при подаче напряжения на его затвор относительно истока. Обладает большим входным сопротивлением, что повышает чувствительность транзистора к малым входным токам. Имеет электроды: Затвор, Исток, Сток и Подложку (бывает не всегда). По принципу работы, можно сравнить с водопроводным краном. Чем больше напряжение на затворе (на больший угол повёрнута рукоятка вентиля), тем больший ток (больше воды) течёт между истоком и стоком. По сравнению с биполярным транзистором имеет больший диапазон регулирующего напряжения – от нуля, до десятков вольт. Выводы затвора, истока, стока и подложки буквами на схеме не обозначаются | |
Транзистор полевой со встроенным n-каналом | Полевой транзистор, управляемый положительным потенциалом на затворе, относительно истока. Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком | |
Транзистор полевой со встроенным р-каналом | Полевой транзистор, управляемый отрицательным потенциалом на затворе, относительно истока (для запоминания р-канал — позитив). Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком | |
Транзистор полевой с индуцированным n-каналом | Полевой транзистор, обладающий теми же свойствами, что и «со встроенным n-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком. По технологии изолированного затвора исполняются MOSFET транзисторы, управляемые входным напряжением от 3 до 12 вольт (в зависимости от типа), имеющие сопротивление открытого перехода сток-исток от 0,1 до 0,001 Ом (в зависимости от типа) | |
Транзистор полевой с индуцированным р-каналом | Полевой транзистор, обладающий теми же свойствами, что и «со встроенным p-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком |
Выключатель разъединитель на схеме
Каждый специалист-электротехник должен обладать навыками чтения электрических схем. При помощи специальных условных знаков легко отображаются любые типы розеток, выключателей, коммутационной аппаратуры, электроприборов и оборудования. В нормативных документах предусмотрено и обозначение перекидного рубильника на схеме. Отечественные и зарубежные стандарты практически не отличаются, поэтому данные устройства свободно идентифицируются в проектной документации.
Нормативные документы и типы электрических схем
Электрические схемы являются наиболее востребованными при составлении проектов и выполнении практических работ. Их основой служат многочисленные варианты условного – графического обозначения – УГО, определяемые ГОСТ 2.702-2011. Этот документ известен среди специалистов под названием «ЕСКД. Правила выполнения электрических схем. Он создан на основе нескольких норм и правил, определяемых другими видами ГОСТ.
Все представленные нормативы отображаются в виде четких требований, касающихся подробностей всех типов электрических схем. Документ содержит не только перечень обозначений, касающийся приборов и изделий, но и отображает взаимные связи между ними, а также основные принципы работы каждого устройства, использующего электроэнергию. Здесь же определяются правила, в соответствии с которыми можно узнать, как обозначается то или иной вид контактных соединений, особенности в маркировке проводников, буквенные и графические отображения используемых элементов.
В практической деятельности электротехники пользуются тремя основными видами электрических схем.
Монтажная схема. Как правило отображается в виде печатной платы с точным указанием мест расположения деталей и элементов. С помощью специальных знаков указываются их номинальные значения, принципы соединений, креплений и подводки к соседним компонентам. В электрических схемах, отображающих проводку жилого помещения, точно показываются места установки розеток и выключателей, осветительных и других приборов. Здесь же наносятся линии кабелей и проводников, с указанием их технических характеристик.
На принципиальных схемах (рис. 1), наносятся подробные обозначения всех контактных соединений и других связей, а также параметры элементов и сетей. Полная схема отображает процессы управления и контроля над компонентами и всю силовую цепь. Линейная схема отображает только цепь, детали которой наносятся на отдельные листы.
Функциональные схемы (рис. 2) составляются в виде основных узлов, используемых во всей цепи или в отдельно взятом приборе. В этом случае не указываются в деталях физические размеры и прочие параметры деталей. Они обозначаются как отдельные блоки с необходимой маркировкой, дополненные связями с другими составляющими цепи или устройства.
Отображение электрических сетей на разных схемах
Перекидные рубильники отображаются на разных электрических схемах, в том числе и на однолинейной схеме, каждая из которых имеет свои специфические особенности. Знание этих отличий позволит правильно прочитать и расшифровать нанесенные изображения, безошибочно определить то или иное устройство. Подобные схемы могут быть многолинейными и однолинейными.
Наиболее подробно состояние электрической цепи отображается в виде графического чертежа на многолинейных схемах. Поскольку передача электричества осуществляется по трехфазной сети, то и на чертежах фиксируется каждая фаза со всеми подключенными устройствами и оборудованием. Такие схемы получили название трехлинейных.
В четырехлинейных схемах, используемых в сетях с низким напряжением, к фазным проводам добавляется нулевой проводник PEN или N. При наличии провода защитного заземления РЕ, схема превращается в пятилинейную.
В соответствии с Правилами устройства электроустановок, однофазные сети оборудуются фазным, нулевым и заземляющим проводником. Эти три провода составляют трехлинейную схему. При отсутствии заземления нередко обходятся двумя проводами – фазным и нулевым, собранными в двухлинейную схему. Такая же схема используется в сетях постоянного тока, где используется два провода – плюс и минус.
В случае слишком разветвленных сетей, использование подробных многолинейных схем становится не совсем удобным. Для этого предусмотрены однолинейные схемы, на которых трехфазная электрическая сеть отображается в виде одного общего проводника.
Основные виды рубильников
Согласно электротехнической терминологии, рубильник относится к устройствам, обеспечивающим течение по цепи электрического тока. Его отличительной особенностью является уникальная система, действие которой направлено на быстрый разрыв контакта. Все функции устройства осуществляются ручным приводом, надежно отключающим напряжение во время выполнения ремонтных и профилактических работ.
Существует несколько типов рубильников, среди которых можно выделить следующие:
- Перекидные (рис. 1). С помощью этих устройств напряжение перекидывается с одной цепи на другую. В основном они используются, когда возникает необходимость переключить подачу тока с аварийного участка цепи на рабочий. Для установки приборов предусматриваются специальные щитовые помещения. Данный тип рубильников имеет высокие эксплуатационные и технические показатели.
- Разрывные (рис. 2). Подключается к общим выходным цепям, идеально подходят для частных домов, квартир, офисных зданий. С помощью этого прибора осуществляется подключение какого-либо объекта к общей сети. Устанавливаются в электрическом щите с выводом наружу переключающего рычага. На рынке представлены широким модельным рядом.
- Реверсивные (рис. 3). Используются в трехфазных электрических сетях, обеспечивая их нормальное функционирование. С помощью этих приборов нагрузка распределяется между линиями, а ток бесперебойно поступает потребителям. Установка рубильников выполняется в горизонтальном или вертикальном положении, все переключения производятся вручную. Отдельные виды приборов могут управляться дистанционно.
Основной деталью рубильника является поворотная контактная система. Конструкция подвижного контакта представляет собой нож или подпружиненную вилку, а неподвижного – нож или две пластины, подпружиненные посредством стального рассеченного кольца. Кроме того, рубильник оборудуется рукояткой или ручным приводом, контактными выводами для подключения проводов. Разрывной рубильник на 1 направление с тремя полюсами оборудуется тремя входными и тремя выходными контактами, а у перекидного изделия на 2 направления – шесть входных и шесть выходных контактов. Для каждого полюса предусмотрены 1 или 2 дугогасительные камеры, в соответствии с количеством направлений.
Конструкция контактной группы не позволяет подвижному контакту самопроизвольно выпадать под действием вибрации или под собственным весом. Для всех переключений требуется только физическая сила персонала.
Перекидные рубильники на электрических схемах
Существуют различные варианты отображения перекидных и других рубильников. Разница между ними зависит от параметров электрической сети и конкретного места в схеме каждого из них. При использовании однолинейной схемы, обозначение на схеме прибора выполняется так, как это показано на рисунке 1. Такой же вариант используется в многолинейной схеме, когда рубильник устанавливается на какую-то одну фазу.
На рисунке 2 отображается трехфазный рубильник, обеспечивающий поочередное включение и отключение фаз. Точно такие же рубильники (рис. 3) оборудуются специальной планкой, позволяющей одновременно замыкать все три фазы. Эта важная деталь обязательно отображается на трехлинейных схемах и вариантах с большим количеством линий. Данная схема подходит и для двухфазных рубильников, когда отображается два прибора, соединяемых общей планкой. На рисунке 4 хорошо просматривается обозначение перекидного рубильника на схеме в однолинейном варианте. В этом случае вместо трех фаз указана всего лишь одна, которая называется условно средней.
Существуют варианты (рис. 5), обозначений рубильника на однолинейной схеме, в которой она превращается в многолинейную. Такое изображение используется при необходимости более подробного рассмотрения некоторых участков цепи.
Отдельное обозначение предусмотрено для реверсивных рубильников перекидного типа, устанавливаемых вместе с трехфазными асинхронными двигателями. Данные приборы характеризуются наличием трех положений, в том числе – 2 положения на включение и 1 – на отключение. Эти обозначения применяются чаще всего, но при использовании редких видов сетевых соединений, в нормативной документации вполне возможно подобрать УГО или скомбинировать наиболее подходящий вариант.
Условные графические обозначения коммутационных устройств и контактных соединений (ГОСТ 2.755-87). В коммутационных устройствах имеются подвижные и неподвижные контакт-детали. Условные графические обозначения контактов коммутационных устройств допускается выполнять в зеркальном изображении.
На рисунках 1а – г показаны общие обозначения контактов замыкающего, размыкающего, переключающего и переключающею с нейтральным центральным положением. На рисунке 1д, е контакты замыкающий и размыкающий без самовозврата, а на рисунках 1ж, л – с самовозвратом. Переключающий контакт с нейтральным нейтральным положением с самовозвратом из левого положения и без самовозврата из правого изображен на рис. 1и. Контакты контактора показаны на рисунках 1к, л соответственно замыкающий и размыкающий без дугогашенния.
Рис. 1. Условные обозначения коммутационных устройств
На рис. 2а – с показаны графические изображения контактов соответственно: замыкающего и размыкающего дугогасительных и замыкающего с автоматическим срабатыванием (рис 2а, б, в), выключателя, разъединителя и выключателя-разъединителя (рис. 2г, д, е), замыкающего и размыкающего контактов концевого выключателя (рис. 2ж, з), чувствительного к температуре (рис. 2и, к) замыкающего и размыкающего, контактов замыкающих с замедлением, действующих при срабатывании, при возврате, при срабатывании и возврате (рис. 2л, м, н), контактов размыкающих с замедлением, действующих при срабатывании, при возврате, при срабатывании и возврате (рис. 2п, р). Замедление происходит при движении в направлении от дуги к центру. На рис. 2с показан замыкающий контакт однополюсного выключателя.
Рис. 2. Условные обозначения коммутационных устройств
На рисунках 3а, б показаны замыкающие контакты трехполюсного выключателя соответственно без автоматического выключения и с автоматическим сбрасыванием максимального тока. Контакты замыкающие нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элементом управления изображены на рис. 3в, г, д, е, соответственно: автоматически, посредством вторичного нажатия кнопки, посредством вытягивания, посредством отдельного привода, например нажатия кнопки сброс.
Трехполюсные разъединитель и выключатель-разъединитель показаны на рис. 3ж, з.
Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.
Введение
Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.
Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.
Виды и типы электрических схем
Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».
- Объединенные.
- Расположенные.
- Общие.
- Подключения.
- Монтажные соединений.
- Полные принципиальные.
- Функциональные.
- Структурные.
Среди существующих 10 видов, указанных в данном документе, выделяют:
- Комбинированные.
- Деления.
- Энергетические.
- Оптические.
- Вакуумные.
- Кинематические.
- Газовые.
- Пневматические.
- Гидравлические.
- Электрические.
Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.
Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.
В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:
«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».
После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
Следует заметить, что чаще в домашней практике используются всего три типа электросхем:
- Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
- Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
- Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.
Графические обозначения в электрических схемах
- 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
- 2.721-74 – графические условные обозначения деталей и узлов общего применения.
- 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.
В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.
На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.
ВАЖНО: Для обозначения коммутационного оборудования существует:
4 базовых изображения УГО
УГО | Наименование |
Замыкающий | |
Размыкающий | |
Переключающий | |
Переключающий с наличием нейтрального положения |
9 функциональных признаков УГО
ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.
Основные УГО для однолинейных схем электрощитов
УГО | Наименование |
Тепловое реле | |
Контакт контактора | |
Рубильник – выключатель нагрузки | |
Автомат – автоматический выключатель | |
Предохранитель | |
Дифференциальный автоматический выключатель | |
УЗО | |
Трансформатор напряжения | |
Трансформатор тока | |
Рубильник (выключатель нагрузки) с предохранителем | |
Автомат для защиты двигателя (со встроенным тепловым реле) | |
Частотный преобразователь | |
Электросчетчик | |
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления | |
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании | |
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который включается только при срабатывании | |
Катушка временного реле | |
Катушка фотореле | |
Катушка реле импульсного | |
Общее обозначение катушки реле или катушки контактора | |
Лампочка индикационная (световая), осветительная | |
Мотор-привод | |
Клемма (разборное соединение) | |
Варистор, ОПН (ограничитель перенапряжения) | |
Разрядник | |
Розетка (разъемное соединение): |
Обозначение измерительных электроприборов для характеристики параметров цепи
УГО | Наименование |
PF | Частотомер |
PW | Ваттметр |
PV | Вольтметр |
PA | Амперметр |
ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:
Буквенные обозначения в электрических схемах
Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:
Наименование | Обозначение |
Выключатель автоматический в силовой цепи | QF |
Выключатель автоматический в управляющей цепи | SF |
Выключатель автоматический с дифференциальной защитой или дифавтомат | QFD |
Рубильник или выключатель нагрузки | QS |
УЗО (устройство защитного отключения) | QSD |
Контактор | KM |
Реле тепловое | F, KK |
Временное реле | KT |
Реле напряжения | KV |
Импульсное реле | KI |
Фотореле | KL |
ОПН, разрядник | FV |
Предохранитель плавкий | FU |
Трансформатор напряжения | TV |
Трансформатор тока | TA |
Частотный преобразователь | UZ |
Амперметр | PA |
Ваттметр | PW |
Частотомер | PF |
Вольтметр | PV |
Счетчик энергии активной | PI |
Счетчик энергии реактивной | PK |
Элемент нагревания | EK |
Фотоэлемент | BL |
Осветительная лампа | EL |
Лампочка или прибор индикации световой | HL |
Разъем штепсельный или розетка | XS |
Переключатель или выключатель в управляющих цепях | SA |
Кнопочный выключатель в управляющих цепях | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.
Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.
Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.
Условные графические обозначения линий проводок и токопроводов
Условные графические изображения шин и шинопроводов
ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.
Условные графические изображения коробок, шкафов, щитов и пультов
Условные графические обозначения выключателей, переключателей
На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.
Условные графические обозначения штепсельных розеток
Условные графические обозначения светильников и прожекторов
Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.
Условные графические обозначения аппаратов контроля и управления
Заключение
Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.
Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.
Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.
Разъединители, выключатели нагрузки, предохранители.
Трафарет Visio Разъединители, выключатели нагрузки, предохранители.
Трансформация условных обозначений возможна через контекстное меню фигуры путем включения-отключения функциональных символов и их комбинации:
Символы условных обозначений разъединителей.
Базовые символы разъединителей:
Разъединитель однополюсный.
Разъединитель двухполюсный.
Разъединитель трехполюсный
Разъединитель четырехполюсный.
Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:
- ручной,
- ручной с фиксатором,
- ручной с блокировочным устройством,
- без привода.
Например, для трехполюсного разъединителя:
Разъединитель с ручным приводом.
Разъединитель с ручным приводом с фиксатором.
Разъединитель с ручным приводом с блокирующим устройством
Разъединитель без привода.
Для любого из обозначений разъединителя, можно показать символ автоматического отключения. Например для трехполюсного:
Примеры обозначения разъединителя с различными типами привода.
Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.
Символы условных обозначений разъединителей двухсторонних.
Для условных обозначений разъединителя двухстороннего, в трафарете по два варианта фигур, которые отличаются расстоянием между выводами полюса (расстояние между полюсами, можно изменить, используя маркеры выделения фигуры):
Разъединитель двухсторонний однополюсный.
Разъединитель двухсторонний двухполюсный.
Разъединитель двухсторонний трехполюсный.
Разъединитель двухсторонний четырехполюсный.
Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:
- ручной,
- ручной с фиксатором,
- ручной с блокировочным устройством,
- без привода.
Например, для двухполюсного разъединителя двухстороннего:
Разъединитель двухсторонний с ручным приводом.
Разъединитель двухсторонний с ручным приводом с фиксатором.
Разъединитель двухсторонний с ручным приводом с блокирующим устройством.
Разъединитель двухсторонний без привода.
Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.
Символы условных обозначений выключателя нагрузки.
Выключатель нагрузки однополюсный
Выключатель нагрузки двухполюсный.
Выключатель нагрузки трехполюсный.
Выключатель нагрузки четырехполюсный.
Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:
- ручной,
- ручной с фиксатором,
- ручной с блокировочным устройством,
- без привода.
Например, для трехполюсного выключателя нагрузки:
Выключатель нагрузки с ручным приводом.
Выключатель нагрузки с ручным приводом с фиксатором.
Выключатель нагрузки с ручным приводом с блокирующим устройством.
Выключатель нагрузки без привода.
Для любого из обозначений выключателя нагрузки, можно показать символ автоматического отключения:
Примеры обозначения выключателя нагрузки с различными типами привода.
Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.
Символы условных обозначений предохранителей-разъединителей и предохранителей-выключателей.
Предохранитель-разъединитель:
Предохранитель-разъединитель однополюсный.
Предохранитель-разъединитель двухполюсный.
Предохранитель-разъединитель трехполюсный.
Предохранитель-разъединитель четырехполюсный.
или через контекстное меню фигуры, переключить условное обозначение как предохранитель-выключатель:
Предохранитель-выключатель однополюсный.
Предохранитель-выключатель двухполюсный.
Предохранитель-выключатель трехполюсный.
Предохранитель-выключатель четырехполюсный.
Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:
- ручной,
- ручной с фиксатором,
- ручной с блокировочным устройством,
- без привода.
Например:
Предохранитель-выключатель с ручным приводом.
Предохранитель-выключатель с ручным приводом с фиксатором.
Предохранитель-разъединитель с ручным приводом с блокирующим устройством.
Предохранитель-разъединитель без привода.
Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.
Символы условных обозначений выключателей нагрузки с предохранителем.
Выключатель нагрузки с предохранителем однополюсный.
Выключатель нагрузки с предохранителем двухполюсный.
Выключатель нагрузки с предохранителем трехполюсный.
Выключатель нагрузки с предохранителем четырехполюсный.
Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:
- ручной,
- ручной с фиксатором,
- ручной с блокировочным устройством,
- без привода.
Например для трехполюсного выключателя нагрузки с предохранителем:
Выключатель нагрузки с предохранителем с ручным приводом.
Выключатель нагрузки с предохранителем с ручным приводом с фиксатором.
Выключатель нагрузки с предохранителем с ручным приводом с блокирующим устройством
Выключатель нагрузки с предохранителем без привода.
Любой из символов условного обозначения выключателя нагрузки, можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.
Символы условных обозначений предохранителей.
Предохранитель однополюсный.
Предохранитель двухполюсный.
Предохранитель трехполюсный.
Предохранитель четырехполюсный.
Любой из символов условного обозначения предохранителя, можно расположить вертикально или горизонтально.
Электрооборудование, свет, освещение
При необходимости в использовании электроснабжения с наличием большой силы тока устанавливают рубильник. Данный прибор регулирует включение и выключения сети, не создавая при этом больших нагрузок. Об особенностях использования и установки рубильника поговорим далее.
Блок: 1/7 | Кол-во символов: 281
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Конструктивные особенности и устройство рубильника
Одним из неавтоматических коммуникационных аппаратов является рубильник. Данный прибор используется во время размыкания и замыкания электрической цепи.
Есть несколько видов рубильников, отличающихся друг от друга параметрами устройства и конструкции. Рубильники с однополюсным, двухполюсным и трехполюсным исполнением имеют полюса, которые характеризуются наличием плавкого предохранителя. Некоторые рубильники не имеют полюсов, их заменяет рычажный привод центрального назначения.
Конструкция рубильника зависит от его типа. Например, приборы, с центральной рукояткой только отключают электрические цепи. Обязательным действием перед отключением электрической цепи с помощью такого рубильника, является ее обесточивание.
Стандартное устройство рубильника характеризуется наличием:
- ножей контактного типа;
- вставок плавного типа;
- стоек: совмещенного и контактного типа;
- выводов, через которые осуществляется подключение рубильника.
Эти детали устанавливаются на панель общего назначения.
Большинство рубильников состоит из одного ряда совмещенных и одного ряда контактных стоек. Чтобы обеспечить плавность нажатия рычага, используют пружинные механизмы.
Стойки совмещенного характера имеют шайбы специфического назначения, которые обеспечивают их нажатие. У таких приборов связывание ножей происходит благодаря наличию общей оси. Тяги, способствуют движению оси. Рубильники, с центральным расположением рычага, работают благодаря наличию скобы, которая соединяется с контактными ножами и их осью.
Рубильники отличаются наличием специального обозначения:
- P — рубильник с наличием центральной рукоятки;
- Р Б — рубильник с наличием боковой рукоятки;
- Р П Ц — рубильник с наличием центрального привода;
- Р П Б — рубильник бокового рычажного привода.
При наличии обозначения Р Б 2 1 — значение первой цифры указывает на количество полюсов, в данном случае, два, а вторая цифра обозначает единицу номинального тока, сто ампер; если вторая цифра будет 2 — значит ток составляет 220 Вт.
Блок: 2/7 | Кол-во символов: 2062
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Назначение перекидного рубильника
Основная функция перекидных рубильников заключается в переключении электроэнергии к требуемым устройствам ручным способом. Данные приборы представлены разнообразными моделями, отличающимися своими электротехническими показателями. Их подключение может выполняться разнообразными методами, с учетом от индивидуальных особенностей данной цепи.
В большинстве случаев перекидной рубильник на схеме монтируется в многоквартирных зданиях. Однако, они прекрасно зарекомендовали себя и в производственной сфере, особенно подключённые для совместного использования с резервными генераторными установками. При возникновении необходимости рабочие характеристики рубильников легко изменяются при помощи управляющих блоков.
В коттеджах и на дачных участках, расположенных за городом, нередко возникают проблемы с электроснабжением. Здесь также применяются генераторы, выполняющие функции резервного электроснабжения. Вместе с ними устанавливаются и подключающие перекидные рубильники, способные переключать с одного источника электроэнергии на другой и обратно.
Выбирая коммутационное устройство, следует внимательно проверять его комплектацию, а также учесть особенности действующей системы заземления, особенно, когда задействована однолинейная схема. От этого будет зависеть выбор способа установки рубильника, в особенности, когда имеют место три фазы.
Блок: 2/7 | Кол-во символов: 1382
Источник: https://electric-220.ru/news/rubilnik_perekidnoj_na_dva_napravlenija/2019-05-14-1689
Что такое перекидной переключатель
Реверсивный перекидной выключатель
Назначение перекидного переключателя – передача напряжения между двумя линиями или соединение нескольких сетей. Используя рубильник, можно исключить токовые утечки при авариях и быстро переключиться на целую линию. Переключение прибора производится при помощи рычага на лицевой панели, который приводится в 1-2 положения.
Оборудование устанавливается в щитовой комнате или возле щитка ввода.
Специфика устройства
Рубильник перекидного типа схож с двухпозиционным выключателем по принципу работы, но отличается повышенной мощностью и плавным ножевым приводом. Второе различие – процесс переключения с разрывом линии и работа в трех положениях:
- квартирная/домашняя сеть;
- выключение;
- запитка от генератора.
Для понимания принципа работы перекидного автомата нужно разобраться с конструкцией. Средний контакт – это рейка посередине с V-образными ножами. В качестве боковых задействуются верхние и нижние клеммы. Средний контакт соединяется только с верхними или только с нижними. У ножей нет ускорителей или пружинок, поэтому перекидывание с основной на резервную сеть производится вручную.
Блок: 2/11 | Кол-во символов: 1159
Источник: https://StrojDvor.ru/elektrosnabzhenie/perekidnoj-avtomaticheskij-vyklyuchatel-princip-dejstviya-i-konstrukciya/
Принцип действия и функции рубильников
Основной частью рубильника выступает панель, которую изготавливают исключительно из диэлектрических материалов. На панели устанавливаются несколько стоек и губок. Ножи рубильника это электрический подвижной контакт, который жестко закреплен на устройстве вала.
Во время включения прибора, ножи тонкопроводящего типа устанавливаются в губки, которые являются неподвижными частями рубильника. Все рабочие полюса соединяются и происходит их контактирование между собой.
Конструкция рубильника зависит от способа включения устройства. Выделяют рубильники рычажного привода, в которых ножи начинают движение при помощи поворота рычага. Второй тип рубильников — это устройства с наличием центральной рукоятки. Они используются исключительно для выключения электрической цепи, находящейся под напряжением.
Многие современные рубильники оснащены дополнительной функцией, обеспечивающей электрическую безопасность. Данная функция состоит в защитной блокировке передней дверцы, находящейся в рабочем положении.
Блок: 3/7 | Кол-во символов: 1043
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Двухполюсный рубильник
Именно рубильник перекидного типа с двумя полюсами чаще всего можно встретить сегодня. В первую очередь его устанавливают в жилых домах. Следует заметить, что он может эксплуатироваться для обслуживания устройств, подключенных к однофазным и двухфазным системам. Для таких устройств средним показателем отрицательного сопротивления является уровень в 60 Ом.
При этом выходное напряжение может иметь различное значение, что определяется используемой модификацией рубильника. На текущий момент чаще всего используют рубильники, представляющие серию РР20. В своей конструкции они имеют конденсаторы открытого типа. Схема подключения подобного устройства предусматривает использование блоков питания, имеющих рабочее напряжение 300 В.
Блок: 3/9 | Кол-во символов: 751
Источник: https://stanok.guru/oborudovanie/akkumulyatory-i-bloki-pitaniya/perekidnoy-rubilnik-dlya-generatora.html
Сфера применения рубильника
1. Использование рубильников связано со включением и выключением электрической нагрузки, в сети, где присутствует большое количество тока.
2. Рубильники открытого типа используют для того, чтобы замкнуть или разомкнуть электроцепь без нагрузки.
3. Рубильники с наличием рукоятки, наоборот, применяются в электрических цепях с большой нагрузкой.
4. При условии, что рубильник содержит центральный кожух, он используется, как пусковой аппарат электрического двигателя.
5. Рубильники центрального бокового или рычажного типа применяются для работы на центральном распределительном щите.
6. Рубильники используют для нечастого автоматического включения или отключения электроцепи.
7. Рубильники с боковой, центральной рукояткой используются в электросети, мощность которой не превышает 500 Вт.
8. Рубильники используют для установки на распределительном устройстве, электрошкафе или электрощитке, в качестве управления электроцепью или силовой цепью.
9. Установка некоторых моделей производится непосредственно на трансформаторную электростанцию.
Блок: 4/7 | Кол-во символов: 1072
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Преимущества и недостатки рубильников
Перекидные рубильники обладают несомненными преимуществами, к которым можно отнести следующие:
- Открытое или полузакрытое исполнение, позволяющее наглядно убедиться в исправности устройства. Поверхность токопроводящих ножей просматривается очень хорошо и установить возможную неисправность не составит труда.
- Простота конструкции, благодаря которой существенно облегчается подключение, ремонт и обслуживание.
- Основным преимуществом считается соотношение коммутируемой мощности и стоимости устройства. Фактически недорогой прибор способен выполнять переключение и коммутацию очень высоких токов, достигающих нескольких сотен ампер.
Тем не менее, идеальных устройств не бывает и работа рубильников тоже не исключение. Их основными минусами являются следующие:
- Достаточно высокая опасность для персонала. Открытая конструкция существенно увеличивает шансы попадания под напряжение в случае нарушения правил обращения с такими приборами.
- Время переключения рубильника перекидного типа не нормировано и зависит лишь от самого оператора и его реакции. Слишком медленный перевод ножей может вызвать высокотемпературную дугу, представляющую серьезную опасность для людей и оборудования.
Блок: 7/7 | Кол-во символов: 1216
Источник: https://electric-220.ru/news/rubilnik_perekidnoj_na_dva_napravlenija/2019-05-14-1689
Основные типы рубильников
В зависимости от основного теплового тока выделяют рубильники:
- 1000 А,
- 900 А,
- 800 А,
- 700 А,
- 600 А,
- 500 А,
- 400 А,
- 300 А,
- 200 А,
- 100 А.
Некоторые модели оснащены защитным кожухом, который позволяет им работать при номинальном токе, превышающем 1000 А.
В зависимости от количества полюсов рубильники разделяются на:
- однополюсные,
- двухполюсные,
- трехполюсные.
В соотношении с направлением и переключением тока:
- перекидного типа — самые простые и ранее выпускаемые устройства, они способны коммутировать большое количество электрических линий и в большинстве случаев предполагают наличие двух положений: включения и выключения;
- рубильники поворотного привода отличаются простотой установки и использования и являются самыми распространенными;
- рубильники разъединительного типа имеют защитный корпус, небольшой размер и короткую рукоятку.
В зависимости от наличия дугогасительной системы выделяют рубильники:
- с возможностью погашения такой системы, данные приборы способны самостоятельно отключить нагруженную сеть;
- с отсутствием такой функции, такие устройства отключают сеть только после того как нагрузка снимается.
В соотношении со степенью защиты рубильники разделяют на устройства:
- с открытым исполнением, которые располагаются в специальном ящике, а рычаг находится во внешней стороне;
- с закрытым исполнением.
В зависимости от климатического исполнения выделяют рубильники с наличием влагозащиты, термоустойчивые устройства и рубильники, предназначены для установки во внутренней части помещения.
В зависимости от того, как расположена плоскость присоединения зажимных устройств выделяют рубильники с параллельным и перпендикулярным расположением.
Блок: 5/7 | Кол-во символов: 1756
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Области использования
Основное назначение аппаратов – перевод нагрузки между двумя или несколькими источниками. Они эксплуатируются с целью:
- коммутации резервного источника питания;
- перевода нагрузки с основного оборудования на резервный;
- переключения с одного источника на второй без наличия нагрузки.
Скорость переключения рубильника не должна зависеть от оператора – это предотвратит сгорание контактов.
Блок: 6/11 | Кол-во символов: 407
Источник: https://StrojDvor.ru/elektrosnabzhenie/perekidnoj-avtomaticheskij-vyklyuchatel-princip-dejstviya-i-konstrukciya/
Рекомендации по эксплуатации и установке рубильника
1. Производите установку прибора только в закрытом помещении.
2. Обеспечьте защиту рубильника от влаги, неблагоприятных климатических условий и атмосферных осадков.
3. Рекомендованная среда нахождения и эксплуатации рубильника составляет -40 +55 градусов.
4. Нельзя устанавливать рубильник в условия пребывания факторов, которые выделяют опасные или загрязняющие вещества.
5. При обгорании поверхности контактного ножа следует зачистить это место при помощи напильника или стеклянной бумаги.
6. При неплотном вхождении ножей в губку, следует провести подгибание губок.
7. Чтобы избежать перекашивания ножек рубильника осмотрите болты, которые крепят рубильник к перекладине, и, при необходимости, затяните их.
8. Обязательно проводите проверку рубильников на предмет изоляции отдельных его частей. Очистите или окрасьте отремонтированные детали.
Блок: 6/7 | Кол-во символов: 899
Источник: http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika
Использование перекидных устройств в разных сетях
Каждый перекидной рубильник того или иного типа может применяться лишь в электрической цепи с определенными параметрами.
В однофазном варианте устанавливаются, преимущественно, коммутаторы двухполюсного исполнения. Во время подключения к генераторной установке потребуется блок питания с установленным рабочим напряжением триста вольт. Устройства обладают отрицательным сопротивлением порядка 50 Ом.
Для создания качественного контакта, рекомендуется использовать медные перемычки. В самом начале установки следует выяснить наличие электрощита. Может использоваться серия КК220 или аналогичная модификация. В цепях с одной фазой не рекомендуется использование реверсных устройств по причине возможного несоответствия их рабочих показателей и сетевых параметров.
Для проложенных линий с двумя фазами наилучшим образом подходит расширительный вариант переключающих устройств. В этом случае рубильниками приобретаются универсальные качества и они свободно используются в однофазных сетях, без ограничений. Предельное значение напряжения для работы достигает 300 вольт. В виде элемента, соединяющего все имеющиеся части, используется блок питания номиналом 200 В.
Более всего популярны коммутаторы серии РР30. Они обладают собственными конструктивными особенностями и состоят из двух модулей, находящихся в общем комплекте. За счет этого выходное напряжение доходит до отметки 350 вольт. Наивысшее отрицательное сопротивление поднимается до 40 Ом. Контактные системы устанавливаются лишь в защищенных изделиях закрытого типа. Скачки электроэнергии держат на контроле проходные конденсаторы. Схема управляющей части или блока собирается на основе тиристоров.
Посредством реверсивных блоков обеспечивается поддержка требуемой частоты тока. При использовании двух различных моделей, в цепочку добавляется контроллер, позволяющий максимально нейтрализовать нелинейные искажения в сети и их негативное воздействие.
Аппаратура, используемая в сетях, где три фазы, отличается своими специфическими особенностями. Например, рабочее напряжение у блоков питания устанавливается порядка 400 вольт. В подобных сетях допускается использование трансформаторных устройств только импульсного типа.
При соединении всех компонентов используется специальный инвертирующий выход. Поступление выходного тока производится через специальные устройства, изготовленные на основе проходных конденсаторов. Большинство схем подключения работают на основе перекидных рубильников с двумя модулями.
Современный рынок предлагает модели и одномодульных устройств. Их главное отличие состоит в наименьшем пороговом напряжении, всего 350 вольт. Значение отрицательного сопротивления – в пределах 55 Ом. В конструкции подобных коммутаторов обязательно входят блокираторы. В некоторых моделях, электроника блоков создается не только на тиристорной, но и динисторной основе.
Блок: 5/7 | Кол-во символов: 2885
Источник: https://electric-220.ru/news/rubilnik_perekidnoj_na_dva_napravlenija/2019-05-14-1689
Трехходовая модификация
Если рассматривать подобный вариант исполнения перекидного рубильника для генератора , то в его конструкции предусмотрены только переключатели расширительные. Такие устройства являются наилучшим вариантом для использования в двухфазных цепях.
Особо следует отметить, что эти рубильники получили наибольшее распространение в промышленности. Использовать их на предприятии можно при условии, что сама процедура их подключения будет осуществляться в электрощите, представляющего серию КК202.
В качестве перемычек обычно используют элементы, выполненные из меди. Говоря о блокираторах, которыми могут быть оснащены такие рубильники, они могут иметь различные варианты исполнения. Среди прочих особенностей этих рубильников следует выделить высокий порог чувствительности. В то же время они оборудуются довольно надежной системой защиты. Если говорить об изоляции, то она может иметь различный класс. Определяющую роль здесь играет предприятие-изготовитель.
Блок: 7/9 | Кол-во символов: 973
Источник: https://stanok.guru/oborudovanie/akkumulyatory-i-bloki-pitaniya/perekidnoy-rubilnik-dlya-generatora.html
Заключение
Использование перекидных рубильников для генератора является довольно эффективным решением, которое обеспечивает немало преимуществ. Причем помимо удобства обслуживания генератора это устройство позволяет контролировать рабочие характеристики сети, что позволяет избегать опасных ситуаций, которые могут повлиять на работу подключаемых к сети приборов. Чтобы выбрать наиболее подходящий вариант такого рубильника, необходимо уделять внимание рабочим параметрам входящих в них составных элементов, а также оснащению здания, где планируется подключить перекидной рубильник.
Блок: 9/9 | Кол-во символов: 581
Источник: https://stanok.guru/oborudovanie/akkumulyatory-i-bloki-pitaniya/perekidnoy-rubilnik-dlya-generatora.html
Самостоятельная сборка перекидного рубильника для генератора
Схема подключения
Изготовление рубильника своими руками производится пошагово:
- Подбор автоматов по количеству цепей переключения. На двухфазную ставятся 2 двухполюсных или 4 однополюсных модели.
- Установка автоматов в щите. Один ставится в стандартном положении, второй переворачивается.
- Коммутация узлов проводами.
- Установка стального фиксатора в толкатель (в автомате для нее есть зазоры). Планка позволит переключать все автоматы единовременно.
- Проверка качества работы системы – должен раздаться щелчок.
Трехпозиционный рубильник самостоятельно не изготовить – получиться только двухпозиционное устройство.
Блок: 10/11 | Кол-во символов: 671
Источник: https://StrojDvor.ru/elektrosnabzhenie/perekidnoj-avtomaticheskij-vyklyuchatel-princip-dejstviya-i-konstrukciya/
Практические рекомендации по эксплуатации
Использование переключателя требует соблюдения следующих правил:
- Прибор эксплуатируется при температуре от -40 до +50 градусов.
- Реверсивный переключатель ставится только в щиток с монтажной панелью.
- Вручную допускается активировать рубильники с дугогасительными и разрывными контактами.
- Обгоревший контактный нож очищается напильником или стеклянной бумагой.
- Для предотвращения перекоса ножек нужно туго затянуть крепежные болты.
- Все активные части устройства изолируются.
- Для ручного перевода фазы подойдет переходной рубильник, работающий в двух направлениях.
- Выбирать переключатель нужно по мощности пропускаемого тока.
Если в основной сети нет напряжения, вначале запускается генератор, а потом переводится в рабочее положение рубильник.
Перекидные рубильники подходят для установки в многоквартирных домах, на производстве с резервными генераторами. Устройства упрощают обслуживание источников питания, контролируют электролинии и защищают подключенное к ней оборудование.
Блок: 11/11 | Кол-во символов: 1020
Источник: https://StrojDvor.ru/elektrosnabzhenie/perekidnoj-avtomaticheskij-vyklyuchatel-princip-dejstviya-i-konstrukciya/
Количество использованных доноров: 4
Информация по каждому донору:
- https://StrojDvor.ru/elektrosnabzhenie/perekidnoj-avtomaticheskij-vyklyuchatel-princip-dejstviya-i-konstrukciya/: использовано 5 блоков из 11, кол-во символов 4499 (23%)
- https://electric-220.ru/news/rubilnik_perekidnoj_na_dva_napravlenija/2019-05-14-1689: использовано 3 блоков из 7, кол-во символов 5483 (28%)
- https://stanok.guru/oborudovanie/akkumulyatory-i-bloki-pitaniya/perekidnoy-rubilnik-dlya-generatora.html: использовано 3 блоков из 9, кол-во символов 2305 (12%)
- http://strport.ru/elektrooborudovanie-svet-osveshchenie/ustanovka-i-podklyuchenie-rubilnika: использовано 6 блоков из 7, кол-во символов 7113 (37%)
Справка|Быстрый старт
Мы написали эту краткую инструкцию, чтобы вы могли быстро начать пользоваться услугами нашего сервиса. Пока что наш сервис умеет генерировать только однолинейные схемы электрических щитов на основе расчета нагрузок , но мы обязательно будем развиваться. Если у вас есть предложения по автоматизации труда проектировщика, то напишите нашим разработчикам. Мы постараемся воплотить ваши желания в жизнь.
Если вам больше нравится смотреть и слушать, чем читать, то на нашем канале в YouTube мы разместили подробную видеоинструкцию о том, как пользоваться нашим сервисом. Обязательно посмотрите ее.
Первым делом зарегистрируйтесь на сайте, заполните профиль и пополните баланс. Незарегистрированные пользователи могут делать чертежи только в демо-режиме, с ограничением функциональности.
Затем скачайте рабочий файл Excel из раздела Файлы. Лист состоит из 5 разделов: Общие данные, Ввод, Источник, Перекос фаз и Расчет нагрузок. Если ваш Excel запросит у вас разрешение, на выполнение активного содержимого листа, то обязательно разрешите это действие, иначе ничего работать не будет. Кратко пройдемся по всем разделам.
Раздел «Расчет нагрузок»
Является основным разделом. Вот как он выглядит:
Не будем вам рассказывать, как надо выполнять расчет нагрузок. Если вы занимаетесь проектированием электроустановок, то прекрасно знаете это и без нас. Поясним несколько моментов:
- Ячейки, выделенные серым цветом заполнять не нужно. Все вычисления в них происходят автоматически.
- В качестве разделителя разрядов используйте запятую. Количество знаков после запятой для разных параметров должно быть таким же как и на картинке.
- Столбец «Тип потребителя» служит для выбора типа потребителя, который будет изображен на чертеже. «Л» — означает лампа, «Р» — розетка, «К» — вывод кабеля. Фазность розеток и выводов кабеля зависит от следующего столбца «Фаза».
- Столбец «Автомат->Тип» служит для выбора типа автоматического выключателя, который будет отображен на чертеже. «АВТ» — означает простой автоматический выключатель. «ДИФ» — дифференциальный автомат. «УЗО» — автоматический выключатель плюс УЗО. Если вы выбрали тип потребителя «УЗО», то, соответственно, заполняете следующие столбцы, в которых задаются параметры УЗО.
- Если вы хотите создать в щите резервную группу, то ячейку Pуст оставьте пустой.
- Вы заполняете только данные по каждой группе в щите, итоговые значения (верхняя строчка раздела) посчитаются сами.
- Не добавляйте никаких данных после заполнения последней группы в щите. Расчет итоговых данных производится от первой группы вниз до конца листа. Внесение ненужных данных может исказить итоговые вычисления.
Лист Excel, скачанный вами, содержит пример заполнения раздела «Расчет нагрузок». Можете использовать его как образец. Если вы испортили наш файл, вы всегда можете скачать новый.
Раздел «Общие данные»
Содержит информацию, которая в основном находится в угловом штампе чертежа. Обратите внимание на поле «Кабель для групп», его нужно заполнить обязательно. Именно из этого поля берется марка кабеля для групповых сетей. Для примера посмотрите рисунок справа.
Раздел «Ввод»
Этот раздел отвечает за схему ввода щита. Всего наш сервис генерирует 6 типов ввода:
На вводе рубильник.
На вводе автомат.
На вводе рубильник и автомат.
На вводе рубильник и счетчик.
На вводе автомат и счетчик.
На вводе рубильник, автомат и счетчик.
Присутствие или отсутствие рубильника, автомата или счетчика на чертеже определяется полем «Наличие» в данном разделе. «ДА» означает, что элемент будет отображен на чертеже, «НЕТ» — элемент будет отсутствовать. Нельзя все три элемента установить в значение «НЕТ». На вводе обязательно должен быть либо рубильник, либо автомат. Остальные поля раздела должны быть понятны из их названий.
Раздел «Источник»
Этот раздел описывает источник, от которого запитан ваш щит. Необходимо написать название секции и параметры кабеля от источника до вашего щита.
Раздел «Перекос фаз»
Данный раздел дан просто для наглядности. Все параметры вычисляются автоматически. На чертеже эти данные не отображаются.
Создание чертежа
После того, как вы заполните лист Excel, нажмите ккнопку «Экспорт». В результате будет создан XML-файл и вам будет предложено сохранить его. Сохраните этот файл в удобном месте. Затем перейдите в раздел Чертежи->однолинейные схемы. В форме на этой странице нажмите кнопку «Выбрать файл» и укажите для загрузки сохраненный вами ранее XML-файл. На форме есть поля «Кодировка» и «Штамп на первом листе». Первое служит для выбора кодировки в которой нужно сохранить чертеж, для корректного отображения кириллических символов на чертеже. Если вы не поняли, что означает предыдущее предложение, то вам, определенно, нужно выбрать «Windows». Второе поле служит для отображения углового штампа на первом листе. Если вы используете свой угловой штамп, то можете снять галочку с этого поля, и штамп не будет сгенерирован. После этого нажмите кнопку «Загрузить».
Если при заполнении файла Excel вы не допустили никаких серьезных ошибок, то сервер отдаст вам готовый чертеж. В противном случае смотрите раздел работа с ошибками. Подробное описание требований к заполнению файла Excel смотрите в разделе «Работа с файлом Excel».
Если вы хотите просто протестировать работу нашего сервиса, то выполните выход с сайта. В этом режиме вы можете сделать чертеж в демо-режиме. На чертеже будут нарисованы только три первые автомата, источник, ввод и штамп будут созданы демонстрационные.
И последний совет: делайте реальный расчет нагрузок и вам никогда не придется сталкиваться с ошибками.
Успехов вам в работе!
электрические — Нет питания на розетке, однолинейный, автоматический выключатель в норме
Крайне скептически относитесь к сбоям «провод в стенах».
Каждый раз, когда появляется свидетельство, указывающее на неисправность проводки в стенах, останавливает его . Если вы недавно не забивали гвозди в стены или не получили повреждений в результате землетрясения, со всей умышленной силой, вытолкните «произвольный обрыв провода в стенах» в самый конец списка. Они в высшей степени невероятно .
Обычно появляется , что-то еще . Часто у новичков нет навыков или опыта, чтобы заметить «что-то еще», но они все равно на нем сосредоточиваются. Например, многие будут махать рукой возле бесконтактного детектора напряжения и обнаруживать, что все провода, которые должны быть горячими, горячие. Это не проверяет обратный провод, нейтраль, что не менее важно и предполагается, что не является горячим.
Следует сомневаться в подключениях, если их нельзя физически проверить, и даже в этом случае их отключение и повторное подключение никогда не повредит и может помочь. Вот где «удары в спину» — большая проблема. Они часто терпят неудачу без каких-либо доказательств неудачи: удары в спину не поддаются контролю. Их также нельзя использовать повторно, потому что выдергивание проволоки разрушает пружину. Все соединения задней стойки, работоспособность которых не доказана, следует переместить на боковые винты и должным образом затянуть. (у большинства людей крутящий момент слишком мал). Там вы можете их осмотреть (и с ними намного меньше проблем).
Если задействован GFCI, внимательно изучите его проводку, что часто означает пересмотр предположений о том, как GFCI должны быть подключены.Если сомневаетесь, сделайте снимок, как он подключен, а затем удалите его совсем (временно). Если схема работает во всех отношениях , пока не будет добавлен GFCI , это совершенно другая проблема, и опять же не имеет ничего общего с проводкой в стенах.
Последнее, что вы хотите сделать, это сломать стены, потратить 500 долларов на работу по замене кабеля, только чтобы вычеркнуть его из списка и сказать: «Нет, это не так, что дальше в дереве отказов?» Вот почему я говорю: «опустите его на дно».
Или, что еще хуже, в процессе замены кабеля вы по незнанию исправляете реальную проблему, например ослабленная гайка на нейтральной штанге. Как я говорю о ремонте автомобилей, «замена автомобильного компьютера за 600 долларов — очень дорогой способ перезагрузить автомобильный компьютер».
Предохранитель, автоматический выключатель и символы защиты
Защита, автоматический выключатель и символы предохранителей
Предохранитель
Это некоторые из условных обозначений универсального предохранителя в любой электрической цепи.Предохранитель используется для защиты любого электрического устройства от перегрузки по току. Он имеет небольшой провод или металл, который плавится из-за большого тока и размыкает цепь, блокируя прохождение ошибочных токов. IEC, IEEE и ANSI предоставляют разные системы представления.
Thermal Fuse
Обозначение термического предохранителя, используемого на любой электрической схеме. Тепловой предохранитель — это переключатель, чувствительный к температуре. Он работает с температурой, а не с током, если только ток не достаточен для повышения температуры выше пороговой точки.
Выключатель с предохранителем
Этот символ представляет выключатель с предохранителем. Выключатель с предохранителем выполняет действие переключения, физически удаляя предохранитель, поскольку предохранитель является частью выключателя.
Изолирующий выключатель-разъединитель
Он также известен как выключатель-разъединитель или выключатель-разъединитель, который используется для отключения и полного обесточивания цепи. Это разгрузочное устройство. Символ выше представляет собой выключатель-разъединитель.
Выключатель-предохранитель Разъединитель
Это символ выключателя-разъединителя с предохранителем.Это плавкий предохранитель, включенный последовательно с выключателем. Он может переключать устройство вручную, а также обеспечивать защиту от перегрузки по току путем размыкания цепи.
Защитный резистор
Оба символа обозначают защитный резистор. Он работает как резистор, который ограничивает ток, и, если он превышает определенный предел, он вылетает, размыкая цепь.
Fast Blow Fuse
Символическое представление быстродействующих предохранителей в любой электрической цепи.Быстродействующий предохранитель мгновенно перегорает, когда ток превышает максимально допустимый. Это наиболее распространенный тип предохранителей, используемых в электрическом оборудовании, чувствительном к сильному току.
Медленный предохранитель
В отличие от быстродействующего предохранителя, медленный предохранитель может выдерживать большой ток в течение короткого периода времени. он погаснет через короткий промежуток времени, когда ток превысит максимальный предел. Двигатели требуют большого тока при запуске, плавкий предохранитель выдерживает этот ток, не перегорая.
Предохранитель с бойком
Такой тип предохранителя также известен как предохранитель ударника. Он имеет ударный штифт, который служит индикатором состояния предохранителя. Штифт вытаскивается при сгорании предохранителя.
Предохранитель с сигнальным контактом
Условное обозначение предохранителя с сигнальным контактом. Такие предохранители имеют встроенную цепь аварийной сигнализации для отображения состояния предохранителя. Когда предохранитель перегорает, цепь срабатывает, и на ней загорается световая или другая индикация.
Предохранитель с отдельным сигнальным контактом
Этот символ представляет предохранитель с отдельным сигнальным контактом.
3 связанных предохранителя с срабатыванием любого бойка
Это символическое представление 3 связанных предохранителей, которые срабатывают при срабатывании любого из трех бойков.
Масляный предохранитель
Это символ масляного предохранителя. Он используется в распределительных устройствах, погруженных в масло. Масло используется в качестве охлаждающей жидкости для увеличения отключающей способности.
Автоматический выключатель
Это все символы, используемые для универсального автоматического выключателя. Автоматический выключатель — это автоматический выключатель, который защищает приборы от короткого замыкания или сильного тока нагрузки. Он размыкает цепи, когда ток превышает максимальный предел.
Выкатной выключатель
Стационарный выключатель или Выкатной выключатель обозначен указанным выше символом. Этот тип выключателя является фиксированным, и во время технического обслуживания поток мощности через выключатель необходимо остановить.
Выдвижной автоматический выключатель
Выдвижной автоматический выключатель состоит из двух частей: фиксированного основания и выдвижного выключателя, который можно снять, не прерывая потока мощности. Такой тип автоматических выключателей используется там, где требуется постоянное питание даже во время технического обслуживания.
Термовыключатель
Термовыключатель воздействует на температуру. Он контролирует ток в зависимости от температуры. Он размыкает цепь, когда температура поднимается выше номинальной, и замыкается, когда температура падает с определенной точки.Выше приведен символ термовыключателя
Network Protector
Сетевой предохранитель используется между вторичной клеммой распределительного трансформатора и сетью нагрузки. Его функция — разрывать соединение при обнаружении обратного тока, чтобы предотвратить любые потери.
Автоматический выключатель с резьбой
Этот символ обозначает автоматический выключатель с резьбой.
Однополюсный автоматический выключатель
Этот символ обозначает однополюсный автоматический выключатель.У него только один провод под напряжением, и он срабатывает при перегрузке или коротком замыкании.
Двухполюсный автоматический выключатель
Это двухполюсный автоматический выключатель. В автоматических выключателях такого типа проходят два отдельных провода под напряжением. Когда короткое замыкание или перегрузка происходит в любой из двух горячих линий, автоматический выключатель отключает обе линии.
Трехполюсный выключатель
Этим символом обозначен трехполюсный выключатель.Такие выключатели используются в трехфазных системах в промышленности. Он соединяет три фазы, и при перегрузке или коротком замыкании в любой фазе автоматический выключатель отключает все три фазы одновременно.
Изолятор автоматический выключатель
Изолятор Автоматический выключатель используется для полной изоляции нагрузки от источника. Это ручное устройство без нагрузки. У него немного меньшая токовая нагрузка, чем у автоматических выключателей. Он обеспечивает визуальное подтверждение обрыва цепи и необходимые меры предосторожности во время технического обслуживания.
Грозозащитный разрядник / ограничитель перенапряжения
Это символ, используемый для грозозащитного разрядника. Это устройство, используемое для защиты от молнии или сильных импульсных токов в линии. Он имеет две клеммы, то есть клемму высокого напряжения и клемму заземления. Грозовой разрядник отводит разряды от молнии к земле.
Искровой разрядник
Это некоторые из символов, используемых для искрового промежутка. Он состоит из двух проводов с небольшим зазором между ними, заполненных газом.Газ ионизируется, когда напряжение превышает точку разрыва газа, и возникает искра. Он используется в свечах зажигания для зажигания топлива и в качестве переключающих устройств для подачи импульсной энергии, например, для разряда конденсатора при высоком напряжении / токе.
Двойной искровой разрядник
Этот тип разрядника имеет два небольших зазора между проводниками, которые создают двойную искру. Выше приведен символ двойного искрового разрядника.
Ограничитель перенапряжения / газоразрядная трубка
Ограничитель перенапряжения или газоразрядная трубка изготовлены из герметичной газовой камеры.Когда напряжение превышает определенный предел, образуется дуга, которая замыкает весь ток, таким образом защищая оборудование.
Устройство защиты телефонной линии
Обозначение устройства защиты телефонной линии, которое защищает телефонную линию от скачков напряжения или молнии, чтобы предотвратить повреждение проводника или оборудования.
Громоотвод
Это символическое изображение громоотвода. Это металлический стержень, который кладут на крышу любого здания.Этот стержень соединяется с землей проводником. Когда молния ударяет в здание, стержень улавливает молнию и передает мощность на землю, минуя здание, предотвращая любые повреждения.
Термостат
Термостат регулирует температуру окружающей среды и поддерживает ее, включая и выключая охлаждающее или нагревательное оборудование. Символ термостата приведен выше.
Автоматический выключатель с картриджем
Символами показан автоматический выключатель с картриджем.Эти автоматические выключатели содержат плавкий предохранитель, который срабатывает при превышении предельного тока. Его легко заменить.
Соответствующие символы в электротехнике и электронике:
Как читать и понимать однолинейную электрическую схему?
Однолинейная электрическая схема, сокращенно SLD, также называется однолинейной схемой. Это упрощенный чертеж всей системы или ее части, на котором показано электрическое размещение всего основного оборудования.
Однолинейная схема — это упрощенное объяснение трехфазной системы питания.
Требуемая информация добавляется, чтобы дать инженеру или системному оператору полное представление об электрической системе. Он также включает схемы защиты системы.
Чем полезны однолинейные диаграммы?
- Они очень полезны для планирования работ по техническому обслуживанию.
- Помогает перенаправить питание после сбоя.
- Используется для переключения заказов на изменение конфигурации системы.
- Помогает просматривать взаимосвязи между меньшими секциями энергосистемы и всей системой.
Как это полезно для разных пользователей?
Линейная бригада: На чертеже однолинейной схемы рабочий может сразу увидеть, где находится средство отключения. Он показывает, как можно изолировать все альтернативные источники.
Системные операторы: Используйте однолинейные схемы для определения электрического размещения выключателей, переключателей, трансформаторов, регуляторов и т. Д. На подстанциях, которые могут указывать на аварийные сигналы.Восстановление питания возможно через опознание.
Инженеры-электрики: Используйте однолинейные схемы, чтобы понять поведение системы и внести изменения в систему питания для повышения производительности.
Конечные пользователи: Используйте однолинейные схемы, чтобы идентифицировать их электрическое оборудование, цепи и устройства защиты.
Знакомство:
Знакомство с электрическими символами помогает понять общие системные соединения.
Пример однолинейной схемы (SLD)
Приведенная выше однолинейная диаграмма показывает от производства до стадии распределения. Из приведенного выше однолинейного чертежа можно легко понять, что линия показана от производства электроэнергии, автоматических выключателей, трансформатора HT / LT, центра управления мощностью (PCC), затем от центра управления двигателем и, наконец, до фидеров.
Красный прямоугольник представляет автоматические выключатели. Перекрытый синий круг представляет собой преобразователь мощности HT в LT. Серая линия обозначает трехфазную мощность в одном проводе.
Однолинейная схема разделена на две части, от генерации к подстанции показаны в серой пунктирной рамке. Другой блок представляет собой центр управления мощностью, центры управления двигателями и их соединение с фидерами.
Трансформаторы тока показаны в двух местах с индикаторами.
Резистор заземления нейтрали (NGR) показан подключенным к линии нейтрали для защиты генератора от замыканий на землю.
Автоматические выключатели показаны в различных местах для отключения питания трансформатора, PCC и MCC.
Автор: Р. Джаган Мохан Рао
Читать дальше:
Тандемные выключатели: что нужно знать
Требуются ли тандемные выключатели в вашем доме или здании для удовлетворения ваших требований к электрической мощности?
Если это так, вы должны сначала понять , где они могут быть установлены, если вообще, иначе эти мощные выключатели принесут больше вреда, чем пользы.
Что такое тандемный выключатель?
Тандемные выключатели очень легко идентифицировать .Их имя говорит само за себя. Если вы посмотрите на паз, который был сделан для одного автоматического выключателя, и вместо этого вы найдете два узких выключателя, вы определили тандемный выключатель.
Многие электрики даже называют их выключателями-обманщиками за их способность разместить двоих в месте, предназначенном только для одного. Эти выключатели используются, когда вся панель в противном случае заполнена до отказа, что означает, что они являются единственным вариантом для увеличения ее возможностей.
Другие префиксы, которые вы можете услышать прикрепленными к этим типам выключателей, включают:
- Двойной
- Дуплекс
- половинной высоты
- Полудюйм
- Slimline
- Твин
- Вафля
Ваш типичный двухполюсный автоматический выключатель подключается к щитовой панели через два разных полюса.Он имеет общий наконечник для одновременного отключения от этих двух полюсов. Тандемные выключатели не имеют такого соединения.
Безопасны ли «читер-брейкеры»?
Учитывая эту распространенную альтернативу своему названию, многие люди опасаются, что тандемные автоматические выключатели могут быть опасны, что они могут каким-то образом перегрузить панель и привести к перегоранию цепей или даже к чему-то гораздо худшему.
К счастью, несмотря на это прозвище, тандемные автоматические выключатели полностью безопасны в использовании при условии, что ваша щитовая панель предназначена для их размещения и вы устанавливаете их в правильных местах.
Если бы эти устройства были опасными, тандемных выключателей GE, тандемных выключателей Square D и опций других уважаемых брендов бы не существовало.
Допускает ли моя панель управления тандемные автоматические выключатели?
Тем не менее, несмотря на то, что некоторые очень популярные бренды производят тандемные автоматические выключатели, вам все равно нужно знать, как проверить, допускает ли их ваш щит, иначе установка может быть чрезвычайно опасной.
Проверьте название модели автоматического выключателя
Первое, что нужно проверить, — это название вашей панели.Ответ вы найдете в первом четырехзначном числе.
Например, G3040BL1200 сообщает вам, что он предлагает 30 мест, но может поддерживать всего 40 цепей. Единственный способ сделать это — разрешить тандемные автоматические выключатели.
С другой стороны, если ваша панель — G3030BL1150, вы знаете, что на ней 30 ячеек, но можно использовать только 30 контуров. Если вы установили хотя бы один тандемный выключатель, вы превысите это количество, поэтому эта панель не позволяет их использовать.
Проверьте схему Panelboard
Если вы не знаете название модели панели управления, вы всегда можете проверить ее схему.Это покажет вам не только , если тандемные выключатели разрешены, но и, если да, то где они могут быть установлены.
Те слоты, которые позволяют использовать только полноразмерные автоматические выключатели, будут пустыми. Те, которые позволяют использовать тандемные выключатели, будут иметь одну линию внутри слота.
Еще один способ показать это — диаграмма, которая состоит из одной линии, представляющей всю панель, с отдельными линиями, отходящими от нее, представляющими выключатели. Любая линия, которая превращается в две (эти линии обычно имеют отмеченный «горб»), показывает вам, где разрешены тандемные выключатели, если они вообще разрешены.
Многие диаграммы предлагают какой-то ключ, поэтому обязательно проверьте его, прежде чем пытаться его интерпретировать. Например, на некоторых схемах панелей будут отображаться линии в каждом пустом слоте, хотя на самом деле это только полноразмерные выключатели.
Правильное использование тандемных выключателей
Независимо от того, используете ли вы тандемные прерыватели GE, тандемные прерыватели Square D или другие марки, они представляют собой невероятно удобный и экономичный способ повысить производительность вашей панели. Тем не менее, не пытайтесь установить их там, где они не поддерживаются, иначе вы можете подвергнуться опасности возгорания.
В случае, когда тандемные выключатели использовались там, где им не место, лучший путь вперед — это заменить всю панель, чтобы избежать любых проблем в будущем из-за повреждений, которые эти выключатели могли уже нанести.
Как узнать, когда можно использовать тандемные автоматические выключатели (также известные как автоматические выключатели)
Путаница по поводу использования тандемных автоматических выключателей в щитах царит даже среди электриков и электротехников.Сегодня я уточню, когда можно использовать тандемные автоматические выключатели. Это адаптация статьи, которую я написал для ASHI Reporter, которая была опубликована в феврале 2011 года.
Во-первых, быстрое определение. Тандемный автоматический выключатель — это двойной автоматический выключатель, который занимает место одиночного автоматического выключателя на щитке. Вы также услышите, что они называются дуплексными, тонкими, сдвоенными, половинными, полудюймовыми, двойными и вафельными прерывателями, в зависимости от местных обычаев.В то время как двухполюсный автоматический выключатель подключается к двум разным полюсам на щитке и имеет общий расцепитель или ручную стяжку для одновременного отключения двух полюсов, тандемный выключатель этого не делает.
На фото ниже показан двухполюсный автоматический выключатель на 60 А вверху, затем тандемный автоматический выключатель на 15 А (выделен), затем тандемный автоматический выключатель на 20 А (выделен), затем однополюсный автоматический выключатель на 20 А на Нижний.
На следующем фото показан тандемный выключатель старого образца, который можно найти в щитах Square D.
Поскольку тандемные автоматические выключатели позволяют устанавливать две цепи на щитовой панели в пространстве с одним автоматическим выключателем, они обычно используются после того, как щит полностью заполнен стандартными автоматическими выключателями. Из-за этого их часто называют «мошенниками».
Это действительно «жульничество»? Нет, это не так. Использование тандемных автоматических выключателей является вполне приемлемой практикой, если щиток разработан для тандемных выключателей и они установлены в местах внутри щитового щита, где это разрешено.
Как домашний инспектор определяет, разрешены ли тандемные автоматические выключатели на проверяемом щите? Есть несколько способов сделать это.
Панели CTL класса
Панельные панелидолжны соответствовать стандарту UL 67, который требует, чтобы все осветительные и приборные щитки соответствовали классу CTL (ограничение общего количества цепей). Вот старая формула для определения количества цепей, разрешенных в проверяемой панели CTL класса; эту формулу полезно использовать при осмотре старых электрических панелей без четкой маркировки внутри панели.Возьмите силу тока щитка, умножьте на количество полюсов и разделите на 10. Звучит сложно, но это не так — давайте возьмем щиток на 100 А в качестве примера:
100 А x 2 полюса = 200 200/10 = 20
Исходя из этой формулы, максимальное количество цепей, разрешенных в 100-амперном щитке с напряжением 120/240 В, составляет 20. приборных щитов, разрешенное количество автоматических выключателей не ограничено.Эта формула также больше не применима к сегодняшним панелям.
Национальный электротехнический кодекс 2008 года (NEC) немного сбивает с толку. Предыдущие редакции NEC ограничивали максимальное количество цепей в щитах освещения и приборов до 42. Версия NEC 2008 года удалила обозначение щитка «освещение и прибор», однако в NEC 408.54 сказано: «Щит должен быть снабжен физическими средствами. для предотвращения установки большего количества устройств перегрузки по току, чем то количество, для которого щит был спроектирован, рассчитан и указан.”
Производители по-прежнему указывают максимально допустимое количество автоматических выключателей и должны обеспечивать функцию отклонения, чтобы предотвратить использование тандемных выключателей там, где это не разрешено.
Щитыкласса CTL имеют различные методы предотвращения использования тандемных выключателей класса CTL в местах, где это запрещено. Это называется «функцией отклонения». На фотографии ниже выделенные стойки шины имеют выемки, позволяющие использовать тандемные автоматические выключатели; удары автобуса, у которых нет этой выемки, не допускают тандемных выключателей.
Тандемные автоматические выключатели классаCTL имеют форму, отличную от стандартных однополюсных автоматических выключателей, чтобы предотвратить их установку там, где они не подходят.
Тандемные автоматические выключатели производятся таким образом, чтобы люди не использовали их ненадлежащим образом, но это не останавливает всех. На фотографиях ниже вы можете увидеть, как кто-то сломал нижнюю часть автоматических выключателей, чтобы они поместились там, где им не место.Вероятно, отсюда и появился термин «читер».
На щитах, изготовленных до принятия стандарта Class CTL, тандемные выключатели, отличные от класса CTL, разрешается устанавливать только в качестве сменных автоматических выключателей. Тандемные выключатели, не относящиеся к классу CTL, не имеют функции «отклонения», которую имеют выключатели класса CTL. Как четко указано на этикетке сбоку автоматического выключателя, изображенной ниже, эти автоматические выключатели не допускаются в щитах ClassCTL.Сложность для домашних инспекторов заключается в том, что маркировка обычно не видна после установки, и домашние инспекторы не должны вытаскивать автоматические выключатели, чтобы попытаться выяснить это.
Допускает ли щит тандемы?
Теперь, когда я рассказал об общих правилах для тандемных автоматических выключателей, я расскажу о том, как домашние инспекторы или электротехники могут определить, когда тандемные автоматические выключатели разрешены в различных щитах.
Модель щиткаМодель или номер детали электрического щитка обычно указывает, спроектирован ли щиток для установки тандемных выключателей и сколько их можно использовать. Вот несколько примеров:
- G 3040 BL1200 = 30 пробелов, всего разрешено 40 контуров. Можно использовать до 10 тандемных автоматических выключателей.
- G 3030 BL1150 = 30 пробелов, всего разрешено 30 контуров.Тандемные выключатели не допускаются.
- BR 1220 B100 = 12 пробелов, всего разрешено 20 контуров. Можно использовать до 8 тандемных автоматических выключателей.
- BR 1212 B100 = 12 пробелов, всего разрешено 12 контуров. Тандемные выключатели не допускаются.
- HOMC 20 U100C = 20 пробелов, всего разрешено 20 контуров. Тандемные выключатели не допускаются.
Думаю, увидеть узор достаточно просто.
Схема внутри щитаСхема соединений внутри щита — отличный способ определить, разрешены ли тандемные выключатели, и если да, то точно там, где они разрешены.На фотографии ниже вы можете видеть, что в четырех верхних ячейках разрешены только полноразмерные выключатели, а в нижних восьми гнездах — тандемные выключатели.
Вот еще одна схема щитка — этот щиток позволяет использовать тандемные выключатели в четырех местах.
И еще — этот щиток не позволяет использовать тандемные выключатели .
И еще один — этот щит позволяет тандемным выключателям только в нижних десяти местах (11-20 и 31-40).
Еще одна вещь, которую легко найти, — это этикетка с указанием максимально допустимого числа цепей . На фото ниже видно, что на щитке допускается только 20 цепей. Этот щит имеет 20 полноразмерных ячеек, поэтому использование тандемных выключателей не допускается.
В чем проблема тандемных выключателей?Когда тандемные автоматические выключатели используются в местах, где они не разрешены, они могут неправильно физически подключаться к шине на щитке, что может создать опасность возгорания.Тандемные автоматические выключатели также увеличивают общую нагрузку на шины в щитовом щите; Вот где домашним инспекторам нужно руководствоваться здравым смыслом.
Когда домашний инспектор обнаруживает тандемные выключатели, используемые в неподходящих местах, он часто порекомендует выполнить ремонт электриком. Если шины щитка были повреждены или изменены, чтобы можно было установить тандемные автоматические выключатели, надлежащий ремонт заключается в замене щитка. Домашний инспектор не может определить, были ли повреждены шины, без фактического удаления автоматических выключателей, чего домашним инспекторам делать не следует.
Информация для этой статьи была частично предоставлена Аланом Манче из Schneider Electric, Стивеном Плосей из Siemens Industry, Inc. и Джозефом Фелло из Eaton Corporation. Также особая благодарность бывшему члену ASHI Дугласу Хансену.
Рубен Зальцман, Structure Tech Home Inspections — электронная почта — инспектор домов Миннеаполиса
Предыдущее сообщение
Проблемы с установкой сайдинга James Hardie®Новое сообщение
Двухсторонние автоматические выключатели% PDF-1.3 % 4368 0 объект > эндобдж xref 4368 90 0000000016 00000 н. 0000002155 00000 п. 0000002382 00000 н. 0000002415 00000 н. 0000002471 00000 н. 0000003618 00000 н. 0000003970 00000 н. 0000004039 00000 н. 0000004188 00000 п. 0000004334 00000 н. 0000004490 00000 н. 0000004628 00000 н. 0000004787 00000 н. 0000004944 00000 н. 0000005109 00000 п. 0000005289 00000 п. 0000005409 00000 п. 0000005548 00000 н. 0000005698 00000 п. 0000005845 00000 н. 0000005982 00000 п. 0000006118 00000 п. 0000006265 00000 н. 0000006412 00000 н. 0000006548 00000 н. 0000006695 00000 н. 0000006851 00000 н. 0000006959 00000 п. 0000007100 00000 н. 0000007222 00000 н. 0000007368 00000 н. 0000007525 00000 н. 0000007652 00000 н. 0000007780 00000 н. 0000007911 00000 п. 0000008077 00000 н. 0000008183 00000 п. 0000008298 00000 н. 0000008412 00000 н. 0000008527 00000 н. 0000008672 00000 н. 0000008801 00000 п. 0000008910 00000 п. 0000009032 00000 н. 0000009152 00000 п. 0000009265 00000 н. 0000009360 00000 п. 0000009458 00000 п. 0000009585 00000 п. 0000009711 00000 н. 0000009828 00000 н. 0000009946 00000 н. 0000010055 00000 п. 0000010173 00000 п. 0000010291 00000 п. 0000010408 00000 п. 0000010525 00000 п. 0000010642 00000 п. 0000010759 00000 п. 0000010876 00000 п. 0000010993 00000 п. 0000011110 00000 п. 0000011227 00000 п. 0000011344 00000 п. 0000011461 00000 п. 0000011668 00000 п. 0000011711 00000 п. 0000011822 00000 п. 0000011846 00000 п. 0000011952 00000 п. 0000013055 00000 п. 0000013079 00000 п. 0000014222 00000 п. 0000014246 00000 п. 0000015444 00000 п. 0000015468 00000 п. 0000016554 00000 п. 0000016578 00000 п. 0000017732 00000 п. 0000017756 00000 п. 0000018871 00000 п. 0000018895 00000 п. 0000020065 00000 п. 0000020089 00000 н. 0000022768 00000 п. 0000022847 00000 п. 0000022927 00000 н. 0000024067 00000 п. 0000002514 00000 н. 0000003595 00000 н. трейлер ] >> startxref 0 %% EOF 4369 0 объект > эндобдж 4370 0 объект [ 4371 0 руб. ] эндобдж 4371 0 объект > / F 5 0 R >> эндобдж 4372 0 объект > эндобдж 4456 0 объект > транслировать H lSU: nU2XL $ 6 {yohv26R (s62 (_Ck; 64 & FЄ fb & ,? ϛw |; 缟
В чем разница между одно- и двухполюсным выключателем)
Если вы когда-либо исследовали главную печатную плату в своем доме или бизнес, вы, наверное, заметили, что есть два разных типа выключателей.Первый — однополюсный выключатель, второй — двухполюсный выключатель. Однополюсный выключатель обычно используется в цепях на 120 вольт, 15-20 ампер. Они построены с одним проводом под напряжением и одним нейтральным проводом. Двухполюсный выключатель в основном используется с цепью 240 В, 20-60 ампер и состоит из двух проводов под напряжением.
Автоматический выключатель, провод и изоляция проводов предназначены для совместной работы как система. Созданная система имеет ограничения. Когда вы пытаетесь протолкнуть больше тока через цепь, провода начнут нагреваться, а изоляция вокруг провода может ухудшиться, а в некоторых случаях даже расплавиться.Когда это происходит, ток больше не ограничивается исходным проводом, и возникает пожар. Однако автоматический выключатель обнаружит любой избыточный ток и отключит систему, чтобы остановить весь поток энергии, прежде чем может произойти какое-либо реальное повреждение.
С учетом сказанного, автоматические выключатели используются в качестве специализированных устройств безопасности, которые помогают предотвратить потребление или использование электрической цепи большего тока, чем обычно предусмотрено для использования. Они помогают предотвратить возможные опасности возгорания, которые могут возникнуть в результате перегрева проводки в вашем доме или офисе.Каждая розетка в вашем доме или офисе напрямую подключена к системе электропроводки, которая получает питание через автоматический выключатель. Автоматические выключатели могут быть легко перезагружены после того, как они сработают, и причина дополнительного потребления тока устранена или устранена.
Большинство жилых домов и небольших офисных зданий подключены к электросети местной коммунальной компании, которая обеспечивает ток как 120 В, так и 240 В. Большинство электрических розеток в вашем доме подает напряжение 120 вольт. Однако некоторым приборам в вашем доме или офисе может потребоваться более высокое напряжение, обычно 240 вольт, поскольку им требуется больше энергии для правильной работы.
Однополюсные выключатели
Если посмотреть на вашу электрическую панель, то однополюсные выключатели — это узкие выключатели. Они используются для ряда бытовых приборов, таких как розетки общего освещения, пылесосы, вентиляторы, электроинструменты, щипцы для завивки, фены, наружное освещение, телевизоры, радио, компьютеры, DVD-плееры, зарядные устройства для мобильных телефонов и воздушные компрессоры, и многие другие. Однополюсный выключатель подключается с одним проводом под напряжением и одним нейтральным проводом, как мы указали выше.Если происходит перегрузка в цепи однополюсного выключателя, сработает только этот конкретный выключатель.
Двухполюсные выключатели
При осмотре электрической панели двухполюсные выключатели — это те, которые имеют двойные выключатели. Используемые с центральными кондиционерами, электрическими плитами, электрическими сушилками, электрическими водонагревателями, электрическими обогревателями плинтусов и даже гидромассажными ваннами, они также могут использоваться для обслуживания приборов с цепями с более низким напряжением. Двухполюсные выключатели подключаются двумя проводами под напряжением, соединенными одним нейтральным проводом.При таком типе подключения, если когда-либо произойдет короткое замыкание на проводах любого из полюсов, сработают оба. Двухполюсные выключатели обычно используются для обслуживания одной цепи на 240 В, но также могут использоваться для обслуживания двух отдельных цепей на 120 В.
Надеемся, эта статья была вам полезна. Компания South Nashville Heating and Cooling заботится о наших клиентах. Вы — наш приоритет №1, поэтому мы готовы ответить на все ваши вопросы, обсудить ваши проблемы и удовлетворить все ваши потребности.Не откладывай. Свяжитесь с нашими специалистами сегодня, чтобы обеспечить общее здоровье и безопасность вашего дома или офиса !!
.