Схема блока питания 5в 2а: Блок питания 5В 2А | Все своими руками

Содержание

Блок питания 5В 2А | Все своими руками

Опубликовал admin | Дата 5 июля, 2016

Как сделать блок питания своими руками, об этом пойдет речь в данной статье. Выходное стабилизированное напряжение блока – 5 вольт, номинальный ток нагрузки 2 ампера. Выход блока питания имеет защиту от короткого замыкания. Принципиальная схема устройства показана на рисунке 1.


В схеме применен унифицированный накальный трансформатор ТН-220-50. Данные на него можно посмотреть в таблице ниже.

ТН2-127/220-50, параметры

Данные трансформаторы имеют несколько модификаций. Поэтому подключение первичной обмотки у них отличается. Если трансформатор рассчитан только на напряжение 220 вольт, то это напряжение надо подключать к выводам 1 и 5 первичной обмотки, см. рисунок 2.

ТН2-127/220-50, схема включения

Если в своем обозначении трансформатор имеет 127, то его схема показана на рисунке 3. В этом случае надо будет еще поставить перемычку между выводами 2 и 4 первичной обмотки. Выходное переменное напряжение величиной 6,3 вольта поступает на выпрямительный мост, состоящий из четырех диодов

КД202В, можно применить и готовый мост на ток не менее четырех ампер. Например, из импортных, это RS401, KBL005. Шести амперные мосты – KBU6A, RS601, BR605, KBPC6005 и др. Постоянное напряжение на конденсаторе фильтра будет примерно равно 6,6×1,41= 8,8 вольт. Основой стабилизатора служит микросхема К157ХП2, в состав которой входит источник опорного напряжения с устройством управления временем включения и выключения, усилитель сигнала рассогласования, регулирующий элемент с токовой тепловой защитой. Имеет все то, что нам надо! Правда в состав микросхемы входят еще два транзистора для генератора стирания и тока подмагничивания магнитофонов (микросхема то магнитофонная), но мы их использовать не будем. В качестве регулирующего транзистора в схеме используется мощный составной транзистор КТ829А (схема Дарлингтона). В крайнем случае, можно применить менее мощный транзистор КТ972А или соответствующие импортные, какие ни будь TIP120, 121,122, имеющий ток коллектора пять ампер.

И так, как уже говорилось выше, схема имеет вывод включения/выключения — 9. Что бы включить стабилизатор надо на этот вывод подать напряжение не ниже двух вольт. В первый момент после подачи напряжения на вход стабилизатора, это напряжение формируется цепочкой R1 и С2. За время протекания тока заряда этого конденсатора успевает включиться сам стабилизатор и часть его выходного напряжения через резистор обратной связи так же подается на вывод 9. Это удерживающее напряжение для поддержания стабилизатора в рабочем состоянии. Вывод 8 микросхемы, это выход напряжения источника опорного напряжения. У данной микросхемы это напряжение равно 1,3 вольта. С8 – конденсатор фильтра и одновременно конденсатор задержки включения стабилизатора. Таким образом, если у вас не будет включаться стабилизатор, то надо будет увеличить емкость конденсатора С2. Т.е. увеличить время заряда этого конденсатора, что бы успел включиться стабилизатор.

Чтобы выключить стабилизатор, надо нажать на кнопку SA3 – Стоп. Она зашунтирует вывод 9 DA1 на общий провод, открывающее напряжение пропадет, стабилизатор закроется. Прекрасная микросхема, напряжение выключенного стабилизатора в моем случае равно всего 7,6 мВ. То же самое произойдет, т.е. стабилизатор выключится, когда в его выходной цепи произойдет короткое замыкание. Так же пропадет открывающее напряжение. Через резистор R1 напряжение на вывод 9 поступать не будет, так как уже заряженный конденсатор для постоянного тока имеет очень большое сопротивление. В таком состоянии схема может находиться сколько угодно долго. Для повторного запуска стабилизатора необходимо или снять напряжение питания и снова подать, или нажать на кнопку пуск. В этом случае открывающее напряжение на вывод 9 поступит через резистор R1.

Подстроить выходное напряжение стабилизатора можно резистором R4. При токе нагрузки, равному 2 амперам и падении напряжения на регулирующем транзисторе 8,8-5=3,5 вольт, мощность, на нем выделяемая, будет равна P = U x I = 3,5 x 2 = 7 Вт. Отсюда следует, что транзистору необходим соответствующий теплоотвод, площадь которого можно прикинуть, посетив страницу со статьей «Расчет радиаторов». Я тут прикинул и получилось, примерно, 200см2.

На сайте есть другой блок питания с использованием этой же микросхемы, если интересно можете заглянуть в статью «Блок питания от2 до 30 вольт» или же сюда «Стабилизатор 5В». Пока все. Удачи. К.В.Ю.
Скачать статью «Блок питания 5В 2А своими руками»

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:11 380


cxema.org - Три хороших блока питания на 5 вольт

5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

Первый вариант – самый простой.

Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

Три хороших блока питания на 5 вольт, принципиальная схема первого варианта

Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут ) точками указаны начала обмоток.

По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014.

Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

Блок кстати выглядит так:

Три хороших блока питания на 5 вольт, внешний вид первого варианта

Три хороших блока питания на 5 вольт, внешний вид первого варианта

Три хороших блока питания на 5 вольт, внешний вид первого варианта

Второй вариант – более мощный.

Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

Три хороших блока питания на 5 вольт, принципиальная схема второго варианта

Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

Блок выглядит вот так:

Три хороших блока питания на 5 вольт, внешний вид второго варианта Три хороших блока питания на 5 вольт, внешний вид второго варианта

Три хороших блока питания на 5 вольт, внешний вид второго варианта

Третий вариант – самый мощный.

Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

Три хороших блока питания на 5 вольт, принципиальная схема третьего варианта

В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

Три хороших блока питания на 5 вольт, UC3843 внутреннее строение

На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.

Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.

Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.

Выглядит это всё примерно так:

Три хороших блока питания на 5 вольт, внешний вид второго вариантаТри хороших блока питания на 5 вольт, внешний вид второго варианта

А вот их относительные размеры:

Три хороших блока питания на 5 вольт, внешний вид второго вариантаТри хороших блока питания на 5 вольт, внешний вид второго варианта

Печатные платы 

Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Этот адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Дмитрий4202

Простой блок питания 5 В 1 А

Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.

В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:

Простая мигалка на светодиодах
Простейшая мигалка на светодиоде
Программируемый переключатель гирлянд
Светодиодная гирлянда на микроконтроллере
Переключатель ёлочной гирлянды на ШИМ

Во всех перечисленных схемах требуется блок питания 5 В как основной или дополнительный источник. Наш БП 5 В будет трансформаторным, а не импульсным. По моему скромному мнению трансформаторный блок питания собрать и настроить легче, возможно по стоимости и габаритам импульсный предпочтительней, но если у вас завалялся старенький и к тому, же тороидальный «транс» на 7 - 10 В, то как говорится сам бог велел.

Структурная схема блока питания на 5 В:

Каждый блок пронумерован А1-А6. На принципиальной схеме каждый блок будет выделен, так сказать для наглядности. Рассмотрим, что представляет из себя каждый блок.

Сетевой фильтр (А1).

Предназначен для подавления высоковольтных и высокочастотных сетевых помех. С высоковольтными помехами успешно справляется варистор. А высокочастотными помехами займется RC фильтр.

Варистор – это полупроводниковый элемент, характеризующийся сопротивлением. Работает следующим образом: в рабочем режиме сопротивление варистора достаточно велико, напряжение не превышает пороговое значение варистора, и ток через него не течет. Как только напряжение достигает «порога» - сопротивление варистора понижается практически до нескольких десятков Ом и ток начинает протекать через него. Кратковременные высоковольтные импульсы гасятся варистором, а более длительное перенапряжение, как правило, выводит его из строя, иногда даже с громким хлопком.

В нашей схеме блока питания 5 В будем использовать RC фильтр, он уступает по эффективности LC фильтру, но зато дешевле и для нашего маломощного БП вполне подойдет.

Раньше никто не «заморачивался» сетевым фильтром, а теперь, какую бы вы бытовую технику не разобрали, обязательно увидите варистор, RC или LC фильтры тоже встречаются, но реже. Вызвано это массовым использованием импульсных блоков питания, которые передают в сеть такую «кашу» помех, что не всякий потребитель выдержит, поэтому производители электротехники пытаются хоть как-то обезопасить свою продукцию. Одним словом не рекомендую убирать из схемы блока питания сетевой фильтр.

Трансформатор (А2).

В нашем БП 5 В трансформатор играет ключевую роль, именно он понижает (преобразует) сетевое питание 220 В в низковольтное. Трансформатор должен быть силовым, рассчитан на сетевую частоту 50 Гц, с первичной обмоткой на 220 В и одной вторичной обмоткой на 7 - 10 В. Номинальная мощность трансформатора 4 - 8 Вт. Конструкция (тороидальный, броневой) в принципе особой роли не играет, какой найдете.

Еще такой момент, на трансформаторе указывают действующее значение напряжения (Uд), которое можно проверить, измерив вольтметром. А на выходе после фильтра (блок А4), по сути после диодного моста и сглаживающего конденсатора, мы получим амплитудное значение (Uа). Зависимость между амплитудным и действующим напряжениями такая:

Uа = 1,41xUд

Т.е. если в блоке питания вторичная обмотка трансформатора выдает 7 - 10 В, то на фильтре-конденсаторе (А4) мы приблизительно получим 10 - 14 В. Забегая наперед скажу, что для нас это не опасно, т.к. стабилизатор напряжения (А5) работает до 40 В на входе. Теоретически, да и практически, мы можем взять трансформатор с большим напряжением и на выходе стабилизатора получить необходимые 5 В. Куда денется разница? Правильно – в тепло! А нам это не надо, мы строим рациональный блок питания 5 В.

Выпрямитель (А3).

Превращает переменное напряжение на входе в постоянное на выходе. Будем использовать двухполупериодный выпрямитель – диодный мост.

Фильтр (А4).

Предназначен для сглаживания напряжения после выпрямителя. Используется обычный электролитический конденсатор достаточно большой емкости. Чем больше емкость конденсатора, тем меньше пульсации. У конденсатора кроме емкости есть еще такой параметр как напряжение, будьте внимательны и берите конденсаторы с запасом. Мы условились, что в блоке питания на 5 В вторичная обмотка трансформатора (А2) будет на 7 - 10 В и с учетом повышения напряжения в 1,41 раз возьмем конденсатор не менее 25 В. В момент, когда конденсатор заряжается, протекающий через диодный мост ток увеличивается т.к. необходимо обеспечить и заряд и нагрузку. Обратное напряжение диода тоже велико – происходит суммирование входного и выходного напряжений. Поэтому диоды для выпрямителя нужно подбирать с запасом по параметрам.

Стабилизатор напряжения (А5).

Это микросхема, служит для стабилизации диапазона напряжений на входе в четко установленное значение на выходе. Логично, что входное напряжение должно быть больше выходного, как правило, не менее чем на 3 В. Максимальный порог обычно ограничен 30 - 40 В. Стабилизатор лучше брать в корпусе TO220 и установить на радиатор, по крайней мере, в нашем блоке питания на 5 В я рекомендую это сделать.

Индикатор (А6).

В повседневной жизни мы уже настолько привыкли, что любая техника нам весело подмигивает светодиодом, когда мы ее включаем, то я решил, что индикатор рабочего режима не помешает в БП 5 В. Он состоит из светодиода и токоограничивающего резистора. Светодиод красного или зеленого цвета свечения на напряжение 1,5 В или 3 В, только посчитайте правильно сопротивление резистора. Сопротивление токоограничивающего резистора рассчитывается по формуле:

R = (Uпит - Uсвет)/Iсвет, где

Uпит – напряжение источника питания;

Uсвет – прямое напряжение светодиода;

Iсвет – прямой ток светодиода.

Рекомендую воспользоваться отличным калькулятором для расчета токоограничивающего резистора.

Пора переходить от теории к практике. Вашему вниманию предлагается принципиальная схема блока питания 5 В:

Для наглядности на схеме БП выделены блоки согласно структурной схемы. Пройдемся по схеме.

Первым идет предохранитель FU1, не забывайте про него в своих конструкциях, это очень важный элемент. Нередко, жертвуя собой, он спасает всю схему. Предохранитель должен быть рассчитан на ток 0,15 А, можно взять и мощней, но до 0,5 А, это на тот крайний случай когда 0,15 А сгорает. Все зависит от качества трансформатора. Больше 0,5 А не ставьте ни в коем случае!

 

Выключатель SA1 любой подходящий, лучше конечно если у него будет две группы контактов как показано на схеме. Отлично подойдет на 250 В, 6 А. Ставить с подсветкой в блок питания не советую, у нас в качестве индикатора будет светодиод который стоит на выходе БП и в отличии от неонки в кнопке сигнализирует о работе всех предстоящих компонентов.

 

Далее по схеме блока питания 5 В идет варистор RU1. Можно любой, я поставил JVR-07N471K. Главное чтобы так называемое классификационное напряжение было 470 В, не меньше – будет греться, и не больше – будет пропускать перенапряжение.

 

Сопротивление резисторов R1 и R2 5 - 20 Ом, мощность до 2 Вт. Если при сборке блока питания эти резисторы у вас окажутся рядом – оденьте на них термоусадку или кембрик, таким образом, их нужно изолировать друг от друга, потому что собственная изоляция резисторов штука ненадежная. На предлагаемой ниже печатной плате эти резисторы разнесены, тем не менее, лишняя изоляция не повредит.

Конденсатор C1 неэлектролитический пленочный серии К73-17 номинальное напряжение 630 В, емкость 0,1 - 0,47 мкФ.

 

Про трансформатор Т1 для блока питания 5 В уже говорили, вкратце напомню – первичная обмотка 220 В, вторичная 7 - 10 В, мощность 4 - 8 Вт.

 

Диодный мост VD1 рекомендую брать готовый, конечно если есть желание можно спаять из диодов. При подключении смотрите маркировку на корпусе. Если все же решили собрать из диодов, напомню, что на корпусе диода полоской маркируется катод, как определить катод на схеме смотрите рисунок, красным отмечена буква «К» это он и есть. Что касается параметров, для нашего БП 5 В берем мост с запасом, я выбрал KBL01.

Фильтр блока питания, он же конденсатор электролитический C2 типа К50-35. Электролитические конденсаторы имеют полярность, на корпусе маркируется минус, в схеме указывается плюс, будьте внимательны, если перепутаете ба-бах обеспечен. Тоже произойдет, если напряжение питания превысит номинальное конденсатора. Емкость 2200 - 4700 мкФ, меньше нельзя из-за роста пульсаций, больше - нет смысла. Напряжение 25 В и выше. Не забывайте мы условились, что в собираемом БП вторичная обмотка на 10 В, не больше, учитывая повышение в 1,41 раз, получаем с запасом 25 В. Вообще, при подборе трансформатора умножайте примерно на 1,5 подаваемое на конденсатор напряжение (т.е. с учетом 1,41) – это будет запас на прочность.

Стабилизатор напряжения также важный компонент схемы блока питания на 5 В. Есть отечественные, есть импортные аналоги выбирать вам. Я остановился на L7805A, максимальное входное напряжение – 35 В, выходное – 5 В, выходной ток до 1 А, корпус TO220. Конденсатор C3 рекомендуется для предотвращения самовозбуждения стабилизаторов. Подойдет обычный керамический многослойный серии К10-17Б, емкость 0,1 - 4,7 мкФ.

Последний элемент блока питания 5 В – индикатор работы. Светодиод HL1 и токоограничивающий резистор R3. Светодиод АЛ307БМ, сопротивление резистора согласно расчетам 300 Ом, мощность 0,125 Вт. У светодиода, как и у диода, есть катод, и анод не перепутайте при подключении. Определить полярность поможет мультиметр в режиме омметра или в режиме проверки диодов, при правильном подключении светодиод загорится.

5 В блок питания собран на одностороннем фольгированном стеклотекстолите размерами 60х26 мм. Предохранитель FU1, выключатель SA1 и трансформатор Т1 располагаются отдельно. Светодиод HL1 по желанию, его можно вынести на корпус.

Печатная плата блока питания 5 В со стороны элементов выглядит так:

А со стороны выводов элементов выглядит следующим образом:

Предлагаю вам скачать печатную плату блока питания 5 В в формате .lay в конце этой статьи.

В наладке правильно собранный блок питания 5 В не нуждается.

Список файлов

bp_5v.lay

Печатная плата блока питания 5 В

  • Загрузок: 1595
  • Размер: 23 Kb

Импульсный блок питания на два напряжения 5 и 12 вольт 1,2А для электронных самоделок

Привет Муськовчане! Как я обещал в обзоре милливольтметра, хочу рассказать Вам об импульсном блоке питания, с двумя изолированными (друг от друга) напряжениями 5В и 12В. Потребность в таком блоке питания возникает часто, а учитывая небольшие размеры платы, подобный источник питания легко встроить (найти место) в корпус Вашего электронного устройства, самоделки… Давайте протестируем этот ИИП, что бы определится с его «проф. пригодностью».))) Кому интересно — добро пожаловать под Кат… Внимание много фото!!!!


Почему я выбрал такой источник питания?
1. Изолированные друг от друга каналы — часто это очень важно, к примеру, дать питания 12В на плату управления какого-либо силового устройства, а от 5В «запитать» цифровой индикатор (ампервольметр). Если будет гальваническая связь между каналами 5В и 12В, это может привести к неправильной работе, в лучшем случае и большому «бабаху» в худшем…
2. На фото ИИП я увидел, хотя бы какое-то подобие входного фильтра (синфазный дроссель в том числе), для блоков питания нижнего ценового диапазона это редкость, а мне не хочется «гадить» помехами в сеть, т.к в эту же сеть у меня включен осциллограф, который начинает показывать «чужие» помехи при измерении.
3. Небольшой размер — часто бывает, что в ходе сборки появляются дополнительные блоки, которые требуют свое питание, благодаря небольшим размерам найти место для этого ИИП будет не сложно.
Скрин заказа выкладываю под спойлером:

Скрин заказа


Давайте рассмотрим детали ИИП подробнее. Я буду фонариком выделять те части которые описываю, ибо по другому прочитать маркировку деталей сложно…
1. Высоковольтная часть ИИП
Рассмотрим входной каскад и фильтр. См фото:

Как мы видим на фото, что есть предохранитель, термистор (5D9) и синфазный дроссель. Понятно, что фильтр не полный, не хватает как минимум Х конденсатора, без него возможны помехи в питающую сеть. Попробуем его после тестов впаять куда-нибудь. За дросселем идет электролитический конденсатор на 22мкФ 400В. По «феншую» количество микроФарад на входе равняется количеству Вт выдаваемых блоком питания. Соответственно ИИП рассчитан на 22W. Давайте суммируем заявленную мощность 2-х каналов. 5В 1.2А и 12В 1.2А итого 6W+ 14.4W= 20.4W Таким образом емкости входного конденсатора достаточно.
2. Микросхема -драйвер, широко известная TOP223Y, соответственно это обратноходовый импульсный источник питания.

Зная какая стоит микросхема драйвер, мы можем нарисовать схему импульсного источника питания. Упрощенная схема такая (из даташит), только у нас не один, а два независимых канала на выходе:

Что меня удивило, что микросхема стоит на радиаторе через изолирующую прокладку. Зачем это сделали китайцы вообще не понятно, т.к. сам радиатор не имеет электрического контакта со схемой. Понятно, что с прокладкой охлаждение будет хуже. И по хорошему эту прокладку нужно убрать, и посадить микросхему на термопасту. Давайте также проверим соответствие мощности микросхемы-драйвера, мощности самого блока питания. См таблицу из даташит:

Как видим, при универсальном питании наша микросхема дает мощность до 30W, что соответствует мощности ИИП. Тут все нормально.
3. На фото мы видим клампер первичной обмотки импульсного трансформатора и элементы «самопитания» микросхемы драйвера

Клампер выполнен по классической схеме RCD и особенностей не имеет. Диод D2, электролит С3 и резистор R2 это элементы «самопитания» микросхемы TOP.
4. Элементы обратной связи, трансформатор и два Y конденсатора мы видим на следующем фото

Опять же это классика обратноходовых ИИП. В качестве управляемого стабилитрона использована микросхема TL431, гальваническая развязка осуществляется оптотроном 817 серии. За импульсным трансформатором мы видим два Y конденсатора, которые существенно снижают помехи и соединяют «горячую» и «холодные» земли…
5. Выходной каскад представлен диодами на каждый канал, затем выпрямительные конденсаторы и LC фильтры, которые снижает уровень выходных помех. Китайцы не поставили снаббры на диоды и керамику на ножки электролитических конденсаторов, которые могут заметно удлинить «жизнь» электролитов. Но не сложно поставить эти керамические конденсаторы самостоятельно…


Поглядим так же обратную сторону платы источника питания:

Мы видим диодный мост на входе и видим что китайцы сделали технологическую прорезь под импульсным трансформатором, однако толку он нее мало, т.к под Y конденсаторами есть место, где дорожки «горячей» и «холодной» части проходят довольно близко друг от друга.

В общем, исполнение данного ИИП я могу оценить на Три с плюсом (3+) по Советской пятибалльной школьной системе)))
Поставим плату ИИП на латунные втулки и подпаяем входные провода. Даем напряжение осветительной сети. На плате ИИП загорелся красный светодиод сигнализирующий, что на выходе есть напряжение.

Тут мы видим первые странности. Обратите внимания на выходные контакты. Зачем то там китайцы поставили 3 плюса (+), видать что бы запутать пользователя и дезориентировать))))
Зачем это сделано непонятно, тем более что плюсы нарисованы у катода, а не анода… Потому проверяйте полярность мультиметром. Если смотреть на выходные контакты Минус слева, а Плюс справа!!!

Проверяем напряжение на выходах без нагрузки. Напряжение в норме (соответствует)


Ниже на осциллограмме вы можете увидеть помехи на стабилизированном 5В выходе ИИП без нагрузки на выходе. Как мне кажется помехи в пределах допустимого.

Теперь даем нагрузку 1А на выход 5В См фото…

На осциллографе уже не такая идиллия:

Однако напряжение просело совсем немного всего на 7мВ… Одноамперную нагрузку ИИП держит нормально…
Странность №2 На фото видно, что выпрямительные диоды стоящие после импульсного трансформатора в каналах 5В и 12В разные (хотя 1А способны выдержать оба диода)… Потому у меня возникло подозрение, что ток в 12 вольтовом канале вряд ли будет как заявлен в описании на сайте Banggood…

Догадка мгновенно подтвердилась, когда я начал испытания 12 вольтового канала. См фотографию: (подозрения не подтвердились, что бы не было просадки в 12В канале, нужно нагрузить 5В стабилизированный канал)

Уже при токе чуть выше 300мА просадка напряжения на выходе составило более 1 вольта. Чего уж там говорить про заявленный 1 Ампер… Пульсации тоже явно выше заявленных на сайте Banggood… Проблема, как я думаю, в импульсном трансформаторе, судя по его размеру, 20Вт снять с него довольно сложно… Но менять и перематывать трансформатор, ради того, что бы добиться заявленных продавцом значений, я не буду…
Более серьезно протестировать этот блок питания смогу, после того как мне приедет купленная электронная нагрузка…

Но она еще в дороге…

Выводы: Данный ИИП подходит для нетребовательных к чистоте питания, низкотоковых потребителей, таких как различные панельные ампервольметры, зарядные устройства и другие самоделки.

Да я был не прав, прошу прощения у Banggood… Если нагрузить стабилизированный 5 вольтовый канал (благодаря подсказке Aloha_), то просадка в 12В канале не наблюдается… См фото…


Данный Импульсный блок питания по току соответствует приведенным на сайте параметрам.

UPD: Допилинг, доставил конденсатор на вход, пусть не формата Х, но рассчитанный на 630В, емкость небольшая, ну хоть для самоуспокоения, что на входе что-то есть…

Так же впаял 4 керамических смд конденсатора 100n на ножки электролитов, думаю, что лишними не будут…

После того как приедет нагрузка, еще раз протестирую этот ИИП и добавлю обзор.

Импульсный БП 5В, 1,5А на TNY264P.

Импульсный БП 5В, 1,5А на TNY264P.

А не пойти ли мне на работу подумал я в один из будних дней и не пошел, а чтобы не терять время зря, решил продолжить тему обратноходовых преобразователей напряжения, на основе микросхем фирмы Power Integrations (USA) TinySwitch-II www.powerint.com; www.powerint.ru. Попытаюсь подробнее рассмотреть семейство микросхем (в дальнейшем МС, прошу не путать, с маркировкой каких либо радиоэлементов) TinySwitch-II.

Схема снижения ВЧ-помех (Jitter).

За последнее время МС этого семейства достигли огромной популярности, их можно встретить в DVD-плеерах, DSL-модемах, зарядно-питающих устройствах, ждущих блоках питания и т. д. И собственно на радиорынках они уходят с огромной скоростью, в чём я лично убедился, когда мне понадобилась TNY264 в SMD корпусе.

Преимущества МС заключается в предельно простом управлении. Так, для того чтобы стабилизировать напряжение, оказывается вовсе не нужен ШИМ. Поддержание выходного напряжения происходит в режиме вкл/выкл, по выводу EN/UV. Это, конечно, не самая лучшая идея, так во время работы тр-тор такого преобразователя "поёт". Звук, издаваемый тр-ром похож на свист, если блок работает на холостом ходу, и на высокочастотный шум, если нагрузка блока приближается к максимальной. По этой причине после своей первой сборки такого блочка, в последующих конструкциях к намотке и изготовлению тр-тора стал относиться более серьёзно.

А вот собственно схема блока питания, о котором речь пойдёт ниже:

Основные параметры:
Напряжение питания AC: 195...265В;
Максимальная мощность, развиваемая на выходе: 7,5Вт;
Напряжение DC выхода: 5В;
Максимальный ток выхода: 1,5А;
Рабочая частота преобразователя: 132кГц+6%;
КПД источника, не менее: 84%;
Мощность потребляемая от сети на холостом ходу: около 50мВт;

Как видно из схемы, можно выделить основные узлы блока: 1. Выпрямитель сетевого напряжения: TR1, F1, BR1, C1, C2. 2. Фильтр подавления ВЧ-помех: C1, C2, DR1, DR2. Использование двух отдельных дросселей позволяет избавиться от синфазных и дифференциальных составляющих помехи одновременно. 3. MC TNY264 - сердце блока. 4. Снаббер D1, R1, C4. 5. Резистор R2 задающий максимальное значение напряжения сети. 6. Цепь BIAS: R3, R4, C5, D1 в дальнейшем эта цепочка будет рассмотрена более подробно. 7. Цепь выпрямления выходного напряжения: D3, C6, C7, DR3. 8. Цепь стабилизации и гальванической развязки обратной связи: ZD1, R5, R6, U1.
Эта схема была успешно опробована и в данный момент превосходно работает в качестве источника питания для такой недешевой вещицы как USB-HDD, смотрите на рисунке (более подробно фотографии можно просмотреть здесь).

Вообще-то на рисунке блок питания имеет ещё два дополнительных выхода на 3 и 9В. Домотать обмоток на тр-тор можно столько, сколько позволит Ваше терпение, габарит каркаса и количество свободных выводов на каркасе. Конечно учитывая, что суммарная потребляемая мощность со всех, либо одного выхода не должна превышать значение в 7,5Вт для данной конструкции.

Теперь, пожалуй, затронем цепочку BIAS (на схеме выделена красным цветом) - R3, R4, C5, D1. Сразу обрадую Вас, что её можно и вовсе не ставить, как говорилось выше, внутри МС уже предусмотрена схема запуска от высокого входного напряжения. Потребляемая мощность блока на холостом ходу без этой цепочки, равна примерно 250 мВт, а с цепью смещения примерно 50 мВт. Если разобраться, эти две величины ничтожны даже по сравнению с миниатюрными стандартными НЧ трансформаторными блоками. Но разница в 5 раз послужила хорошим доводом лично для меня, чтобы в дальнейшем использовать такое схемное решение.

Элемент

Номинал

Примечание

R1

150кОм 1Вт

5%

R2

4,7МОм 0,25Вт

5% (2,2мОм + 2,5мОм можно не ставить)

R3

5,6кОм

5%

R4

4,7

5%

R5

270

5% (подбор)

R6

100

5% (подбор)

C1, C2

4,7мкФx400B

Низкоимпендансный

C3, C5

0,1мкФх50В

Керамика

C4

3300х1кВ

Керамика

C6, C7

470мкФх10В

Низкоимпендансный

Z1

300В 2А

TR1

33Ом

NTC

U1

PC817

D1

1N4937, UF4005

1А 600В

D2

1N4148

D3

IR0416L

5A шоттки

DA1

TNY246P

F1

0,5А 250В

DR1, DR2

47мкГн 0,3А

Можно не ставить

DR3

3,3мкГн 3А

Можно не ставить

ZD1

1N5229, BZX79C4V3

4,3B 20мА; 5мА

BR1

RB157

Любой другой - >0,5А >400В

Хочу сделать пару заметок относительно элементов. Во-первых, выбирая один или другой тип стабилитрона, следует учесть, что, токи, при которых они выполняют условия стабилизации. Определяются резисторами R5, R6. В данном случае они годятся для последнего указанного стабилитрона. Диод шоттки указан слишком большой мощности - что нашёл, то и поставил. По поводу подрегулировки выходного напряжения отправлю Вас, на ранее описанный мной блок питания на МС TOP247Y.

Намотку трансформатора производи на каркасе, предназначенном для магнитопровода E16/8/5 (EF16) 2500-й проницаемости. W1 - 158 витков провода 0,13мм ПЕЛ, ПЕВ, ПЕВ-2. W2 - 15 вит. аналогичного провода. W3 - 6 вит. провода аналогичных марок, 2-мя сложенными вместе, диаметром 0,25мм. Между обмотками прокладываем по слою лакоткани. Для уменьшения шумности трансформатора, каждый намотанный слой провода можно 2 - 3 раза покрыть цапонлаком. После такого покрытия, следует каждый слой в течении 10 минут хорошенько просушить.
В магнитопровод трансформатора следует ввести зазор длиной 0,156 мм (расчетная величина). Поэтому, недолго думая, проклеивая тр-тор, в крайние стыки сердечника подкладываем обмоточный провод, который использовали при намотке обмотки W1. Перед проклейкой стыков, на центральный наносим по капле клея, чтобы заделать внутренний зазор. Вообще, использование в качестве клея цапонлака, позволяет в случае неудачи, очень легко разобрать тр-тор, просто подержав его в каком-нибудь растворителе. Для общего развития, смотрим рисунок:

Ну а теперь поговорим о том, что ещё можно изменить в схемном решении. Схемы я брал из даташитов или другой литературы с описанием МС-ем TinySwitch-II, и они перетерпели незначительные изменения. В первую очередь, переделаем цепь стабилизации и гальванической развязки, таким образом, что получим стабилизатор тока и напряжения одновременно.

Первая схема, пожалуй, самая простая, здесь в обычном режиме, когда ток на выходе сравнительно мал, происходит ограничение выходного напряжения благодаря цепочке ZD - R2 - R3. Как только лимит тока достигнет значения, при котором на R1 выделится достаточно напряжения (1В) чтобы запитать диод оптопары, преобразователь начнёт переходить в режим ограничения выходного тока. Таким образом, выход можно и вовсе закоротить и схема блока не будет работать в режиме авторестарта, как это происходило бы в 7,5Вт-ном блоке. Вторая схема более сложная, здесь более чётко разделены, цепь стабилизации напряжения и цепь токоограничения. Преимущество схемы в том, что напряжение, выделенное на R7 усиливается транзистором. Кроме того на R7 требуется меньше напряжение чтобы открыть транзистор (0,6В), а значит и требуемая мощность резистора почти в 2 раза меньше, чем в схеме а). Лично мной была опробована схема в б) варианте. Такие решения можно использовать при постройке зарядных устройств для аккумуляторов.

На все вопросы постараюсь ответить на форуме.
Дерзайте, удачи в паянии!!!


Как вам эта статья?

Заработало ли это устройство у вас?

Блок питания своими руками ⋆ diodov.net

Программирование микроконтроллеров Курсы

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

Диодный мост

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Электроника для начинающих

Еще статьи по данной теме

Блок питания 5 В на TNY266 - Блоки питания (импульсные) - Источники питания

Схема представлена ниже, она почти полностью повторяет ту, что в даташите

Частота работы преобразователя 132 кГц, производитель обещает мощность TNY266 до 15 Ватт. Блок питания построен по топологии flybaск - обратноходовый преобразователь.

Коротко по деталям:

Диодная сборка DB107, можно заменить на обычные диоды или любую другую оборку (400B 0,5А)

Конденсатор 22мкфх400 - электролит, если к ИБП подключать слаботочные нагрузки (максимум 1A), то можно уменьшить до 10 мкФ

Микросхема ТNY266, можно заменить на ТNY263-268, параметры см. ниже:

 

Конденсатор на 1 ножке микросхемы - 0,1 мкф 50В-обычный керамический

Оптотранзистор CNY17-2 или любой c аналогичными параметрами из серий РС, TLP, ток через диод подбирается путём подстройки резисторов делителя (на схеме со звёздочкой) 

Стабилитрон - любой на 3,9 вольта

Диод Шоттки 1N5822 или любой аналогичный

Сглаживающий конденсатор 1000 мкФ х 16 B

 
И теперь самое главное, камень преткновения для многих - импульсный трансформатор. Берём его из отслужившей энергосберегающей лампы. Разъединяем трансформатор. Мотаем первичку 130 витков проводом 0,15мм. Вторичная обмотка содержит 6 витков проводом 0,35 х 3 (сложенным втрое). Первичка обязательно изолируется от вторички.

Теперь по поводу направления намотки, мотаем обе обмотки в одном направлении, как это сделать показано ниже на рисунке:

Печатная плата блока лежит тут: http://cxema.my1.ru/load/0-0-0-2042-20

Фото готового блока:

Фото трансформатора из лампы:

 

 

+ 5V и -5V Двойная цепь источника питания

Большинство схем Analog Electronic требуют сдвоенных шин питания для правильной сбалансированной работы; это становится особенно важным, если мы разрабатываем схемы операционного усилителя. Отрицательное напряжение питания также требуется в цифровых системах , таких как аналого-цифровые преобразователи, операционные усилители и компараторы. Во всех этих случаях требования к току будут низкими, но создание такого источника питания -5 В обычно является дорогостоящим и неэффективным, если мы используем большое количество дискретных и интегральных компонентов.Итак, в этом руководстве мы узнаем, как построить простую схему с двумя источниками питания 5 В с низким током , которая может питаться от наших портов USB. Точно так же мы ранее создали схему двойного питания +12 В и -12 В.

Хотя существует множество методов разделения одного напряжения, их виртуальный потенциал земли не будет постоянным. Если мы используем две батареи для получения напряжения двойной полярности, со временем одна батарея разряжается быстрее, чем другая, и становится трудно поддерживать сбалансированное напряжение двойной полярности.Если вы используете резисторный делитель потенциала, некоторая мощность рассеивается в виде тепла, и разделенное напряжение нестабильно. Для решения этих проблем мы будем использовать преобразователь напряжения CMOS IC под названием ICL7660 от Renesas.

ICL7660

ICL7660 и ICL7660A представляют собой монолитные преобразователи напряжения CMOS с накачкой заряда , которые преобразуют диапазоны входного напряжения от + 1,5 В до + 10,0 В в диапазоны выходного напряжения от -1,5 В до -10,0 В.

IC-L7660 for Dual Power Supply

ICL7660 и ICL7660A содержат все необходимые схемы для завершения преобразователя отрицательного напряжения, за исключением двух внешних конденсаторов.Работу устройства можно лучше всего понять с помощью теории идеального преобразователя напряжения , представленной ниже.

IC L7660 Circuitry

Во время первого полупериода переключатели S1 и S3 замкнуты (Примечание: переключатели S2 и S4 разомкнуты в течение этого полупериода). Конденсатор С1 заряжается до напряжения V +. Во время второго полупериода работы переключатели S2 и S4 замкнуты (Примечание: переключатели S1 и S3 разомкнуты в течение этого полупериода). Напряжение на конденсаторе С1 сдвигается в отрицательную сторону на V + вольт.Затем заряд передается от C1 к C2, при условии идеальных переключателей и отсутствия нагрузки на C2. Таким образом, инвертированное напряжение V + доступно на C2. Работа ICL7660 и ICL7660A аналогична этой идеальной работе преобразователя напряжения.

ICL7660 Советы по применению:

  • Конденсатор C2 должен быть размещен рядом с IC2, чтобы предотвратить защелкивание устройства. Не подавайте более 10 В для ICL7660, 12 В для ICL7660A.
  • Не подключайте клемму низкого напряжения к ЗЕМЛЕ для напряжений питания выше 3.5В.
  • При использовании поляризованных конденсаторов клемма «+» C1 должна быть подключена к контакту 2 ICL7660 и ICL7660A, а клемма «+» C2 должна быть подключена к ЗАЗЕМЛЕНИЮ.
  • Для достижения наилучших характеристик используйте конденсаторы с низким сопротивлением ESR вместо конденсаторов C1 и C2.
  • Буферный конденсатор можно подключить к входному источнику питания, если расстояние между USB и цепью велико.
  • Выходной ток этой цепи ограничен до 40 мА. Для требований по току до 100 мА вместо U1 можно использовать IC MAX660.

Цепь питания 5 В и работа:

Полная принципиальная схема блока питания ± 5 В с использованием ICL760 показана ниже. Входное напряжение +5 В можно получить с любого USB-порта ноутбука / компьютера или зарядного устройства / адаптера.

+5V and -5V Dual Power Supply Circuit

Схема построена примерно на ICL7660 (U1) вместе с двумя конденсаторами (C1 и C2). Выход 5 В от USB подается на контакт 8 U1. Микросхема U1 и конденсаторы (C1 и C2) образуют секцию инвертора напряжения, которая преобразует + 5 В в -5 В.Преобразованное питание -5 В доступно на выводе 5 U1. Таким образом, на разъеме J2 доступен двойной источник питания 5 В.

Мы смоделировали схему в Proteus, прежде чем строить ее на оборудовании:

Dual 5V power supply Simulation

Тестирование двойной (±) цепи питания USB 5 В:

Соберите схему на печатной / макетной плате в соответствии со схемой, показанной выше. Поместите конденсатор C2 как можно ближе к микросхеме U1. Микросхема должна быть закреплена на правильном основании, если схема припаяна к печатной плате.После того, как схема источника питания 5 В построена, она должна выглядеть примерно так:

Testing Setup for 5V Dual Power Supply

Чтобы проверить схему, подключите USB к портативному компьютеру или блоку питания или к любому USB для питания цепи. Проверьте выходное напряжение на J2 с помощью мультиметра относительно земли. В приведенном ниже тестировании видео мультиметр подключен к положительной шине, когда он показывает 4,9 В. Затем мультиметр подключается к выходу ИМС (т.е.е., вывод 5 ICL7660), то он показывает -4,7 В.

Ниже моделирование

Надеюсь, вы поняли схему и узнали, как построить схему с двумя источниками питания , используя ICL7660 IC . Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом для получения дополнительных технических вопросов. Также проверьте другие схемы источника питания, которые включают в себя различные схемы, такие как схема повышающего преобразователя, схема понижающего преобразователя, схема переменного источника питания, схема SMPS, схема блока питания и т. Д.

.Схема источника питания

12 В, 1 А с использованием VIPer22A

Схемы импульсного источника питания (SMPS) чаще всего требуются во многих электронных конструкциях для преобразования сетевого напряжения переменного тока в подходящий уровень постоянного напряжения для работы устройства. Этот тип преобразователей переменного тока в постоянный принимает сетевое напряжение 230 В / 110 В переменного тока в качестве входа и преобразует его в постоянное напряжение низкого уровня, переключая его, отсюда и название источника питания с переключателем. Ранее мы уже построили несколько схем SMPS, таких как эта схема SMPS 5V 2A и схема SMPS 12V 1A TNY268.Мы даже создали наш собственный трансформатор SMPS, который можно было бы использовать в наших проектах SMPS вместе с ИС драйвера. В этом проекте мы построим еще одну схему 12V 1A SMPS с использованием VIPer22A, популярной недорогой ИС драйвера SMPS от STMicroelectronics. Это руководство проведет вас через полную схему, а также объяснит , как построить собственный трансформатор для схемы VIPER . Интересно, давайте приступим.

Технические характеристики источника питания VIPer22A

Как и в предыдущем проекте на основе SMPS, различные типы источников питания работают в разных средах и работают в определенных границах ввода-вывода.Этот SMPS также имеет спецификацию. Следовательно, перед тем, как приступить к фактическому проектированию, необходимо провести надлежащий анализ спецификации .

Входная спецификация: Это будет SMPS в области преобразования переменного тока в постоянный. Следовательно, на входе будет переменный ток. В этом проекте входное напряжение фиксировано. Это соответствует европейскому стандарту номинального напряжения. Итак, входное переменное напряжение этого ИИП будет 220-240В. Это также стандартное номинальное напряжение Индии.

Характеристики выхода: Выходное напряжение выбрано как 12 В с номинальным током 1 А . Таким образом, будет на выходе 12Вт . Поскольку этот SMPS будет обеспечивать постоянное напряжение независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение) . Кроме того, выходное напряжение будет постоянным и стабильным при самом низком входном напряжении при максимальной нагрузке (2 А) на выходе.

Выходное пульсирующее напряжение: Крайне желательно, чтобы хороший источник питания имел пульсацию напряжения меньше 30 мВ пик-пик .Целевое напряжение пульсации одинаково для этого SMPS, пульсации пик-пик менее 30 мВ. Однако пульсации на выходе SMPS сильно зависят от конструкции SMPS, печатной платы и типа используемого конденсатора. Мы использовали конденсатор с низким ESR и номиналом 105 градусов из Wurth Electronics , и ожидаемая пульсация на выходе ниже.

Цепи защиты: Существуют различные схемы защиты, которые могут использоваться в SMPS для безопасной и надежной работы.Схема защиты защищает SMPS, а также связанную с ним нагрузку. В зависимости от типа схема защиты может быть подключена к входу или выходу. Для этого SMPS будет использоваться входная защита от перенапряжения с максимальным рабочим входным напряжением 275 В переменного тока. Кроме того, для устранения проблем с электромагнитными помехами будет использоваться синфазный фильтр для подавления генерируемых электромагнитных помех. На стороне выхода мы будем включать защиту от короткого замыкания , защиту от перенапряжения и защиту от перегрузки по току .

Выбор микросхемы драйвера SMPS

Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя. Давайте подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:

  1. Выходная мощность 12 Вт. 12В 1А при полной нагрузке.
  2. Входной рейтинг по европейскому стандарту. 85-265 В переменного тока при 50 Гц
  3. Защита от перенапряжения на входе. Максимальное входное напряжение 275 В переменного тока.
  4. Выходная защита от короткого замыкания, перенапряжения и перегрузки по току.
  5. Работа с постоянным напряжением.

Из вышеперечисленных требований существует широкий выбор ИС, но для этого проекта мы выбрали драйвер питания VIPer22A от STMicroelectronics. Это очень недорогая микросхема драйвера питания от STMicroelectronics.

Power Rating of VIPer22A IC

На приведенном выше изображении показана типичная номинальная мощность VIPer22A IC . Тем не менее, нет специального раздела для спецификации выходной мощности открытого корпуса или адаптера.Мы сделаем SMPS в открытом корпусе и для европейских номинальных входов. В таком сегменте VIPer22A мог обеспечить выходную мощность 20 Вт. Мы будем использовать его для выхода 12 Вт. Распиновка VIPer22A IC показана на изображении ниже.

VIPer22A IC Pinout

Проектирование цепи питания VIPer22A

Лучший способ построить схему - использовать программу Power Supply Design . Вы можете загрузить версию 2.24 программного обеспечения VIPer Design, чтобы использовать VIPer22A, последняя версия этого программного обеспечения больше не поддерживает VIPer22A.Это отличное программное обеспечение для проектирования блоков питания от STMicroelectronics. Предоставляя информацию о требованиях к конструкции, можно создать полную принципиальную схему источника питания. Схема VIPer22A для этого проекта, созданная программным обеспечением, показана ниже

.

Circuit Diagram of 12V 1A Power Supply Circuit Design using VIPer22A

Прежде чем приступить к созданию прототипа, давайте рассмотрим работу схемы. Схема имеет следующие участки -

  1. Защита от перенапряжения и отказа SMPS
  2. Входной фильтр
  3. Преобразование переменного тока в постоянное
  4. Схема драйвера или схема переключения
  5. Цепь зажима.
  6. Магниты и гальваническая развязка.
  7. Фильтр электромагнитных помех
  8. Вторичный выпрямитель
  9. Секция фильтра
  10. Раздел обратной связи.

Защита от перенапряжения и отказов SMPS.

Эта секция состоит из двух компонентов, F1 и RV1. F1 - это плавкий предохранитель на 1 А, 250 В переменного тока, а RV1 - это 7-миллиметровый, 275 В MOV ( Металлооксидный варистор ). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель.Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Входной фильтр

Конденсатор C3 представляет собой конденсатор сетевого фильтра 250 В переменного тока . Это конденсатор типа X, аналогичный тому, который мы использовали в нашей схеме бестрансформаторного источника питания.

Преобразование AC-DC.

Преобразование переменного тока в постоянный выполняется с использованием полного мостового выпрямительного диода DB107. Это выпрямительный диод на 1000 В, 1 А.Фильтрация осуществляется с помощью конденсатора емкостью 22 мкФ 400 В. Однако во время этого прототипа мы использовали конденсатор очень большой емкости. Вместо 22 мкФ мы использовали конденсатор 82 мкФ из-за наличия конденсатора. Конденсатор такой высокой емкости не требуется для работы схемы. 22 мкФ 400 В достаточно для номинальной выходной мощности 12 Вт.

Схема драйвера или схема переключения.

VIPer22A требует питания от обмотки смещения трансформатора.После получения напряжения смещения VIPer начинает переключение через трансформатор, используя встроенный высоковольтный МОП . D3 используется для преобразования выхода переменного тока смещения в постоянный, а резистор R1, 10 Ом используется для управления пусковым током . Конденсатор фильтра - 4,7 мкФ 50 В для сглаживания пульсаций постоянного тока.

Зажимная цепь

Трансформатор действует как огромный индуктор на микросхему драйвера питания VIPer22. Следовательно, во время выключения трансформатор создает скачков высокого напряжения из-за индуктивности рассеяния трансформатора.Эти высокочастотные всплески напряжения вредны для ИС драйвера питания и могут вызвать сбой в схеме переключения. Таким образом, это должно подавляться диодным зажимом на трансформаторе. D1 и D2 используются для цепи зажима. D1 - это TVS-диод , а D2 - сверхбыстрый восстанавливающийся диод . D1 используется для ограничения напряжения, а D2 используется как блокирующий диод. В соответствии с конструкцией заданное напряжение зажима (VCLAMP) составляет 200 В. Поэтому выбран P6KE200A , а для проблем, связанных со сверхбыстрой блокировкой, UF4007 выбран как D2.

Магниты и гальваническая развязка.

Трансформатор представляет собой ферромагнитный трансформатор , и он не только преобразует высокое напряжение переменного тока в низкое, но также обеспечивает гальваническую развязку. Имеет три порядка намотки. Первичная, вспомогательная или смещающая обмотка и вторичная обмотка.

Фильтр электромагнитных помех.

Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI.Это конденсатор Y-класса с номинальным напряжением 2 кВ.

Вторичный выпрямитель и демпферная цепь.

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью выпрямительного диода Шоттки D6. Поскольку выходной ток составляет 2А, для этой цели выбран диод 3А 60В. SB360 - это диод Шоттки, рассчитанный на 3 А 60 В.

Секция фильтра.

C6 - конденсатор фильтра. Это конденсатор с низким ESR для лучшего подавления пульсаций.Также используется пост-фильтр LC, где L2 и C7 обеспечивают лучшее подавление пульсаций на выходе.

Секция обратной связи.

Выходное напряжение определяется U3 TL431 и R6 и R7. После измерения линии U2, оптопара управляется и гальванически изолирует часть измерения вторичной обратной связи с контроллером первичной стороны. PC817 - это оптрон. Он имеет две стороны, внутри транзистор и светодиод.Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, поэтому обеспечивается гальваническая развязка цепи обратной связи.

Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431. Шунтирующий регулятор.По мере того как параллельный стабилизатор имеет резистор делитель через него контрольный штифт, он может контролировать оптрон светодиод, который соединен через него. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 5В. Следовательно, когда выходное напряжение достигает 5 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если напряжение на выходе недостаточное, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, через некоторое время он попытается еще раз. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему эта топология называется flyback topology , так как выходное напряжение возвращается к драйверу для измерения связанных операций.Кроме того, цикл попыток называется режимом икоты в случае отказа.

Конструкция переключающего трансформатора для цепи VIPER22ASMPS

Рассмотрим построенную схему построения трансформатора. Эта диаграмма получена из программного обеспечения для проектирования источников питания, которое мы обсуждали ранее.

Construction of Switching Transformer for VIPER22ASMPS Circuit

Сердечник E25 / 13/7 с воздушным зазором 0,36 мм . Индуктивность первичной обмотки составляет 1 мГн .Для постройки этого трансформатора необходимо следующее. Если вы новичок в конструкции трансформатора , пожалуйста, прочтите статью о том, как построить собственный трансформатор SMPS.

  1. Лента полиэфирная
  2. E25 / 13/7 Пары жил с воздушным зазором 0,36 мм.
  3. Медный провод 30 AWG
  4. Медный провод 43 AWG (мы использовали 36 AWG из-за отсутствия)
  5. 23 AWG (для этого мы также использовали 36 AWG)
  6. Горизонтальная или вертикальная шпулька (мы использовали горизонтальную шпульку)
  7. Ручка для удержания шпульки во время намотки.

Шаг 1: Удерживая сердечник ручкой, начните медный провод 30 AWG от контакта 3 бобины и продолжайте 133 оборота по часовой стрелке до контакта 1. Оберните 3 слоя полиэфирной ленты.

Construction of Switching Transformer for 12V 1A Power Supply Circuit

Construction of Switching Transformer for 12V 1A Power Supply Circuit

Шаг 2: Запустите обмотку смещения, используя медный провод 43 AWG от контакта 4, продолжайте до 31 витка и завершите обмотку на контакте 5. Наклейте 3 слоя полиэфирной ленты.

Construction of Switching Transformer for 12V 1A Power Supply Circuit

Запустите обмотку смещения, используя медный провод 43 AWG от контакта 4, продолжайте до 31 витка и завершите обмотку на контакте 5.Наклейте 3 слоя полиэфирной ленты.

Шаг 3: Запустите вторичную обмотку с вывода 10 и продолжите намотку 21 витка по часовой стрелке. Наклейте 4 слоя полиэфирной ленты.

Construction of Switching Transformer for 12V 1A Power Supply Circuit

Шаг 4: Закрепите сердцевину с зазором рядом друг с другом изолентой. Это уменьшит вибрацию при передаче магнитного потока высокой плотности.

Construction of Switching Transformer for 12V 1A Power Supply Circuit

После завершения сборки трансформатор испытывают с помощью измерителя LCR для измерения значения индуктивности катушек.Измеритель показывает 913 мГн, что близко к первичной индуктивности 1 мГн.

Construction of Switching Transformer for 12V 1A Power Supply Circuit

Создание цепи ИИП VIPer22A:

После проверки номинальных характеристик трансформатора мы можем приступить к пайке всех компонентов на плате Vero, как показано на принципиальной схеме. Моя плата после завершения пайки выглядела так:

.

Building 12V 1A Power Supply Circuit

12V 1A Power Supply Circuit Design using VIPer22A

Тестирование цепи VIPer22A для ИИП 12В 1А:

Для проверки схемы я подключил входную сторону к источнику питания через VARIAC для управления входным напряжением сети переменного тока.На изображении ниже показано выходное напряжение 225 В переменного тока.

12V 1A Power Supply Circuit Design using VIPer22A

Как вы можете видеть на выходе, мы получаем 12,12 В, что близко к желаемому выходному напряжению 12 В. Полная работа показана в видео , прикрепленном внизу этой страницы. Надеюсь, вы поняли руководство и узнали , как создавать собственные схемы SMPS с трансформатором , изготовленным вручную. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже.

.

Отправить ответ

avatar
  Подписаться  
Уведомление о