Шифратор схема: Шифраторы, дешифраторы, преобразователи кодов: назначение, устройство, виды

Шифраторы и дешифраторы.

Одними из очень важных элементов цифровой техники, а особенно в компьютерах и системах управления являются шифраторы и дешифраторы.

Когда мы слышим слово шифратор или дешифратор, то в голову приходят фразы из шпионских фильмов. Что-то вроде: расшифруйте депешу и зашифруйте ответ.

В этом нет ничего неправильного, так как в шифровальных машинах наших и зарубежных резидентур используются шифраторы и дешифраторы.

Шифраторы.

Таким образом, шифратор (кодер), это электронное устройство, в данном случае микросхема, которая преобразует код одной системы счисления в код другой системы. Наибольшее распространение в электронике получили шифраторы, преобразующие позиционный десятичный код, в параллельный двоичный. Вот так шифратор может обозначаться на принципиальной схеме.

К примеру, представим, что мы держим в руках обыкновенный калькулятор, которым сейчас пользуется любой школьник.

Поскольку все действия в калькуляторе выполняются с двоичными числами (вспомним основы цифровой электроники), то после клавиатуры стоит шифратор, который преобразует вводимые числа в двоичную форму.

Все кнопки калькулятора соединяются с общим проводом и, нажав, к примеру, кнопку 5 на входе шифратора, мы тут же получим двоичную форму данного числа на его выходе.

Конечно же, шифратор калькулятора имеет большее число входов, так как помимо цифр в него нужно ввести ещё какие-то символы арифметических действий, поэтому с выходов шифратора снимаются не только числа в двоичной форме, но и команды.

Если рассмотреть внутреннюю структуру шифратора, то несложно убедиться, что он выполнен на простейших базовых логических элементах.

Во всех устройствах управления, которые работают на двоичной логике, но для удобства оператора имеют десятичную клавиатуру, используются шифраторы.

Дешифраторы.

Дешифраторы относятся к той же группе, только работают с точностью до наоборот. Они преобразуют параллельный двоичный код в позиционный десятичный. Условное графическое обозначение на схеме может быть таким.

Или таким.

Если говорить о дешифраторах более полно, то стоит сказать, что они могут преобразовывать двоичный код в разные системы счисления (десятичную, шестнадцатиричную и пр. ). Всё зависит от конкретной цели и назначения микросхемы.

Простейший пример. Вы не раз видели цифровой семисегментный индикатор, например, светодиодный. На нём отображаются десятичные цифры и числа к которым мы привыкли с детства (1, 2, 3, 4…). Но, как известно, цифровая электроника работает с двоичными числами, которые представляют комбинацию 0 и 1. Что же преобразовало двоичный код в десятичный и подало результат на цифровой семисегментный индикатор? Наверное, вы уже догадались, что это сделал дешифратор.

Работу дешифратора можно оценить вживую, если собрать несложную схему, которая состоит из микросхемы-дешифратора К176ИД2 и светодиодного семисегментного индикатора, который ещё называют «восьмёркой». Взгляните на схему, по ней легче разобраться, как работает дешифратор. Для быстрой сборки схемы можно использовать беспаечную макетную плату.

Для справки. Микросхема К176ИД2 разрабатывалась для управления 7-ми сегментным светодиодным индикатором. Эта микросхема способна преобразовать двоичный код от 0000 до 1001, что соответствует десятичным цифрам от 0 до 9 (одна декада). Остальные, более старшие комбинации просто не отображаются. Выводы C, S, K являются вспомогательными.

У микросхемы К176ИД2 есть четыре входа (1, 2, 4, 8). Их ещё иногда обозначают

D0 – D3. На эти входы подаётся параллельный двоичный код (например, 0001). В данном случае, двоичный код имеет 4 разряда. Микросхема преобразует код так, что на выходах (a – g) появляются сигналы, которые и формируют на семисегментном индикаторе десятичные цифры и числа, к которым мы привыкли. Так как дешифратор К176ИД2 способен отобразить десятичные цифры в интервале от 0 до 9, то на индикаторе мы увидим только их.

Ко входам дешифратора К176ИД2 подключены 4 тумблера (S1 — S4), с помощью которых на дешифратор можно подать параллельный двоичный код. Например, при замыкании тумблера S1 на 5 вывод микросхемы подаётся логическая единица. Если же разомкнуть контакты тумблера S1 – это будет соответствовать логическому нулю. С помощью тумблеров мы сможем вручную устанавливать на входах микросхемы логическую 1 или 0. Думаю, с этим всё понятно.

На схеме показано, как на входы дешифратора DD1 подан код 0101. На светодиодном индикаторе отобразится цифра 5. Если замкнуть только тумблер S4, то на индикаторе отобразится цифра 8. Чтобы записать число от 0 до 9 в двоичном коде достаточно четырёх разрядов: a3* 8 + a2* 4 + a1* 2 + a0* 1, где a0 – a3, — это цифры из системы счисления (0 или 1).

Представим число 0101 в десятичном виде 0101 = 0*8 + 1*4 + 0*2 + 1*1 = 4 + 1 = 5. Теперь взглянем на схему и увидим, что вес разряда соответствует цифре, на которую умножается 0 или 1 в формуле.

Дешифратор на базе технологии ТТЛ – К155ИД1 использовался в своё время для управления газоразрядным цифровым индикатором типа ИН8, ИН12, которые были очень востребованы в 70-е годы, так как светодиодные низковольтные индикаторы ещё были очень большой редкостью.

Всё изменилось в 80-е годы. Можно было свободно приобрести семисегментные светодиодные матрицы (индикаторы) и среди радиолюбителей прокатился бум сборки электронных часов. Самодельные электронные часы не собрал для дома только ленивый.

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

  • Эксперименты с RS-триггером

  • Что такое регистр? Регистр сдвига.

  • D-триггер.

 

Электрическая принципиальная схема шифратора

DD1-DD2: К155ЛД1 (сумматор на 8 входов)

DD3: К155ЛЕ3 (4ИЛИ-НЕ) DD4: К155ЛН1 (Инверторы)

Дешифратор (декодер) — комбинационное устройство, преобразующее n-разрядный двоичный, троичный или k-ичный код в

-ичный одноединичный код, где k — основание системы счисления. Логический сигнал появляется на том выходе, порядковый номер которого соответствует двоичному, троичному или k-ичному коду. [6]

Дешифраторы являются устройствами, выполняющими двоичные, троичные или k-ичные логические функции (операции).

Это комбинационные схемы с несколькими входами и выходами, преобразующие код, подаваемый на входы в сигнал на одном из выходов. На выходе дешифратора появляется логическая единица, на остальных — логические нули, когда на входных шинах устанавливается двоичный код определённого числа или символа, то есть дешифратор расшифровывает число в двоичном, троичном или k-ичном коде, представляя его логической единицей на определённом выходе. Число входов дешифратора равно количеству разрядов поступающих двоичных, троичных или k-ичных чисел. Число выходов равно полному количеству различных двоичных, троичных или k-ичных чисел этой разрядности.

Для n-разрядов на входе, на выходе 2n, 3n или kn. Чтобы вычислить, является ли поступившее на вход двоичное, троичное или k-ичное число известным ожидаемым, инвертируются пути в определённых разрядах этого числа. Затем выполняется конъюнкция всех разрядов преобразованного таким образом числа. Если результатом конъюнкции является логическая единица, значит на вход поступило известное ожидаемое число.

Из логических элементов являющихся дешифраторами можно строить дешифраторы на большое число входов. Каскадное подключение таких схем позволит наращивать число дифференцируемых переменных.

Двоичный дешифратор работает по следующему принципу: пусть дешифратор имеет N входов, на них подано двоичное слово x

N − 1xN − 2…x0, тогда на выходе будем иметь такой код, разрядности меньшей или равной 2N, что разряд, номер которого равен входному слову, принимает значение единицы, все остальные разряды равны нулю. Очевидно, что максимально возможная разрядность выходного слова равна 2N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2N, и дешифратор является неполным.

Часто дешифраторы дополняются входом разрешения работы E. Если на этот вход поступает единица, то дешифратор функционирует, в ином случае на выходе дешифратора вырабатывается логический ноль вне зависимости от входных сигналов.

Существуют дешифраторы с инверсными выходами, у такого дешифратора выбранный разряд показан нулём.

Основное назначение дешифратора состоит в том, чтобы выбрать (адресовать, инициализировать) один объект из множества находящихся в устройстве. Каждому объекту присваивают определенный адрес (номер). Когда на входы дешифратора поступает двоичный код адреса, соответствующий элемент активизируется за счет появления логического 0 на связанном с ним выходе дешифратора, а остальные элементы остаются заблокированными.

Можно предусмотреть, чтобы с одного из выходов дешифратора на определенный блок поступал управляющий сигнал, когда на входах дешифратора появляется определенный код, соответствующий, например, превышению какого-либо параметра (температуры, напряжения и т. д.), который должен быть приведен к нормальному уровню указанным блоком.

Когда число адресуемых устройств невелико, многие выходы дешифратора остаются незадействованными. При этом может оказаться целесообразным (в частности, по экономическим соображениям) использовать не микросхему дешифратора, а реализовать ее фрагмент логическими элементами.

Таблица истинности для дешифратора «из 4 в 12»

Выходы

Входы

A

B

C

D

0

1

2

3

4

5

6

7

8

9

10

11

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

2

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

3

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

4

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

5

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

6

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

7

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

8

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

9

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

10

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

11

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

Инкрементальные энкодеры | Полное руководство

Как работает инкрементный энкодер?

Инкрементный энкодер выдает заданное количество импульсов за один оборот энкодера. Выходным сигналом может быть одна строка импульсов (канал «А») или две строки импульсов (каналы «А» и «В»), которые смещены для определения вращения. Эта фазировка между двумя сигналами называется квадратурной.

Узнайте больше о выходе квадратурного энкодера здесь

Типовой узел инкрементального оптического энкодера состоит из узла шпинделя, печатной платы и крышки. Плата содержит набор датчиков, которые создают только два основных сигнала для определения положения и скорости. Для инкрементного оптического энкодера оптический датчик обнаруживает свет, когда он проходит через отмеченный диск. Диск перемещается по мере вращения узла шпинделя, а информация преобразуется в импульсы на печатной плате. Для инкрементного магнитного энкодера оптический датчик заменен магнитным датчиком, а вращающийся диск содержит ряд магнитных полюсов.

Опционально могут быть предоставлены дополнительные сигналы: 

Индекс или канал «Z» может быть предоставлен как один импульс на оборот для проверки возврата в исходное положение и подсчета импульсов на каналах A и/или B. Этот индекс может быть привязан либо к A, либо к B в их различных состояниях. Он также может быть без ворот и различаться по ширине.

Коммутационные (U, V, W) каналы также могут быть предусмотрены на некоторых энкодерах. Эти сигналы выровнены с коммутационными обмотками серводвигателей. Они также гарантируют, что привод или усилитель для этих двигателей подает ток на каждую обмотку в правильной последовательности и на правильном уровне.

Альтернативные варианты инкрементных поворотных энкодеров

В то время как инкрементальные энкодеры обычно используются во многих приложениях с обратной связью, резольверы и абсолютные энкодеры предоставляют альтернативы в зависимости от требований приложения и среды.

Инкрементальные энкодеры и резольверы

Резольверы — это электромеханические предшественники энкодеров, основанные на технологиях времен Второй мировой войны. Электрический ток создает магнитное поле вдоль центральной обмотки. Имеются две обмотки, расположенные перпендикулярно друг другу. Одна обмотка фиксируется на месте, а другая перемещается по мере движения объекта. Изменения в силе и расположении двух взаимодействующих магнитных полей позволяют резольверу определять движение объекта.

Простота конструкции резольвера делает его надежным даже в экстремальных условиях, от низких и высоких температур до воздействия радиации и даже механических помех от вибрации и ударов. Однако щадящий характер распознавателей как для источника, так и для сборки приложений достигается за счет их способности работать в сложных проектах приложений, поскольку они не могут производить данные с достаточной точностью. В отличие от инкрементных энкодеров, резольверы выводят только аналоговые данные, для подключения которых может потребоваться специализированная электроника.

Узнайте больше о резольверах и принципах их работы здесь

Инкрементальные энкодеры и абсолютные энкодеры

Абсолютные энкодеры работают в ситуациях, когда точность скорости и положения, отказоустойчивость и совместимость важнее, чем простота системы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *