Стабилизатор напряжения 7812 схема включения: Страница не найдена — СхемаТок

Содержание

Как сделать стабилизатор напряжения на 3 вольта. Блок питания

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так — взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка.

Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта — Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….

-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Схема источника тока на 7805 и других 78xx стабилизаторах

Ни для кого не секрет, как собрать блок питания на стабилизаторах 7805, 7809, 7812 и тд. Но не все знают, что на этих же стабилизаторах можно собрать приличный источник тока. Схема источника тока и стала героем этой статьи. 

Так выглядит стандартная схема стабилизатора напряжения на микросхемах серии 78xx. Эти микросхемы настолько популярны, что их выпускает каждая, уважающая себя контора. Обычно в разговоре или на схеме даже опускают первые буквы, характеризующие производителя, указывая просто 7815. Ибо нефиг захламлять схему и сразу ясно, что речь о стабилизаторе напряжения.

Для тех, кто мало знаком с подобными стабилизаторми небольшое видео по сборке «на коленках»:

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

Скачать даташит на L78xx

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Заключение

Конечно такой источник тока имеет свои ограничения, однако он может пригодиться для подавляющего числа задач, где не требуется особая точность. Простота схемы и доступность компонентов, позволяет на коленке собрать источник тока.

7805 Характеристики схема подключения

L7805-CV линейный стабилизатор постоянного напряжения

L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.

На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.

Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.

Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:

Стабилизатор напряжения 5v! На микросхеме L7805CV

Одно из важных условий — высокое качество компонентов

На самом деле при покупке комплектующих изготовитель играет значительную роль. Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов.

Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.

Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.

Схема источника тока выполненная на микросхемах из серии L78xx

Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.

Величина тока на выходе источника L78хх

Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.

Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf

В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.

Корректность выходного тока и величина напряжения

В тоже время не постоянность тока покоя формируется как Δ >

Оптимальное сопротивление нагрузки

Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:

Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.

Заключение

Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Трехвыводной стабилизатор напряжения L7805. Микросхема выпускается в двух видах: пластик ТО-220 и металл ТО-3.

Три вывода (слева на право) ввод – минус – выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы: 7805 – 5 вольт, 7806 – 6 вольт, 7824 – 24 вольт.
Схема подключения стабилизатора, распространяется на все микросхемы этой серии:

Принципиальная схема стабилизатора:

Output voltage – выходное напряжение.

Input voltage – входное напряжение.

7805 выдает выходное напряжение 5 Вольт.

Рекомендуемое входное напряжение производители установили напряжение в 10 Вольт.

Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для прецизионной аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 – 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Не стабилизированное постоянное напряжение может варьироваться в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.
При большой нагрузке, а эта микросхема способна отдавать мощность порядка 15 Ватт, стабилизатор лучше оснастить радиатором и по возможности с вентилятором.

Более полная схема стабилизатора:

Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход подаем 7-8 вольт.
Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе.

Формула мощности P=IU, где U – напряжение, а I – сила тока.

Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им.

А излишняя мощность – это нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Миниатюрные стабилизаторы напряжения. Блок питания Схемы простых стабилизаторов на 3 вольта

Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.

Наименование AMS1117
Kexin Промышленные
Описание Линейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223

С управляемым или фиксированным режимом регулирования

AMS1117 Технический паспорт PDF (datasheet) :

Характеристики:
— максимальная стабилизация при полной нагрузке по току;
— быстрая переходная характеристика;
— защита по выходу при превышении тока нагрузки;
— встроенная тепловая защита;
— низкий уровень шума
— регулируемое или фиксированное напряжение 1.5 Вольт, 1.8 Вольт, 2.5 Вольт, 1.9 Вольт, 3.3 Вольт, 5 Вольт.
Наименование
Richtek технологии
Описание Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO .
RT9013 PDF Технический паспорт (datasheet) :
Наименование
Монолитные Power Systems
Описание 3А, 1.5MHz, 28В Step-Down конвертер
(datasheet) :

**Приобрести можно в магазине Your Cee

Наименование
Монолитные Power Systems
Описание 3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь
MP2307 Спецификация PDF (datasheet) :

Image Info: MP2307

MP2307 представляет собой монолитный синхронный понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) . Устройство объединяет 100 миллионов МОП-транзисторов, которые обеспечивают 3A постоянного тока нагрузки в широком рабочем входном напряжении от 4.75 Вольт до 23 Вольт. Регулируемый плавный пуск предотвращает броски тока при включении/отключении, ток питания ниже 1 мкА. Это устройство, доступный в SOIC корпусе с 8 выводами, обеспечивает очень компактное решение системы с минимальной зависимостью от внешних компонентов.

1. Термостойкий 8-контактный SOIC корпус.

2. 3A — непрерывный выходной ток 4A — пиковый выходной ток.

3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт.

*Приобрести можно в магазине Your Cee

Наименование
Во-первых компонентов Международной
Описание Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц
LM2596 Технический паспорт PDF (datasheet) :
Наименование MC34063A
Крыло Шинг International Group
Описание DC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Как из 5 Вольт получить 3. 3 Вольта? Нужен наиболе простой способ

Есть микросхема, которая питается от 3. 3 Вольт. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? 3 годов назад от Евгений Пуртов

3 Ответы

Микросхема потребляет боле-мене стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100. 0 мкф на Землю) . Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3. 3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал. 3 годов назад от Andrey Fedaevskiy Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78х. Такие дела! 3 годов назад от asdasdasdas dasdasdasd Наиболе простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3. 3 v. если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3. 3 вольта. Или просто переменным резистором выставляешь 3. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая. 3 годов назад от Яркие Краски

Связанные вопросы

9 месяцев назад от *****

1 год назад от федор волошин

1 год назад от Андрей Козлов

engangs.ru

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ — domino22

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ

  1. микросхема-стабилизатор на 3.3В или микросхема-инвертор 5В на 3.3В сам
  2. Господи, да включи ее напрямую, какие 3.3 в, ты смотри максимально допустимые, да и те, можно в нку поднять 20%
  3. Можно поставить стабилизатор на 3,3 в. Их полно всяких, выбирайте подходящую.
  4. 1) никаких сопротивлений, если ты питаешь микросхему Сопротивление ставится, если тебе уровень сигнала уменьшить!2) Бершь LM1117-3.3 дешовая, доступная и дешовая. Только на вход и выход желательно поставить конденсаторы электоролитические — так стабильнее будет.
  5. Поставить стабилитрон на 3,3 вольта.
  6. Если бы вы указали, что за микросхема, получили бы дельный совет. Почему у этих вопрошающих все засекречено?
  7. Микросхема потребляет более-менее стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100.0 мкф на Землю) .Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3.3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал.
  8. Ищи LDO стабилизатор — это стабилизатор позволяющий подавать напряжение чуть выше чем на входе. Поясню почему 7833 не годится: у серии 78xx минимальное падение между входом и выходом около 2,5 Вольт, так что получить 3,3 из 5 не удастся. У LDO входное напряжение может отличаться от входного на 0,2…0,5 Вольт, Примеры: AMS1117-3.3, NCP551-3.3 и подобные.Микросхема — это и наджность и простота схемотехнического решения.
  9. Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78хх. Такие дела!
  10. Резистор 300Ом + стабилитрон 3.3В
  11. Наиболее простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3.3 v… если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3.3 вольта. Или просто переменным резистором выставляешь 3.3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая..
Внимание, только СЕГОДНЯ!

www.domino22.ru

Как из 5 вольт сделать 3 —

Сегодня мы разберём как из 5 вольт сделать 3 на примере прибора для удаления катышков. Данное руководство можно использовать для любого устройства с питанием 3 вольта. Прибор для удаления катышков http://ali.pub/1be8qi Понижающий преобразователь http://ali.pub/1be9f0



Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провожу небольшой эксперимент, и объясняю результаты. Обсудить н

Краткий ликбез по типам низковольтных стабилизаторов напряжения и принципам их работы. поддержать канал материально. http://www.donationalerts.ru/r/arduinolab

Подробно о явлениях в трехфазной электропроводке возникающих в результате обрыва нулевого проводника. Повышенное напряжение в розетке. Как защитить свою электри

Переделка старого блока питания. Группа ВК https://vk.com/beginner_electronika Всем привет! В этом видео я расскажу Вам, как можно переделать старый источник пи

Here are the instructions to wire a stable AMS1117-3.3 voltage regulator properly. This can power an ESP8266 or any 3.3V micro-controller reliably supporting cu

Как из зарядного устройства от мобильного телефона получить разное напряжение на выходе. ======================================================= Тестер RM 102

В видеомагнитофонах есть сборка-модулятор.Это готовый маломощный телевизионный передатчик и антенный усилитель.На вход модулятора нужно подать видео и аудио сиг

Подписывайтесь на нашу группу Вконтакте — http://vk.com/chipidip, и Facebook — https://www.facebook.com/chipidip * Казалось бы, что сложного в последовате

Давно хотел сделать из пьезоэлемента от зажигалки звуковое устройство. Радиопередатчик из пьезика https://youtu.be/3-SVSQQ-REU я соорудил, Фонарик из пьезоэлеме

Wireless зарядка на любой телефон — http://got.by/21qcge Зарядник QuickCharge 3в1 — http://got.by/294bwr Клей для ремонта дисплеев — http://got.by/294bpy Прогр

Внимание не суйте пальцы на высоковольтную часть схемы, там может укусить 220 вольт Недорогие блоки питания на 12V http://ali.pub/73zah и на 5V http://ali.pub

В видео показал как я паял себе стабилизаторы напряжения для автомобиля. с 14в понижает до 12в и не дает перегореть диодам! Моя партнерка на ЮТУБЕ — www.air.i

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ. ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ своими руками. ♦DIY CAM♦ Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса

Покупал для nrf24l01 стабилизаторы, за 50 штук отдал менее двух долларов, все естественно не проверял, но те что использовал работают. Как подключять и на какое

vimore.org

Микросхема регулируемый стабилизатор напряжения

И умыслил Фарадей явление электромагнитной индукции, провёл он опыт физический, да очертил схему трансформатора досель невиданного.
И увидел Господь, что это хорошо, и благословил мужей усердных в науках естественных на сотворение кенотрона вакуумного, а совокупно и фильтра ёмкостного сглаживающего, воеже в триединстве и целостности явился миру источник питания на всяку потребу богоприятный.

Ладно, с этим разобрались.
А для чего сиим источникам питания вдруг понадобились какие-то стабилизаторы напряжения?

«Стабилизатор напряжения — это электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки» – учит нас википедия.

Отлично сказано мужики, ни убавить, ни прибавить – для стабильной работы и сохранения высоких параметров большинства схем требуется постоянное, неподконтрольное никаким воздействиям напряжение питания.

Ещё совсем недавно такие узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду простоты реализации и высоких параметров стабилизаторов, выполненных на интегральных микросхемах.

Существует два типа подобных микросхем – регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства регулируемых микросхем приведена на Рис.1.


Рис.1

Формула для расчёта выходного напряжения имеет вид Vout = Vref * (1+R2/R1) + Iadj * R2 ,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций рекомендуют ставить дополнительные электролиты параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.
И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) – очень даже немаловажен.

Справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Тип
U вх макс
В
І вых макс
А
І вых мин
мА
U вых мин
В
U вых макс
В
КР142ЕН11 -40 1,5 10 -1,2 -37
КР142ЕН12 40 1,5 10 1,2 37
КР142ЕН18 -40 1,5 10 -1,2 -37
КР142ЕН22 35 5 10 1,25 34
КР142ЕН22А 35 7,5 10 1,25 34
КР142ЕН22Б 35 10 10 1,25 34
LT1083 35 7,5 10 1,2 34
LT1084 35 5 10 1,2 34
LT1085 35 3 10 1,2 34
LM117 40 1,5 5 1,2 37
LM137 -40 1,5 10 -1,2 -37
LM138 35 5 10 1,2 32
LM150 35 5 10 1,2 33
LM217 40 1,5 5 1,2 37
LM317 40 1,5 5 1,2 37
LM317LZ 40 0,1 5 1,2 37
LM337 -40 1,5 10 -1,2 -37
LM337LZ -40 0,1 10 -1,2 -37
LM338 35 5 10 1,2 32
LM350 35 5 10 1,2 33
TL783 126 0,7 0,1 1,25 125

Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ СТАБИЛИЗАТОРА

Если не хотите, чтобы вдруг “раздался мощный пук” – послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Отдельно хочу остановиться на МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.


Рис.2

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6 – 7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950, LP2951, LM2931, LM2936 и им подобные.

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

24 thoughts on “ LM317T схема включения ”

Для lm317 datasheet от TI тут.
Кому сложно читать datasheet на английском, то можно посмотреть документацию на русском для отечественного аналога КР142ЕН12А.

Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А, в корпусах SOIC-8 и TO-92.

  • LM317LM — в поверхностном корпусе SOIC-8;
  • LM317LZ — в штырьевом корпусе TO-92.

Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.

Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.

Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.

Оверклокеры с таким утверждением не соглясятся 🙂
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста.
Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.

Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.

Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.

Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.

Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений.

Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?

В некоторых схемах для некоторых задач (схемы с аудиоусилением, например) шумы стабилизатора заметны даже на слух. В некоторых других частных случаях из-за «шума» работы стабилизатора возникали нежданчики, которые не устранялись конденсаторами для «ЦП или ОЗУ по питанию». Для описания ситуации, когда такое происходит нужен «талмуд» листов пот тысячу. Производитель , который получал недоумённо-ругательные «комментарии» разработчиков — подстраховалсяотмазался коротким упоминанием о необходимости конденсаторов.

Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур ) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.

Отличая микросхема.Так и хочется поехать , купить и спаять что-нибудь. На этапе разработке часто не хватает такого , чтобы напряжением поиграть , двуполярное сделать. Да и помощнее есть устройства с таким же включением.

Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.

Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.

А через диод подай отрицательный полупериод с трансформатора -! Будет тебе «ночничок», и не надо три провода тянуть через подушку…

Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?

Конечно, вполне можно питать и от зарядки. Да, и ток источника должен быть не меньше тока потребителя.

Про ток зарядки от мобильника можете не беспокоиться — вряд ли вам удастся найти такую, ток которой был бы ниже, чем ток выдаваемый с порта USB. Как правило, он составляет 0,6-0,7 А. Этого вполне достаточно для зарядки не менее, чем 5-амперного аккумулятора. Если нужно больше, то зарядное просто не подойдет — это настолько стандартизированное изделие, что больше, чем на 0,75 А — вам вряд ли удастся найти.

Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать

Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».

Частоту бы узнать максимальную, с которой эта микросхема работает. Если у меня идет коммутация импульсов с частотой 10 КГц, будет ли она держать ток каждого импульса в пределах значений, заданных резистором?
И как лучше её расположить на схема? Рис прилагаю.
https://sun9-1.userapi.com/c639822/v639822216/5396d/MX1daHe-rjs.jpg

Этот стабилизатор для работы на постоянном токе.
Если нужно получить пульсирующий ток, то правильнее будет «закорачивать» оптроном нагрузку.
Но применять в таком случае интегральный стабилизатор, я бы не стал. А собрал бы простенький стабилизатор на транзисторе и стабилитроне. Например такой: http://hardelectronics.ru/drajver-dlya-svetodiodov.html
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Какой ток или мощность потребляет сама м-схема в режиме холостого хода без нагрузки?

Так и не понял, как регулировать выходное напряжение

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 39 774)

Аналог LM317

К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

28 комментариев

Интересная статья! Спасибо!

Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.

Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.

Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.

С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.

А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?

Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта

Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .

Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.

Резисторы R1 и R2 можно подобрать и другого номинала?

да, рассчитать можно здесь

можно ли совместить на одной lm317, регулировку тока и напряжения,

Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !

Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).

Большое Спасибо за статью.

Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?

Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.

Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.

Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?

Спасибо за схему,а как увеличить ток до10А?

Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо

Каков температурный диапазон эксплуатации LM317T?

Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.

Кто-нибудь пробовал параллелить микросхемы?

Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.

Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.

“>

Даташит l7812cv на русском

Всем подписчикам привет.
После установки Camaro глазок в фары задумался о защите диодов от высокого напряжения. Не хотелось бы чтоб диоды в скором времени перегорели. Потом снова разбирай, перепаивай… Нужно сделать стабилизатор. Пошарился по драйву и нашел лучший вариант.
Сразу хочу сказать — спасибо автору за пост! Все понятно расписал. В магазине радиодеталей купил деталюх сразу на четыре комплекта и вперед как обычно на работу в мастерскую!

2 Для того чтоб ножки кондеров не прикасались друг к другу ( всякое бывает ) на них я одел изоляцию с проводов. И проводки обжал термоусадкой.

С 16 вольт на входе 12,06 на выходе.

На не заведенном двигателе 12,9 вольт на входе и 10,8 на выходе.

И на заведенном двигателе 14,1 вольт на холостых оборотах на входе и 12,05 на выходе.

Установил стабы в фару. Там есть четкое место под них.

Вот и все. Все работает. Теперь глазки будут жить долго и счастливо.
Всем спасибо. До новых встреч постов.

Цена вопроса: 180 ₽ Пробег: 72600 км

Daewoo Lanos 2008, двигатель бензиновый 1.5 л., 87 л. с., передний привод, механическая коробка передач — тюнинг

Машины в продаже

Daewoo Lanos, 2011

Daewoo Lanos, 2005

Daewoo Nexia, 2006

Daewoo Nexia, 2004

Смотрите также

Комментарии 13

Схема все еще работает да?! Диоды тоже живы? )))

Стабилизатор не будет сильно греется при работе? Желательно какой нибудь маленький радиатор поставить от компьютера (южный мост или как там еще нижний мост)

От всплесков не защитит. Диодов не вижу.

Если просто стабилизатор поставить в разрыв к фонарю заднего хода без кондёров, он разьве не будет выполнять свою функцию ?

Почитайте коменты к этому посту www.drive2.ru/b/339900/ Там все написанно.

я когда пересвет приборки делал, тоже прочитал эту статью и сделал такие же стабилизаторы напряжения. а потом уже прочитал что нужны стабилизаторы тока. но переделывать не стал. и так год просветили диоды и ни один не заморгал, надеюсь и до сих пор светят

Хрен знает когда приборку пересвечивал и без всяких стабилизаторов. Работает до сих пор исправно. Но в приборку можно влезть без проблем и переделать сгоревший диод, а в фары влезть напряжней будет.

Проще закажи стабы на лмках. У нас такие по 19 грн в поднебесной чуть дешевле. И будет счастье))

Да все работает отлично.

Глазки НЕ будут жить долго и счастливо, в корне все не правильно. Светодиодам (ЛЕД) нужен стабилизатор тока, а не напряжения, если его нет, простейший — резистор, на ленте маленькая черная такая точка. Для нормальной работы стабилизатора перепад напряжения (вход-выход) должен быть минимум 2В, лучше 4-5В. В данном случае на входе стоит диод, спад напряжения на котором минимум 0,5В, максимум 0,8-0,9В. Т.е. даже на заведенной работа под вопросом, а под нагрузкой тем более.
Минимум уберите этот диод.
О правильном подключении ЛЕД читает тут — www.drive2.ru/l/3638069/

Глазки НЕ будут жить долго и счастливо, в корне все не правильно. Светодиодам (ЛЕД) нужен стабилизатор тока, а не напряжения, если его нет, простейший — резистор, на ленте маленькая черная такая точка. Для нормальной работы стабилизатора перепад напряжения (вход-выход) должен быть минимум 2В, лучше 4-5В. В данном случае на входе стоит диод, спад напряжения на котором минимум 0,5В, максимум 0,8-0,9В. Т.е. даже на заведенной работа под вопросом, а под нагрузкой тем более.
Минимум уберите этот диод.
О правильном подключении ЛЕД читает тут — www.drive2.ru/l/3638069/

Прочитал я пост. Что то я не понял. Почему у меня не будет все работать исправно. Я установил ленту уже с резистором ( на полоске маленькая такая точка ) . Значит ток уже под диоды стабилизируется. А для правильной работы диодной ленты надо 12 вольт. Так мой стабилизатор напряжения справляется исправно. Съедает свои 2 вольта и выдает 12 вольт. По фото видно. Так почему же глазки не будут жить долго и счастливо ? Зарание спасибо за ответ.

При полной нагрузке напряжение в сети мение 14В. А при не полной порядка 14.3 максимум. Все это на грани работы стабилизатора. А диод дает спад (я уже писал), нигде в мануалах не видел схему с включением такого диода, поэтому его снять. С ним грань еще уже. Такой стабилизатор нужно питать минимум 16В для нормальной работы. С другой стороны, если написано 12В на ленте, это не значит 12.0В и точка. Поэтому 14В нормально будет.

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Стабилизатор напряжения на 7812 схема

Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот. Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. =)

Сразу хочу извиниться перед всеми, чьи рисунки вдруг попадут в эту статью. Спасибо за труд, отмечайтесь в комментариях. Я добавлю авторство, если нужно.

Для начала разберемся с понятиями:

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера». То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.

И теперь я перейду к описанию видов стабилизаторов напряжения:

Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)

Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.

СТАБИЛИЗАТОР ТОКА
В применении к светодиодам именно их еще называют «светодиодный драйвер». Что тоже будет верно.

Теперь — к светодиодам. Ведь весь сыр-бор из-за них.

Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.

Вот берем самый распространненый вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
И если захотите поставить четвертый, то уже не хватит.
Вот если запитать не от 12В а от 15, то тогда хватит. Но надо учесть, что и резистор тоже надо будет пересчитать. Ну вот собственно и пришли плавно к…

Простейший ограничитель тока — резистор. Их часто ставят на те же ленты и модули. Но есть минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И наоборот. Поэтому если у вас в сети напряжение скачет, что кони через барьеры на соревнованиях по конкуру (а в автомобилях обычно так и есть), то сначала стабилизируем напряжение, а потом ограничиваем резистором ток до тех же 20мА. И все. Нам уже плевать на скачки напряжения (стабилизатор напряжения работает), а светодиод сыт и светит на радость всем.
То есть — если ставим резистор в автомобиле, то нужно стабилизировать напряжение.

Можно и не стабилизировать, если вы расчитаете резистор на максимально-возможное напряжение в сети автомобиля, у вас нормальная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы можно ставить только до определенной величины тока. После некоторого порога резисторы начинают адски греться и приходится их сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд). Плавно превращаемся в большой утюг.

Есть еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.

Импульсный стабилизатор тока (или драйвер).

Ну а в заключении — к тому, что постоянно пытаюсь доказать в дискуссиях. И доказываю. Вот только каждому отдельно объяснять одно и то же — язык отвалится. Поэтому попробую еще раз в этой статье.

Постоянно наблюдаю такую картину — задают ток драйвером для мощных светодиодов (скажем — 350мА) и ставят несколько веток светодиодов без ограничительных резисторов и прочего. И ведь люди, то вроде бы и не самые ламеры, а совершают одну и ту же ошибку раз за разом. Рассказываю, почему это плохо и к чему может привести:

Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.
Многие так и считают — «каждая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется даже меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа! Почему?

Сила тока в каждой ветке будет равна, если у вас идеальнейшие светодиоды с абсолютно одинаковыми параметрами. Тогда и ток будет во всех ветках одинаков, и никаких ограничителей тока не надо — взяли и поделили общий ток на количество одинаковых веток. Но такое — только в сказках.
Если параметры чуть-чуть отличаются — получили в одной ветке 19мА, в другой 17, в третьей 20…
Общее количество тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не определишь, вроде светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться сильнее остальных. И жрать больше. И греться еще сильнее. А потом раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам. И вот еще одна ветка, недавно вроде нормально горевшая берет и тухнет следом. И уже вдвое больший ток уходит на другие ветки, ведь общий ток жестко задан 350мА. Процесс лавинообразный и вот уже пришел кирдык всей этой схеме, потому что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А стояли бы, как полагается, по отдельному стабилизатору (хотя бы банальному резистору) на каждой ветка — работала бы и дальше.

Именно это мы и видим в китайских модулях и кукурузинах, которые горят как спички через неделю/месяц работы. Потому что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто либо еще. Почему не горят фирменные модули и лампы Osram, Philips и тд? Потому что они делают довольно мощную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, которые по параметрам практически идентичны и из них можно сделать такой простой вид, какой и пытаются сделать многие — один мощный драйвер и много одинаковых цепочек светодиодов без драйверов. Но только вот в условиях «купил светодиоды на рынке и запаял сам» как правило будет им нехорошо. Потому что даже у «некитая» будет разброс. Может повезти и работать долго, а может и нет.

Да и токовый драйвер по-сравнению со стабилизатором напряжения и копеечными резисторами как правило дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку оставим. =))

Да и просто — сделать правильно и сделать «смотрите как я сэкономил, а остальные — дураки» — это несколько разные вещи. Даже очень сильно разные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и правильно. Это сказано давно и не мной. Я лишь попробовал в стотыщпятьсотый раз объяснить прописные истины. Уж звиняйте, если криво объяснял =)

Ну и напоследок тем, кому даже такое изложение было слишком заумным.
Запомните следующее и старайтесь следовать этому (здесь «цепочка» — это один светодиод или несколько ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):
1. КАЖДОЙ цепочке — свой ограничитель тока (резистор или драйвер…)
2. Маломощная цепочка до 300мА? Ставим резистор и достаточно.
3. Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.

Вот так будет правильно и самое главное — будет работать долго и светить ярко!
Ну и надеюсь, что все вышенаписанное убережет многих от ошибок и поможет сэкономить средства и нервы.

Ну ладно, рябятке.
Нюансов еще очень много, а я и так уже немаленькую статью-то накатал. Пожалуй все остальное — в комментариях.
Засим откланиваюсь,
Всегда ваш — ЛедЗлыдень Борисыч.

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя.2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Добрый вечер, любители светодиодов. Хочу предложить вам ещё одну простую схему стабилизатора светодиодов, схема собрана на микросхеме L7812 навесным монтажом и отлично подходит для питания как светодиодных лент, так и отдельных светодиодов в автомобиле. Итак, скажу для незнающих для чего она служит… в бортовой сети автомобиля рабочее питание составляет от 13 до 15 Вольт, а бывает и больше, а вот светодиоды рассчитаны на 12 вольт.

Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля.

И так, список необходимых компонентов:

  • Микросхема L7812
  • Конденсатор 330мкф16вольт
  • Конденсатор 100мкф16 вольт
  • Диод на 1 ампер (1N4001, например, или аналогичный диод Шотки)
  • Провода
  • Термоусадка 3мм

Вот микросхема крупным планом. Отрезаем ей ногу как на фотографии.

Затем немного добавляем припоя как на фотографии.

Теперь припаиваем к ножкам конденсаторы и диод как на фотографии. При пайке конденсаторов учитывайте полярность, у микросхемы минус посередине.

Теперь лудим провода и одеваем на плюсы термоусадку.

Припаиваем провода как на фотографии

И одеваем термоусадку. Сжать ее можно зажигалкой или феном. Сам я пользуюсь феном паяльной станции. Очень удобно.

Теперь смотрим на расположение проводов относительно микросхемы. Слева вход питания, справа выход к ленте/лампочке.

Подаем питание и хлопаем в ладошки.

На входе мой блок питания выдает 12,3 вольта. На выходе получается 11.10 вольт. При запущенном двигателе в бортовой сети напряжение 13-16 вольт, что обеспечивает 12 вольт на выходе.

Стабилизатор высокого напряжения

: полное руководство

Регуляторы напряжения

Источник: Wikimedia Commons

Вряд ли найдется какое-либо электрическое изделие, для которого не требовался бы регулятор напряжения. И это делает регулятор напряжения одним из наиболее часто используемых электрических компонентов схем. Если ваш курс не может работать от напряжения батареи напрямую или от напряжения адаптера постоянного / переменного тока, вам понадобится регулятор напряжения, чтобы предотвратить повреждения от увеличения тока и мгновенного тока.Кроме того, вы должны хорошо разбираться в регуляторах высокого напряжения, прежде чем выбирать или создавать их для своих схем. Итак, из этой статьи вы узнаете, как работает высоковольтный стабилизатор напряжения, типы регуляторов напряжения, приложения и некоторые схемы регуляторов напряжения, которые вы можете построить для своего проекта.

Начнем!

Как работает сильноточный стабилизатор?

Основное назначение регулятора напряжения — ограничение тока. Другими словами, он создает и поддерживает фиксированное выходное напряжение.Даже если вы измените условия нагрузки или входные напряжения, постоянное выходное напряжение останется прежним.

Регулятор напряжения

Источник: Wikimedia Commons

Кроме того, регуляторы напряжения поддерживают номинальное напряжение, которое цепь получает от импульсного источника питания, в диапазоне, подходящем для нормальной работы других электронных компонентов в цепи.

Большинство регуляторов напряжения работают для преобразования постоянного тока в постоянный, но некоторые также могут обрабатывать преобразование переменного тока в постоянный и переменного тока в переменный.

Типы регуляторов напряжения: линейные и импульсные

У нас есть два типа напряжения, которые следует учитывать перед выбором или изготовлением регулятора напряжения. К этим типам относятся линейные регуляторы и импульсные регуляторы.

Линейные регуляторы — недорогие и простые типы регуляторов с бесшумными функциями. Однако линейные понижающие стабилизаторы имеют низкие или средние уровни мощности, и поэтому они наиболее полезны для понижения напряжения легких нагрузок.Линейный регулятор также имеет компактные размеры.

Принципиальная схема линейного регулятора

Источник: Викиверситет

С другой стороны, импульсные регуляторы имеют высокий КПД, но имеют более сложную конструкцию и стоят больше, чем линейные регуляторы. В довершение всего, у них более высокий уровень шума. Однако вы используете импульсный регулятор как повышающий или понижающий регулятор.

Схема импульсного регулятора с обратной связью

Источник: Wikimedia Commons

Применение регуляторов напряжения

Вот некоторые области применения линейных и импульсных регуляторов напряжения:

  • Вы можете использовать линейные регуляторы для малобюджетных, чувствительных к шуму, ограниченного пространства или слаботочных приложений, таких как носимые устройства, Интернет-вещей (IoT) и наушники.

Наушники

  • Импульсные регуляторы можно использовать для более общих задач. И вы также можете использовать их для высокопроизводительных и эффективных приложений, таких как потребительские, автомобильные, корпоративные и промышленные приложения.

Автомобили

Проекты схем сильноточного регулятора напряжения

В этом разделе будут рассмотрены два типа схем регулятора напряжения, которые вы можете изготовить для своего проекта.Мы обсудим две схемы: схему высоковольтного регулятора напряжения 7812 и схему адаптируемого высоковольтного регулятора напряжения с использованием LM338.

Сильноточная цепь регулятора напряжения 7812

Сильноточная электрическая схема 7812 Напряжение

Источник: блог о регуляторах постоянного напряжения

Вы можете создать сильноточное напряжение 7812 с помощью транзистора, и этот транзистор поможет увеличить мощность тока нагрузки схемы регулятора.Также имейте в виду, что в положительных регуляторах используются транзисторы NPN, а в регуляторах -ve используются транзисторы PNP.

Кроме того, эта схема является прекрасным образцом схемы регулятора тока постоянного напряжения 12В. И он поставляется с IC 7812, предназначенным для повышения напряжения нагрузки 1A IC 7812 (до 15A).

Примечание. Чем чаще используются внешние транзисторы, тем выше токи нагрузки.

Следовательно, вы можете изготовить сильноточный стабилизатор напряжения 7812, соединив 3 дополнительных транзистора MJ2955.

Вот лучшая часть.

Вы можете изменить мощность тока нагрузки, добавив больше транзисторов MJ2955 (увеличить) или удалив некоторые транзисторы.

Кроме того, вы можете использовать резистор с номиналом 100R или ниже, чтобы защитить вашу систему от перегрузки по току. Таким образом, с помощью этого резистора вы можете стабилизировать напряжение, которое принимает 1c 7812.

Поскольку ток нагрузки 7812 не превышает 1 А, вы можете использовать его в качестве предохранителя для выходного напряжения 1 А микросхемы.Таким образом, защищая ИС от сильного постоянного или постоянного тока.

Кроме того, следует установить радиатор для транзисторов 1C MJ2955 и 7812, чтобы иметь эффективную систему радиатора для дополнительного охлаждения напряжения нагрузки или функции теплового отключения.

Радиатор

Источник: Wikimedia Commons

Примечание: радиатор также предотвращает повышение температуры. Вы также можете включить функцию отключения по температуре при достижении максимальной температуры.

Кроме того, для этой схемы можно использовать -ve-регулятор 7912. Но вам придется заменить транзисторы MJ2955 на другие транзисторы, такие как MJ3055, TIP3055 или 2N3055.

Схема сильноточного адаптируемого стабилизатора напряжения с использованием LM338

Схема регулятора высокого напряжения с использованием LM338

Источник: 320volt.com

Эта гибкая схема регулятора напряжения, использующая LM338, может обеспечивать стабилизированное фактическое выходное напряжение постоянного тока от 1 до 1 Ом.2–32 В с входным неуправляемым источником постоянного тока от 1,5 до 35 В.

LM338 — это ИС с регулируемым источником питания с трехконтактным контроллером напряжения + ve. Кроме того, он может подавать пять ампер от 1,2 до 32 вольт. Кроме того, для использования этой схемы вам понадобится всего два резистора. Кроме того, вот целевое выходное напряжение, которое вы можете получить с помощью переменного резистора:

В выход = 1,25 В (1 + R2 / R1) + Iadj R2

Необходимые компоненты

Вот компоненты, необходимые для этой схемы:

  1. C1 — 10 мкФ / 25 В — CP Radial D4.0 мм — P2,00 мм (1)
  1. C2 — 4,7 мкФ / 25 В — CP Радиальный D4,0 мм — P2,00 мм (1)
  1. R1 — 120 Ом — R Осевой DIN0204 D1,6 мм L3,6 мм — P5 0,08 мм по горизонтали (1)
  1. D1, D2 — 1N4007 — D-DO-41 SOD81 P10,16 мм по горизонтали (2)
  1. U1 — LM338 — TO- 220-3 Вертикально (1)
  1. RV1 — 1 кОм — Потенциометр Bourns 3266Y Вертикальный (1)
  1. J1, J2 — Винт 01 × 02 — JWT A3963 1 × 02 P3,96 мм Вертикальный (1)

LM338 является важным компонентом этого гибкого напряжения схема регулятора.Вы можете подключить входную клемму 3 напрямую к положительной клемме (Vin). Также подключите контакт 2 (Vout) к винтовой клемме, диапазон выходного сигнала. Затем подключите контакт 1 к GND через переменный резистор RV1.

Итак, вы можете изменить регулируемое выходное напряжение LM338 этой цепи, изменив значения R1 и RV1. Кроме того, конденсаторы C2 и C1 выполняют операции фильтрации, а D1 и D2 работают как «элементы обратной защиты».

Завершение

Наконец, давайте посмотрим, что вам следует учитывать, прежде чем выбирать идеальный стабилизатор напряжения, если вы не собираетесь его делать.Во-первых, вы должны понимать основные функции, такие как Vout, Vin, Iout и даже системные приоритеты.

Как только вы поймете эти параметры, выясните, какое устройство соответствует требованиям вашего приложения. Для этого вы можете использовать таблицу параметрического поиска и текущий график. И вы также можете использовать график эффективности, чтобы определить фактическую эффективность желаемого регулятора напряжения.

Таблица параметрического поиска

Источник: DCDselector

Кроме того, подходящий регулятор напряжения увеличит срок службы батарей ваших цепей, если они используют питание от батарей.

Ну вот и завершаем эту статью. Не забудьте связаться с нами, если вам потребуется дополнительная помощь или возникнут вопросы. Мы всегда рады помочь.

LM7912 Схема расположения выводов, техническое описание, приложения, примеры, особенности

LM7912 — это трехконтактная микросхема стабилизатора напряжения 12 В. Большинству приложений для работы требуется как положительное, так и отрицательное напряжение. Отрицательные напряжения должны быть стабильными, иначе они могут повредить цепь или сократить срок службы компонентов, используемых в цепи.Таким образом, стабилизаторы отрицательного напряжения не подходят для этой цели. LM7912 IC — это стабилизатор отрицательного напряжения, питающий отрицательные напряжения. Он состоит из трех контактов и имеет фиксированное выходное напряжение -12 В. Он используется в случае колебания входов для стабилизации выхода.

LM7912 Схема расположения выводов

Схема расположения выводов показывает, что этот отрицательный регулятор на 12 В имеет три контакта, такие как вход, выход и заземляющий контакт.

Описание конфигурации контактов

Это трехконтактное устройство, сведения о контактах которого перечислены ниже.

Номер контакта Имя Описание
1 ЗАЗЕМЛЕНИЕ Контакт заземления соединен с землей цепи.
2 INPUT На входной вывод подается нерегулируемый сигнал напряжения. Диапазон входного сигнала от 5 до 24 В.
3 ВЫХОД Стабильный и регулируемый сигнал фиксированного напряжения -12 отражается на выходе.

Блок-схема LM7912

Блок-схема внутренней схемы микросхемы LM7912 приведена на рисунке.

Характеристики регулятора отрицательного напряжения LM7912

  • Он имеет фиксированное выходное напряжение -12 В
  • Входное напряжение должно находиться в диапазоне от -27 В до -14,5 В
  • Цепи защиты от коротких замыканий и тепловых перегрузок встроены в эту ИС .
  • Для выходных транзисторов предусмотрена защита безопасной зоны.
  • Обладает высоким коэффициентом отклонения источника питания и низким уровнем шума.
  • Выходной ток 1,5 A
  • Допуск выходного напряжения составляет ± 4%.
  • Имеет низкий ток покоя, который обеспечивает хорошее регулирование.

Где использовать?

LM7912 IC используется при проектировании аналоговых схем, требующих отрицательного напряжения. Вы можете использовать эту микросхему для получения -12 вольт. Для бесперебойной работы микроконтроллерам требуется плавное и регулируемое напряжение на входе. Поэтому для создания плавного напряжения используется микросхема LM7912.Это также полезно при проектировании раздельных источников питания и датчиков. Что наиболее важно, он может работать в диапазоне температур от 0 до 50 ° C. Кроме того, он подходит для использования в приложениях с фиксированным напряжением.

Как использовать стабилизатор отрицательного напряжения LM7912?

Базовая схема этой ИС указана ниже. Для стабильной работы требуется всего два конденсатора. Один конденсатор подключен на входе, а другой на выходе. Они используются для фильтрации шума. Чтобы избежать чрезмерного рассеивания мощности, они имеют систему защиты от тепловой перегрузки, встроенную в ИС.

Предусмотрена защита от короткого замыкания для удержания тока в допустимых пределах, в противном случае это может привести к повреждению ИС. На контакт 2 подается отрицательный входной сигнал в диапазоне от -5В до -24В. LM7912 состоит из проходного транзистора. Выходной ток уменьшается, когда напряжение на этом транзисторе увеличивается. Поэтому для компенсации потерь предусмотрена компенсация в безопасной зоне. Срок службы этого устройства может быть увеличен за счет использования радиатора, который увеличивает его способность рассеивать мощность.

Стабилизатор отрицательного напряжения -12 с использованием LM7912

В этой схеме мы подаем постоянное напряжение 14 В на вход 7912. Конденсаторы C1 и C2 являются фильтрующими конденсаторами. Эти конденсаторы предотвращают колебания напряжения на входных и выходных клеммах. Чем больше емкость конденсатора, тем меньше будут колебания напряжения. Но мы всегда используем оптимальные и легкодоступные конденсаторы.

Подключаем на выходе вольтметр для измерения выходного напряжения. Как видно из принципиальной схемы, на выходе напряжение 12 вольт отрицательное.

Пример схемы

Эту ИС можно использовать при проектировании источника двойного симметричного напряжения 12 В. В этом проекте используются стабилизатор положительного напряжения (LM7812) и стабилизатор отрицательного напряжения (LM7912). Принципиальная схема приведена ниже.

Эквивалентные регуляторы отрицательного напряжения

Иногда мы не можем найти электронные компоненты на рынке, мы можем использовать альтернативные / эквивалентные регуляторы.

LM7912 Приложения

Используется в приложениях с фиксированным напряжением.Несколько применений LM7912 IC:

  • Его можно использовать в качестве опорного или силового напряжения в аналоговых и цифровых схемах, а также в качестве источника тока в некоторых приложениях.
  • LM7912 может спроектировать источник питания с двойным регулированием.
  • Эта ИС может спроектировать ограничитель тока в различных приложениях.
  • Этот высокостабильный стабилизатор используется в высокочувствительных контроллерах света.
  • Он также имеет схему защиты от смены полярности на выходе.

2D-схема

LM7912 IC доступна только в корпусе TO-220.Размеры и 2D-схема этого пакета приведены ниже.

LM7912 Datasheet

LM7912 12 ИС регулятора отрицательного напряжения

Paralleling Linear Regulators Made Easy

Линейные регуляторы

представляют собой простое решение с низким уровнем шума для регулирования постоянного / постоянного тока. Однако при более высоком V IN -V OUT различается, низкая эффективность и высокая рассеиваемая мощность линейных регуляторов ограничивают величину выходного тока, которая реально может быть выдана.При параллельном подключении нескольких линейных регуляторов нагрузка (и тепло) распределяется по нескольким ИС, увеличивая полезный диапазон выходных токов, которые может обеспечить решение. Однако параллельно подключить линейные регуляторы не всегда просто.

Разделение тока с линейными регуляторами традиционно не так просто, как параллельное соединение частей. Два линейных регулятора на основе опорного напряжения, настроенные на одинаковое выходное напряжение и связанные вместе выходами, не будут распределять ток поровну.Выходное напряжение LDO определяется опорным напряжением, умноженным на коэффициент усиления на основе резисторов обратной связи. Из-за ошибок допуска в резисторах опорного напряжения и обратной связи выходные напряжения будут несовместимы. При несогласованных выходах LDO не будут делить ток; один LDO будет обеспечивать большую часть тока до тех пор, пока он не достигнет предельного значения тока, теплового ограничения или пока его выход не упадет достаточно низко, чтобы другой LDO начал дополнять его ток. Эти три ситуации создают проблемы для работы схемы и могут вызывать проблемы с надежностью, приводя к возможному преждевременному выходу из строя перегруженного LDO.

Давайте посмотрим на LT1763-3.3, популярный линейный стабилизатор PNP с выходом 3,3 В и 500 мА, работающий в диапазоне от 1,8 В до 20 В. Он имеет погрешность максимального выходного напряжения 1% при комнатной температуре и 2,5% превышения температуры.

LT1763-3.3 Типовая схема приложения

При полной нагрузке и перегреве выходное напряжение LT1763 находится в диапазоне от 3,22 В до 3,38 В, что соответствует диапазону 16 мВ. При параллельном подключении устройств, если один выход LDO находится на верхнем значении, а другой — на нижнем значении, подключенные параллельно LDO не будут разделять ток; один с более высоким выходным напряжением доминирует во всем диапазоне тока нагрузки.

Для улучшения возможности разделения тока идентичные балансировочные резисторы могут быть добавлены на выходе каждого регулятора, как показано на рисунке ниже, но для точного согласования (т.е. порядка 90%) значения резисторов должны быть достаточно большими, чтобы разницу в выходных напряжениях регулятора можно компенсировать небольшим изменением выходного тока.

Например, при параллельном подключении двух выходных 3,3 В, 1 А LDO с допуском 3%, наихудший сценарий выходного напряжения — это когда один LDO (# 1) имеет 3.Выход 4 В, а другой (# 2) — 3,2 В. С балансировочным резистором 2 Ом требуется только дополнительные 100 мА выходного тока через балансировочный резистор LDO №1 для балансировки двух напряжений (LDO с более высоким выходным напряжением обеспечивает больший ток). Как только он подает дополнительные 100 мА, дополнительное падение на балансировочном резисторе приводит к совпадению двух выходных напряжений, и LDO разделяют ток. Это обеспечивает жесткое разделение тока (разница всего 10% при максимальном токе нагрузки). Однако падение напряжения на резисторах балансировки тока слишком велико при полной нагрузке (1.1 А * 2 Ом = падение 2,2 В).

Балансировочные резисторы

вызывают большое падение напряжения на выходе

Можно добавить схему измерения тока (резисторы датчика тока и усилитель) на входе или выходе (или на выводах ограничения тока, если усилитель имеет эту функцию) для балансировки токов и поддержания надлежащего выходного напряжения, но внешняя схема увеличивает стоимость и требуется дополнительное место на плате.

Измерение входных токов LDO для балансировки тока нагрузки

Другой метод предполагает использование LDO с регулируемым ограничением тока, как показано в примере LT3065 ниже (LT3065 имеет значение 1.Вход от 8 В до 45 В, выход 500 мА, линейный регулятор 25 мкВ RMS с программируемым пределом тока точности 10%). Контур обратной связи используется для согласования двух предельных значений тока путем регулировки выходного напряжения одного из усилителей. Как и в предыдущем примере, для работы требуются внешний усилитель и резисторы установки тока.

Использование ограничения тока LDO для балансировки общего тока

LT3081 является примером линейного регулятора, решающего эту проблему очень простым и уникальным способом.LT3081 — это LDO с выходом 1,5 А, который является частью уникального семейства положительных и отрицательных линейных стабилизаторов с опорным источником тока. Устройства легко подключать параллельно и очень хорошо распределять ток. Стабилизаторы положительного выхода имеют диапазон входного напряжения до 40 В и выходной ток от 0,2 до 3 А.

Упрощенная схема LT3081 показана ниже. Вместо опорного напряжения LT3081 использует опорный источник тока. Этот ток пропускается через внешний резистор RSET для установки значения опорного напряжения.В зависимости от выбранного резистора опорное значение может быть уменьшено до нуля вольт; дополнительных резисторов обратной связи не требуется.

LT3081 Блок-схема

Еще одним ключевым моментом является плотное распределение тока вывода SET, как показано ниже. Это приводит к очень низкому значению максимального напряжения смещения ± 1,5 мВ от вывода V SET к выходному выводу при комнатной температуре.

LT3081 Плотно закрепленный ток на выводах и, как следствие, распределение с низким смещением

Более высокий выходной ток получается при параллельном подключении нескольких LT3081.Свяжите отдельные контакты SET вместе и свяжите отдельные контакты IN вместе. Соедините выходы вместе, используя небольшие кусочки компьютерной трассы в качестве балластных резисторов, чтобы обеспечить равное распределение тока. Сопротивление следа ПК в миллиомах / дюйм показано в таблице 1. Балластировка требует лишь крошечной области на печатной плате.

Требуется минимальное сопротивление следа печатной платы

Наихудший вариант смещения комнатной температуры, всего ± 1,5 мВ между выводом SET и выводом OUT, позволяет использовать балластные резисторы очень небольшого размера.Как показано на рисунке ниже, в каждом LT3081 используется небольшой балластный резистор 10 мОм, который при полном выходном токе дает более 80% выравниваемого распределения тока. Внешнее сопротивление 10 мОм (5 мОм для двух устройств, подключенных параллельно) добавляет только около 15 мВ падения стабилизации на выходе 3 А. Даже при таком низком выходном напряжении, как 1 В, это добавляет лишь 1,5% к регулировке. Конечно, параллельное соединение более двух LT3081 дает еще больший выходной ток. Размещение устройств на печатной плате также способствует распространению тепла.Последовательные входные резисторы могут еще больше распространять тепло, если разница между входным и выходным напряжением велика.

Параллельное подключение LT3081s

Для удобства 1.1A LT3080 доступен в версии LT3080-1 со встроенным балластным резистором. Семейство токовых усилителей Linear Technology предлагает множество других полезных функций между устройствами, включая мониторинг выходного тока, мониторинг температуры перехода кристалла, отключение, защиту от обратного тока и обратного заряда батареи и другие.Все устройства оставляют проблемы, связанные с параллельным подключением LDO, в прошлом.

LM7812 Микросхема регулятора напряжения в Пакистане

Порядок действий

Все мы очень хорошо знаем о процедурах построения цепи питания постоянного тока с использованием трансформатора, мостового выпрямителя и фильтрующего конденсатора.

Достаточно подключить четыре диода в мостовой конфигурации и подключить его к вторичной обмотке трансформатора, конденсатор идет на выход клемм моста.
Выходной сигнал на конденсаторе приблизительно равен номинальному напряжению трансформатора, а на несколько вольт выше, чем указано в спецификации трансформатора.
Однако напряжение, полученное с помощью вышеупомянутой простой конфигурации, никогда не регулируется и не стабилизируется, что означает, что выходной сигнал никогда не будет постоянным и будет изменяться в зависимости от изменяющихся уровней входного сетевого напряжения, которое, как мы знаем, никогда не бывает постоянным.

Изменяющееся напряжение

Изменяющееся напряжение может вызвать серьезные последствия для чувствительной электронной схемы, например, ИС серий TTL, LS и HC не выдерживают напряжения более 5 вольт и могут быть немедленно повреждены.
ИС CMOS не выдерживает напряжения более 16–18 В.
Реле, если оно эксплуатируется при напряжении, превышающем его номинальное, может нагреться и бесполезно расходовать электроэнергию.

Другие проблемы

Есть несколько других проблем, с которыми могут столкнуться электронные схемы, если применяется нерегулируемая.
Для решения вышеупомянутой проблемы было разработано множество высококачественных, но очень простых в настройке микросхем, которые дешево и в изобилии доступны на наших электронных рынках.

Пример

Стабилизаторы напряжения серии 78XX, например, имеют большинство стандартных номинальных значений напряжения, которые можно использовать вместе с обычным источником питания постоянного тока для получения высококачественных, чистых управляемых выходов напряжения.

Спецификации ИС серии 78XX понятны со следующих позиций:

Допуски выходного напряжения составляют около 2% при Tj
= 25 C и 4%
Линейное регулирование составляет около 0,01% от VOUT / V от VIN при нагрузке 1A.
Внутренняя схема защищена от перегрева и перегрузки.
Внутренняя защита по ограничению тока короткого замыкания также включает в себя
Защита безопасной зоны выходного транзистора также является одной из характеристик этих ИС

Таблица

Полный ассортимент этих ИС приведен в следующей таблице :

Как микросхемы 7805/7812/7815/7824 используются или подключаются в электронных схемах.

См. Принципиальную схему

  • Эти микросхемы имеют всего три вывода, что упрощает понимание и подключение. Выводы назначаются как вход, земля и выход соответственно.
  • Если держать напечатанную сторону к себе, левая сторона является входом. Центральный — земля, а правый — выход.
  • Постоянный ток от любого стандартного источника питания подается между входом и заземляющими выводами ИС. Положительный вывод идет на вход, а отрицательный — на землю.
  • Выходной сигнал поступает через выход и контакты заземления ИС. Положительный сигнал принимается от вывода «выход», а отрицательный — от общей линии заземления.

В этой СТАТЬЕ можно найти множество примеров схем и подключений.

В комплект входит:

1 микросхема регулятора напряжения LM7812

Примечания по конструкции источника питания

: Модели Spice для линейных регуляторов

В этом руководстве мы увидим моделирование источника питания с макромоделями 78xx. Основное используемое электронное программное обеспечение — LTspice (для приложений питания). Это высокопроизводительное программное обеспечение SPICE для моделирования, захвата схем и просмотра сигналов с усовершенствованиями и моделями для упрощения моделирования аналоговых цепей. Его можно бесплатно загрузить с сайта Analog Devices.


Рекомендуемый
Замечания по проектированию источника питания Вот предыдущая статья. Наслаждаться!


Библиотеки SPICE

К сожалению, многие программы электронного моделирования изначально не используют библиотеки для регуляторов 78xx и LM317.Стабилизаторы 78xx представляют собой довольно сложные схемы, состоящие из десятков транзисторов, резисторов и конденсаторов (, рис. 1 ), цель которых — понизить входное напряжение до определенного и точного значения.

Рисунок 1: Сложная электрическая схема регулятора 78xx

В LTspice очень просто включить SPICE-модель любого компонента. Желательно нарисовать символ нового компонента вручную (с расширением «.ASY») и создать контакты с именем, указанным в «.СУБКТ »( рисунок 2 ). В схему подключения необходимо включить библиотеку с директивой SPICE:

.lib name.lib
или
.inc Regators.lib

Рисунок 2: Как нарисовать новый компонент

Полное моделирование 7805

Абсолютные максимальные значения регулятора 7805 следующие:

  • Входное напряжение: 35 В
  • Тепловое сопротивление переходов корпуса (TO-220): 5 ° C / Вт
  • Тепловое сопротивление воздуха перехода (TO-220): 65 ° C / Вт
  • Диапазон рабочих температур: –40 ° C до 125 ° C
  • Выходной ток: до 1 А
  • Пиковый ток: 2.2 A

Давайте теперь проведем небольшое моделирование использования регулятора 7805. Теория такая же для других напряжений 7808, 7812, 7815 и 7824. В , рис. 3 , мы можем наблюдать типичную схему применения.

Рисунок 3: Типичное применение регулятора 7805

Напряжение питания в этом примере является переменным, а выходное напряжение составляет 5 В при резистивной нагрузке 10 Ом и сильном токе 500 мА. Давайте проверим график эффективности, варьируя напряжение питания в диапазоне от 7 В до 35 В, глядя на график на рис. 4 .КПД рассчитывается по следующей формуле:

(V (OUT) × I (R1)) / (V (IN) × –I (V1)) × 100

Рисунок 4: КПД схемы при изменении напряжения питания от 7 В до 35 В при нагрузке 100 Ом

Например, при напряжении питания 12 В КПД схемы составляет 41,3%, а при напряжении питания 20 В КПД схемы падает до 24,7%. Как видно на графике, максимальный КПД схемы (около 65%) соответствует самому низкому напряжению питания, равному 7 В.Дизайнеры должны учитывать эти параметры. При увеличении напряжения питания до 35 В происходит значительное увеличение мощности, рассеиваемой регулятором 7805, график которой показан на Рисунок 5 .

Рисунок 5: Мощность, рассеиваемая регулятором 7805

Давайте теперь оценим выходное напряжение 7805 как функцию нагрузки, выраженную в омах. Этот график, видимый слева от , рис. 6 , показывает, что выходное напряжение регулятора остается постоянным (5 В) до тех пор, пока сопротивление нагрузки не упадет ниже 2 Ом.В этом случае выходное напряжение резко падает из-за срабатывания внутренней защиты регулятора. Выходной ток 7805 показан справа на том же графике в зависимости от нагрузки, выраженной в омах.

Рисунок 6: График выходного напряжения и тока в зависимости от нагрузки

Разделим тепло

Очень часто полезно использовать два или более регулятора в каскаде, когда входное напряжение намного выше, чем выходное напряжение. При использовании двух регуляторов КПД не улучшается; Напротив, он немного ниже, но помогает распределить рассеивание между двумя устройствами, как мы можем видеть на Рис. 7 .Две электрические схемы предназначены для понижения напряжения с 20 В до 5 В. В первой схеме слева используется только стабилизатор 7805, а в правой схеме используются каскадные схемы 7812 и 7805. Рассеиваемая мощность первой цепи слева распределяется таким образом:

  • Мощность, генерируемая аккумулятором V1 (V (IN) × –I (V1)): 10,1 Вт
  • Мощность, рассеиваемая на 7805 (V (IN) × Ix (X1: 1) + V (OUT) × Ix (X1: 3)): 7,6 Вт
  • Мощность, рассеиваемая нагрузкой R1 (V (OUT) × I (R1)): 2.5 Вт
  • КПД первой цепи: 24,76%

Таким образом, рассеиваемая мощность второй цепи справа распределяется:

  • Мощность, генерируемая аккумулятором V2 (V (IN2) × –I (V2)): 10,2 Вт
  • Мощность, рассеиваемая на 7812 (V (IN2) × Ix (X3: 1) + V (N001) × Ix (X3: 3)): 4,14 Вт
  • Мощность, рассеиваемая на 7805 (V (N001) × Ix (X2: 1) + V (OUT2) × Ix (X2: 3)): 3,5 Вт
  • Мощность, рассеиваемая нагрузкой (R2 V ( OUT2) × I (R2)): 2,5 Вт
  • КПД второго контура: 24.52%

КПД второй цепи немного ниже, но рассеивание на двух устройствах распределено.

Рисунок 7: Использование двух регуляторов

При использовании трех регуляторов (7815, 7812 и 7805) мощность делится следующим образом:

  • Мощность, генерируемая аккумулятором V3: 10,3 Вт
  • Мощность, рассеиваемая на 7815: 2,65 Вт
  • Мощность, рассеиваемая на 7812: 1,58 Вт
  • Мощность, рассеиваемая на 7805: 3,56 Вт
  • Мощность, рассеиваемая нагрузкой: 2.5 Вт
  • КПД: 24,28%

Стабилизирует ли 7805 напряжение только на уровне 5 В?

Давайте попробуем электрическую схему Рис. 8 , которая обеспечивает резистор, подключенный к выводу регулятора, который обычно подключен к земле.

Рисунок 8: Переменная подача с 7805

Изменяя значение сопротивления этого сопротивления (R2) с 50 Ом на 3000 Ом при входном напряжении 20 В, мы можем получить выходное напряжение в пределах 5.2 В и 17,7 В. Максимальное потребление этого резистора составляет примерно 5 мА (для максимального рассеяния 60 мВт). По этой причине мы можем использовать потенциометр для создания бесступенчатого источника питания ( Рисунок 9 ). Выходное напряжение также зависит от подключенной нагрузки. Некоторые примеры показаны в таблице ниже.

00 17,7 08 0 получить переменный источник питания.

Очень интересно изучить эффективность этого переменного блока питания, график которого показан на Рисунок 10 . Очевидно, что более высокие значения производительности соответствуют более высокому выходному напряжению с меньшим тепловыделением.

Рисунок 10: Эффективность схемы отличается за счет изменения значений R2.

Для получения дополнительной информации:

Силовая электроника играет все более важную роль на различных рынках, таких как автомобильный, промышленный и потребительский. Это также технология, позволяющая реализовать широкий спектр новых и улучшенных функций, которые повышают производительность, безопасность и функциональность автомобилей и интеллектуальных сетей. Сложные электрические и тепловые требования сильно влияют на конструкцию силовых электронных систем.Новости силовой электроники будут сосредоточены на основных темах, таких как преобразователь мощности, управление движением, полупроводники и управление температурой. Электронная книга Power Electronics News — это интерактивный подход к информированию о последних технологиях, тенденциях и инновационных продуктах на определенных рынках.

Типы регуляторов напряжения, Ic, модуль, генератор переменного тока

Стабилизатор напряжения — это схема, которая производит и сохраняет постоянное выходное напряжение независимо от входного напряжения или условий нагрузки.Напряжения от источника питания поддерживаются в пределах, согласованных с другими электрическими компонентами с помощью регуляторов напряжения (VR).

Хотя регуляторы напряжения наиболее широко используются для преобразования постоянного тока в постоянный, некоторые из них могут также преобразовывать переменный ток в переменный или переменный в постоянный. Предмет данной статьи — регуляторы постоянного / постоянного напряжения.

Типы регуляторов напряжения

Стабилизаторы напряжения

делятся на две категории: линейные и переключающие. Оба управляют напряжением в системе, но линейные регуляторы имеют низкий КПД, тогда как импульсные регуляторы имеют высокий КПД.Большая часть входной мощности передается на выход без рассеивания в высокоэффективных импульсных регуляторах

.

Линейные регуляторы

Линейный регулятор — это электрическое устройство серии , поддерживающее постоянное напряжение. Сопротивление регулятора изменяется в зависимости от входного напряжения и нагрузки, что приводит к стабильному выходному напряжению. Система управления предназначена для работы в качестве переменного резистора, постоянно меняя схему делителя напряжения для поддержания постоянного выходного напряжения и рассеивая несоответствие между входным и регулируемым напряжениями в виде отработанного тепла.

Импульсный регулятор, с другой стороны, использует внешний механизм, который попеременно включается и выключается для сохранения среднего выходного значения. Надежность линейного регулятора ограничена, поскольку регулируемое напряжение всегда должно быть ниже входного напряжения, а входное напряжение всегда должно быть достаточно высоким, чтобы позволить активной системе упасть любое напряжение.

Импульсные регуляторы

Импульсные регуляторы от Analog. Устройства доступны в повышающем (повышающем), понижающем (понижающем) и инвертирующем режимах.Эти устройства могут генерировать фиксированное или динамическое выходное напряжение и обеспечивать ток до 2 А.

Детектор разряда батареи, настраиваемый пользователем предел тока, диапазон частот переключения и уменьшенное количество внешних компонентов — вот некоторые из функций, включенных в портфель импульсных стабилизаторов ADI.

Это семейство динамически оптимизируемых и масштабируемых устройств предназначено для уменьшения количества внешних компонентов в приложениях с ограниченным пространством.

регулятор напряжения ic

Регулятор напряжения — это интегральная схема (ИС), которая поддерживает постоянное выходное напряжение независимо от нагрузки или изменений входного напряжения.Он может делать это разными способами в зависимости от топологии схемы внутри, но мы сосредоточимся на линейном регуляторе только для того, чтобы упростить этот проект.

Линейный регулятор напряжения поддерживает стабильное выходное напряжение за счет автоматического изменения сопротивления через контур обратной связи, что позволяет изменять как нагрузку, так и вход.

ic lm317

Это своего рода стабилизатор положительно-линейного напряжения, изобретенный Робертом С. Добкиным и Робертом Дж.Видлара в 1970 году, когда он работал в National Semiconductor. Это трехконтактный настраиваемый регулятор напряжения, который прост в использовании, поскольку для схемы регулятора напряжения LM317 требуется только два внешних резистора для установки выходного напряжения.

регулятор напряжения ic lm317

Он в основном используется для регулирования местных транзакций и транзакций по карте. Схема LM317 может использоваться как прецизионный регулятор тока, подключив постоянный резистор между выходом и регулировкой регулятора LM317.

ic 7805

В электронных схемах регуляторы напряжения очень распространены.Для переменного входного напряжения они имеют фиксированное выходное напряжение. В нашем случае 7805 IC — это хорошо известная микросхема стабилизатора, которая используется в большом количестве программ. Имя 7805 имеет два значения: «78» указывает на то, что это стабилизатор положительного напряжения, а «05» указывает на то, что он выдает 5 В. В результате наш 7805 выдал бы напряжение + 5В.

регулятор напряжения ic 7805

Эта ИС имеет максимальный выходной ток 1,5 А. Однако, поскольку ИС теряет много тепла, радиатор предпочтительнее для проектов, в которых используются большие токи.Если входное напряжение составляет 12 В, а вы потребляете 1 А, то результатом будет (12-5) * 1 = 7 Вт. Эти 7 ватт преобразуются в тепло и рассеиваются.

ic 723

LM723 IC — это регулятор переменного напряжения, который можно использовать в последовательном стабилизаторе с током 150 мА в пике и без внешнего проходного резистора. Когда мы используем внешний транзистор, мы получаем ток 10А для перемещения нагрузки.

регулятор напряжения ic 723

Максимальное входное напряжение составляет 40 В, а выходное напряжение варьируется от 3 до 40 вольт.Существующие регуляторы и шунтирующие регуляторы — два наиболее распространенных применения этой ИС. Эта ИС имеет малые токи потребления, что позволяет использовать ее в качестве откидного устройства ограничения тока с диапазоном температур от -55 ° C до 150 ° C.

ic 7812

Интегральная схема 7812 представляет собой автономный фиксированный линейный стабилизатор напряжения. ИС является частью семейства стабилизаторов напряжения ic 78xx. ИС 7812 проста в использовании и стоит недорого. Выходное напряжение 7812 составляет 12 В, как показано двумя последними цифрами.

регулятор напряжения ic 7812

Микросхема 7812 является положительной, что означает, что она создает положительное напряжение по отношению к земле. В случае, если для схемы требуется вход как положительного, так и отрицательного напряжения. ИС 7812 используется вместе с ИС семейства 79ХХ, которым является ИС 7912.

модуль регулятора напряжения

Модуль регулятора напряжения (VRM), также известный как модуль питания процессора (PPM), представляет собой понижающий преобразователь, который преобразует +5 В или +12 В в гораздо более низкое напряжение, требуемое ЦП, позволяя процессорам с другим питанием напряжения, которые должны быть установлены на той же материнской плате.VRM обычно состоит из силовых устройств MOSFET в системах персональных компьютеров (ПК).

модуль материнской платы

Модуль регулятора напряжения, или VRM, представляет собой схему на любой материнской плате, которая расположена рядом с ЦП. Функция VRM состоит в том, чтобы преобразовать входную мощность от источника питания в полезную мощность для ЦП и помочь сбалансировать ее.

материнская плата модуля регулятора напряжения

Ваш ЦП даже не включился бы, если бы не VRM! Помимо слотов RAM, RAM имеет гораздо меньший и упрощенный VRM.Однако обычно VRM процессора — единственное, что привлекает внимание. Мало кто разгоняет свою оперативную память, потому что оперативная память потребляет гораздо меньше энергии, чем ЦП, поэтому ее всегда упускают из виду.

регулятор напряжения генератора

Регулятор напряжения , генератор переменного тока — важная часть зарядного механизма вашего автомобиля. Он контролирует величину напряжения, подаваемого генератором переменного тока, чтобы поддерживать постоянное напряжение на батарее и электрическом оборудовании вашего автомобиля, как следует из названия.

Если у вас нет регулятора, напряжение на вашем генераторе повышается и падает с той скоростью, с которой он вращается; если у вас его нет, слишком высокое напряжение приведет к срабатыванию предохранителей. Большинство современных генераторов переменного тока имеют внутренние регуляторы напряжения, что устраняет необходимость в проводке; но, если у вас есть внешний, вы должны подключить его к генератору и механизму зажигания.

отказ генератора

Если транспортное средство не может выдержать мощность, выдаваемую штатным (и более быстрым) генератором переменного тока, произойдет срыв, разбрызгивание и неравномерное ускорение.

Регулятор легко перегорает в результате переналадки. Осмотрите компоненты вторичного рынка с обученным механиком или кем-нибудь, кто имеет большой опыт работы с автомобилем.

Итак, вот схема генератора переменного тока.

схема регулятора напряжения генератора

проводка генератора

Итак, вот электрическая схема генератора.

проводка регулятора напряжения генератора

Часто задаваемые вопросы

Что такое регулятор напряжения и как он работает

Стабилизатор напряжения вырабатывает заданное выходное напряжение, которое остается стабильным независимо от изменений входного напряжения или условий нагрузки.Стабилизаторы напряжения делятся на две категории: линейные и импульсные.

Какие регуляторы напряжения используются в

Любая электрическая или электронная система, которая поддерживает напряжение источника питания в соответствующих пределах, известна как регулятор напряжения. Используется для поддержания напряжения в допустимом диапазоне для электрического оборудования, которое использует это напряжение.

Видео на YouTube

Видео на YouTube загружено Ekeeda

Читать дальше…

  • регулятор напряжения от 12В до 5В — от 12В до 5В схема регулятора напряжения

    от Ketan

  • Конденсатор кондиционера — все типы, замена, стоимость конденсатора

    , Ketan

  • Типы конденсаторов переменного тока
  • , электрические схемы, код HSN, цена

    , компания Ketan

  • Преобразователь постоянного тока в переменный с использованием транзисторов, МОП-транзисторов и солнечных батарей

    от Кетана

  • Типы регуляторов напряжения, Ic, Модуль, Генератор, объясненные Кетаном

  • Преобразователь переменного тока в постоянный — устройство, схема, формула

    объяснил Кетан

  • Обозначение стабилитрона и конструкция стабилитрона, объясненная Кетаном

  • Защита от перенапряжения на стабилитроне, проблемы, расчет

    по Ketan

  • Усилитель PA
  • хорош для домашней музыки — объяснил технологию класса D

    Кетан

  • Синусоидальная волна — частота формы волны, пиковая амплитуда и генератор объяснены

    Кетаном

  • Переменный ток — Введение в переменный ток (AC)

    , Кетан

  • Двоичный код
  • — двоичный код, код Грея, код превышения 3, объясненный Кетаном



Как подключить регулятор напряжения 7812? — Цвета-Нью-Йорк.com

Как подключить регулятор напряжения 7812?

7812 — широко используемый линейный регулятор. Входное напряжение может находиться в диапазоне от 14 до 35 В постоянного тока, а на выходе — фиксированное 12 В при токе более 1 А и до 2,2 А при импульсном токе. Для базовой работы никаких внешних компонентов не требуется. Просто подключите входное напряжение и землю, и на выходе будет 5 В.

Что такое 7812?

7812 Регулятор напряжения представляет собой автономную интегральную схему фиксированного линейного регулятора напряжения.IC 7812 — это стабилизатор положительного напряжения, что означает, что он генерирует положительное напряжение относительно общей земли. В случае, если требуется подача как положительного, так и отрицательного напряжения в одной цепи.

Для чего нужен LM7812?

LM7812 Описание: ИС обеспечивает фиксированное выходное напряжение 12 В независимо от того, колеблется ли входное напряжение, постоянно меняется или превышает 12 В, но входное напряжение не должно превышать 35 В, что является максимальным пределом входного напряжения, на который способна эта ИС. ручка.

Как работает IC 7805?

IC 7805 — это регулятор напряжения 5 В, который ограничивает выходное напряжение до 5 В для различных диапазонов входного напряжения. Он действует как отличный компонент против колебаний входного напряжения для цепей и добавляет дополнительную безопасность вашей схеме. Это недорого, легко доступно и очень широко используется.

Что такое выход IC 7924?

Выходное напряжение: -24 В.

Что такое выход IC 7805?

5 В

Как мне получить 7805 IC?

7805 как регулятор напряжения + 5В Нам просто нужны два конденсатора емкостью 33 мкФ и 0.1uf, чтобы эта микросхема заработала. Входной конденсатор 0,33 мкФ представляет собой керамический конденсатор, который решает проблему входной индуктивности, а выходной конденсатор 0,1 мкФ также является керамическим конденсатором, который повышает стабильность цепи.

Какое выходное напряжение у IC 7818?

Информация о продукте

Резистор R2 (Ом) Vout (В)
500 7,5
1,000 9.9
1,500 12,3
2,000 14,6
2,500 16,8
3,000
3,000 17,7
Номер по каталогу производителя L7818CV
Макс.входное напряжение: 35V
Ассортимент продукции: 7818 Регуляторы напряжения
Выходной ток: 1.5А
Тип выхода: Фиксированный

Что такое IC 723?

Пояснение: IC 723 — это регулятор напряжения, который может действовать как регулятор низкого, так и высокого напряжения. Выход может быть установлен в пределах 7-37 вольт. 7 вольт — это исходное начальное напряжение.

Что такое IC 723 1 балл?

Стабилизатор напряжения 723 обычно используется для серийных регуляторов напряжения. Его можно использовать как регулятор как положительного, так и отрицательного напряжения.Он способен обеспечивать нагрузку током до 150 мА, но этот ток можно увеличить более чем на 10 А с помощью силовых транзисторов.

В чем недостаток IC 723?

Выходное напряжение не регулируется. Эти ограничения можно преодолеть с помощью IC723. 2. Регулируемое регулируемое выходное напряжение от 2 до 3 В.

В чем состоит преимущество IC 723?

Широкий спектр применений, таких как последовательные, шунтирующие, переключающие и плавающие регуляторы. Можно спроектировать относительную простоту с блоком питания.Низкое усиление тока в режиме ожидания. Очень низкий температурный дрейф и подавление сильной пульсации.

Какие особенности IC 723?

Выходное напряжение регулируется от 2 В до 37 В. Выходной ток до 150 мА без внешнего проходного транзистора. Нормы нагрузки и линии 0,03%. Он работает в режиме положительного или отрицательного питания.

Какое соединение используется в IC 723 для повышения тока?

По этой причине вывод 10 выходной клеммы IC 723 модернизирован транзистором Tr1 с внешним эмиттерным повторителем.Это позволяет повысить ток на выходе ИС до гораздо более высокого тока в зависимости от номинала транзистора.

Сколько контактов в IC 723?

Он состоит из источника опорного напряжения (вывод 6), усилителя ошибки с инвертирующим входом на выводе 4 и неинвертирующим входом на выводе 5, транзистора последовательного прохода (выводы 10 и 11) и транзистора ограничения тока на выводах. 2 и 3.

Что такое 13-контактный в 723 IC?

Конфигурация контактов

Pin No. Имя контакта Описание
10 Воут Выходной контакт IC
11 Vc Эта клемма питается напрямую от источника питания, когда она не подключена к последовательному транзистору
12 В + Положительный вход питания
13 Частотная компенсация Этот вывод помогает уменьшить шум, добавляя к нему конденсатор емкостью 100 пФ

Как узнать, что моя IC — LM723?

LM723 Характеристики

  1. Максимальное напряжение i / p составляет 40 В.
  2. Опорное напряжение всегда 7 вольт.
  3. Подавление пульсаций 74 дБ.
  4. Ток питания от вывода Vz составляет 25 мА.
  5. Выходное напряжение колеблется от 3 до 37 вольт.
  6. Диапазон рабочих температур от -55 ° C до + 150 ° C.
  7. Ток питания от вывода Vref составляет 15 мА.

Что остается постоянным в эксперименте LM723?

Пример низковольтного источника питания LM723 Он обеспечивает постоянное напряжение на выводе Vref.LM723 сравнивает напряжение неинвертирующего вывода с напряжением инвертирующего вывода и выдает выходное напряжение / ток в соответствии с приведенной выше формулой.

Что такое подавление пульсаций?

Подавление пульсаций — это способность усилителя поддерживать точное выходное напряжение, несмотря на колебания переменного тока в источнике питания.

Какая польза от SMPS?

SMPS — это электронная система электропитания, в которой для эффективной передачи электроэнергии используется импульсный стабилизатор.Это блок питания (блок питания), который обычно используется в компьютерах для изменения напряжения до диапазона, подходящего для компьютера.

Как работает SMPS, объясните с помощью схемы?

На рис. 1 показан пример блок-схемы типичного SMPS с входом сети переменного тока (линейным) и регулируемым выходом постоянного тока. Эта схема используется для преобразования источника постоянного тока в высокочастотный сильноточный переменный ток, который различными способами, в зависимости от конструкции схемы, преобразуется в регулируемый выход постоянного тока.

Почему SMPS называется режимом переключения?

Импульсный источник питания (SMPS) — это электронная схема, которая преобразует мощность с помощью переключающих устройств, которые включаются и выключаются на высоких частотах, и запоминающих компонентов, таких как катушки индуктивности или конденсаторы, для подачи энергии, когда переключающее устройство находится в нерабочем состоянии. состояние проводимости.

Как SMPS преобразует переменный ток в постоянный?

Преобразователь переменного тока в постоянный SMPS имеет вход переменного тока. Он преобразуется в постоянный ток в процессе выпрямления с использованием выпрямителя и фильтра.Это нерегулируемое постоянное напряжение подается на конденсатор большого фильтра или схемы коррекции коэффициента мощности (PFC) для коррекции коэффициента мощности по мере его воздействия.

Какие бывают 3 типа источников питания?

Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.

Какое устройство преобразует переменный ток в постоянный?

выпрямитель

Почему SMPS используется в ПЛК?

Импульсный источник питания

(SMPS) использует высокочастотную коммутацию с использованием новейшей полупроводниковой технологии для преобразования переменного тока в постоянный.SMPS разработан таким образом, чтобы входное напряжение не влияло на характеристики трансформатора, поскольку он имеет широкий диапазон выходных сигналов.

Добавить комментарий

Ваш адрес email не будет опубликован.