Светодиод на схеме: ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые

Содержание

ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.730-73

ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В СХЕМАХ.
ПРИБОРЫ
ПОЛУПРОВОДНИКОВЫЕ

Unified system for design documentation.
Graphical symbols in diagrams.
Semiconductor devices

ГОСТ
2.730-73

Дата введения 1974-07-01

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.

(Измененная редакция, Изм. № 3).

2. Обозначения элементов полупроводниковых приборов приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. (Исключен, Изм. № 2).

2. Электроды:

база с одним выводом

база с двумя выводами

Р -эмиттер с N -областью

N -эмиттер с Р-областью

несколько Р-эмиттеров с N -областью

несколько N -эмиттеров с Р-областью

коллектор с базой

несколько коллекторов, например, четыре коллектора на базе

3. Области: область между проводниковыми слоями с различной электропроводностью. Переход от Р-области к N -области и наоборот

область собственной электропроводности ( I -область):

l) между областями с электропроводностью разного типа  PIN или NIP

2) между областями с электропроводностью одного типа  PIP или NIN

3) между коллектором и областью с противоположной электропроводностью

 PIN или NIP

4) между коллектором и областью с электропроводностью того же типа  PIP или NIN

4. Канал проводимости для полевых транзисторов: обогащенного типа

обедненного типа

5. Переход PN

6. Переход NP

7. Р-канал на подложке N -типа, обогащенный тип

8. N -канал на подложке Р-типа, обедненный тип

9. Затвор изолированный

10. Исток и сток

Примечание . Линия истока должна быть изображена на продолжении линии затвора, например:

11. Выводы полупроводниковых приборов:

электрически, не соединенные с корпусом

электрически соединенные с корпусом

12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку

(Измененная редакция, Изм. № 2, 3).

3, 4. (Исключены, Изм. № 1).

5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Таблица 4

Наименование

Обозначение

1. Эффект туннельный

а) прямой

б) обращенный

2. Эффект лавинного пробоя:

а) односторонний

б) двухсторонний 3-8. (Исключены, Изм. № 2).

9. Эффект Шоттки

6. Примеры построения обозначений полупроводниковых диодов приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Диод

Общее обозначение

2. Диод туннельный

3. Диод обращенный

4. Стабилитрон (диод лавинный выпрямительный)

а) односторонний

б) двухсторонний

5. Диод теплоэлектрический

6. Варикап (диод емкостный)

7. Диод двунаправленный

8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами

8a. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами

9. Диод Шотки

10. Диод светоизлучающий

7. Обозначения тиристоров приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Тиристор диодный, запираемый в обратном направлении

2. Тиристор диодный, проводящий в обратном направлении

3. Тиристор диодный симметричный

4. Тиристор триодный. Общее обозначение

5. Тиристор триодный, запираемый в обратном направлении с управлением: по аноду

по катоду

6. Тиристор триодный выключаемый: общее обозначение

запираемый в обратном направлении, с управлением по аноду

запираемый в обратном направлении, с управлением по катоду

7. Тиристор триодный, проводящий в обратном направлении:

общее обозначение

с управлением по аноду

с управлением по катоду

8. Тиристор триодный симметричный (двунаправленный) - триак

9. Тиристор тетроидный, запираемый в обратном направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.

8. Примеры построения обозначений транзисторов с Р- N -переходами приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Транзистор

а) типа PNP

б) типа NPN с выводом от внутреннего экрана

2. Транзистор типа NPN, коллектор соединен с корпусом

3. Транзистор лавинный типа NPN

4. Транзистор однопереходный с N-базой

5. Транзистор однопереходный с Р-базой

6. Транзистор двухбазовый типа NPN

7. Транзистор двухбазовый типа PNIP с выводом от i-области

8. Транзистор двухразовый типа P NIN с выводом от I -области

9. Транзистор многоэмиттерный типа NPN

Примечание. При выполнении схем допускается:

а) выполнять обозначения транзисторов в зеркальном изображении, например,

б) изображать корпус транзистора.

Таблица 8

Наименование

Обозначение

1. Транзистор полевой с каналом типа N

2. Транзистор полевой с каналом типа Р

3. Транзистор полевой с изолированным затвором баз вывода от подложки:

а) обогащенного типа с Р-каналом

б) обогащенного типа с N-каналом

в) обедненного типа с Р-каналом

г) обедненного типа с N-каналом

4. Транзистор полевой с изолированным затвором обогащенного типа с N-каналом, с внутренним соединением истока и подложки

5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р-каналом

6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки

7. Транзистор полевой с затвором Шоттки

8. Транзистор полевой с двумя затворами Шоттки

Примечание . Допускается изображать корпус транзисторов.

10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Фоторезистор:

а) общее обозначение

б) дифференциальный

2. Фотодиод

З. Фототиристор

4. Фототранзистор:

а) типа PNP

б) типа NPN

5. Фотоэлемент

6. Фотобатарея

Таблица 10

Наименование

Обозначение

1. Оптрон диодный

2. Оптрон тиристорный

3. Оптрон резисторный

4. Прибор оптоэлектронный с фотодиодом и усилителем:

а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором:

а) с выводом от базы

б) без вывода от базы

Примечания:

1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по ГОСТ 2.721-74,

например:

2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:

12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл. 11.

Таблица 11

Наименование

Обозначение

1. Датчик Холла

Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника

2. Резистор магниточувствительный

3. Магнитный разветвитель

13. Примеры изображения типовых схем на полупроводниковых диодах приведены в табл. 12.

Таблица 12

Наименование

Обозначение

1. Однофазная мостовая выпрямительная схема:

а) развернутое изображение

б) упрощенное изображение (условное графическое обозначение)

Примечание. К выводам 1-2 подключается напряжение переменного тока; выводы 3-4 - выпрямленное напряжение; вывод 3 имеет положительную полярность. Цифры 1, 2, 3 и 4 указаны для пояснения.

Пример применения условного графического обозначения на схеме

2. Трехфазная мостовая выпрямительная схема

3. Диодная матрица (фрагмент)

Примечание. Если все диоды в узлах матрицы включены идентично, то допускается применять упрощенный способ изображения. При этом на схеме должны быть приведены пояснения о способе включения диодов

14. Условные графические обозначения полупроводниковых приборов для схем, выполнение которых при помощи печатающих устройств ЭВМ предусмотрено стандартами Единой системы конструкторской документации, приведены в табл. 13.

Таблица 13

Наименование

Обозначение

Отпечатанное обозначение

1. Диод

2. Транзистор типа PNР

3. Транзистор типа NPN

4. Транзистор типа PNIP с выводом от I -области

5. Многоэмиттерный транзистор типа NPN

Примечание к пп. 2-5. Звездочкой отмечают вывод базы, знаком «больше» или «меньше» - вывод эмиттера.

15. Размеры (в модульной сетке) основных условных графических обозначений даны в приложении 2.

(Измененная редакция, Изм. № 4).

Приложение 1. (Исключено, Изм. № 4).

Наименование

Обозначение

1. Диод

2.. Тиристор диодный

3. Тиристор триодный

4. Транзистор

5. Транзистор полевой

6. Транзистор полевой с изолированным затвором

(Введено дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1 РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР

РАЗРАБОТЧИКИ

В. Р. Верченко, Ю. И. Степанов, Э. Я. Акопян, Ю. П. Широкий, В. П. Пармешин, И. К. Виноградова

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 № 2002

3 Соответствует СТ СЭВ 661-88

4 ВЗАМЕН ГОСТ 2.730-68, ГОСТ 2.747-68 в части пп. 33 и 34 таблицы

5 ПЕРЕИЗДАНИЕ (январь 1995 г.) с Изменениями № 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91)

Светодиод обозначение на схеме - Мастер Фломастер

Светодиодом принято называть полупроводниковый прибор, при подаче напряжения на который, происходит излучение света — как видимой, так и не видимой части светового диапазона. Международное обозначение светодиодов происходит от сокращения английских слов Light Emitting Diode — LED.

Для правильного определения светодиодов на электрических схемах, приняты единые графические и буквенные символы, которые позволяют унифицировать техническую работу со светодиодами и источниками света на их основе.

Графическое обозначение светодиода на схемах

Традиционным обозначением светодиодов, требования к графическому изображению которого устанавливает еще советский ГОСТ 2.730-73, выступает графический значок обычного диода, помещенный в кружок, и двумя стрелками. В отличие от фотодиода, который воспринимает излучение света, стрелки в обозначении светодиода на схемах направлены наружу, что указывает на его излучающую способность.

На схемах светодиод чаще обозначают без использования окружности — только в виде символа диода и двух исходящих стрелок.

Рабочая полярность подключения светодиода на схеме совпадает с его полупроводниковым предшественником — обычным диодом. Черточкой обозначает катод изделий, а треугольник — его анод. Такое традиционное свойство обычного диода, как односторонняя проводимость, определяет и правило подключения светодиодов — они начинают светиться только при соблюдении прямой полярности подключаемого напряжения. Чтобы светодиод излучал свет, необходимо к катодному выводу подключить отрицательный полюс источника питания постоянного напряжения, а к аноду — положительный.

Буквенное обозначение и особенности маркировки

Общепринятым обозначением светодиодов на принципиальных электрических схемах выступает латинская аббревиатура HL, что означает по ГОСТ 2.702-2011 — приборы световой сигнализации. Единого стандарта для технической маркировки светодиодных изделий не существует, поэтому каждый производитель полупроводниковой техники использует свою собственную систему, в которой отображает технические параметры компонента из целого ряда возможных электрических и оптических характеристик:

  • серия светоизлучающего прибора;
  • минимальный рабочий ток;
  • кодированное обозначение цвета излучения;
  • световой поток в люменах.

Также в маркировке могут зашифровываться индекс цветопередачи, тип оптической линзы, мощность в ваттах, цветовая температура и прямое падение напряжения в номинальном режиме работы.

Диод и полупроводники, созданные на его основе (специальные диоды), как и любой другой радиоэлемент, имеет на схеме свое собственное характерное обозначение. На рисунке ниже слева – обозначение обычного диода по действующему стандарту, а справа – неколько устаревшее, но все еще часто встречающееся:

Слева – действующее условное графическое обозначение диода, справа – в соответствии с ГОСТом от 1973 г

Если диоды собираются в выпрямительные мосты, то каждый прибор может изображаться отдельно, а может и в виде ромба с изображением диода без выводов посредине. Полярность выходного напряжения моста при этом обозначается расположением рисунка диода без выводов:

Один и тот же диодный мост, изображенный по-разному, но, тем не менее, верно

На схеме диод обозначается литерам VD и цифрой/числом – порядковым номером диода в схеме. Обозначение наносится по возможности сверху или справа, сразу под или возле обозначения пишется тип прибора:

VD31 — диод с порядковым номером по схеме 31 типа Д2Е

Ну и напоследок приведу условные графические обозначения некоторых типов специальных диодов:

Обратите внимание, что обозначение варистора больше похоже на обозначение резистора. Дело в том, что хотя это прибор и полупроводниковый, по сути это резистор на основе полупроводника, резко изменяющий свое сопротивление до минимума при достижении на нем определенного напряжения.

Светодиод (Light Emitting Diode, LED) — это полупроводниковый диод, способный излучать свет, когда к нему приложено напряжение в прямом направлении. По сути, это диод, преобразующий электрическую энергию в световую. В зависимости от материала из которого изготовлен светодиод, он может излучать свет разной длины волны (разного цвета) и иметь различные электрические характеристики.

Светодиоды применяются во многих сферах нашей жизни в качестве средств отображения визуальной информации. Например, в виде одиночных излучателей или в виде конструкций из нескольких светодиодов — семисегментных индикаторов, светодиодных матриц, кластеров и так далее. Также в последние годы светодиоды активно занимают сегмент осветительных приборов. Их используют в автомобильных фарах, фонарях, светильниках и люстрах.

На электрических схемах светодиод обозначается символом диода с двумя стрелками. Стрелки направлены от диода, символизируя световое излучение. Не путай с фотодиодом, у которого стрелки направлены к нему.

На отечественных схемах буквенное обозначение одиночного светодиода — HL.

Стандартный одноцветный светодиод имеет два вывода — это анод и катод. Определить какой из выводов является анодом, можно визуально. У светодиодов с проволочными выводами анод обычно длиннее катода.

У SMD светодиодов выводы одинаковые, но на обратной стороне обычно есть маркировка в виде треугольника или подобия буквы T. Анодом является вывод, к которому обращена одна сторона треугольника или верхняя часть буквы Т.

Если не получается определить визуально где какие выводы, можно прозвонить светодиод. Для этого понадобится источник питания или адаптер, способный давать напряжение около 5 Вольт. Подключаем любой вывод светодиода к минусу источника, а второй подключаем к плюсовой клемме источника через сопротивление 200 — 300 Ом. Если светодиод подключен правильно, он засветится. В противном случае меняем выводы местами и повторяем процедуру.

Можно обойтись без резистора, если не подключать плюсовую клемму источника питания, а быстро "чиркнуть" ей по выводу светодиода. Но вообще подавать большое напряжение на светодиод, не ограничивая при этом ток, нельзя — он может выйти из строя!

Светодиод испускает свет, если к нему приложить напряжение в прямом направлении: к аноду — плюс, а к катоду — минус.

Минимальное напряжение, при котором светодиод начинает светится, зависит от его материала. В таблице ниже приведены значения напряжений светодиодов при тестовом токе 20 мА и цвета, которые они излучают. Эти данные я взял из каталога светодиодов фирмы Vishay, различных даташитов и Википедии.

Самое большое напряжение требуется для голубых и белых светодиодов, а самое маленькое для инфракрасных и красных.

Излучение инфракрасного светодиода не видно человеческим глазом, поэтому такие светодиоды не применяются в качестве индикаторов. Они используются в различных датчиках, подсветках видеокамер. Кстати, если инфракрасный светодиод запитать и посмотреть на него через камеру мобильного телефона, то его свечение будет хорошо видно.

В показанной таблице даны примерные значения напряжения светодиода. Обычно этого достаточно, чтобы его включить. Точную величину прямого напряжения конкретного светодиода можно узнать в его даташите в разделе Electrical Characteristics. Там указано номинальное значение прямого напряжения при заданном токе светодиода. Для примера заглянем в даташит на красный SMD светодиод фирмы Kingbright.

Вольт-амперная характеристика светодиода показывает взаимосвязь между приложенным напряжением и током светодиода. На рисунке ниже показана прямая ветвь характеристики из того же даташита.

Если светодиод подключить к источнику питания (к аноду +, к катоду -) и с нуля постепенно повышать на нем напряжение, то ток светодиода будет меняться согласно этому графику. По нему видно, что после прохождения точки "загиба", ток через светодиод будет резко возрастать при небольших изменениях напряжения. Это как раз та причина, по которой светодиод нельзя подключать к любому источнику питания без резистора, в отличии от лампочки накаливания.

Чем выше ток, тем ярче светится светодиод. Однако повышать ток светодиода до бесконечности, естественно, нельзя. При большом токе светодиод перегреется и сгорит. Кстати, если сразу подать на светодиод высокое напряжение он даже может шлепнуть, как слабенькая петарда!

Какие еще характеристики светодиода представляют интерес с точки зрения практического использования?

Максимальная мощность рассеяния, максимальные значения постоянного и импульсного прямых токов и максимальное обратное напряжение. Эти характеристики показывают предельные значения напряжений и токов, которые не стоит превышать. Они описаны в даташите в разделе Absolute Maximum Ratings.

Если приложить к светодиоду напряжение в обратном направлении, светодиод не засветится, да и вообще может выйти из строя. Дело в том, что при обратном напряжении может наступить пробой, в результате которого обратный ток светодиода резко возрастет. И если выделяемая на светодиоде мощность (обратный ток * на обратное напряжение) превысит допустимую — он сгорит. В некоторых даташитах дополнительно приводится и обратная ветвь вольт-амперной характеристики, из которой видно, при каком напряжении наступает пробой.

Интенсивность излучения (сила света)

Грубо говоря, это характеристика, определяющая яркость свечения светодиода при заданном тестовом токе (обычно 20 мА). Обозначается — Iv, а измеряется в микроканделах (mcd). Чем ярче светодиод, тем выше значение Iv. Научное определение силы света есть в википедии.

Также представляет интерес график зависимости относительной интенсивности излучения светодиода от прямого тока. У некоторых светодиодов, например, при увеличении тока интенсивность излучения растет все меньше и меньше. На рисунке приведено несколько примеров.

Спектральная характеристика

Она определяет в каком диапазоне длин волн излучает светодиод, грубо говоря цвет излучения. Обычно приводится пиковой значение длины волны и график зависимости интенсивности излучения светодиода от длины волны. Я редко смотрю на эти данные. Знаю, например, что светодиод красный и мне этого достаточно.

Климатические характеристики

Они определяют диапазон рабочих температур светодиода и зависимости параметров светодиода (прямого тока и интенсивности излучения) от температуры. Если светодиод планируется использовать при высоких или низких температурах, стоит обратить внимание и на эти характеристики.

Материал статьи рассчитан на начинающих электронщиков, а потому я намеренно не касаюсь физики работы светодиода. Осознание того, что светодиод излучает фотоны в результате рекомбинации носителей заряда в области p-n перехода, не несет никакой полезной информации для практического использования светодиодов. Да и не только для использования, но и для понимания в принципе.

Однако, если вам хочется покопаться в этой теме, то даю направление, куда рыть — Пасынков В.В, Чиркин Л.К. "Полупроводниковые приборы" или Зи.С "Физика полупроводниковых приборов". Это ВУЗ`овские учебники — там все по-взрослому.

О подключении светодиодов в следующем материале.

Поделился статьей — получил светодиодный луч добра!

Схема подключения светодиода

Схема подключения светодиода очень проста. Это можно видеть на рисунке 1. Однако, для того чтобы правильно подключить светодиод необходимо произвести некоторые расчеты.

Как видно из приведенной схемы светодиод (VD) подключается последовательно c резистором (R), образуя с ним делитель напряжения. Также резистор можно рассматривать как элемент, обеспечивающий номинальный рабочий ток светодиода.

Для расчета величины его сопротивления нам необходимо знать:

  1. падение напряжения на светодиоде (Uvd),
  2. уже упомянутый его рабочий ток (Iраб).

Если подходить строго, то эти значения следует брать из паспорта светодиода, но для дальнейших примеров я приму их за 2 Вольта (В) и 15 милиАмпер (мА) соответственно. Это достаточно реальные величины.

Далее берем закон Ома и на его основании пишем формулу:

R=U/I=(Uпит-Uvd)/Iраб=(Uпит-2)/15

Заметьте, я указал ток в мА, поэтому сопротивление получится в килоОмах (кОм). Для небольших токов так удобнее. Остается определиться с напряжением питания. Для 12 Вольт сопротивление резистора будет:

R=(12-2)/15=0,666 кОм. Ближайшее по ряду, если не ошибаюсь, 0,68 кОм или 680 ом. Округлять надо в большую сторону.

Кроме того, надо определить мощность, рассеиваемую резистором:

P=I*U=I2*R=152*0,68=153. Ток берем в мА, сопротивление в кОм, мощность получаем в милиВаттах (мВт). Ближайшая по ряду, округленная в большую сторону мощность резистора составляет 0,250 Вт.

Обратили внимание не некоторую некорректность? Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Желающие могут посчитать точно, но разница будет незначительная.

Примем эту схему за базовую и на ее основе рассмотрим варианты подключения нескольких светодиодов:

Параллельное подключение светодиодов (рис.2) большинством специалистов не рекомендуется по следующим основным объективным причинам:

  • из-за разброса параметров токи, протекающие через светодиоды, будут различны, что может привести к выходу из строя того светодиода, где окажется превышенным максимально допустимое значение тока,
  • при неисправности любого светодиода (обрыв) его ток поделится между оставшимися, далее по сценарию предыдущего пункта. Потом цепная реакция и вся линейка выходит из строя.
  • ток потребления такой схемы равен сумме токов всех светодиодов, то есть при их значительном количестве имеет достаточно большое значение.

Негативные последствия такого подключения можно отчасти избежать, если уменьшить рабочий ток процентов на 30% от номинального, правда яркость сечения светодиодов при этом снизится.

Если сказанное Вас не пугает можете рассчитать сопротивление и мощность резистора по приведенной ранее методике при условии что Iраб=Ivd1+...+Ivdn или просто умножьте ток любого светодиода на их количество. Почему? Потому, что для этих двух случаев светодиоды должны иметь максимально близкие параметры, то есть быть однотипными, кроме того, желательно из одной партии.

Последовательное подключение светодиодов (рис.3) более корректно, недостатком может явиться разная яркость их свечения (опять же из за разброса параметров).

Кстати, такое соединение используется в светодиодной ленте.

Для расчета этой схемы следует взять Uvd=Uvd1+...+Uvdn

Еще одно, общее для всех схем подключения ограничение, Uvd должно быть меньше Uпит на величину, позволяющую установить токоограничивающий резистор.

Например, для схемы на рис.3 при напряжении питания 12В и падении напряжения на светодиоде 2В можно взять пять светодиодов, суммарным падением напряжения 10В. Если их будет 6 штук, то Ur =0, что означает отсутствие резистора, а такого быть не должно.

Последнее, как быть, если при последовательном соединении не удается соблюсти указанное условие?

Выход - использовать смешанное подключение (рис.4). Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.

Напоминаю - все светодиоды должны быть однотипные, по крайней мере, для общей последовательной цепи.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Применение светодиодов в электронных схемах

Светодиод – один из самых распространенных компонентов, встречающихся в современной технике. Светодиоды применяются для индикации состояния работы приборов, а также для подсветки или в качестве фонарей. По диапазону излучения выделяют светодиоды видимого диапазона (красные, желтые, зеленые, белые) и светодиоды инфракрасного или ультрафиолетового излучения (пульты дистанционного управления).

Светодиоды по своей структуре относятся к полупроводниковым приборам, таким диод или тиристор. Поэтому развитие светодиодов неразрывно связано с развитием полупроводников. Светодиод обладает односторонней проводимостью, благодаря одному p-n переходу. В начале 20 века советский ученый Олег Владимирович Лосев обратил внимание на свечение кристаллов полупроводников, возникающее при включении полупроводника в прямом направлении. В то время свечение было едва заметно, однако именно это свойство полупроводников и легло в основу развития светодиодной техники.

Рисунок 1

Современные светодиоды позволяют выбрать любую гамму излучения за счет применения легирующих примесей в p-n переход. Например, фосфор позволяет получить красный оттенок, алюминий – желтый, галлий – зеленый или голубой. Еще один способ изменения цвета свечения светодиода – введение люминофора, позволяющего давать видимый свет при воздействии на него другого излучения. Для светодиодов добавление люминофора в кристалл голубого свечения получается белый цвет. Применение фокусирующей линзы позволяет увеличить интенсивность излучения.

Развитие технологий позволило создать двухцветный светодиод. Двухцветные светодиоды могут выпускаться с тремя (рисунок 2) или двумя выводами. Для последних изменение свечения происходит при изменении направления тока.

Рисунок 2

Стоит отметить, что при подключении светодиодов в любую цепь последовательно с ним необходимо подключать балластное сопротивление. Большинство современных светодиодов выпускаются со встроенным токоограничивающим сопротивлением.

Как известно, работа светодиода зависит от величины тока, т. е. светодиод можно подключить даже к сети с напряжением в 220В, но с ограничителем тока в цепи. Прямое напряжение для большинства светодиодов превышает 2В, поэтому одной батарейки с напряжением в 1,5В не всегда будет достаточно для работы светодиода. Стандартный ряд напряжений начинается с 3В, а наиболее часто используются светодиоды на напряжение 12В. Еще одна важная характеристика светодиодов – величина обратного напряжения. Обычно обратное напряжение не превышает 100В, поэтому для защиты светодиодов применяют схемы встречно-параллельного выключения (рисунок 3).

Рисунок 3

Рассмотрим несколько устройств, в которых используются светодиоды. Большинство из них строятся на базе микроконтроллеров, дабы упростить схему и сократить количество элементов на плате.

Первое устройство представляет собой блок управления двухцветным светодиодом с тремя выводами (рисунок 4). Принцип работы схемы следующий: при одинаковых потенциалах на входах IN1 и IN2 на выводах OUT1 и OUT2 потенциалы также одинаковы и светодиоды погашены. При наличии сигнала высокого уровня на одном из входов загорается один из светодиодов HL1 или HL2. Регулировка яркости свечения светодиода осуществляется напряжением на входе Vref.

Рисунок 4

Расчет и выбор балластного сопротивления R2 основывается на законе Ома. Исходные данные для расчета: напряжение питания 12В, прямой ток светодиода 10мА, падение напряжения на светодиоде 2В. Тогда сопротивление R2 можно рассчитать по формуле:

[size=16]

R2 = (Uпит-U) / I = (12 - 2) / 0,010 = 1000(Ω) или 1КОм

Трехцветные светодиоды (RGB-светодиоды)

RGB-светодиоды, в первую очередь, предназначены для создания декоративной подсветки. RGB-светодиод имеет четыре вывода, а для управления его работой применяют специальные контроллеры. На базе RGB-светодиодов строятся светодиодные ленты. Трехцветные светодиоды позволяют создавать практически любой оттенок. Ниже приведена схема подключения трехцветного светодиода (Рисунок 5).

Рисунок 5

В основе RGB-светодиода лежат три излучателя. Сопротивления в схеме подобраны таким образом, чтобы свет светодиода был белым. Устройство, собранное по приведенной схеме (рисунок 6) применяется для подсветки в автомобиле.

Рисунок 6

Еще один вариант использования светодиодов в автомобиле – это схема подсветки номера (рисунок 7).

Рисунок 7

В схеме применяются шесть светодиодов с максимальным током 35 мА (ток ограничен на уровне 27мА стабилизатором тока DA1) и световым потоком в 4 лм.

Как отмечалось ранее, для питания светодиодов не достаточно одной батарейки с напряжением 1,5В. Однако существует схема преобразователя для питания белого светодиода от одной батарейки (рисунок 8). Принцип работы схемы: при низком уровне сигналов на выводах микроконтроллера РВ1 и РВ2, высоком уровне на выводах РВ0 и РВ4 происходит зарядка конденсаторов С1 и С2 до напряжения 1,4В. При изменении сигналов микроконтроллера к светодиоду прикладывается напряжение от двух заряженных конденсаторов и батарейки, что в сумме дает около 4,5В. Частота зажигания светодиода определяется частотой выходных сигналов микроконтроллера.

Рисунок 8

Аналогичную схему можно собрать на базе логических микросхем (рисунок 9).

Рисунок 9

Светодиоды достаточно надежные элементы, поэтому зачастую их используют в нескольких схемах, просто выпаивая элемент из уже ненужной платы. Однако при этом необходимо определить полярность светодиода для дальнейшего его использования. Прозвонка светодиодов мультиметром не всегда дает однозначный вывод о работоспособности диода, поэтому лучшим вариантом для проверки светодиодов является их проверка через подключение к источнику питания. Проверку любого светодиода следует выполнять через ограничивающий резистор номиналом от 200 до 500 Ом (рисунок 10) и выходным напряжением источника питания не менее 4,5В.

Рисунок 10

Еще один момент, на который необходимо обратить внимание при использовании светодиодов - это правильное подключение нескольких светодиодов в одну цепь (рисунок 11).

Рисунок 11

Стоит отметить, что двух одинаковых светодиодов не бывает. Поэтому имеется определенный разброс параметров светодиодов, особенно это сказывается на схемах параллельного включения светодиодов. При параллельном включении светодиодов необходимо подбирать балластное сопротивление под каждый светодиод в отдельности, так как небольшое отклонение в падении напряжения на элементе не позволит добиться одинаковой яркости свечения для всех светодиодов.

Практика применения светодиодов:
Самодельный светильник из светодиодной ленты
Светодиодные деревья - новый вид праздничной светотехники
Делаем светодиодную подсветку салона автомобиля

Статьи по теме:

Как подключить светодиодную ленту
Питание светодиодных лент
Блоки питания для светодиодных лент

Что такое светодиод, подключение светодиодов, подбор гасящего резистора

Главное свойство диода, в том, что он пропускает ток только в одном направлении. Это основная, функция диода, но диоды бывают разные, и для некоторых из них односторонняя проводимость является далеко не главным свойством.

Вот, например, Светодиод.

Обозначение светодиода

Практически тот же диод, и проводимость у него односторонняя, но при пропускании прямого тока он светится. И это уже его основная функция. И так, светодиод, это диод, который при пропускании через него прямого тока излучает свет.

Светодиоды мы встречаем часто, - индикаторы у различной аппаратуры, бывают светодиодные фонарики, ёлочные гирлянды, рекламные табло, осветительные лампы и даже светофоры.

Рис. 1. Как выглядит обычный индикаторный светодиод, обозначение на схемах.

На рисунке 1 показано как выглядит обычный индикаторный светодиод. Конечно больше он похож на лампочку с двумя проволочными выводами. Но! У этой «лампочки» есть анод и катод, и горит она только если анод подключен к плюсу источника питания, а катод к минусу (анодный вывод обычно длиннее катодного).

Но и это еще не все! В отличие от лампочки светодиод нельзя подключать непосредственно к источнику питания, а только через токоограничительный резистор. Поскольку светодиод все же диод, он имеет довольно низкое прямое сопротивление и диодную характеристику.

То есть, существует такая странная вещь, как Падение прямого напряжения на диоде. Так вот, в отличие от номинального напряжения лампочки, здесь зависимость тока от напряжения работает совсем не по Закону Ома. То есть, хорошо пропускать ток в прямом направлении диод начинает только тогда, когда напряжение на нем больше некоторого значения.

И при этом, ток резко возрастает, что может привести к повреждению диода или светодиода. Поэтому, если вы подключите светодиод прямо к батарейке (без токоограничительного резистора), то очень высока вероятность того, что светодиод перегорит.

Подключение светодиода

На рисунке 2 показано как обычно подключают светодиод. Здесь взят светодиод с напряжением падения 1,6V (Un). Батарейка на 4,5V, поэтому чтобы не сжечь светодиод последовательно ему включен резистор R1, на котором падает избыток напряжения (4,5 -1,6 = 2,9V).

Рис. 2. Схема подключения светодиода через гасящий резистор.

Теперь попробуем рассчитать сопротивление резистора R1. Допустим, номинальный ток через светодиод 10mA, напряжение падения 1,6V, напряжение источника питания 4,5V. То есть, сопротивление резистора R1 должно быть таким, чтобы на нем падало 2,9V, и был ток 10mA (0,01 А).

Переходим к Закону Ома: R= U/I = 2,9 / 0,01 = 290 Ом. То есть, вполне нормально будет поставить R1 сопротивлением 300 Ом. Бывают светодиоды разных цветов, - красные, зеленые, желтые, синие, белые. Еще конечно различаются по яркости света, по напряжению падения, по току.

Что такое двухцветный светодиод

Интересная вещь - двухцветный светодиод. Практически это два светодиода в одном корпусе. Бывают они с двумя и с тремя выводами (рис. 3).

Рис. 3. Светодиоды с двумя и тремя выводами, обозначения на схемах.

Двухвыводный двухцветный светодиод представляет собой два светодиода разных цветов (обычно, красный и зеленый), включенных встречно-параллельно.

Подключение двухцветных светодиодов

Цвет свечения такого светодиода зависит от направления тока через него. Это показано на рисунке 4.

Рис. 4. Цвет свечения двухцветного светодиода зависит от направления тока через него.

Трехвыводные двухцветные светодиоды тоже содержат в одном корпусе два светодиода (красный и зеленый), но у них один общий вывод от катода (или анода), а аноды (или катоды) выведены на разные выводы (рис.5). Фактически такие светодиоды трехцветные.

На рисунке 5 показано как переключаются цвета трехвыводного светодиода с общим катодом, - если включен S1 то горит один цвет, например, красный. Если включен S2 - горит другой цвет, например, зеленый. Ну, а если включить оба S1 и S2 то будут гореть оба цвета, что даст желтый цвет.

Рис. 5. Схема подключения трехвыводного двухцветного светодиода.

Мигающий светодиод

Кроме светодиодов постоянного свечения, существуют и мигающие. Одноцветный мигающий светодиод это почти то же, что обычный одноцветный, но в нем есть электронный прерыватель тока, который периодически выключает светодиод. Поэтому он мигает. Существуют двух, трех и многоцветные мигающие светодиоды.

Внутри такого светодиода есть несколько разноцветных светодиодов, и схема электронного переключателя, которая их поочередно переключает.

Выглядит одно- или многоцветный мигающий светодиод как обычный, - прозрачный корпус и два вывода. Подключать его тоже нужно через токоограничительный резистор.

Любопытно то, что во время мигания, в промежутках когда мигающий светодиод гаснет ток через него резко снижается. Поэтому мигающие светодиоды иногда используют как генераторы импульсов. На одних схемах мигающий светодиод обозначают как обычный, на других в его обозначение вводят символ выключателя (рис. 6).

Рис. 6. Обозначение на схемах и подключение мигающего светодиода.

Мигающий светодиод может служить не только индикатором, но и ключом для прерывания тока. Например, для того чтобы мигала гирлянда из нескольких светодиодов.

Если гирлянда состоит из нескольких последовательно включенных светодиодов, то чтобы она замигала достаточно чтобы один из этих светодиодов был мигающим. На рисунке 7 показана схема оригинального сигнального устройства для легкового автомобиля.

Рис. 7. Схема сигнального устройства на светодиодах для легкового автомобиля.

Это стояночное сигнальное устройство, оно потребляет незначительный ток от автомобильного аккумулятора. Состоит гирлянда из четыех светодиодов, которые нужно установить в фары автомобиля. Свечение светодиодов ночью очень заметно, особенно если они мигают.

Поэтому автомобиль, припаркованный в темном дворе перестает быть «невидимкой» для других машин или прохожих. И риск случайного повреждения машины снижается.

В схеме на рисунке 7 мигающий светодиод один - HL2. Остальные обычные. Так как включены последовательно мигают все. Светодиоды НL1, HL3, HL4 - любое индикаторные, красные, HL2 - любой мигающий красный.

Другие светодиоды, токоограничительный резистор

Сейчас уже ноябрь, и возникает необходимость в подготовке к новогодним торжествам. Вот здесь и могут помочь светодиоды. Лампы накаливания, конечно, тоже заслуживают уважения, как заслуженные ветераны новогодних торжеств.

Но светодиоды по многим характеристикам выгоднее и лучше ламп накаливания, особенно если дело касается не только освещения, но декоративного украшения новогодней ёлки.

Светодиоды бывают разные, на ёлке наиболее эффектно будут выглядеть сверхяркие разных цветов. Такими светодиодами можно украсить не только маленькую настольную ёлку, но полноразмерную. Они бывают красные, желтые, белые, синие, зеленые, оранжевые.

Еще бывают мигающие, причем, есть такие мигающие, которые мигают двумя или тремя разными цветами. Выглядит это очень интересно, в отличие от лампы накаливания, которая менять свой цвет не может

Но перед началом мастерить гирлянды следует усвоить некоторые отличия светодиодов от ламп накаливания. А связаны эти отличия с тем, что светодиоды, это, по сути дела, диоды, только такие, которые светятся при пропускании через них прямого тока.

В отличие от лампы накаливания светодиод полярная вещь, - у него есть анод (плюс) и катод (минус). Кроме того, вольт-амперная характеристика у светодиода как у диода, то есть, при возрастании прямого напряжения больше напряжения падения на диоде, очень сильно увеличивается ток. Вообще, это выглядит как борьба двух «упрямцев» - источника питания и светодиода.

Светодиод стремится понизить напряжение источника до своего номинального прямого напряжения, а источник стремится повысить напряжение падения на светодиоде до напряжения на своем выходе.

Чаще всего этот «поединок» проигрывает светодиод. Поэтому, если светодиод подключить к источнику тока непосредственно, его можно испортить. Вот поэтому последовательно со светодиодом включают токоограничительные резисторы (рис.8).

Резистор служит демпфером между этими «упрямцами», и каждый из них остается при своем напряжении.

Рис. 8. Как подключить токоограничительный резистор к светодиоду, схема.

Чтобы рассчитать токоограничительный резистор для светодиода, воспользуйтесь формулами и калькулятор из статьи - Расчёт резистора для светодиода, формулы и калькулятор.

Гирлянда на светодиодах

На рисунке 9 показана гирлянда из восьми светодиодов. Номинальное напряжение падения на каждом около 2V. Резистор R1 ограничивает ток.

А питаться гирлянда может от источника напряжением 20-25V. Чтобы гирлянда мигала достаточно чтобы одни из светодиодов был мигающим. HL1 во время мигания прерывает ток в цепи, поэтому одновременно с ним мигают и остальные семь светодиодов.

Рис. 9. Схема самодельной гирлянды из восьми светодиодов.

На рисунке 10 показана гирлянда состоящая из практически неограниченного числа светодиодов. Здесь светодиоды включены параллельно (через токоограничительные резисторы). Это значит, что каждый из них живет своею собственной жизнью и на работу остальных не влияет.

Здесь можно использовать самые разные светодиоды, - разных цветов, мигающие и немигающие. При этом, немигающие будут гореть ровно, а мигающие будут мигать.

Можно поставить двух или трехцветные мигающие, - они будут переливаться разными цветами. В общем, гирлянда будет вся сверкать, переливаться... очень красиво. И чем разнообразнее светодиоды, тем красивее.

Рис. 10. Схема гирлянды, состоящей из практически неограниченного числа светодиодов.

Однако, нужно учитывать и мощность источника питания. Если при резисторах сопротивлением по 510 Ом и напряжении источника питания 12V (а можно от 6 до 18V), ток через каждый светодиод будет где-то около 0.02А.

То есть, если светодиодов десять, то ток 0.2А, а если эта гирлянда из ста светодиодов, то ток, соответственно, будет целых 2 А. Поэтому выбирайте источник, который способен выдать необходимый ток. Например, сетевой адаптер от ноутбука дает ЗА, а источник питания игровой приставки «Денди» только 0,3 А (300 мА).

Так что блок от «Денди» может питать только 15 светодиодов. Впрочем, сопротивления резисторов можно увеличить. Тогда ток снизится (согласно закону Ома), но и яркость свечения светодиодов тоже снизится.

Но число светодиодов можно увеличить и не увеличивая ток. На рисунке 11 показана гирлянда вроде той, что на рисунке 10. Но в ней светодиоды включены по три последовательно.

Такая гирлянда может питаться напряжением 9-18V, потребляя ток всего около 0,02А на каждую тройку светодиодов. Таким образом, число светодиодов увеличивается втрое, при том же потреблении тока. При этом чтобы тройка светодиодов мигала, достаточно чтобы в ней был один мигающий светодиод.

Рис. 11. Схема светодиодной гирлянды, в которой светодиоды включены по три последовательно.

В каждой ветви (рис. 11) может быть светодиодов и больше и меньше трех. Важно то, чтобы суммарное напряжение падения светодиодов было как минимум на 10% меньше напряжения источника питания, в противном случае, светодиоды гореть не будут либо будут гореть очень слабо.

Сопротивление гасящего резистора, включенного последовательно светодиоду или светодиодам нужно выбирать таким, чтобы сила тока через светодиод была не более допустимого для него значения, но такой, чтобы свечение было достаточно ярким.

Рассчитать гасящее сопротивление для цепи со светодиодами можно по формуле:

R = (U - Uc) /1, где U - напряжение питания.

Uc - суммарное напряжение падения последовательно включенных светодиодов, I -сила тока.

Например, напряжение питания 12V, последовательно включены три светодиода, с напряжениями падения 1,9V, 2,4V и 2,1V. Требуется сила тока через светодиоды 17мА.

Считаем Uc = 1,9 + 2,4 + 2,1 = 6,4V. Затем вычисляем R = (12 - 6,4) / 0,017 = 329,4 Ом, то есть, нужен резистор на 330 Ом.

В этой формуле разность (U - Uc) не должна быть отрицательной или равной нулю. То есть, напряжение питания всегда должно быть больше напряжения падения на светодиодах.

Однако нужно учесть и то, что если в цепи есть мигающий светодиод, то напряжение питания не должно быть больше максимально допустимого для мигающего светодиода, находящегося в выключенном состоянии.

К сожалению, этот параметр не всегда приводится в справочниках, но подавляющее большинство мигающих светодиодов нормально переносят прямое напряжение до 30V в выключенном состоянии. А вот при большем напряжении некоторые выходят из строя.

Детали

В приведенных здесь схемах можно использовать практически любые светодиоды. Желательно сверхяркие. Мигающие светодиоды, включенные в последовательных цепях должны быть одноцветными.

Двух или трехцветный мигающий светодиод скорее не мигает, а переключает свои цвета, и существенных импульсов в цепи не создает, поэтому включенные последовательно с ним немигающие светодиоды мигать не будут. В лучшем случае их свечение будет только подрагивать.

У всех новых светодиодов (не выпаянных из плат) анод обозначен более длинным выводом. А короткий - катод. У выпаянных назначение выводов нужно проверять мультиметром (так как прозванивают обычные диоды).

Андреев С. РК-11-2018.

Типовые схемы включения мигающих светодиодов типа МСД.

Продолжая знакомить с устройством мигающих светодиодов типа МСД необходимо дополнить данный материал тем, чтобы показать правильность включения и практическое применение данного типа светодиодов в радиолюбительских конструкциях. После тщательного ознакомления со множеством различной документации было выявлено следующее, что ни одна из фирм-разработчиков МСД не потрудилась привести в файлах Datasheet рекомендуемые схемы включения.

Расчет не публиковать полные справочные данные, видимо простой, зачем публиковать и так очевидную информацию, как знать, может быть, эта “очевидность” усыпила бдительность разработчиков и не дала повода исследовать нестандартные области их применения.

Рис.1.

Максимум приводимых сведений - это наличие встроенного ограничительного резистора (built-in resistor) и возможность подключения МСД напрямую к выходам ТТЛ и КМОП-микросхем (easily be driven by TTL & CMOS circuit).

Если перевести язык текста в язык графики, то получится три варианта типовых схем включения - рис.1,2,3. Условное графическое обозначение МСД выполнено по аналогии с обычным светодиодом, но с заменой сплошных стрелок излучения пунктирными.

Итак, пои подаче на анод положительного, а на катод отрицательного напряжения - рис.1, светодиод HL1 начинает постоянно мигать с частотой, определяемой техническими характеристиками согласно таблица 1. Длительности светящегося и несветящегося состояний примерно одинаковы.

Рис.2. Рис.3.

Инвертор DD1 на рис.6 может быть как стандартной ТТЛ, так и буферизированной КМОП-микросхемой, например, К561ЛН2. Инвертор DD1 - рис.3 должен иметь выход с открытым коллектором или открытым стоком, при этом напряжение, питающее светодиод HL1, может быть значительно больше, чем необходимо для микросхемы DD1.

Автогенераторная схема

Кроме типовых, известен целый класс нестандартных схем включения МСД. К примеру, он может служить не только генератором световых “вспышек”, но и автогенератором электрических импульсов [1, 3, 4]. На рис.4, 5 приведены две основные схемы, использующие при работе область микротоков на ВАХ светодиодов.

Рис.4. Рис.5.

Схема на рис.4 более практична, поскольку допускает широкое варьирование номинала резистора R1 (0,1...300 кОм) и применение в качестве DD1 ТТЛ- или КМОП-микросхемы. В схеме на рис.5 можно применять только КМОП-логику (резистор R1 от единиц до сотен килоом).

На выходе инвертора DD1 образуются импульсы, имеющие в первом приближении частоту следования “вспышек” МСД. Скважность импульсов отличается от меандра и в небольших пределах может регулироваться резистором R1. Вместе со скважностью меняется и частота “вспышек”. Небольшой нюанс.

Рис.6. Рис.7.

При внимательном прочтении статьи вы вправе задать вопрос: “Почему форма выходного сигнала не меандр, хотя согласно эквивалентной схеме на электронный ключ МСД подаются импульсы со скважностью 2?” Все дело в разном напряжении, которое прикладывается к МСД в светящемся и несветящемся состоянии.

Виной тому нагрузочный резистор R1 - рис.4, 5, на котором в первом случае падает напряжение значительно большее, чем во втором. Это, в свою очередь, приводит к частотной модуляции сигнала задающего ВЧ-генератора и, как следствие, к изменению отношения длительностей сигналов после счетчиков.

Рис.8. Рис.9.

МСД в качестве ждущего мультивибратора

Если МСД устойчиво генерирует электрические импульсы, то логично предположить возможность его работы в схемах одновибраторов и управляемых мультивибраторов (“заторможенных” генераторов). Однако прежде чем приступить к синтезу подобных схем, необходимо детально исследовать четыре возможных варианта управления МСД от внешнего логического элемента.

Таблица 1.

Серия м/сх DD1

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

К155

0,06-1,5

1,8-1,66

-

-

0,25-1,9

1,7-1,56

-

-

К555

0,05-3,7

1,8-1,52

-

-

0.26-3.5

1,7-1,5

-

-

КР1533

0,07-2,4

1,8-1,38

-

-

1,2-65

1,6-1,3

-

-

КР

1531

0,08-3,6

1,8-1.56

-

-

0,7-5

1,66-1.47

-

-

КР1554

0,6-180

1,7-1.27

0,6-180

1,7-1,27

0.6-170

1,7-1.25

0.6-170

1,7-1,25

К561ЛН2

0,15-110

1,75-1,35

1,9-360

1,6-1,16

0,6-110

1,72-1.3

1.2-330

1.6-1.13

К561ЛА7

0,05-160

1,8-1,28

1,1-220

1,66-1,2

1,2-130

1,6-1.28

0,05-150

1.72-1.28

В таблице 1 приведены сводные результаты опытов по варьированию номинала резистора R1 в схемах рис.6, 7, 8, 9 для разных серий ТТЛ и КМОП-микросхем. В целях объективности во всех случаях применялись одни и те же экземпляры микросхем и МСД.

Если приглядеться повнимательнее, то конфигурация включения цепочек R1-HL1 очень напоминает известные схемы дифференцирования и интегрирования импульсов, следует только поставить вместо светодиода конденсатор. Дальнейшее направление экспериментов очевидно - попытаться заменить времязадающие конденсаторы в схемах одновибраторов и мультивибраторов “мигающими” светодиодами и посмотреть, что из этого получится.

Рис.10. Рис.11. Рис.12.

На рис.10, 11, 12, 13, 14 приведены схемы ждущих мультивибраторов на логических элементах с МСД. По выполняемым функциям это расширители импульсов с дополнительной возможностью генерации одиночной серии импульсов.

Сказанное поясняет временная диаграмма - рис.15, относящаяся к схеме на рис.11. При длительности входного импульса менее 250-300 мс на выходе формируется одиночный импульс длительностью 80 мс. Это стандартный режим работы одновибратора.

При длительности входного импульса более 300 мс начинается постоянная генерация импульсов с частотой, определяемой параметрами МСД и сопротивлением резистора R1. Итого, получается уникальное устройство, формирующее укороченный первый импульс длительностью 80 мс, а все последующие - расширенные до 200-300 мс.

Рис.13. Рис.14. Рис.15.

Аналогичные процессы происходят и в схемах рис. 10-14. Здесь и далее номиналы резисторов R1 выбираются в зависимости от серии микросхем и варианта включения согласно таблице 1. Если заменить логические элементы D-триггером, то получится триггерный одновибратор - рис.16. Номинал резистора R1 влияет на частоту генерации серии расширенных импульсов и может меняться в широких пределах.

Рис.16.

Преимущества схем с МСД.

  • Во-первых, при низких номиналах нагрузочных резисторов R1 50...600 Ом одновременно с генерацией импульсов будут наблюдаться достаточно яркие световые “вспышки”.
  • Во-вторых, малые габариты по сравнению с электролитическими конденсаторами. Для сравнения, чтобы получить импульсы с частотой 1,5-2,5 Гц в RC-генераторах на ИМС, требуются конденсаторы емкостью от 5-10 мкФ (серия микросхем К561) до 500-1000 мкФ (серия микросхем К155) или применение дополнительных транзисторов, микросхем.
  • В-третьих, крутые фронты выходных сигналов, что недостижимо при замене МСД конденсаторами большой емкости.

Экзотические схемы включения

Рис.17.

МСД могут применяться в устройствах, функционально весьма далеких друг от друга. Например, амплитудный и частотный модулятор [4], стереобипер [3], индикатор полярности напряжения [4], переключатель елочных гирлянд [5]. В последнем примере МСД используется как своеобразный “паровоз”, за которым следуют “вагоны” из обычных светодиодов рис.17.

В итоге вся последовательно соединенная цепочка излучателей мигает в едином ритме. Собрав три такие гирлянды с тремя разноцветными МСД, можно получить устройство, иллюминация которого подчиняется закону псевдослучайных чисел с большим периодом повторения.

МСД выгодно применять для подавления “дребезга” контактов механической кнопки - рис.18. При коротком нажатии на кнопку SB1 на выходе образуется четкий одиночный импульс отрицательной полярности длительностью около 80 мс.

При длительном удержании кнопки будут генерироваться импульсы с частотой “вспышек” светодиода HL1. Такую схему удобно использовать при тестировании сложных микропроцессорных систем, подавая сигнал от МСД на вход сброса. Удерживая кнопку SB1, можно будет проанализировать, как ведет себя система при периодическом обнулении ее параметров.

Схему на рис.10 допускается использовать не только в качестве одновибратора, но и делителя частоты следования входных импульсов. Коэффициент деления равен отношению частоты входных импульсов к частоте "мигания" МСД.

Рис.18.

В отличие от ее прототипа, в котором вместо не применен электролитический конденсатор, значительно повышается стабильность коэффициента деления и увеличивается крутизна фронтов выходного сигнала.

На рис.19 МСД работает совместно с триггером Шмитта, выполненном на инверторе DD1. В результате такого “сотрудничества” на выходе схемы генерируются пачки высокочастотных импульсов. Частота заполнения зависит от номинала резистора R1: 120 кГц при 100 кОм, 1 МГц при 15 кОм. Побочный эффект - небольшая широтно-импульсная модуляция.

Схема управляемого генератора пачек импульсов изображена на рис.20. Функционирование устройства начинается после подачи на вход ВЧ сигнала тактовой частоты, при этом выходной сигнал оказывается промодулированным с частотой “вспышек” HL1.

Если на вход будет подан логический “0”, то генерация импульсов прекращается, а если логическая “1”, то генерация “вспышек” возобновляется, но без ВЧ тактового заполнения.

Рис19.

На рис.21 изображена схема, предназначенная для организации импульсного питания различных устройств. Ток нагрузки зависит от типа МСД и приложенного напряжения.

Для светодиодов фирмы Kingbright этот ток составляет от 3-5 мА при напряжении 5-8В до 40 мА при напряжении 15 В. МСД работает как электронный ключ. Частота включения определяется в первом приближении частотой его “вспышек”.

Если установить в схему электролитический конденсатор С1, то получится режим пилообразного питания устройства, который можно использовать для игрушек типа “сирена”. Еще один вариант на эту тему приведен на рис.22.

Амплитуда выходного пилообразного сигнала регулируется резистором R1 и составляет 2-3 В. На рис.23 приведена схема, иллюстрирующая работу МСД в качестве частотного детектора. На элементах DD1.1-DD1.4 собран генератор с изменяемой частотой следования импульсов.

Если их частота не превышает 5 Гц, то МСД “мигает” в своем родном ритме. При повышении частоты до 20 Гц происходит полная засветка МСД! В дальнейшем, начиная со значения 300-400 Гц, светодиод опять становится “мигающим”.

Рис.20. Рис.21. Рис.22.

Интересное наблюдение. При подаче на МСД импульсов частотой около 100 Гц он начинает реагировать на уровень внешней засветки от обычных ламп накаливания и ламп дневного света. В этом режиме МСД превращается в фотодиод. Достаточно заслонить рукой свет от лампы и МСД вместо полной засветки будет “мигать”.

Итоги

Появление МСД стало заметной вехой в преодолении очередного технологического барьера в электронной технике. Союз оптики и микроэлектроники доказал свою прочность на деле. Для фирм-изготовителей освоение производства МСД явилось хорошей рекламой потенциальных возможностей.

Пока что МСД не стали широко распространенными приборами такими, как стали простые светодиоды, и их до сих пор можно отнести к разряду экзотических. Причина кроется в их относительно высокой цене. По сравнению с обычными светодиодами МСД стоят в 5-10 раз дороже.

Рис.23.

Сфера их применения - миниатюрные устройства охранной сигнализации, индикаторы аварийных ситуаций. Нестандартные схемы включения могут быть рекомендованы в случае доработок аппаратуры, когда требуются малые габариты устройства и повышенная крутизна фронтов выходных сигналов.

С. Рюмик

Литература:

  1. Рюмик С. Генераторы импульсов на мигающем” светодиоде. - Радио, 2000, №2, с. 45.
  2. Рюмик С. Мигающие светодиоды (справочный материал). - РА, 1999, №12, с. 26.
  3. Рюмик С. Бипер без конденсаторов. - Радиолюбитель, 1999, №8, с. 24.
  4. Рюмик С. Необычные применения мигающих светодиодов. - РА, 1998, Null-12, с. 23.
  5. Рюмик С. Что мигает на елке? - Моделист-конструктор, 1999, N912, с. 20,21.

принцип действия, схемы, примеры и т.д.

Светодиод — диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.

Светодиод
Обратите внимание на основы электричества и на приборы электроники.

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Схема светодиода

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

Где используются светодиоды

Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.

Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.

Схема типичной цепи с сигнальной лампочкой

Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение). Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света. Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.

Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.

С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.

Цифровой дисплей на калькуляторе из семи элементов

Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея. Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель. Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.

Схема внешней цепи управления для цифрового дисплея калькулятора

Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.

Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.

Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.

Одиночный светодиод, последовательные светодиоды и параллельные светодиоды

В этом проекте мы построим несколько простых светодиодных схем. В настоящее время люди вкладывают больше средств в светодиоды из-за их энергоэффективности. Домашнее освещение, офисное освещение, автомобильное освещение, уличное освещение и т. Д. - все это реализовано с использованием светодиодов.

Студенты, любители и производители часто работают со светодиодами в различных типах проектов. Некоторые из распространенных светодиодных проектов - это светодиодные ходовые огни, светодиодные лампы, светодиодные лампы Knight Rider и светодиодные мигалки.

Светодиоды являются очень чувствительными компонентами по отношению к напряжению и току, и они должны иметь номинальные значения тока и напряжения. Новички в электронике часто начинают со светодиодов, и первым проектом будет мигание светодиода.

Неправильное напряжение или ток на светодиодах приведет к их перегоранию. Для небольших проектов, таких как мигание светодиода, нам не нужно беспокоиться о горении светодиодов, поскольку мы можем подключить небольшой резистор (например, 330 Ом) последовательно со светодиодом (для питания 5 В).

Но по мере увеличения сложности схемы выбор правильного резистора с правильной мощностью становится важным.Итак, в этом проекте, который больше похож на учебное пособие, мы создадим несколько простых светодиодных цепей, таких как простая одиночная светодиодная цепь, светодиоды последовательно, светодиоды параллельно и светодиоды высокой мощности.

Цепь 1 простых цепей светодиодов (цепь с одним светодиодом)

Первая цепь в простых цепях светодиодов представляет собой цепь с одним светодиодом. Мы попытаемся включить один 5-миллиметровый белый светодиод с помощью источника питания 12 В. Принципиальная схема этой схемы показана ниже.

Необходимые компоненты
  • Источник питания 12 В
  • Белый светодиод, 5 мм
  • 330 Ом Резистор 1/2 Вт
  • Соединительные провода
  • Макетная плата
Принцип работы

На следующем изображении показана установка одного светодиода, подключенного к источник питания 12 В и резистор, ограничивающий ток.Важным компонентом (кроме светодиода, конечно) является резистор. Подключение небольшого светодиода к источнику питания 12 В приведет к сгоранию светодиода, и вы сразу увидите волшебный дым.

Итак, выбор правильного резистора с правильной мощностью очень важен. Сначала рассчитаем сопротивление.

Расчет последовательного резистора

Значение последовательного резистора можно рассчитать по следующей формуле.

R СЕРИЯ = (V S - V LED ) / I LED

Здесь V S - это напряжение источника или питания

V LED - падение напряжения на светодиоде и

I LED - это желаемый ток через светодиод.

В нашей простой светодиодной схеме, состоящей из одного светодиода, мы использовали 5-миллиметровый белый светодиод и источник питания 12 В.

Согласно техническому описанию 5-миллиметрового белого светодиода, прямое напряжение светодиода составляет 3,6 В, а прямой ток светодиода - 30 мА.

Следовательно, V S = 12 В, V LED = 3,6 В и I LED = 30 мА. Подставляя эти значения в приведенное выше уравнение, мы можем вычислить значение последовательного сопротивления как

R SERIES = (12 - 3.6) / 0,03 = 280 Ом. Поскольку резистора на 280 Ом не будет, мы будем использовать следующий большой резистор, то есть 330 Ом. Следовательно, R SERIES = 330 Ом.

Теперь, когда мы рассчитали сопротивление последовательного резистора, следующим шагом будет вычисление номинальной мощности этого резистора.

Расчет мощности резистора

Номинальная мощность резистора определяет величину мощности, которую резистор может безопасно рассеивать. Номинальная мощность резистора может быть рассчитана по следующей формуле.

P RES = V RES * I RES

Здесь V RES - это падение напряжения на резисторе, а

I RES - это ток через резистор.

Мы знаем, что напряжение питания составляет 12 В, а падение напряжения на светодиодах составляет 3,6 В. Таким образом, падение напряжения на последовательном резисторе составляет

В RES = 12 - 3,6 = 8,4 В.

Ток через резистор такой же, как ток через светодиод, поскольку они подключены последовательно.Таким образом, ток через последовательный резистор равен

I RES = 30 мА.

Подставляя эти значения в приведенную выше формулу, мы получаем мощность, рассеиваемую резистором.

P RES = 8,4 * 0,03 = 0,252 Вт.

На всякий случай мы всегда должны выбирать следующее возможное значение, поэтому мы выбрали резистор ½ Вт (0,5 Вт).

После того, как выбран правильный резистор, мы можем подключить резистор последовательно и подать питание 12 В на светодиод.

Цепь 2 простых светодиодных цепей (светодиоды последовательно)

Следующая схема в проекте «Простые светодиодные схемы» соединяет светодиоды последовательно. В этой схеме мы последовательно подключим три 5-миллиметровых белых светодиода к одному источнику питания 12 В. На следующем изображении показана принципиальная электрическая схема последовательно подключенных светодиодов.

Принципиальная схема светодиодов серии

Компоненты, необходимые для светодиодов серии
  • Белые светодиоды 5 мм x 3
  • Резистор 47 Ом (1/4 Вт)
  • Блок питания 12 В
  • Соединительные провода
  • Макет
Принцип работы

Поскольку светодиоды соединены последовательно, ток через все они будет одинаковым i.е. 30 мА (для белого светодиода 5 мм). Поскольку три светодиода соединены последовательно, все светодиоды будут иметь падение напряжения 3,6 В, то есть на каждом светодиоде будет падение напряжения 3,6 В.

В результате падение напряжения на резисторе упадет до 12 - 3 * 3,6 = 1,2 В. Отсюда мы можем рассчитать сопротивление как R = 1,2 / 0,03 = 40 Ом. Итак, нам нужно выбрать резистор 47 Ом (следующий доступный).

Исходя из номинальной мощности резистора, она равна 1,2 * 0,03 = 0,036. Это очень низкая номинальная мощность, и минимально доступная мощность составляет Вт.

После того, как все компоненты выбраны, мы можем соединить их на макетной плате и включить схему, используя источник питания 12 В. Все три последовательных светодиода загорятся с максимальной интенсивностью.

Цепь 3 простых светодиодных цепей (светодиоды в параллели)

Последняя схема в простом учебном пособии по светодиодным цепям - это параллельные светодиоды. В этой схеме мы попытаемся подключить параллельно три 5-миллиметровых белых светодиода и зажечь их от источника питания 12 В. Принципиальная схема для светодиодов при параллельном подключении показана на следующем изображении.

Принципиальная электрическая схема светодиодов, подключенных параллельно

Компоненты, необходимые для светодиодов, подключенных параллельно
  • Источник питания 12 В
  • Белые светодиоды 3 x 5 мм
  • Резистор 100 Ом (1 Вт)
  • Соединительные провода
  • Макетная плата
Принцип of Operation

Для светодиодов, подключенных параллельно, падение напряжения на всех светодиодах будет 3,6 В. Это означает, что падение напряжения на резисторе составляет 8,4 В (12 В - 3,6 В = 8,4 В).

Теперь, поскольку светодиоды подключены параллельно, ток, необходимый для всех светодиодов, в три раза больше индивидуального тока через светодиод (который составляет 30 мА).

Следовательно, общий ток в цепи составляет 3 * 30 мА = 90 мА. Этот ток также будет протекать через резистор. Следовательно, номинал резистора можно рассчитать как R = 8,4 / 0,09 = 93,33 Ом. Ближайшее более высокое значение сопротивления составляет 100 Ом.

Мощность, рассеиваемая резистором, равна 8,4 В * 0,09 А = 0,756 Вт. Поскольку следующая более высокая мощность составляет 1 Вт, мы использовали резистор на 1 Вт.

Подключите три светодиода параллельно, а также последовательно подключите резистор 100 Ом (1 Вт) к источнику питания.При включении питания загорятся все светодиоды.

Дополнительные схемы

Предупреждение: Использование источника питания 230 В переменного тока на макетной плате очень опасно. Будьте предельно осторожны.

  • Еще одна интересная светодиодная схема - это DIY LED Light Bulb . В этом случае мы разработали светодиодную лампочку и использовали ее как обычную лампочку.

Предупреждение: Даже в этом проекте для питания светодиодной лампы используется 230 В переменного тока. Будьте осторожны при обращении с сетевым питанием.

Светодиодные схемы

Защищенный сайт

Магазин с

Уверенность

Лучше всего просматривать при использовании:

Internet Explorer

или

Mozilla Firefox

Светодиодные схемы

Наша цель - дать обзор основных типы цепей, используемых для питания светодиодов.Принципиальные схемы или схемы, которые Следующие ниже изображены с использованием стандартных электронных символов для каждого компонента. Определения символов следующие:

Символ светодиода является стандартным символом для диода с сложение двух маленьких стрелок, обозначающих излучение (света). Отсюда и название, свет излучающий диод (LED). "A" обозначает анод или плюс (+) соединение, а "C" катод или минус (-) соединение. У нас есть говорил ранее, но стоит повторить: светодиоды строго устройств постоянного тока и не будут работать с переменным током (переменным Текущий).При питании светодиода, если источник напряжения точно не соответствует Напряжение светодиодного устройства, необходимо использовать «ограничивающий» резистор последовательно со светодиодом. Без этого ограничивающего резистора светодиод был бы мгновенно выгорают.

В приведенных ниже схемах мы используем символ батареи для обозначения источник. Электропитание может быть легко обеспечено источником питания или колесом. пикапы с трассы на макете. Каким бы ни был источник, важно то, что он должен быть постоянным током и хорошо отрегулирован, чтобы предотвратить колебания перенапряжения, вызывающие повреждение Светодиоды.Если источник напряжения должен быть запитан от датчиков рельсов, мост выпрямитель должен использоваться, чтобы светодиоды получали только постоянный ток и неизменный полярность.

Обозначения переключателей довольно просты. Однополюсный, однонаправленный переключатель (SPST) - это просто функция включения-выключения, в то время как SPDT (двухпозиционный) переключатель позволяет выполнять маршрутизацию между двумя разными цепями. Может может использоваться как переключатель на одно нажатие, если одна сторона ни к чему не подключена. В кнопка - выключатель мгновенного действия.

Обозначение конденсатора, которое мы здесь используем, относится к электролитическому или конденсатор поляризованного типа. То есть его необходимо использовать в цепи постоянного тока. и подключен правильно (плюс подключение к плюсовому напряжению), или он будет поврежден. В наших целях он используется для мгновенного хранения, чтобы помочь «сглаживать» колебания питающего напряжения, вызванные малыми потерями в колесах подхватывание силового броска на грязных участках пути или в зазорах на стрелочных переводах. Поляризованные конденсаторы классифицируются по разным номинальным значениям максимального постоянного напряжения.Всегда используйте конденсатор, номинал которого безопасно превышает максимальное напряжение, ожидаемое в вашем заявление.

Основная схема

Это настолько просто, насколько возможно. Цепь одного светодиода - это строительный блок, на котором основаны все наши другие примеры. Для правильного функционирования должны быть известны три значения компонентов. Напряжение питания (Vs), светодиод устройства рабочее напряжение (Vd) и рабочий ток светодиода (I). С этими известными, используя вариант закона Ома, правильный ограничительный резистор (R) может быть определен.Формула:

Пример работы с этой формулой можно найти на нашем Страница советов по подключению моста. Шаг проверки 7 для подробностей.

На схеме выше у нас есть как ограничивающий резистор, так и переключатель, подключенный к положительной (+) стороне цепи. Мы сделали это, чтобы соблюдать "стандартные электрические методы" при работе с "горячими" (плюсовая) сторона цепи, а не минус (-) или сторона «земли». В схема действительно функционировала бы адекватно в любом случае, но стандартная безопасность Практика рекомендует "отключение" на "горячей" стороне, чтобы свести к минимуму возможность электрического замыкания проводов на другие «заземленные» цепи.

Цепи с двумя или более светодиодами

Цепи с несколькими светодиодами делятся на две основные категории; цепи с параллельным соединением и цепи с последовательным соединением. Третий тип, известный как последовательная / параллельная схема представляет собой комбинацию первых двух и также может быть довольно полезно в модельных проектах.

Общие правила для параллельных и последовательных цепей светодиодов могут быть указано следующее:

  1. В параллельной цепи, напряжение одинаково на всех компонентах (светодиодах), но ток делится через каждый.

  2. В последовательной цепи, ток такой же, но напряжение делится.

  3. В последовательной цепи, сумма всех напряжений светодиодов не должна превышать 90% напряжения питания на обеспечить стабильную светоотдачу светодиодов.

  4. В последовательной цепи, все светодиоды должны иметь одинаковые характеристики напряжения (Vd) и тока (I).

Параллельная проводная светодиодная схема

Выше показаны два примера одной и той же схемы.Рисунок 1 на слева - схематическое изображение трех светодиодов, подключенных в параллельно батарее с переключателем для их включения или выключения. Вы заметите, что в этой схеме каждый светодиод имеет свой ограничивающий резистор и напряжение питания стороны этих резисторов соединены вместе и выведены на плюсовую батарею. терминал (через переключатель). Также обратите внимание, что катоды трех светодиодов соединены вместе и выведены на отрицательную клемму аккумуляторной батареи. Эта «параллель» соединение компонентов - вот что определяет схему.

Если бы мы построили схему точно так, как показано на рисунке 1, с проводами, соединяющими устройства, как показано на схеме (перемычки между резисторами и перемычками между катодными соединениями), мы необходимо учитывать допустимую нагрузку по току выбранного провода. Если проволока слишком мала, может произойти перегрев (или даже плавление).

Во многих случаях на этом веб-сайте мы приводим примеры Светодиоды подключены с помощью нашего магнитного провода с покрытием №38.Мы выбрали проволоку этого размера для очень конкретные причины. Он достаточно мал (диаметр 0045 дюймов, включая изоляцию). покрытие), чтобы выглядеть прототипом в виде провода или кабеля в большинстве проектов, даже в Z-шкала, и она достаточно велика, чтобы подавать ток на осветительные устройства 20 мА (например, наши Светодиоды) с дополнительным запасом прочности 50%. Как указано, сплошной медный провод №38 имеет номинальный рейтинг 31,4 мА и максимальный рейтинг 35,9 мА. Мы могли бы выбрать Провод №39 с номинальным значением тока 24,9 мА, но мы чувствовали, что этого не произойдет. безопасно учитывать колебания номиналов резисторов или отдельных светодиодов.Кроме того, немного меньший диаметр (0,004 дюйма вместо 0,0045 дюйма), вероятно, не сделать заметную разницу в моделировании.

Возвращаясь к рисунку 1; вы можете увидеть в этом примере текущее требование для каждой пары светодиод / резистор, добавляется к следующей и следует правило параллельной цепи (# 1) выше. Мы не могли безопасно использовать для этого наш магнитный провод №38. всю схему. Например, перемычка с нижнего катода светодиода на минус клемма аккумулятора будет нести 60 мА. Наш провод быстро перегревается и возможно расплавление, вызывающее разрыв цепи.За это Причина, на Рисунке 1 - это всего лишь простой способ " схематично " представить как компоненты должны быть подключены для правильной работы схемы.

В реальной жизни наш реальный проект проводки выглядел бы больше как Рис. 2. В этом случае мы можем безопасно использовать наш провод №38 для всего, кроме соединение между плюсовой клеммой аккумуляторной батареи и переключателем. Здесь нам понадобится по крайней мере провод # 34 (номинал 79,5 мА), но мы, вероятно, использовали бы что-то вроде Radio Изолированная обмоточная проволока Shack's №30.Это недорого, легко доступно и будет нести 200ма (номинальная спец.). Достаточно большой для нашего приложения. Также, мы, вероятно, не стали бы паять три резистора вместе на одном конце, как как мы показали, мы просто использовали бы еще один кусок этого # 30, чтобы соединить их общие заканчивается вместе и к выключателю.

Макеты макетов железных дорог могут стать электрически сложными из-за всевозможные требования к проводке для таких вещей, как мощность трека, переключение, освещение, сигнализация, DCC и др.; у каждого свои потенциальные текущие потребности Чтобы помочь в планировании таких вещей, таблица обычных проводов (сплошная медь однониточные) размеров и их токонесущей способности. здесь.

Последовательная проводная светодиодная схема

Эта схема представляет собой простую последовательную цепь для питания трех светодиодов. Вы заметите два основных различия между этой схемой и параллельной схемой. Все светодиоды используют один ограничивающий резистор, а светодиоды подключены анод-катод по схеме «гирляндной цепи».Следуя правилу № 2 выше, формула, которую мы будем использовать для определения нашего ограничивающего резистора, является еще одной вариацией формулы, которую мы использовали выше. Формула серии для вышеуказанной схемы будет записывается следующим образом:

Единственная реальная разница в том, что наш первый шаг - добавить напряжение устройства для количества светодиодов, которые мы используем вместе, затем вычтите это значение из нашего напряжения питания. Затем этот результат делится на ток наших устройств (обычно 20 мА или 0,020).Все просто, да? Не забудьте также рассмотрите правило №3. То есть умножьте напряжение питания на 90% (0,9) и сделайте убедитесь, что сумма напряжений всех устройств (светодиодов) не превышает этого значения. Это почти все, что нужно ...

Нам нужно знать, какой провод мы собираемся использовать, и что какое потребление тока можно ожидать от такой схемы? Что ж, в параллельная схема выше, для трех светодиодов по 20 мА каждый, мы будем потреблять 60 мА у батареи. Итак ... 60 мА? Неа. Фактически, чуть меньше 20 мА для всех трех светодиодов! Для простоты назовем его 20.

Другой способ сформулировать правила 1 и 2 выше:

  1. В параллельной цепи напряжение устройства постоянно, но ток, необходимый для каждого устройства, складывается в общий ток.

  2. В последовательной цепи ток устройства постоянный, но Требуемое напряжение - это сумма всех напряжений устройства (вместе).

Давайте рассмотрим несколько примеров с использованием 9-вольтовой батареи (или блок питания):

Пример № 1

Мы хотим подключить два наших супербелых светодиода 2x3 последовательно.

  1. Сначала мы определяем напряжение устройства, которое составляет 3,6 вольт и сложите его вместе для двух светодиодов (3,6 + 3,6 = 7,2).

  2. Теперь, когда у нас есть эта сумма, давайте убедимся, что она не нарушает Правило №3. 80% от 9 вольт составляет 7,2 вольт (0,8 x 9 = 7,2). Суммы равны. Мы не превышает 90%, поэтому мы можем продолжить.

  3. Затем мы вычитаем эту сумму 7,2 из нашего напряжения питания (9 вольт) и получите результат 1.8 (это часть Вс-Вд).

  4. Затем мы делим 1,8 на ток нашего устройства, который составляет 20 мА, или .02. Наш ответ - 90. Поскольку резистор на 90 Ом не является стандартным, мы выберем следующее по величине значение (100 Ом). Это немного более высокое сопротивление не вызовет разница в яркости светодиодов.

  5. Наконец, поскольку наша текущая потребляемая мощность составляет всего 20 мА, мы могли бы использовать наш провод №38 для всего, если мы захотим.

Пример № 2

Мы хотим последовательно соединить четыре наших красных светодиода Micro.Какие резистор мы должны использовать?

  1. Мы находим напряжение устройства должно быть 1,7 вольт. Для четырех светодиодов это будет 6,8 вольт (4 x 1,7 = 6.8).

  2. Теперь, когда у нас есть это количество, давайте убедимся, что это не нарушает правило №3. 90% от 9 вольт - это 7,2 вольт (0,8 х 9 = 7,2). И 6,8 на меньше, чем на , чем на 7,2. Ага, все в порядке.

  3. Далее мы вычитаем это 6,8 от нашего напряжения питания (9 вольт) и получаем результат 2.2 (это часть Вс-Вд).

  4. Наконец, делим 2,2 по току нашего устройства, который составляет 20 мА, или 0,02. Наш ответ - 110. Как оказалось, 110 Ом - стандартное сопротивление резистора, поэтому нам не нужно выбирать ближайший доступно более высокое значение (никогда не выбирайте меньшее значение!). Мы будем использовать 110 Ом 1/8 резистор 1% ватт.

Пример № 3

Мы хотим подключить три наших сверхбелых светодиода Micro вместе последовательно.

  1. Напряжение устройства 3.5 вольт. Так что для трех светодиодов это будет 10,5 вольт, и ... у нас проблема. Эта сумма не только нарушает правило № 3 выше, но и превышает напряжение питания. В В этом случае наши светодиоды даже не загораются. В этой ситуации, если нам нужно три из эти светодиоды, нам либо понадобится источник питания, который подает как минимум 11,67 вольт (это то, что 10,5 было бы 90%), или нам придется подключать только два последовательно а третий отдельно, с собственным резистором (последовательная / параллельная цепь, но об этом чуть позже).В этом случае у нас будет два типа схем, соединенных вместе в общем источнике питания. Схема будет выглядят следующим образом:

Здесь мы снова можем использовать наш провод # 38 для всего, кроме соединение между источником питания и выключателем. Чтобы определить, какие ограничения резисторы тут требуются, мы просто рассчитываем каждый отрезок схемы в отдельности. Неважно, какой сегмент определяется первым, но мы сделаем одиночный светодиод / резистор.Для этого мы используем нашу оригинальную формулу:

Мы знаем, что Vs (для этих примеров) составляет 9 вольт. А также. мы Знайте, что Vd составляет 3,5 вольта, а I - 20 мА. Итак, (9 - 3,5) = 5,5 .020 = 275. Это резистор нестандартного значения, поэтому мы используйте здесь резистор на 300 Ом.

Теперь посчитаем последовательную пару светодиодов. Формула для всего два светодиода будут:

Опять же, Vs составляет 9 вольт, поэтому 9 - (3.5 + 3.5) = 2 .020 = 100, и это стандарт номинал резистора. Были сделаны. Теперь мы можем подключить этот пример, и все будет усердно работать.

Подсветка Kato Amtrak Superliner с подсветкой EOT

Вот схема легкового автомобиля, подключенного для освещения с помощью мостовой выпрямитель и емкость 600 мкФ для обеспечения На все светодиоды подается постоянный ток без мерцания и стабильной полярности. Супер-белый светодиод освещает салон автомобиля, а два красных светодиода Micro LED загораются в конце поезда.А добавлен переключатель, чтобы при желании можно было отключить функцию EOT. Бег пример этой машины (с мерцанием 800 мкФ control) можно увидеть здесь.

Последовательная / параллельная проводная светодиодная цепь

Здесь мы немного расширили наш пример №3 выше. У нас есть три группы последовательно-пар светодиодов. Каждый рассматривается как отдельный контур для для расчетных целей, но соединены вместе для общего источника питания. Если бы все это были наши Micro Сверхбелые светодиоды, мы уже знаем все необходимое для построения этой схемы.Кроме того, мы знаем, что каждая последовательная пара потребляет ток 20 мА, поэтому всего на источнике питания будет 60 мА. Довольно просто.

Интересная особенность последовательных / параллельных цепей светодиодов заключается в том, как Вы можете легко увеличить количество источников света на данном источнике питания. Возьми наш Например, импульсный источник питания N3500. Он обеспечивает ток 1 ампер (1000 мА). на 9 вольт.

Используя нашу параллельную схему ранее, мы могли соединить 50 наших светодиодов 2x3, или Micro, или Nano Super-white (или любая комбинация равно 50), каждый со своим ограничительным резистором, и этот небольшой источник справится с этим.Этого, наверное, хватило бы для города приличных размеров. Сейчас, если мы немного поумнее, мы могли бы использовать несколько последовательных / параллельных цепей и легко увеличить это количество, используя всего одну поставку. Если бы они все были последовательно / параллельно, мы могли запустить 100 огней. Гипотетически, если бы мы были выполняя проект с использованием наших красных светодиодов N1012 Micro (напряжение устройства 1,7 В), мы смог запустить 400 светодиодов с нашим небольшим запасом. Это красиво причудливый думал, однако.Кто-нибудь в темных очках?

Для получения дополнительной информации об использовании нашего импульсного источника питания для вашего макеты или проекты диорам, нажмите здесь.

Не забывайте правило №4. При создании групп серий убедитесь, что напряжения устройства и текущие требования очень похожи. Достаточно сказать, что смешение Светодиоды с большой разницей напряжения устройства или потребляемым током в та же группа серий не даст удовлетворительные результаты.

Наконец, проявите изобретательность.Вы можете смешивать и сочетать. Последовательные схемы, параллельные, однопроводные светодиоды, последовательные / параллельные цепи, белые группы, красные группы, желтый, зеленый, что угодно. Пока вы рассчитываете каждый случай для правильного ограничения сопротивление и следите за схемами проводки на предмет правильного размера проводов, освещения проекты будут работать с очень удовлетворительными результатами.

Еще кое-что для тех из вас, кто чувствует себя некомфортно работая «вручную» с приведенными выше формулами, мы создали несколько калькуляторов делать вычисления за вас.Все, что вам нужно сделать, это ввести значения и нажать кнопка "рассчитать". Их можно найти, нажав здесь.

... ДА БУДЕТ СВЕТ ...

2008 Нжиниринг

Внутренняя схема светодиодной ленты и информация о напряжении


В этой статье рассматривается внутренняя схема и принцип работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.


Назад к основам - Напряжение светодиодного чипа


Указанное напряжение светодиодной ленты - например, 12В или 24В - в первую очередь определяется:

1) указанным напряжением используемых светодиодов и компонентов, а

2) конфигурацией светодиодов на светодиодной ленте.

Светодиоды обычно представляют собой устройства с напряжением 3 В. Это означает, что если между положительным и отрицательным концами светодиода будет приложена разница в 3 В, он загорится.


Что произойдет, если у вас будет несколько светодиодов в цепочке, один за другим (серией)? В этом случае напряжения отдельных светодиодов суммируются.

Следовательно, для трех последовательно соединенных светодиодов потребуется прямое напряжение 9 В (3 В x 3 светодиода), а для 6 последовательно соединенных светодиодов потребуется прямое напряжение 18 В (3 В x 6 светодиодов).



Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.

Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольт для резистора, в результате чего мы получаем 12 вольт.

Для шести последовательно соединенных светодиодов требуется 18 вольт для светодиодов и 3 вольта на резистор (x2), что доводит нас до 24 вольт.



Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. То, как он размещен на светодиодной ленте, можно увидеть на нашем рисунке ниже:


Что происходит с параллельными светодиодами? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при 24 В, общая потребляемая мощность составляет 150 мА, также при 24 В.


Эти два примера с 3 светодиодами и 6 светодиодами показывают, как сконфигурирована типичная светодиодная лента на 12 и 24 вольт. Поскольку в светодиодных лентах используются светодиодные устройства на 3 вольта, и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.


Вам нужно подавать точно указанное напряжение?


Вам может быть интересно, означает ли 12 вольт ровно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошая новость заключается в том, что мощность, подаваемая на светодиодную ленту, оставляет желать лучшего.

Ниже приведена диаграмма из таблицы данных светодиодов, показывающая, сколько тока будет проходить через светодиод в зависимости от напряжения.

Вы увидите, что, например, при 3,0 В этот конкретный светодиод потребляет около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, примерно 160 мА.


Поскольку в светодиодной полосе 12 В имеется 3 последовательно соединенных светодиода и резистор, подача 11 В вместо 12 В немного похожа на уменьшение напряжения для каждого светодиода на 0.25В.

Будут ли светодиоды работать при 2,75 В? Если мы обратимся к таблице выше, окажется, что потребляемый ток упадет со 120 мА на светодиод до примерно 40 мА.

Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.

Что, если бы мы подавали только 10 В на светодиодную ленту на 12 В? В этом случае мы уменьшаем напряжение на каждый светодиод на 0,5 В. Если обратиться к таблице, то при 2,5 В светодиоды почти не потребляют ток.

Скорее всего, на этом уровне напряжения вы увидите очень тусклую светодиодную ленту.

Все напряжения ниже номинального значения светодиодной ленты являются безопасными, так как вы всегда будете потреблять меньший ток и, следовательно, исключите любую возможность повреждения или перегрева. Но как насчет уровней напряжения более 12 В?

Давайте посмотрим на питание 12,8 В светодиодной ленты 12 В. Это увеличивает напряжение на светодиод на 0,20 В.

На наш светодиод теперь подается напряжение 3,2 В, при котором диаграмма показывает потребляемый ток 200 мА.


Так уж получилось, что максимальный ток производителя составляет 200 мА.Если установить более высокое значение, вы рискуете повредить светодиод.

И имейте в виду, что каждый светодиод будет иметь разный номинал, и присущие производственные различия могут повлиять на фактические диапазоны напряжения, которые приемлемы для конкретной светодиодной ленты.

Мы показали, что для светодиодной ленты на 12 В она может переходить от темноты к перегрузке в узком диапазоне от 10 В до 12,8 В.

Хотя можно подавать напряжение, немного отличающееся от номинального, вы должны быть осторожны и точны, чтобы не повредить светодиоды.


Как насчет уменьшения яркости светодиодной ленты?


Один из способов уменьшить яркость светодиодной ленты - установить входное напряжение ниже номинального уровня, как мы видели выше. В действительности, однако, силовая электроника не очень хороша в снижении выходного напряжения таким образом.

Предпочтительным методом является использование так называемой ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с большой скоростью. Регулируя соотношение времени включения и выключения (рабочий цикл), можно отрегулировать видимую яркость светового потока светодиодной ленты.

Для светодиодной ленты 12 В это означает, что она всегда получает либо полное напряжение 12 В, либо 0 В, в зависимости от того, на какой части цикла ШИМ мы находимся.

Аналогичным образом, мы также знаем, что светодиод потребляет одинаковое количество тока, когда он находится в состоянии «включено», независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении ее яркости.


Итог


Одно из значительных преимуществ светодиодных лент - это простота, но универсальность: они сочетаются с простыми устройствами питания постоянного напряжения.

Иногда может быть полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из более тонких аспектов их работы, такие как регулировка яркости и изменения входного напряжения.

LED Circuits and Projects-Простая схема с принципиальной схемой, рабочая

CircuitsToday.com представляет несколько простых светодиодных схем и проектов, которые можно реализовать даже дома. Эти схемы и проекты уже были протестированы и опубликованы вместе с принципиальной схемой, схемами и подробным рабочим описанием каждого из них.Также просмотрите комментарии к каждой статье о схемах светодиодов, чтобы лучше понять используемые ИС и модификации, которые могут быть внесены в схему. Чтобы узнать о работе светодиода, щелкните ссылку - Светодиод работает

1. Танцующий свет

В схеме используется таймер 555 и микросхема CD 4017. Тактовые импульсы для микросхемы CD 4017 подаются микросхемой таймера, которая подключена как нестабильный мультивибратор. Номер контакта 14 микросхемы CD 4017 является входным контактом часов.Когда на этот вывод подаются тактовые импульсы, 10 выходных выводов поочередно становятся на высокий уровень один за другим. Когда светодиоды подключены к этим выходам, они также постоянно включаются и выключаются в соответствии с импульсами, которые выдает таймер. Взгляните на принципиальную схему в основной статье.

2. Ночной свет безопасности

Как следует из названия, эта схема используется для обеспечения безопасности вашего дома путем автоматического включения света примерно через два часа после полуночи.Это делается с помощью CMOS IC 4060. Схема потребует LDR, TRIAC , светодиоды и резисторы в соответствии с ее конструкцией. Узнайте больше об этой интересной схеме из ее оригинального содержания.

3. Светодиод с задержкой включения

В этой схеме светодиод, подключенный к выходу, светится только через заданное время после включения питания. Конденсатор играет важную роль при включении транзистора. Для схемы также необходим потенциометр с предустановкой и .

4. Светодиодный фонарик с использованием MAX660

Микросхема преобразователя напряжения CMOS типа MX 66o используется для изготовления этой цепи светодиодного фонарика. ИС может управлять 3 яркими белыми светодиодами. Это простая схема светодиодного фонарика на базе микросхемы MAX660 от MAXIM semiconductors. MAX 660 - это микросхема преобразователя напряжения монолитного типа CMOS. ИС может легко управлять тремя очень яркими белыми светодиодами. Светодиоды подключены параллельно к выходному выводу 8 микросхемы.

5.Светодиодные индикаторы температуры

Схема представляет собой не что иное, как два светодиода (D1 и D2), состояние которых контролируется температурой окружающей среды. В этой схеме используется датчик температуры под названием Lm 35 IC. С каждым повышением температуры на 1 градус выходной сигнал датчика увеличивается на 10 милливольт. Также используется операционный усилитель CA3130, и выходной сигнал датчика температуры подается на неинвертирующий вход операционного усилителя. На инвертирующий вход подается опорное напряжение с помощью потенциометра.Когда опорное напряжение и неинвертирующее входное напряжение становятся одинаковыми из-за повышения температуры, выход операционного усилителя переходит в насыщение. Это включает транзистор, подключенный к выходу операционного усилителя, и, таким образом, заставляет светодиод светиться. Дальнейшую работу над статьей можно получить по основной ссылке выше.

6. Схема светодиодной лампы USB

Это практичная схема лампы с питанием от USB, которую можно использовать для освещения вашей комнаты во время сбоя питания.Напряжение, необходимое для работы, получается от 5 вольт, имеющихся в USB-порту. Напряжение должно проходить через токоограничивающий резистор и транзистор. В схеме используются два светодиода для лампы. Другой светодиод необходим в качестве индикатора, показывающего соединение между USB-портом и схемой.

7. Светодиодный термометр для измерения температуры

Датчик под названием LM 34 IC и микросхема драйвера гистограммы под названием LM 3914 IC используются для разработки высокоточного термометра Фаренгейта со светодиодной диаграммой.Схема используется для определения температуры в градусах Фаренгейта. Его можно изменить для измерения температуры в градусах Цельсия, заменив IC датчика LM 34 на LM 35. Вольтметр используется для калибровки цепи. Подробное объяснение схемы можно получить из схемы выше.

8. Автоматический светодиодный аварийный свет

Эта единственная статья содержит три схемы аварийного освещения, состоящие из 3 различных ИС. Первый - это простая схема аварийного освещения, которая используется для определения дневного света и, таким образом, выключения.Также происходит обратное, когда из-за недостатка дневного света светодиод загорается. Схема использует LDR для восприятия света. Фотография схемы и дизайна PCB также доступна в исходном содержании.

Следующая статья - это автоматическая светодиодная схема аварийного освещения с использованием IC LM 317. Модифицированная версия также доступна здесь.

9. Простой индикатор уровня воды

Эту схему можно использовать для определения уровня любых проводящих неагрессивных жидкостей.Схема требует пяти транзисторов и соответствующего управляющего светодиода. Транзистор включается, когда ток базы подается от электродных зондов, подключенных внутри резервуара. На разных уровнях резервуара подключаются разные датчики. Один электродный зонд (F) с напряжением 6 В переменного тока размещен на дне резервуара. Все остальные зонды размещаются на квартальном, половинном и трех квартальном уровнях. Схема подключена таким образом, что, когда вода касается каждого датчика уровня, соответствующий ему светодиод начинает светиться, показывая правильный уровень.Узнайте больше о схеме по ссылке выше. Не забудьте просмотреть примечания, в которых указывается важность чистого переменного тока для схемы.

10. Блок мигающих светодиодов

Это самая дешевая и менее энергоемкая схема (достаточно 3-вольтовых кнопочных элементов) из представленной. Схема предназначена для работы в качестве мигающего светодиода для создания эффекта вращения, когда светодиоды расположены правильно. Схема состоит из таймера 555, подключенного как нестабильный мультивибратор с рабочим циклом 50 процентов и частотой 4 Гц, чтобы управлять 6 светодиодами.Другая схема таймера также подключена в качестве инвертора импульсов запуска, чтобы управлять еще 6 светодиодами. Схема устроена так, что микросхемы поглощают ток, потребляемый светодиодами. Подробное объяснение и принципиальная схема доступны в вышеуказанном посте.

11. Регулятор уровня воды

Это одна из самых надежных схем на этом сайте. В схеме используется таймер 555 IC , шесть транзисторов, реле и несколько пассивных компонентов. Схема построена таким образом, что она автоматически переключает двигатель в положение ВЫКЛ, как только вода поднимается выше желаемого уровня.Схема также может использоваться для запуска двигателя, чтобы перекачивать воду в резервуар. В цепи используются четыре датчика, которые подключаются на нижнем уровне, на полууровне, на среднем уровне и на уровне полного резервуара. Уровень воды измеряется с помощью трех транзисторов. Транзисторы остаются выключенными до тех пор, пока уровень воды не превышает четверть уровня. Когда уровень воды касается одного из датчиков (кроме нижнего уровня), соответствующие транзисторы смещаются и включаются. Дальнейшая работа реле, подключенных к транзисторам, и важность таймера 555 можно понять из основной статьи.

12. Цепи светодиодной лампы из лома

Эта простая светодиодная схема основана на преобразовании сломанной или неисправной КЛЛ в энергосберегающую светодиодную лампу. Изображения завершенной схемы и принципиальная схема также представлены в основной статье. Не забудьте взглянуть на различные процедуры, перечисленные для сборки схемы.

Светоизлучающий диод (LED) - рабочий, обозначение цепи, характеристики

Посмотрите видео, приведенное ниже, чтобы лучше понять, как работает светодиод?

Светоизлучающий диод (LED) известен как одно из лучших оптоэлектронных устройств из всей партии.Устройство способно излучать довольно узкую полосу пропускания видимого или невидимого света, когда его внутренний диодный переход достигает прямого электрического тока или напряжения. Видимый свет, который излучает светодиод, обычно бывает оранжевого, красного, желтого или зеленого цвета. Невидимый свет включает инфракрасный свет. Самым большим преимуществом этого устройства является его высокая эффективность преобразования мощности в свет. То есть КПД почти в 50 раз больше, чем у простой вольфрамовой лампы. Также известно, что время отклика светодиода очень быстрое в диапазоне 0.1 микросекунда по сравнению со 100 миллисекундами для вольфрамовой лампы. Благодаря этим преимуществам, устройство широко применяется в качестве визуальных индикаторов и в качестве танцующих световых индикаторов .

Мы знаем, что соединение P-N может соединить поглощенную световую энергию с ее пропорциональным электрическим током. Здесь тот же процесс обратный. То есть переход P-N излучает свет, когда к нему прикладывается энергия. Это явление обычно называют электролюминесценцией, которую можно определить как излучение света полупроводником под действием электрического поля.Носители заряда рекомбинируют в прямом P-N-переходе, когда электроны пересекают N-область и рекомбинируют с дырками, существующими в P-области. Свободные электроны находятся в зоне проводимости энергетических уровней, а дырки - в валентной энергетической зоне. Таким образом, уровень энергии дырок будет меньше уровней энергии электронов. Некоторая часть энергии должна рассеиваться, чтобы рекомбинировать электроны и дырки. Эта энергия излучается в виде тепла и света.

Электроны рассеивают энергию в виде тепла для кремниевых и германиевых диодов.Но в полупроводниках галиий-арсенид-фосфор (GaAsP) и галиий-фосфор (GaP) электроны рассеивают энергию, испуская фотоны. Если полупроводник является полупрозрачным, переход становится источником света, когда он излучается, становясь светоизлучающим диодом (LED). Но когда переход смещен в обратном направлении, светодиод не будет излучать свет, и, наоборот, устройство также может быть повреждено.

Конструктивная схема светодиода показана ниже.

Светодиодная конструкция

Могут использоваться все перечисленные выше полупроводники.Эпитаксиальный слой N-типа выращивают на подложке, а P-область создается с помощью диффузии . P-область, которая включает рекомбинацию носителей заряда, показана вверху. Таким образом, P-область становится поверхностью устройства. Чтобы обеспечить большую площадь поверхности для испускания света, металлические анодные соединения выполняются на внешних краях P-слоя. Чтобы свет t максимально отражался к поверхности устройства, на дно поверхности нанесена золотая пленка.Эта настройка также позволяет обеспечить катодное соединение. Проблема реабсорбции решается включением в устройство куполообразных линз. Все провода в электронных схемах устройства защищены кожухом устройства. Свет, излучаемый устройством, зависит от типа используемого полупроводникового материала. Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают при использовании галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получают при использовании галлий-фосфорного (GaP) полупроводника.

Обозначение цепи светодиода

Обозначение схемы светодиода состоит из двух стрелок, которые указывают излучение, излучаемое диодом.

Обозначение цепи светодиода

Характеристики светодиода

Характеристики светодиода

Кривая напряжение-ток прямого смещения (V-I) и кривая выходных характеристик показаны на рисунке выше. Кривая V-I практически применима в охранной сигнализации .Для получения значительного прямого тока необходимо прямое смещение приблизительно 1 вольт. Второй рисунок используется для представления кривой прямого тока излучаемой мощности. Вырабатываемая выходная мощность очень мала, и, следовательно, эффективность преобразования электрической энергии в лучистую очень низка.

На рисунке ниже показан резистор R серии , подключенный к светодиоду. Как только прямое смещение устройства превышает, ток будет увеличиваться с большей скоростью в соответствии с небольшим увеличением напряжения.Это показывает, что прямое сопротивление устройства очень низкое. Это показывает важность использования внешнего резистора, ограничивающего последовательный ток. Последовательное сопротивление определяется по следующему уравнению.

R серия = (питание В, - В) / I

В питание - Напряжение питания

В - напряжение прямого смещения светодиода

I - Текущий

Схема светодиодов

У коммерческих светодиодов типичное падение напряжения между 1.От 5 до 2,5 вольт или ток от 10 до 50 миллиампер. Точное падение напряжения зависит от тока светодиода, цвета, допуска и так далее.

Светодиод как индикатор

Схема, показанная ниже, является одним из основных применений светодиодов. Схема спроектирована путем включения обратной параллели с нормальным диодом, чтобы предотвратить обратное смещение устройства. Значение последовательного сопротивления должно быть половинным по сравнению с сопротивлением цепи постоянного тока.

LED как индикатор

LEDS дисплеи предназначены для отображения чисел из сегментов.Одной из таких конструкций является семисегментный дисплей, показанный ниже. Любые желаемые цифры от 0 до 9 могут отображаться, пропуская ток через правильные сегменты. Для подключения такого сегмента может использоваться конфигурация общего анода или катода с общим катодом. Оба соединения показаны ниже. Светодиоды включаются и выключаются с помощью транзисторов.

Преимущества светодиодов

  • Для работы светодиода достаточно очень низкого напряжения и тока.
  • Диапазон напряжения - от 1 до 2 вольт.
  • Ток - от 5 до 20 миллиампер.
  • Суммарная выходная мощность будет менее 150 милливатт.
  • Время отклика очень меньше - всего около 10 наносекунд.
  • Устройство не требует времени на нагрев и прогрев.
  • Миниатюрный размер и, следовательно, легкий вес.
  • Имеют прочную конструкцию и, следовательно, выдерживают удары и вибрацию.
  • Срок службы светодиода превышает 20 лет.

Недостатки

  • Небольшое превышение напряжения или тока может повредить устройство.
  • Известно, что устройство имеет гораздо более широкую полосу пропускания по сравнению с лазером.
  • Температура зависит от выходной мощности излучения и длины волны.

светодиодных цепей чейзера / секвенсора | Журнал Nuts & Volts


Так называемый чейзер или секвенсор является одним из самых популярных типов схем управления светодиодами и широко используется в рекламных дисплеях и в «тросовых» дисплеях для беговых огней на небольших дискотеках и т. Д.

По сути, он состоит из синхронизированной ИС или другого электронного блока, который управляет массивом светодиодов таким образом, что отдельные светодиоды (или небольшие группы светодиодов) включаются и выключаются в заранее определенной и повторяющейся последовательности, таким образом создавая визуально привлекательный дисплей, на котором кажется, что одна или несколько световых волн постоянно проходят через цепочку или вокруг кольца светодиодов.

КМОП-микросхема 4017B, вероятно, самая известная и наиболее широко используемая микросхема управления светодиодами, используемая в приложениях чейзера / секвенсора. В этой статье рассматриваются различные практические схемы, основанные на этой конкретной ИС.

4017B ОСНОВНАЯ ИНФОРМАЦИЯ

4017B является членом популярного семейства цифровых КМОП-микросхем 4000B и может использовать любое напряжение питания постоянного тока в диапазоне от 3 до 15 В. На самом деле это микросхема декадного счетчика / делителя с 10 полностью декодированными выходами с защитой от короткого замыкания, каждый из которых может использоваться для непосредственного управления простым светодиодным дисплеем.При желании, различные выходы могут быть подключены обратно к клеммам управления IC, чтобы устройство считало (или делило на) любое число от двух до девяти, а затем либо останавливало, либо повторно запускало другой цикл счета.

ИС 4017B могут быть соединены каскадом для получения либо деления на несколько декад, либо для создания счетчиков с любым желаемым количеством декодированных выходов. Таким образом, 4017B представляет собой исключительно универсальное устройство, которое можно легко использовать для отслеживания или последовательного отслеживания базового светодиодного дисплея практически любой желаемой длины.

Рисунок 1 показывает схему, обозначения контактов и базовую функциональную схему 4017B, а Рисунок 2 показывает временные диаграммы формы сигнала ИС, которая включает пятиступенчатый счетчик Джонсона и имеет ЧАСЫ, СБРОС и ЧАСЫ Входные клеммы INHIBIT.

РИСУНОК 1. Контуры и обозначения контактов (а) и основная функциональная схема; (b) микросхемы декадного счетчика / делителя 4017B.


РИСУНОК 2. Временная диаграмма сигнала 4017B с заземленными клеммами RESET и CLOCK INHIBIT.


Внутренние счетчики увеличиваются на один счет при каждом положительном переходе входного тактового сигнала, когда на клеммах CLOCK INHIBIT и RESET низкий уровень. Девять из 10 декодированных выходов имеют низкий уровень, а остальные выходные - высокий уровень в любой момент времени. Выходы переходят в высокий уровень последовательно, синхронно с тактовым сигналом, причем выбранный выход остается высоким в течение одного полного тактового цикла. Дополнительный сигнал CARRY OUT завершает один цикл для каждых 10 входных циклов тактовой частоты и может использоваться для синхронизации дополнительных микросхем 4017B в приложениях для подсчета нескольких декад.

Обратите внимание, что цикл счета 4017B может быть запрещен установкой высокого уровня на клемме БЛОКИРОВКИ ЧАСОВ (вывод 13), и что высокий сигнал на клемме СБРОС (вывод 15) сбрасывает счетчик на ноль и устанавливает декодированный выходной вывод «0» ( вывод 3) высокий.

A 4017B ЦЕПЬ ИСПЫТАНИЯ СВЕТОДИОДНОГО ВОЖДЕНИЯ

4017B - это универсальная и простая в использовании ИС, которая (как и большинство ИС серии 4000B) имеет выходы с защитой от короткого замыкания, которые демонстрируют несколько удивительные характеристики при управлении нагрузками светодиодного типа. На рис. 3 показана практическая тестовая схема 4017B, которую можно использовать для демонстрации основных действий ИС и характеристик выходного управления. Схема лучше всего построена на макетной плате типа «plugblock», в которой компоненты и провода просто вставляются в блоки с подпружиненными контактами.

РИСУНОК 3. Схема проверки и демонстрации устройства последовательного поиска и контроля последовательности светодиодов 4017B.


В , рис. 3 , таймер IC1 555 (IC1) используется в качестве асимметричного генератора прямоугольных импульсов переменной частоты, который подает синхронизирующие сигналы на входной терминал CLK микросхемы 4017B IC (IC2).Эта форма выходного сигнала обычно имеет высокий уровень, но один раз за цикл на короткое время переключается на низкий уровень, в результате чего загорается светодиод 5. Действия по внутреннему переключению 4017B инициируются, когда этот сигнал снова становится высоким и LED5 выключается. Обратите внимание, что синхронизирующий сигнал подается на микросхему 4017B через съемный канал A и, таким образом, может быть физически прерван при необходимости; R4 и R5 защищают вход 4017B от повреждения, когда линия A разомкнута или положительное соединение питания IC2 разорвано.

В , рис. 3 , положительная линия питания постоянного тока подключена к выводу 16 микросхемы 4017B через внешний многодиапазонный измеритель постоянного тока, который (поскольку ток покоя IC2 пренебрежимо мал) дает прямое считывание тока, потребляемого микросхемой. активная в настоящий момент выходная нагрузка.4017B подключен (через контакты 10 и 15) в режиме «деления на четыре» и последовательно управляет четырьмя наборами выходных нагрузок, которые обозначены от «0» до «3».

Выход «0» принимает форму одного светодиода, когда линия B разомкнута, или короткого замыкания, когда линия B замкнута. Выход «1» представляет собой одиночный светодиод. Выход «2» представляет собой два последовательно соединенных светодиода. Выход «3» представляет собой три последовательно соединенных светодиода. Все светодиоды красного цвета повышенной яркости.

Когда построение цепи , рис. 3, завершено, замкните линию A, разомкните линию B, подключите измеритель на месте и подключите устройство к источнику постоянного тока 9 В.Отрегулируйте RV1, чтобы получить низкую частоту тактирования, отметив, что LED5 кратко мигает во время каждого цикла, и что все остальные светодиоды или группы светодиодов активируются последовательно. Вы, вероятно, будете удивлены, заметив, что все светодиоды дисплея (светодиоды с 1 по 4) работают с почти одинаковой яркостью, и что все выходные нагрузки производят довольно похожие показания тока на тестовом измерителе.

При тестировании цепи , рис. 3, , вы можете проверить отдельные токи нагрузки, дождавшись активации нагрузки, а затем «заморозить» дисплей, открыв канал A.Когда нагрузка «0» активна, ток нагрузки обычно составляет 17,5 мА при разомкнутом звене B или 19 мА при замкнутом звене B; токи нагрузки «2» и «3» обычно составляют 16 мА и 12,5 мА соответственно. Таким образом, при использовании источника питания 9 В ток нагрузки обычно составляет 19 мА при коротком замыкании или 12,5 мА при включении трех последовательно соединенных красных светодиодов. Графики рисунков 4 и 5 помогают объяснить это действие схемы.

РИСУНОК 4. Типичный график прямого тока / напряжения красного светодиода высокой яркости.


РИСУНОК 5. Типичный график зависимости напряжения питания от выходного тока схемы на Рисунке 3 при управлении различными типами нагрузок.


На рис. 4 показан типичный график прямого тока / напряжения красного светодиода высокой яркости. Обратите внимание, что большие изменения прямого тока вызывают относительно небольшие изменения прямого напряжения. Таким образом, когда ток увеличивается с 10 мА до 30 мА, прямое напряжение увеличивается всего на 0,22 В, и в этом случае светодиод, таким образом, действует как нагрузка чистого напряжения (нулевое сопротивление) последовательно с импедансом 11 Ом.На практике это сопротивление варьировалось от 10 до 15 Ом в большей части рабочего диапазона тока светодиода.

Рисунок 5 показывает типичный график зависимости напряжения питания от выходного тока, который применяется к каждому выходу схемы Рисунок 3 при управлении различными типами нагрузок.

Обратите внимание, что каждый выходной каскад CMOS действует как слабо управляемый генератор постоянного тока, у которого выходной ток короткого замыкания определяется значением напряжения питания, но на значение тока возбуждения светодиода влияет фактическое значение Vout каскада.

В схеме , рис. 3, - при использовании источника питания 9 В - Vout равен нулю при включении закороченного выхода, и при этом условии на выходном каскаде вырабатывается 9 В, Iout составляет 19 мА, и, таким образом, 171 мВт рассеивается в выходном каскаде. . Когда, с другой стороны, цепь 9 В управляет тремя последовательно соединенными светодиодами, Iout составляет 12,5 мА, Vout составляет 5,85 В (см. , рис. 4, ), на выходном каскаде создается 3,15 В, и, таким образом, менее 40 мВт. рассеивается в выходном каскаде.

Обратите внимание, что в большинстве таблиц данных КМОП серии 4000B указаны максимально допустимые значения рассеиваемой мощности постоянного тока для микросхемы 4017B как 100 мВт на выходной каскад и 500 мВт на пакет, и эти цифры следует учитывать при экспериментах с Рис. испытательная / демонстрационная схема.

ПРАКТИЧЕСКИЕ ЦЕПИ ЧЕЙЗЕРА / ПОСЛЕДОВАТЕЛЯ 4017B

На рис. 6 показана практическая схема чейзера 4017B с 10 светодиодами, в котором IC1 действует как генератор тактовой частоты с переменной скоростью, а микросхема 4017B подключена к режиму декадного счетчика путем заземления ее БЛОКИРОВКИ ЧАСОВ (вывод 13) и СБРОСА ( контакт 15) клеммы управления. Действие схемы таково, что визуальный дисплей выглядит как движущаяся точка, которая многократно перемещается слева (LED0) направо (LED9) за 10 дискретных шагов, когда на выходах 4017B последовательно повышается высокий уровень и включаются светодиоды.Светодиоды, конечно, не обязательно должны быть подключены по прямой линии; их можно, например, расположить по кругу, и в этом случае будет казаться, что круг вращается.

РИСУНОК 6. Чейзер / секвенсор с 10 светодиодами может использоваться с напряжением питания до 8 В и обеспечивает отображение движущихся точек.


Обратите внимание, что схема , рис. 6, полагается на внутреннее действие 4017B, чтобы ограничить токи светодиодов до безопасных значений, и, таким образом, эту схему можно безопасно использовать с напряжением питания до максимум 8 В без риска превышения Пределы рассеиваемой мощности IC 100 мВт на каждый выходной каскад.

На рисунке 7 показана модифицированная версия вышеупомянутой схемы, в которой токоограничивающий резистор на 470 Ом соединен последовательно с каждым светодиодом, чтобы помочь снизить рассеиваемую мощность ИС до безопасного уровня. Эта схема может использовать любой источник постоянного тока в диапазоне от 6 до 15 В.

РИСУНОК 7. Эта версия чейзера с 10 светодиодами может использоваться с любым источником питания до 15 В.


На рисунке 8 показан вариант схемы, в которой светодиоды используют один токоограничивающий резистор (R3) и который можно с достаточной уверенностью использовать при значениях напряжения питания максимум до 12 В. На рисунке 9 показан возможный эквивалент этой схемы, когда она запитана от источника питания 15 В, и который иллюстрирует ограничения конструкции.

РИСУНОК 8. Эта версия чейзера может использоваться с источниками питания до 12 В максимум.


РИСУНОК 9. Возможный эквивалент схемы на Рисунке 8 при питании от источника питания 15 В.


Действие 4017B таково, что, когда данный светодиод включен, он эффективно заземляет аноды всех других светодиодов; Таким образом, R3 вызывает обратное смещение "выключенных" светодиодов.Из-за низкого номинального обратного напряжения светодиодов это действие может привести к стабилизации одного или нескольких выключенных светодиодов при напряжении около 5 В, что дает результаты, показанные на диаграмме, и, возможно, вызывает перегрузку мощности в активном выходном каскаде ИС. .

Таким образом, когда 4017B используется для управления простыми дисплеями «один светодиод на выход» в режиме движущихся точек, светодиоды могут быть подключены непосредственно к выходам IC, если значения питания ограничены максимумом 8 В, но при напряжениях питания. больше 8В, светодиоды должны быть подключены к выходам IC через токоограничивающие резисторы.Множество альтернативных типов схем светодиодного дисплея 4017B показано на рисунках 10 с по 15 .

АЛЬТЕРНАТИВНЫЕ СВЕТОДИОДНЫЕ ДИСПЛЕИ

Выходные каскады 4017B могут с одинаковой легкостью передавать или потреблять ток. На рис. 10 показано, как можно использовать ИС в режиме стока для отображения движущегося отверстия, в котором девять из 10 светодиодов горят в любой момент времени, а отдельные светодиоды выключаются последовательно. Если светодиоды соединить в виде круга, будет казаться, что круг вращается.Обратите внимание, что, поскольку все светодиоды, кроме одного, горят одновременно, каждый светодиод должен быть снабжен токоограничивающим резистором, чтобы сохранить рассеиваемую мощность ИС в безопасных пределах.

РИСУНОК 10. 10-светодиодный дисплей с подвижными отверстиями.


На практике отображение движущихся точек гораздо более популярно, чем типы движущихся отверстий. При желании, подвижные точечные дисплеи типа , рисунок 6, можно использовать с менее чем 10 светодиодами, просто исключив ненужные светодиоды, но в этом случае будет казаться, что точка перемещается с перерывами или сканирует, поскольку ИС требуется 10 шаги часов для полной последовательности, и все светодиоды, таким образом, будут выключены во время нежелательных шагов.

Если требуется постоянно движущийся дисплей с количеством светодиодов меньше 10, его можно получить, подключив первый неиспользуемый выходной терминал 4017B к его контакту 15 RESET, как показано, например, в схеме с четырьмя светодиодами. из Рисунок 11 .

РИСУНОК 11. Четырехдиапазонный дисплей с непрерывным движением точек.


В качестве альтернативы схему можно сделать так, чтобы она давала прерывистый дисплей с контролируемым числом шагов ВЫКЛЮЧЕНИЯ, просто подключив соответствующий один из нежелательных выходов к контакту 15 RESET.В , фиг. 12, , например, светодиоды отображают четыре шага, а затем четыре шага гаснут, после чего последовательность повторяется, что дает отображение движущихся точек с периодом пустого изображения 50 процентов.

РИСУНОК 12. Индикация с прерывистыми движущимися точками с четырьмя светодиодами и 50% пустым периодом.


На рис. 13 показан довольно необычный и очень привлекательный пятиэтапный секвенсор с четырьмя светодиодами, в котором все четыре светодиода сначала горят, но затем выключаются по одному, пока в конечном итоге (на пятом шаге) все четыре светодиода не погаснут; Детали секвенирования приведены в таблице , рис. 13, .Обратите внимание, что в этой схеме светодиоды эффективно подключены последовательно и что базовая схема не может использоваться для управления более чем четырьмя светодиодами.

РИСУНОК 13. Таблица схем и рабочих характеристик пятиступенчатого последовательного дисплея с четырьмя светодиодами.


На рисунке 14 показан еще один необычный и привлекательный светодиодный дисплей. В этом случае 4017B выполняет последовательность из 10 шагов, при этом LED1 горит для шагов с 0 по 3, LED2 горит для шагов с 4 по 6, LED3 горит для шагов 7 и 8, а LED4 горит для шага 9.Следствием этого действия является то, что визуальный дисплей, кажется, ускоряется от светодиода LED1 к LED4, а не плавно перемещается от одного светодиода к другому. Действие ускорения повторяется в каждом цикле переключения, и циклы повторяются до бесконечности.

РИСУНОК 14. Отображение непрерывного ускорения с четырьмя светодиодами, на котором изображение ускоряется слева направо.


Наконец, На рис. 15 показана схема чейзера с четырьмя банками и пятью шагами с 20 светодиодами, который может использоваться в качестве основы для множества привлекательных светодиодных дисплеев.Обратите внимание, что группа из четырех светодиодов подключена последовательно к каждому из пяти используемых выходов ИС, поэтому четыре светодиода горят в любой момент времени. На каждый включенный светодиод падает примерно 2 В, что дает общее падение на 8 В на каждом блоке включения, и, таким образом, напряжение питания схемы должно быть больше этого значения, чтобы схема работала. В каждом блоке можно использовать большее количество светодиодов, если соответствующим образом увеличить значение напряжения питания.

РИСУНОК 15. Этот чейзер с четырьмя банками и пятью шагами с 20 светодиодами должен использоваться с напряжением питания не менее 9 В.


Одним из наиболее привлекательных и популярных светодиодных дисплеев с секвенсором является тип «светового троса», и Рисунок 16 показывает основной метод создания пятижильного 20-светодиодного светового тросового дисплея, которым может управлять . Рисунок 15 Схема чейзера .

РИСУНОК 16. Основной метод построения пятижильного 20-светодиодного светового троса для использования со схемой на Рисунке 15.


Здесь каждая группа из четырех последовательно соединенных «ступенчатых» выходных светодиодов цепи охотника (рис. 15) образует одну «прядь» светового троса.Имеется пять жил, каждая из которых должна иметь цветовую кодировку, чтобы ее можно было подключить к правильному выходному выводу микросхемы 4017B. В каждой нити четыре светодиода равномерно разнесены друг от друга, но смещены относительно других четырех нитей, так что между всеми 20 светодиодами есть равное расстояние, когда пять жил намотаны вместе (как показано внизу , рис. 16 ), чтобы сформировать законченный световой трос, который обычно продевают через отрезок защитной прозрачной пластмассовой трубки.

Если в световоде этого типа используется фиксированное расстояние (скажем) пять дюймов между светодиодами, его общая длина (с учетом нескольких неиспользованных дюймов на каждом конце) будет около восьми футов.Когда дисплей активен, кажется, что четыре равномерно распределенных световых луча непрерывно проходят по длине световода, который приводится в действие непосредственно с выхода цепи охотника (рис. 15) .

ДИСПЛЕЙ МУЛЬТИПЛЕКСНЫЙ

Основное действие схемы «ускорителя» с четырьмя светодиодами , рис. 14, таково, что кажется, что световой дисплей многократно ускоряется слева направо, всего за 10 тактов для завершения каждой последовательности. Рисунок 17 показывает, как можно изменить схему, чтобы она отображала прерывистый режим, на котором действие визуального ускорения происходит в течение 10 тактовых циклов, но все светодиоды затем гаснут в течение следующих 20 циклов, после чего действие повторяется.Действие схемы следующее.

РИСУНОК 17. Четырехсветный дисплей с прерывистым режимом работы акселератора, на котором ускорение происходит на 10 тактовых шагов каждые 30.


4017B имеет клемму CARRY OUT на контакте 2. Когда IC используется в обычном режиме деления на 10, эта клемма CARRY OUT производит один выходной цикл каждый раз, когда IC завершает подсчет декад. В , фиг. 17, , этот сигнал используется для синхронизации второго 4017B (IC3), который подключен в режиме деления на 3, и его выход «0» подается на базу стробирующего транзистора Q1.Следовательно, в течение первых 10 тактовых циклов последовательности выходной сигнал «0» IC3 является высоким, а Q1 смещен, поэтому IC2 действует базовым образом, уже описанным для , рис. 14, , при этом его светодиоды включаются последовательно и проходят через ток на землю через Q1. Однако после 10-го тактового импульса выход «0» IC3 переходит в низкий уровень и отключает Q1, поэтому светодиоды больше не горят, даже если IC2 продолжает последовательность. В конце концов, после 30-го тактового импульса, выход «0» IC3 снова становится высоким и включает Q1, позволяя отображать действие снова, и так далее.

Схема , рис. 17, - это простой пример мультиплексирования дисплея, в котором IC3 и Q1 используются для выборочного включения или отключения группы светодиодов.

В заключение этой статьи, Рисунок 18 показывает еще один пример схемы мультиплексирования дисплея. В этом случае дисплей состоит из трех строк из шести светодиодов с прерывистой последовательностью, и эти строки последовательно активируются через IC3 и отдельные стробирующие транзисторы, при этом в любой момент времени может быть задействована только одна линия.

РИСУНОК 18. Мультиплексный трехстрочный дисплей с шестью светодиодами и движущимися точками. Точка периодически перемещается по линиям.


Обратите внимание, что базовую схему Рис. 18 можно легко расширить для управления до 10 последовательно активируемых линий, каждая из которых может иметь до 10 выходов для управления светодиодами. Таким образом, расширенная схема может использоваться в качестве чейзера / секвенсора с максимум 100 выходами для управления светодиодами. NV

Схема управления автономными светодиодами

- профессиональные светодиоды

Флуоресцентные vs.Светодиоды

Флуоресценция - это преобразование ультрафиолетового света в видимый свет. Электроны проходят через люминесцентную лампу и сталкиваются с атомами ртути, вызывая высвобождение фотонов ультрафиолетового света. Ультрафиолетовый свет затем преобразуется в видимый свет, когда он проходит через люминофорное покрытие на внутренней стороне стенки стеклянной трубки. Этот двухэтапный процесс преобразования приводит к тому, что около 25% общей энергии, потребляемой лампой, используется для генерации света. Типичная люминесцентная лампа также имеет низкую рабочую температуру лампы (40 ° C) и срок службы около 10 000 часов.Для управления люминесцентной лампой лампе требуется напряжение или ток для предварительного нагрева нитей, высокое напряжение для зажигания и высокочастотный переменный ток во время работы.

Светодиоды

работают по совершенно иному принципу, чем люминесцентные лампы. Отдельные электроны прыгают через p-n переход (из области n-типа в p-тип) полупроводникового материала. «Ширина запрещенной зоны» в некоторых полупроводниках, таких как галлий, очень велика и требует значительной энергии, чтобы заставить электроны прыгать через переход.Когда каждый электрон рекомбинирует с атомом, он испускает частицу света, известную как фотон. Поскольку весь свет излучается в очень маленьком пространстве внизу на стыке, результирующий источник света является точечным источником и требует множества светодиодов для освещения большой площади. Кроме того, тепло внутри светодиода не может рассеиваться самим светодиодом, что приводит к высоким рабочим температурам светодиода и, следовательно, требует радиатора.

Светодиодами

гораздо проще управлять, но они все же имеют свои собственные требования и проблемы.Их не нужно зажигать или предварительно нагревать, но ток должен быть постоянным и соответствовать каждому светодиоду. Кроме того, в зависимости от области применения электрическое соединение со светодиодами может быть гальванически развязано, а может и не потребоваться. Требования к схемам для люминесцентных ламп и светодиодов обобщены для сравнения (Таблица 1).

IRS2530D «DIM8 TM» Управляющая микросхема

Существующие схемы балласта без диммирования включают (Рисунок 1) входной фильтр для блокировки шума, генерируемого балластом, выпрямитель и сглаживающий конденсатор для преобразования входного сигнала линии переменного тока в напряжение шины постоянного тока, управляющую ИС и полумост для создания высокого напряжения. частотно-прямоугольное напряжение и резонансный выходной каскад для предварительного нагрева, зажигания и работы люминесцентной лампы.Дополнительная схема, необходимая для диммирования, включает (Рисунок 1) изолированный интерфейс диммирования от 0 до 10 В постоянного тока, цепь измерения тока для измерения тока лампы и цепь обратной связи с обратной связью, чтобы поддерживать ток лампы в соответствии с настройками пользователя. непрерывно регулируя выходную частоту. Система с обратной связью необходима для регулирования тока лампы из-за нелинейных электрических характеристик люминесцентной лампы.

IRS2530D (Рисунок 2) - это 8-контактная микросхема управления затемнением флуоресцентных ламп на 600 В, которая обеспечивает управление затвором верхней и нижней стороны для полумоста, включает все функции балластного регулятора яркости и защищает схему от линейных и условия отказа нагрузки.В ИС уже используются 6 контактов для очень простых, но необходимых функций: питания и заземления ИС (VCC, COM), а также для управления затвором с высокой и низкой стороны полумоста (VB, HO, VS, LO). Тогда задача состоит в том, чтобы реализовать другие функции - предварительный нагрев, зажигание и затемнение - с помощью только двух оставшихся контактов (VCO, DIM).

При первой подаче напряжения на VCC (обычно 14 В) микросхема выходит из режима UVLO и входит в режим предварительного нагрева / зажигания. Полумост начинает колебаться с максимальной частотой, а внутренний источник тока на выводе VCO начинает линейно заряжать внешний конденсатор (CVCO) от COM (рисунок 3).Выходная частота уменьшается по мере увеличения напряжения ГУН, а нити лампы предварительно нагреваются вторичными обмотками резонансного индуктора. По мере того, как напряжение ГУН увеличивается, частота уменьшается по направлению к резонансной частоте резонансного контура резервуара, а выходное напряжение на лампе увеличивается. Лампа зажигается, когда выходное напряжение превышает пороговое напряжение зажигания лампы, начинает течь ток лампы и ИС переходит в режим затемнения.

В режиме затемнения для измерения переменного тока лампы используется резистор считывания тока (RCS).Это измерение переменного тока затем подключается к опорному току постоянного тока на выводе DIM через конденсатор обратной связи (C2). Затем сигнал AC + DC на выводе DIM сравнивается с COM внутри ИС, и частота регулируется таким образом, что впадины компонента переменного тока постоянно удерживаются на COM (рисунок 4). По мере увеличения или уменьшения задания постоянного тока, в то время как впадины переменного тока удерживаются на COM, амплитуда переменного тока лампы также будет увеличиваться или уменьшаться. Комбинируя опорное напряжение постоянного тока с переменным током лампы, можно использовать один вывод как для опорного сигнала, так и для функций обратной связи, чтобы обеспечить управление регулировкой яркости с обратной связью.

См. Рисунок 4 (см. Журнал LpR)

Новая цепь управления светодиодами

Типовые схемы управления светодиодами спроектированы на основе топологии понижающего, повышающего или обратного хода и используются для генерации постоянного постоянного тока через цепочку из заданного количества светодиодов. Каждая из этих топологий имеет преимущества и недостатки в зависимости от диапазона входного напряжения, количества светодиодов, включенных последовательно, количества параллельных цепочек светодиодов, выходного тока светодиода, если требуется изоляция, если требуется диммирование, эффективности, размера и Стоимость.По этой причине существует множество вариаций схем, чтобы удовлетворить множество различных применений светодиодов. Новая схема представляет собой схему с резонансным режимом, которая была немного изменена по сравнению с флуоресцентными лампами с затемнением. Он предназначен для неизолированных автономных приложений и может управлять одним или несколькими светодиодами последовательно, может быть легко масштабирован для различных уровней тока светодиодов и использует мягкое переключение для повышения эффективности. Новая схема (рис. 5) разработана на базе существующей ИС управления затемнением IRS2530D, а выходной каскад был модифицирован для управления светодиодами вместо люминесцентной лампы.Больше нет необходимости предварительно нагревать и зажигать нагрузку, поэтому резонансный бак был изменен на последовательный тип L-C-LED (вместо последовательного L, параллельного R-C для люминесцентных). Поскольку выходной ток является переменным, к выходу добавлен двухполупериодный мостовой выпрямитель, так что ток всегда течет через светодиоды во время каждого цикла высокочастотного переключения.

Измерение переменного тока по-прежнему выполняется с помощью резистора (RCS), который помещается между нижней частью выпрямителя и COM, и дает прямое измерение переменного тока амплитуды двухполупериодного выпрямленного тока светодиода.Это измерение переменного тока затем передается на вывод DIM через резистор RFB и конденсатор CFB. Контур управления диммированием IRS2530D затем поддерживает регулировку амплитуды тока светодиода, непрерывно регулируя частоту полумостовой схемы переключения таким образом, чтобы номинальное среднеквадратичное значение. Ток светодиодов поддерживается в соответствии со спецификациями производителя. Если ток светодиода уменьшается, петля снижает частоту. Это увеличит усиление резонансного контура резервуара и увеличит ток светодиода.Если ток светодиода увеличивается, то петля увеличивает частоту. Это уменьшит усиление резонансного контура резервуара и уменьшит ток светодиода. Контур управления диммированием поддерживает постоянный ток светодиода в зависимости от линии, нагрузки и колебаний температуры и будет работать для одного светодиода или нескольких последовательно соединенных светодиодов.

См. Рисунок 5 (см. Журнал LpR)

Результаты экспериментов

Результаты экспериментов показывают формы сигналов при нормальных условиях запуска и работы (рисунки 6 и 7).Когда напряжение сети переменного тока подается впервые, VCC заряжается и ИС включается. Выходная частота начинается с максимальной частоты ИС и спускается к резонансной частоте последовательного резонансного контура L-C-LED. Развертка частоты выполняется конденсатором CVCO на выводе VCO. Ток светодиода (измеряемый через резистор RCS) увеличивается с уменьшением частоты. Это приводит к тому, что амплитуда сигнала переменного тока на выводе DIM также увеличивается до тех пор, пока нижний предел сигнала переменного тока не достигнет COM (рисунок 6).Затем ИС переходит в режим затемнения и включает петлю затемнения. Контур диммирования непрерывно регулирует выходную частоту для поддержания минимума сигнала переменного тока на выводе DIM на COM и, следовательно, поддерживает постоянную амплитуду тока светодиода. Ток светодиода (рис. 7) является двухполупериодным выпрямленным и работает на частоте, в два раза превышающей частоту узла коммутации полумоста (вывод VS). Форма кривой тока светодиода синусоидальная из-за резонансного поведения цепи. Это помогает поддерживать текущий коэффициент амплитуды на низком уровне, так что номинальный светодиод r.РС. ток достигается без чрезмерных пиковых токов.

IRS2530D также включает дополнительную схему для защиты от любых неисправностей линии и нагрузки. К ним относятся обрыв сети переменного тока, обрыв цепи (отсутствие нагрузки или неисправность светодиода) и короткое замыкание.

См. Рисунок 6 (см. Журнал LpR)

См. Рисунок 7 (см. Журнал LpR)

Заключение

Новая автономная схема управления светодиодами проста и обеспечивает хорошее регулирование постоянного тока светодиодов.Его легко масштабировать для различных диапазонов входного напряжения и уровней тока светодиодов, а также можно настроить количество светодиодов, подключенных к выходу. IRS2530D успешно управляет схемами как для люминесцентных, так и для светодиодных систем. ИС объединяет полный контроль в недорогом 8-контактном решении, а контур управления обеспечивает хорошие характеристики постоянного тока во всех условиях линии и нагрузки, а ИС обнаруживает все неисправные состояния и безопасно отключает цепь. Дополнительные улучшения схемы, которые следует учитывать, включают включение / выключение затемнения светодиодов с помощью ШИМ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *