Схема импульсного регулируемого блока питания: ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП - зарядное для автомобильных АКБ.

Содержание

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию - соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый - 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с "дежурки" (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ


Импульсный блок питание схема самостоятельной сборки

Импульсный блок питание схема-1Импульсный блок питание схема-1

Импульсный блок питание, схема которого представлена в этой статье, собран на хорошо известной микросхеме IR2153 и предназначен для использования в усилителе мощности от 300 Вт до 500 Вт.

Благодаря исключительной энергоэффективности и отличной общей производительности таких устройств они в настоящее время очень востребованы на рынке. Импульсный источник питания постоянного тока (также известный как импульсный источник питания) регулирует выходное напряжение посредством процесса, называемого широтно-импульсной модуляцией (ШИМ).


Процесс ШИМ может генерировать некоторый высокочастотный шум, однако позволяет создавать импульсные источники питания с очень высоким КПД и малым форм-фактором. Благодаря хорошей конструкции импульсный источник питание, схема которого может иметь отличную регулировку нагрузки.

Представленный здесь источник питания имеет следующие особенности:

  • В первичной обмотке данного трансформатора, а также в силовом тракте выходного напряжения установлена эффективная система защита от КЗ.
  • Мягкий старт ИБП.
  • Защита входной цепи, с помощью варистора предотвращает схему от бросков сетевого напряжения превышающего максимальное значение, а также от случайного подключения 380v.
  • Особенность данной схемы заключается в ее простоте и доступности деталей.

Технические характеристики импульсный блок питание (данные приводятся именно для этой модели):

  • Номинальная мощность на выходе — 300W
  • Предельная мощность на выходе — 500W
  • Номинальная рабочая частота — 50кГц
  • Напряжение в выходной цепи — 2х35v (выходное напряжение можно создать любое, исходя из числа витков на трансформаторе).
  • КПД — составляет 86%, опять же в зависимости от сердечника трансформатора.

Схема ИБПСхема ИБП

Примечание: в этом устройстве задействован стандартный модуль управления импульсным блоком питания, схема которого скопирована из даташита на IR2153.

Схема импульсного блока питания имеет функцию защиты от возможной перегрузки БП и короткого замыкания в цепях питания. При этом, узел защиты обеспечивает подстройку требуемого порога срабатывания, путем установки необходимого значения тока на резисторе R10. Встроенный светодиод HL1 сигнализирует о включении защиты в момент появления нештатной ситуации. В том случае, когда сработала защита, указывая на неполадки в устройстве, то силовые цепи ИИП отключаются.

Сам же блок питания может прибывать в таком состоянии бесконечно долго, так как в этот момент ток потребляемый устройством, практически равен току холостого хода прибора. В представленном здесь источнике питания порог защиты установлен на отключение силовой цепи при превышении мощности более 310 Вт в нагрузке.

Такая технология построения защитной функции дает гарантию, что БП не пострадает в следствии перегрузки, которая влечет за собой перегрев устройства. В данной модели ИБП, функцию токового датчика выполняют постоянные резисторы, последовательно включенные в цепь первичной обмотки импульсного трансформатора. Такой вариант использования гасящих резисторов позволил обойтись без установки дополнительного трансформатора по току.

Принцип работы схемы защиты такой: в случае короткого замыкания или чрезмерной нагрузки, напряжение на базе транзистора VT1, поступающее через сопротивление R11, может составлять от 0,5v до 0,8v, в следствии чего сработает защита. При этом питающее напряжение микросхемы IR2153 за счет шунтирования будет переключено на «землю». Тем самым, автоматически будет отключен драйвер и сам блок питания. После устранения проблемы в схеме БП, повлекшая за собой отключение устройства, подача напряжения питания на драйвер, также автоматически включится. То есть, блок питания начнет работать в прежнем режиме.

Схема импульсного блока питания обладает функцией мягкого старта, а именно, при включении устройства в сеть, встроенная цепочка защиты созданная на резисторе R6, лимитирует пусковой ток. Это существенно оберегает силовые ключи от пробоя и продлевает срок их службы.

Далее, этим урезанным током происходит зарядка электролитического конденсатора C10 и остальных емкостей во вторичной цепи. Данный процесс выполняется за несколько долей секунд, после того как все емкости будут полностью заряжены и ток потребления станет минимальным, включается реле К1 и замыкает гасящий резистор R6. Таким образом полный ток начнет поступать в схему устройства, обеспечивая его работу на заданную мощность.

Драйвер, через цепочку, собранную на диоде и гасящим сопротивлении, получает питающее напряжение прямо от сети 220v. Отличие этой схемы заключается в том, что в стандартных схемах запитка драйвера выполняется от цепи +310v, из точки после выпрямителя, а здесь непосредственно от 220v. Тем самым мы получаем несколько положительных моментов:

  1. Мощность гасящего резистора будет значительно снижена, тем самым уменьшается выделение общего количества тепла на печатной плате у увеличивается суммарный КПД устройства.
  2. Питающее напряжение на драйвер поступает с незначительным уровнем пульсаций, что не скажешь о подачи напряжения по тракту +310v.

Во входной цепи блока питания расположен варистор, который предназначен для контроля скачков сетевого напряжения, превышающего максимальное значение. В случае возникновения нештатной ситуации в силовой цепи БП, на варисторе моментально уменьшается его собственное сопротивление, что приводит к короткому замыканию и сгоранию плавкого предохранителя F1.

Ниже предлагается описание как я испытывал на максимальной мощности собранный мной импульсный блок питание, схема которого представлена выше.

Импульсный блок питание схема-3Импульсный блок питание схема-3

В процессе тестирования БП я использовал эквивалент нагрузки собранный на четырех керамических резисторах проволочного типа, с мощностью рассеивания 25 Вт. При этом эти сопротивления я размещал в коробке с чистой водой для более интенсивного охлаждения. Через 1 час работы устройства на максимальном режиме, вся эта чистая вода приобретает ржавый цвет, в следствии подъема наверх различных примесей. В виду прохождения большого тока через резисторы, вода в емкости интенсивно испарялась, так как ее температура доходила почти до 100 градусов.

Импульсный блок питание схема-4Импульсный блок питание схема-4

В представленном здесь импульсном блоке питания я задействовал трансформатор, который собственноручно изготовил на магнитопроводе EPCOS ETD29. Первичная обмотка трансформатора выполнена из 47 витков намотанных в два прохода эмаль-проводом сечением 0,8 мм². Четыре вторичные обмотки содержат по 12 витков каждая и намотанные в один ряд проводом такого же сечения. С первого взгляда можно усомнится в правильности выбора сечения провода, но это ошибочное мнение.

Чтобы гарантировать корректную работу для этого источника питания обеспечивающий питающим напряжением усилитель мощности низкой частоты, такого сечения провода в обмотках трансформатора вполне хватает. Так как мощность, которую потребляет усилитель существенно ниже предельной. Испытание блока питания при длительной его работе на нагрузку составленной из резисторов и выходной мощностью 210W показало, что нагрев трансформатора составил всего около 43 градусов.

Примечание: если потребуется поднять выходное напряжение выше 45v, то тогда нужно будет поменять сдвоенные диоды Шотки VD5 — VD6, установленные в выходном тракте на более высоковольтные.

Кроме этого, чтобы поднять выходную мощность нужно использовать трансформатор с большим по площади сечения магнитопроводом и усиленными обмотками.

Здесь показана готовая к монтажу печатная плата выполненная ЛУТом:

Печатная платаПечатная плата

Печатка с другой стороныПечатка с другой стороны

Печатная плата имеет следующие размеры: 188 х 88 мм. Был использован стеклотекстолит с усиленной медью, составляющей 50 мкм, обычно используется 35 мкм, хотя можно применять и стандартную толщину, только при этом необходимо хорошо облудить токопроводящие дорожки и контактные площадки.

Перечень радиодеталей

Перечень деталей-7Перечень деталей-7

Перечень деталей-8Перечень деталей-8

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30АСхема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Скачать схему блока питания с регулировкой тока и напряжения Скачать

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает  ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор  выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор  напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30АПечатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Скачать печатную плату блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А Скачать

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Радиатор с транзисторами

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторовПечатная плата блока резисторов

Скачать печатную плату блока резисторов Скачать

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Блок питания с регулировкой тока и напряжения

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Блок питания с регулировкой тока и напряжения

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятораСхема подключения вентилятора

Скачать схему подключения вентилятора Скачать

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к регулируемому блоку питанияСхема подключения китайского вольтметра амперметра к блоку питания

Скачать схему подключения китайского вольтметра амперметра Скачать

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует  напряжение. Как работает ограничение тока смотрите в видеоролике.

Блок питания с регулировкой тока и напряжения

Как заряжать автомобильный аккумулятор?

Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

Зарядное устройство для автомобильного аккумулятора

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Схема блока питания с регулировкой тока и напряжения 2.4...28В 15АСхема блока питания с регулировкой тока и напряжения 2.4…28В 15А

Скачать схему блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А Скачать

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15АПечатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Скачать печатную плату блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А Скачать

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Из чего состоит импульсный блок питания часть 3

Что вообще такое - инвертор.
Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.

Инвертор состоит из двух основных узлов.
ШИМ контроллера.

А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.

Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.

Микросхема, жменька деталей, вот и весь ШИМ контроллер.

В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.

Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.

Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную "кренку" купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.

Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.

Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.

При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве "электронного трансформатора" для галогенных ламп.

Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.

Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.

По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.

Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.

Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.

Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.

Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.

В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.

Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.

Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.

Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.

Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.

Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.

Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.

Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.

Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.

Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.

Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.

Для примера ширина импульсов при небольшой нагрузке.

Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.

Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.

Запас необходим для компенсации снижения входного напряжения.

Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо "мертвое" время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.

Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.

На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.

Если немного упростить картинку, то будет примерно так:
1 и 2, стабилизатор питания и источник опорного напряжения.
3. Генератор импульсов, задает частоту работы контроллера.
4. Два компаратора, один обычно используется для стабилизации тока, второй - напряжения.
5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
6. Узел сложения всех сигналов.
7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.

Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.

В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.

Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.

Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
Так получается четыре варианта исполнения этого контроллера.

Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.

Типовая схема блока питания с этой микросхемой выглядит примерно так.

Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.

Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.

Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.

Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.

Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.

Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.

Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.

Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.

Кроме того я и сам их очень активно использую уже наверное лет 15.

Китайские производители также не отстают, выпуская свои варианты подобных микросхем.

Которые довольно успешно применяют в небольших блоках питания

Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.

В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁

Несколько ссылок, на полезные обзоры, которые упоминались в видео.
Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
12 Вольт 6-8 Ампер блок питания, который приятно удивил
12 Вольт 5 Ампер блок питания или как это могло быть сделано
DC-DC преобразователь, как это иногда бывает
S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
Блоки питания, маленькие и очень маленькие

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2 Значение резистора R1
150 180 220 240 270 330 370 390 470
100 2,08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1,88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1,82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3,25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2,50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5,17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3,83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11,25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6,32 6,06 5,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Схема источника питания,блока питания,импульсного, и зарядные устройства
Подробности

    У многих дома лежит старый принтер с поломанной печатающей головкой, или по каким то иным причинам. Кто то просто выкидывает, не подразумевая что в нем есть хорошие детали, из которых можно что нибудь смастерить.

 В данной статье мы рассмотрим то, как сделать своими руками регулируемый блок питания из БП от принтера.

Подробнее...

Подробности

блок питания из лампочки     Если понадобился блок питания, нет навыков в радиотехнике. Нашлось решение в том, как сделать своими руками блок питания из энергосберегающей лампочки.

Подробнее...

Подробности

блок питания из лампочки    Это лабороторный блок питания от 0 до 30вольт на выходе. Регулируется это все подстроечным резистором. Для простоты, индикатор тока и напряжения, был приобретен на всем известном китайском сайте.

Подробнее...

Подробности

зарядное устройство из компьютерного блока питания своими руками

блок питания из лампочки

 

В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.

И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП - зарядное для автомобильных АКБ.

 

Подробнее...

Подробности

Блок питания своими руками

 

блок питания своими руками

Многие устройства требуют 2-х канального,  или как его ещё называют двухполярного питания. В простеёшем варианте можно обойтись предлагаемой схемой блока питания своими руками, которая обеспечивает стабильную регулировку и поддержание при разных токах двухполярного напряжения в диапазоне от ±1.5 В до ±17 В. Она основана на линейных регуляторах напряжения LM317/LM337, которые имеют защиту от короткого замыкания.

 

 

 

Подробнее...

Подробности

Блок питания 0-30 Вольт своими руками

блок питания своими руками

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема - блок питания. .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Подробнее...

Подробности

Схема импульсного блока питания на 600Вт для УНЧ

блок питания

 

При сборке мощных усилителей, кто собирал, знает что нужен для питания мощный блок питания, а как известно габариты трансформаторов в них очень дорогие, и при этом добавляют значительный вес.

Блок питания в этой статье обладает мощностью подходящей для многих УНЧ, так как его мощность 600Вт, но можно использовать и в других целях его, можно сделать запросто своими руками.

Подробнее...

Подробности

Регулируемый блок питания на транзисторах

блок питания своими руками

 

Каждый радиолюбитель, особенно когда начинает заниматься радиотехникой, хочет собрать своими руками блок питания где можно было бы регулировать напряжение на выходе.

Так как все предворительно собранные схемы, нужно на чем то проверять,и плавно подовать напряжение и просто что бы неприходилось собирать каждый раз блок питания на определенное напряжение.

Подробнее...

Подробности

Импульсный блок питания на IR2151-IR2153

импульсный блок питания своими руками Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

 

 

 

 

Подробнее...

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

Схема БП с регулировкой тока и напряжения

   Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ - плата печатная

   Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

Самодельный БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

   Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Индикатор для блока питания стрелочный

   Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Делаем простой БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Плёнка - самоклейка типа "бамбук". Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Дополнения от BFG5000

   Максимальный ток ограничения можно сделать более 10 А. На кулер - кренка 12 вольт плюс температурный регулятор оборотов - с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ - появляется прирост проходящей мощности.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ своими руками

   Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 - поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

   Форум по БП

   Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ


Линейный стабилизированный и импульсный источник питания | ОРЕЛ

Бытовые электронные устройства, особенно те, которые оснащены интегральными схемами, требуют надежного источника постоянного напряжения, который может обеспечивать питание в любое время без каких-либо сбоев. В этом блоге мы рассмотрим две топологии проектирования блоков питания для вашего следующего проекта: линейные регулируемые и импульсные источники питания. Источник питания, который вы выбираете, в конечном итоге сводится к вашим требованиям к эффективности, пространству, регулированию мощности, времени переходного процесса и стоимости.

линейный стабилизированный источник питания

Линейные регуляторы были предпочтительными источниками питания до 1970-х годов для преобразования переменного тока (AC) в постоянный постоянный ток (DC) для электронных устройств. Хотя этот тип блока питания сегодня не используется так широко, он все же является лучшим выбором для приложений, требующих минимального шума и пульсации.

linear-regulated-power-supplies

Они могут быть громоздкими, но источники питания с линейным регулированием не имеют шума. (Источник изображения)

Как они работают

Основным компонентом, который позволяет линейному регулятору функционировать, является стальной или железный трансформатор.Этот трансформатор обеспечивает две функции:

  • Он действует как барьер для отделения входа высокого напряжения переменного тока от входа низкого напряжения постоянного тока, который также отфильтровывает любые шумы, попадающие в выходное напряжение.
  • Снижает вход переменного тока со 115 В / 230 В до приблизительно 30 В, который затем можно преобразовать в постоянное постоянное напряжение.

Напряжение переменного тока сначала понижается трансформатором, а затем выпрямляется несколькими диодами. Затем он сглаживается до низкого напряжения постоянного тока парой больших электролитических конденсаторов.Это низкое напряжение постоянного тока затем регулируется как постоянное выходное напряжение с использованием транзистора или интегральной схемы.

power-supply-with-a-linear-regulator

Вот блок питания с линейным регулятором. (Источник изображения)

Регулятор напряжения в линейном источнике питания действует как переменный резистор. Это позволяет изменять значение выходного сопротивления в соответствии с требованиями к выходной мощности. Поскольку регулятор напряжения постоянно сопротивляется току для поддержания напряжения, он также действует как устройство рассеивания мощности.Это означает, что полезная мощность постоянно теряется в виде тепла для поддержания постоянного уровня напряжения.

Трансформатор уже является крупным компонентом на печатной плате (PCB). Из-за постоянной мощности и рассеяния тепла, для линейного стабилизатора питания потребуется радиатор. Эти два компонента добавляют к очень тяжелому и громоздкому устройству по сравнению с небольшим форм-фактором импульсного источника питания.

Предпочтительные приложения

Линейные регуляторы

известны своей низкой эффективностью и большими размерами, но они обеспечивают бесшумное выходное напряжение.Это делает их идеальными для любого устройства, которое требует высокочастотных и с низким уровнем шума, таких как:

  • Цепи управления
  • Малошумящие усилители
  • Процессоры сигналов
  • Автоматизированное и лабораторное испытательное оборудование
  • Датчики и схемы сбора данных

Преимущества и недостатки

Линейные регулируемые источники питания

могут быть громоздкими и неэффективными, но их низкий уровень шума идеально подходит для чувствительных к шуму приложений. Некоторые преимущества и недостатки для этой топологии включают:

Преимущества

  • Простое приложение .Линейные регуляторы могут быть реализованы как единое целое и добавлены в схему только с двумя дополнительными фильтрующими конденсаторами. Это позволяет инженерам любого уровня квалификации легко планировать и проектировать с нуля.
  • Низкая стоимость . Если вашему устройству требуется выходная мощность менее 10 Вт, тогда затраты на компоненты и производство намного ниже по сравнению с импульсными источниками питания.
  • Низкий уровень шума / пульсации . Линейные регуляторы имеют очень низкую пульсацию выходного напряжения и высокую пропускную способность.Это делает их идеальными для любых чувствительных к шуму приложений, включая устройства связи и радио.

Недостатки

  • Ограниченная гибкость . Линейные регуляторы могут использоваться только для понижения напряжения. Для источника переменного и постоянного тока трансформатор с выпрямителем и фильтрацией должен быть размещен перед линейным источником питания, что увеличит общие затраты и усилия.
  • Ограниченные выходы . Линейные регулируемые источники питания обеспечивают только одно выходное напряжение.Если вам нужно больше, вам нужно будет добавить отдельный линейный регулятор напряжения для каждого требуемого выхода.
  • Плохая эффективность . Среднее линейное регулируемое устройство достигает КПД между 30% и 60% благодаря рассеиванию тепла. Это также требует добавления радиатора, который добавляет к размеру и весу устройства.

В этот день энергосберегающих устройств плохая оценка эффективности линейного регулируемого источника питания может быть убийцей сделки. Обычный линейный стабилизированный источник питания будет работать с эффективностью около 60% для выхода 24 В.Когда вы рассматриваете входную мощность 100 Вт, вы видите потерянную мощность 40 Вт.

Прежде чем рассмотреть возможность использования линейного регулируемого источника питания, мы настоятельно рекомендуем учитывать потери мощности, которые вы получаете от входа к выходу. Вы можете быстро оценить эффективность линейного регулятора по следующей формуле:

linear-regulator-formula

Импульсный источник питания (SMPS)

Импульсные источники питания были введены в 1970-х годах и быстро стали самым популярным способом подачи электропитания постоянного тока на электронные устройства.Что делает их такими замечательными? По сравнению с линейными регуляторами их высокая эффективность и производительность выделяются.

switching-mode-power-supply

Ваш типичный адаптер переменного тока включает в себя импульсный источник питания. (Источник изображения)

Как они работают

Импульсный источник питания регулирует выходное напряжение с широтно-импульсной модуляцией (ШИМ). Этот процесс создает высокочастотный шум, но он обеспечивает высокую эффективность в небольшом форм-факторе. При подключении к сети переменного тока 115 В или 230 В переменного тока сначала выпрямляются и сглаживаются с помощью набора диодов и конденсаторов, которые обеспечивают высокое напряжение постоянного тока.Это высокое напряжение постоянного тока затем снижается с помощью небольшого ферритового трансформатора и набора транзисторов. Процесс понижения по-прежнему сохраняет высокую частоту переключения между 200 кГц и 500 кГц.

Низкое напряжение постоянного тока, наконец, преобразуется в постоянный выход постоянного тока с другим набором диодов, конденсаторов и катушек индуктивности. Любое регулирование, необходимое для поддержания постоянного выходного напряжения, обрабатывается путем регулировки ширины импульса высокочастотного сигнала. Этот процесс регулирования работает через цепь обратной связи, которая постоянно контролирует выходное напряжение и при необходимости контролирует отношение включения / выключения сигнала ШИМ.

Switching-power-supply

Вот импульсный источник питания, на тонну больше деталей, чем линейно регулируемый. (Источник изображения)

Предпочтительные приложения

Чаще всего вы найдете импульсные источники питания, используемые в приложениях, где важны срок службы батареи и температура, например:

  • Электролиз, обработка отходов или применение топливных элементов
  • Двигатели постоянного тока, игровые автоматы, авиационные и морские применения
  • R & D, производство и тестирование оборудования
  • Зарядка аккумуляторов для литий-ионных аккумуляторов, используемых в авиации и транспортных средствах
  • Процессы гальванизации, анодирования и электроформования

Преимущества и недостатки

Импульсные источники питания могут иметь более высокую эффективность, чем линейные регуляторы, но их шум делает их плохим выбором для приложений радиосвязи и связи.Некоторые преимущества и недостатки для этой топологии включают:

Преимущества

  • Малый форм-фактор . Понижающий трансформатор в SMPS работает на высокой частоте, что, в свою очередь, уменьшает его объем и вес. Это позволяет импульсному источнику питания иметь гораздо меньший форм-фактор, чем линейные регуляторы.
  • Высокая эффективность . Регулирование напряжения в импульсном источнике питания осуществляется без отвода избыточного количества тепла.Эффективность SMPS может достигать 85% -90%.
  • Гибкие приложения . К переключающему источнику питания могут быть добавлены дополнительные обмотки для обеспечения более одного выходного напряжения. Изолированная от трансформатора SMPS также может обеспечивать выходные напряжения, которые не зависят от входных напряжений.

Недостатки

  • Сложный дизайн . По сравнению с линейными регуляторами планирование и проектирование импульсного источника питания обычно предназначены для специалистов по энергетике.Это не лучший источник питания для выбора, если вы планируете создать свой собственный без тщательного изучения или опыта.
  • Высокочастотный шум . Операция переключения MOSFET в импульсном источнике питания обеспечивает высокочастотный шум в выходном напряжении. Это часто требует использования РЧ-экранирования и фильтров электромагнитных помех в чувствительных к шуму устройствах.
  • Более высокая стоимость . Для более низкой выходной мощности 10 Вт или менее дешевле использовать линейный стабилизированный источник питания.

Выключатели питания остаются здесь и являются предпочтительным источником питания для приложений, которые не чувствительны к шуму. Это включает в себя такие устройства, как зарядные устройства для мобильных телефонов, двигатели постоянного тока и многое другое.

Сравнение линейного регулятора

и SMPS

Теперь мы рассмотрим окончательное сравнение между линейными регулируемыми и импульсными источниками питания при сравнении друг с другом. Некоторые из наиболее важных требований, которые необходимо учитывать, включая размер / вес, диапазон входного напряжения, коэффициент полезного действия и уровень шума и другие факторы.Вот как это ломается:

Как спроектировать свой собственный Этот вопрос не входит в этот блог, чтобы объяснить, как спроектировать линейный регулируемый или импульсный источник питания. Однако есть несколько руководств, которыми мы хотели бы поделиться. Имейте в виду, что дизайн SMPS требует высокого уровня сложности и не рекомендуется для начинающих разработчиков электроники. Руководство по проектированию линейных регулируемых источников питания

Руководства по проектированию источников питания с переключением

Power OnMost электронные устройства в наши дни должны преобразовывать сеть переменного тока в постоянное выходное напряжение постоянного тока.Для этой цели необходимо рассмотреть две топологии: линейные регулируемые и импульсные источники питания. Линейная регулировка идеально подходит для приложений, где требуется низкий уровень шума, тогда как импульсные источники питания лучше подходят для портативных устройств, где важны срок службы и эффективность батареи. Решая, какую топологию выбрать, всегда учитывайте требуемый рейтинг эффективности, форм-фактор, выходную регулировку и требования к шуму. Готовы создать свой первый линейный регулируемый или импульсный источник питания? Попробуйте Autodesk EAGLE бесплатно сегодня!

Линейные регулируемые источники питания Импульсные источники питания
Размер Линейный блок питания 50 Вт, типично 3 x 5 x 5.5 ” Импульсный источник питания 50 Вт, типично 3 x 5 x 1 "
Вес Линейный блок питания 50 Вт - 4 фунта Импульсный источник питания 50 Вт - 0,62 фунта
Диапазон входного напряжения 105 - 125 В переменного тока и / или

210 - 250 В переменного тока

90 - 132 В переменного тока или 180 - 264 В переменного тока без PFC

90 - 264 В переменного тока с PFC

Эффективность Обычно 40% -60% Обычно 70% -85%
EMI Низкий Высокий
Утечка Низкий Высокий
Схемотехника Умеренная сложность, может быть разработан с направляющими Высокая сложность, требует специальных знаний
Регулировка нагрузки 0.От 005% до 0,2% от 0,05% до 0,5%
Правило линии от 0,005% до 0,05% от 0,05% до 0,2%
Количество деталей Низкий, требуется только регулятор и фильтрация ввода / вывода Высокий, требуется коммутатор, демпфер, трансформатор, конденсаторы, сеть обратной связи и т. Д.
,

Как сделать солнечную инверторную цепь

У нас ограничены природные ресурсы, и мы тоже используем их для производства электроэнергии. Вот почему большое внимание уделяется производству и использованию чистой энергии. Сегодня в этом проекте мы увидим, как электричество может генерироваться солнечным светом, как оно может храниться в виде постоянного тока, а затем как оно преобразуется в переменный ток для управления бытовыми приборами.

На солнечной электростанции солнечная энергия преобразуется в электрическую энергию с помощью фотоэлектрических солнечных панелей, а затем генерируемый постоянный ток (постоянный ток) сохраняется в батареях, которые затем преобразуются в переменный ток (переменный ток) солнечными инверторами.Затем этот переменный ток подается в коммерческую электрическую сеть или может напрямую поставляться потребителю. В этом уроке мы покажем, как сделать Small Solar Inverter Circuit для бытовой техники .

Здесь Микросхема SG3524 является основным компонентом для создания солнечного инвертора. Он имеет полную схему управления широтно-импульсным модулятором (ШИМ). Он также имеет все функции для создания регулируемого источника питания. Микросхема SG3524 предлагает улучшенную производительность и требует меньше внешних деталей при создании импульсных источников питания.

Solar Inverter Circuit Block Diagram

SG3524 - Регулирующие широтно-импульсные модуляторы

SG3524 включает в себя все необходимые функции для разработки импульсного регулятора и инвертора. Эта ИС также может быть использована в качестве элемента управления для мощных приложений.

Некоторые из применений микросхемы SG3524:

  • Преобразователи постоянного тока в постоянный с трансформатором
  • Удвоители напряжения без использования трансформатора
  • Приложения для преобразования полярности
  • Методы широтно-импульсной модуляции (ШИМ)

Эта единственная ИС состоит из встроенного стабилизатора, программируемого генератора, усилителя ошибок, триггера с импульсным управлением, двух незафиксированных транзисторов, компаратора с высоким коэффициентом усиления и схемы ограничения и отключения по току.

IC SG3524

TIP41 Мощный NPN Транзистор

TIP41 - это силовой транзистор NPN общего назначения с высокой скоростью переключения и улучшенным коэффициентом усиления, в основном используемый для приложений линейной коммутации средней мощности. Из-за высокого рейтинга V CE , V CB и V EB , который составляет 40 В, 40 В и 5 В соответственно, мы использовали этот транзистор для схемы инвертора. Кроме того, он имеет максимальный ток коллектора 6А.

Здесь, в этой схеме эти транзисторы используются для , управляющих повышающим трансформатором 12-0-12 .

TIP41 High Power NPN transistor

Требуемый материал

  • SG3254 IC
  • Солнечные панели
  • TIP41 Мощный NPN Транзистор
  • Резисторы (4 Ом, 100 кОм, 1 кОм, 4,7 кОм, 10 кОм, 100 кОм)
  • Конденсаторы (100 мкФ, 0,1 мкФ, 0,001 мкФ)
  • 12-0-12 Step-Up-трансформатор
  • Соединительные провода
  • макет

принципиальная схема

Solar Inverter Circuit Diagram

Solar Inverter Circuit Hardware

Работа солнечной инверторной цепи

Первоначально солнечная панель заряжает аккумуляторную батарею, а затем батарея подает напряжение на схему инвертора.Чтобы узнать больше о зарядке аккумулятора с помощью солнечной панели, следуйте этой схеме. Здесь мы используем RPS вместо аккумуляторной батареи.

Solar Inverter Circuit in action

Цепь состоит из микросхемы SG3524, которая работает с фиксированной частотой, и эта частота определяется 6 -м и 7 -ом выводом IC, то есть RT и CT. RT устанавливает зарядный ток для ТТ, поэтому на ТТ существует линейное линейное напряжение, которое дополнительно подается на встроенный компаратор.

Для обеспечения опорного напряжения в цепи SG3524 имеет встроенный регулятор 5V.Сетевой делитель напряжения создается с помощью двух резисторов 4.7k Ом, который подает опорное напряжение для встроенного усилителя ошибки. Затем усиленное выходное напряжение усилителя ошибки сравнивается с линейным линейным изменением напряжения на ТТ с помощью компаратора, в результате чего создается импульс ШИМ (широтно-импульсная модуляция).

Этот ШИМ далее подается на выходные транзисторы через триггер с импульсным управлением. Этот триггер импульсного рулевого управления синхронно переключается на выходе встроенного генератора.Этот импульс генератора также действует как импульс гашения, чтобы гарантировать, что оба транзистора никогда не включаются одновременно во время переходов. Значение CT контролирует длительность импульса гашения.

Теперь, как видно на принципиальной схеме, контакты 11 и 14 подключены к транзисторам TIP41 для возбуждения повышающего трансформатора. Когда выходной сигнал на выводе 14 ВЫСОКИЙ, транзистор Т1 включается, и ток течет от источника к земле через верхнюю половину трансформатора.И когда выходной сигнал на выводе 11 ВЫСОКИЙ, транзистор Т2 включается, и ток течет от источника к земле через нижнюю половину трансформатора. Поэтому мы получаем переменный ток на выходной клемме повышающего трансформатора.

,Схема плавного пуска

для блока питания

Цепь плавного пуска предотвращает внезапное протекание тока в цепи во время пуска. Это замедляет скорость нарастания выходного напряжения путем минимизации избыточного тока во время запуска. Полезно защитить устройства или электронные компоненты от повреждений, вызванных мгновенным высоким входным током. Некоторые компоненты, которые ограничены по току и имеют плохое регулирование нагрузки, могут быть повреждены из-за этого высокого входного тока.Здесь мы строим схему плавного пуска, используя ИС стабилизатора напряжения LM317 и PNP-транзистор BC557.

Требуемый материал

  • LM317-Регулируемый регулятор напряжения IC
  • BC557-PNP Транзистор
  • Диод
  • - 1N4007
  • Резистор
  • - (1 кОм, 5,6 кОм, 47 кОм)
  • Конденсатор - (0,1 мкФ, 22 мкФ)
  • входное питание - 9 В
  • макет

LM317 Регулятор напряжения IC

Это регулируемая трехполюсная ИС регулятора напряжения с высоким значением выходного тока 1.5A. Микросхема LM317 помогает в ограничении тока, защите от тепловой перегрузки и в безопасной рабочей зоне. Он также может обеспечить работу с плавающей точкой для применения под высоким напряжением. Если мы отсоединяем регулируемую клемму, LM317 все равно поможет в защите от перегрузки. У него типичная линия и регулировка нагрузки 0,1%. Это также устройство без содержания свинца.

Его рабочая температура и температура хранения находятся в диапазоне от -55 до 150 ° C и обеспечивают максимальный выходной ток 2,2 А. Мы можем обеспечить входное напряжение в диапазоне 3–40 В постоянного тока, а i т может дать выходное напряжение 1.От 25 В до 37 В , которые мы можем варьировать в зависимости от необходимости, используя два внешних резистора на регулируемом ПИН-коде LM317. Эти два резистора работают как схема делителя напряжения, используемая для увеличения или уменьшения выходного напряжения.

Распиновка LM317

Pinout of LM317

Soft Start Принципиальная схема

Soft Start Circuit for Power Supply

Примечание: Входное напряжение всегда должно быть выше (минимум + 3 В), чем требуемое выходное напряжение (максимальный выход LM317 составляет 37 В).

Здесь мы соединили лампочку со схемой плавного пуска, чтобы лампочка медленно светилась до полной яркости. Вы можете изменить скорость свечения лампы, изменив значение конденсатора, например, увеличить время нарастания, увеличить значение конденсатора C2.

Soft Start Circuit Hardware

Работа цепи плавного пуска

Здесь мы используем LM317, линейную и положительную интегральную схему стабилизатора напряжения, которая автоматически уменьшает свой выходной ток, когда он находится в состоянии недогрузки или перегрева.

Комбинация PNP-транзистора BC557 и конденсатора C2 помогает схеме постепенно увеличивать выходное напряжение.

Первоначально, когда конденсатор не заряжен, выходное напряжение цепи определяется как:

  VC1 + VBE + 1,25 В 
  = 0 + 0,7 + 1,25 
  = 1,95 В  

Где VC1 - напряжение на конденсаторе, VBE - напряжение базы к эмиттеру, а 1,25 - минимальное выходное напряжение LM317.

Когда напряжение на конденсаторе C2 увеличивается, Vout увеличивается с той же скоростью и достигает желаемого выходного напряжения, установленного в соответствии со значением резистора. Следовательно, когда выходное напряжение достигает желаемого значения, транзистор отключается.

Итак, когда мы запускаем источник питания, лампочка накаливания начинает становиться ярче в зависимости от напряжения на ней. Таким образом, эта схема предотвращает внезапный выброс тока в цепь и, следовательно, предотвращает повреждение устройства.

Преимущества схемы плавного пуска

  • Используется для уменьшения пускового тока и увеличения срока службы устройства.
  • Повышение эффективности
  • Схемы плавного пуска
  • дешевы и малы по размеру
  • Как двигатель плавного пуска используется для насосов двигателей и других промышленных двигателей.

Как работают блоки питания | ОРЕЛ

Источники питания

составляют основу всех наших электронных устройств и обеспечивают постоянную последовательность действий там, где это больше всего необходимо. В современной современной электронике, такой как компьютеры и другие чувствительные к данным устройства, питание должно работать безупречно, и один сбой может означать потерю работы и данных. Но, как дизайнеры электроники, мы обычно оставляем свои соображения по поводу источника питания как запоздалую мысль, часто беря готовый блок схемы, который, как мы знаем, уже работает.В конце концов, мы просто хотим, чтобы наш выход 5 В, верно? Оказывается, под капотом происходит гораздо больше.

Источники питания от 10 000 футов

Большинство источников питания получают питание от сети переменного тока и преобразуют его в пригодный для использования постоянный ток для использования в электронных устройствах. В ходе этого процесса блок питания выполняет ряд функций, в том числе:

  • Преобразование переменного тока из сети в постоянный постоянный ток
  • Предотвращение вмешательства любого переменного тока в выход источника питания постоянного тока
  • Поддержание выходного напряжения на постоянном уровне независимо от изменений входного напряжения

Чтобы все это преобразование произошло, типовой источник питания будет использовать несколько общих компонентов, включая трансформатор, выпрямитель, фильтр и регулятор.

Процесс преобразования переменного тока в постоянный начинается с переменного тока, который возникает на розетке в виде синусоидальной волны. Этот сигнал переменного тока колеблется между отрицательным и положительным напряжениями до шестидесяти раз в секунду.

sinusoidal-waveform

Синусоидальный сигнал переменного тока. (Источник изображения)

Напряжение переменного тока сначала понижается трансформатором, чтобы удовлетворить требования напряжения нагрузки источника питания. После понижения напряжения выпрямитель преобразует синусоидальный сигнал переменного тока в набор положительных впадин и гребней.

rectification

Выпрямление удаляет отрицательную сторону сигнала переменного тока, оставляя только положительный выход. (Источник изображения)

В этот момент все еще существует колебание в форме волны переменного тока, поэтому фильтр используется для сглаживания переменного напряжения в пригодном для использования источнике постоянного тока.

filtered-wave

Применение фильтра с конденсатором резервуара удаляет агрессивные гребни и впадины в нашей форме волны. (Источник изображения)

Теперь, когда переменный ток преобразован в пригодный для использования постоянный ток, некоторые источники питания будут дополнительно устранять любые колебания в форме волны с помощью регулятора.Этот регулятор обеспечивает стабильный выходной сигнал постоянного тока независимо от изменений, которые происходят с входным переменным напряжением.

Это процесс с первого взгляда. Независимо от того, на какой источник питания вы смотрите, он всегда будет иметь как минимум три основных компонента - трансформатор, выпрямитель и фильтр. Регуляторы могут использоваться или не использоваться в зависимости от того, является ли источник питания нерегулируемым или регулируемым (подробнее об этом позже).

Компоненты источника питания в деталях

Трансформатор

В качестве первой линии защиты трансформатор выполняет функцию понижения входящего переменного тока от источника питания до уровня напряжения, с которым может справиться нагрузка источника питания.Трансформаторы также могут повышать напряжение, но в этой статье мы сосредоточимся на тех, которые понижают напряжение для низковольтных электронных устройств постоянного тока.

Внутри трансформатора находятся две обмотки катушки, физически отделенные друг от друга. Первая обмотка получает переменный ток от источника питания, а затем электромагнитно соединяется со второй обмоткой, чтобы провести необходимое напряжение переменного тока во вторичной обмотке. Сохраняя эти две обмотки физически разделенными, трансформатор может изолировать сетевое напряжение переменного тока от достижения выхода цепи электропитания.

transformer

Две физически разделенные катушки в трансформаторе проходят через электромагнитную связь. (Источник изображения)

Выпрямитель

После того, как трансформатор отключил переменный ток, выпрямитель должен преобразовать форму сигнала переменного тока в необработанный формат постоянного тока. Это достигается с помощью одного или нескольких диодов в конфигурации полуволны, полной волны или мостового выпрямления.

выпрямление полуволны

В этой конфигурации один диод выпрямителя используется для извлечения напряжения постоянного тока из половины цикла сигнала переменного тока.Это оставляет источнику питания половину выходного напряжения, которое он получал бы от полной формы сигнала переменного тока при Vpk x 0,318. Half Wave - самая дешевая конфигурация для проектирования, идеальная для нетребовательного энергопотребления и, как правило, оставляющая наибольшую пульсацию в выходном напряжении.

half-wave-rectification

Половолновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Полная волна выпрямления

В этой конфигурации два выпрямительных диода используются для извлечения двух полупериодов входящего сигнала переменного тока.Этот процесс обеспечит удвоение выходного напряжения выпрямления полуволны при Vpk x 0,637. Хотя эта конфигурация является более дорогой в разработке, чем Half Wave, так как для нее требуется трансформатор с центральным отводом, она имеет дополнительное преимущество улучшенного сглаживания пульсаций переменного тока.

full-wave-rectification

Двухполупериодное выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Исправление моста

В этой конфигурации используются четыре диода, соединенных в мост, для достижения полной волны выпрямления без использования трансформатора с центральным отводом.Это обеспечит то же выходное напряжение, что и для полной волны при Vpk x 0,637 для диодов, которым требуется только половина их напряжения обратного пробоя. В течение каждого полупериода проводят два противоположных диода, которые обеспечивают полную форму сигнала переменного тока в конце полного цикла.

bridge-rectification

Мостовое выпрямление в цепи и форме выходного сигнала, такое же, как в режиме полной волны. (Источник изображения)

Фильтр

Теперь, когда мы преобразовали переменное напряжение переменного тока, задача фильтра - устранить любые колебания переменного тока в выходном напряжении, оставляя ровное постоянное напряжение.Зачем устранять рябь? Если они попадут на выход источника питания, они могут повредить нагрузку и потенциально разрушить всю вашу цепь. В фильтрах используются два основных компонента: резервуарный конденсатор и фильтр нижних частот.

Емкостный конденсатор

Электролитический конденсатор большой емкости используется для временного хранения выходного тока, подаваемого выпрямительным диодом. При зарядке этот конденсатор сможет обеспечивать выходной ток постоянного тока в течение промежутков времени, когда диод выпрямителя не проводит.Это позволяет источнику питания поддерживать постоянный выход постоянного тока в течение циклов включения / выключения источника питания.

reservoir-capacitor

Здесь вы можете увидеть разницу в выходном сигнале с колпачком резервуара и без него. (Источник изображения)

Фильтр нижних частот

Вы можете создать цепь электропитания только с емкостным конденсатором, но добавление фильтра нижних частот дополнительно устраняет пульсации переменного тока, которые проходят через накопительный конденсатор. В большинстве базовых источников питания вы не найдете используемых фильтров нижних частот, так как они требуют дорогих индукторов с многослойными или тороидальными сердечниками.Однако в современной электронике с импульсными источниками питания вы найдете фильтры низких частот, используемые для удаления пульсаций переменного тока на более высоких частотах.

При добавлении вместе конденсатора резервуара и фильтра низких частот вместе в цепь электропитания, вы сможете удалить 95% + пульсации переменного тока. Это позволит вам поддерживать стабильное и чистое выходное напряжение, соответствующее пику исходной входной волны переменного тока.

Регулятор

В регулируемых источниках питания будет добавлен регулятор, чтобы дополнительно сгладить напряжение постоянного тока и обеспечить постоянный выходной сигнал независимо от изменений уровней входного сигнала.Это улучшенное регулирование также добавляет дополнительную сложность и стоимость для питания схемы. Вы найдете регуляторы в двух разных конфигурациях, либо в качестве шунтирующего регулятора, либо в виде последовательного регулятора.

Шунт-регулятор

В этой конфигурации регулятор подключен параллельно с нагрузкой, что обеспечивает постоянный ток, протекающий через регулятор, до удара нагрузки. Если ток нагрузки увеличивается или уменьшается, шунтирующий регулятор будет либо уменьшать, либо увеличивать свой ток, чтобы поддерживать постоянное напряжение питания и ток.

shunt-regulator

Шунтирующие регуляторы подключены параллельно с нагрузкой. (Источник изображения)

Регулятор серии

В этой конфигурации последовательный регулятор подключен последовательно с нагрузкой, которая обеспечивает переменное сопротивление. Этот регулятор будет последовательно измерять входное напряжение нагрузки, используя систему отрицательной обратной связи. Если выборка напряжения увеличивается или падает, то последовательный регулятор будет либо понижать, либо повышать свое сопротивление, позволяя большему или меньшему току течь через нагрузку.

series-regulator Регуляторы серии

добавляют переменное сопротивление к току управления. (Источник изображения)

Типы источников питания

Типичные источники питания переменного и постоянного тока будут использовать некоторые или все вышеперечисленные компоненты в своей схеме в качестве нерегулируемого или регулируемого источника питания. Какой тип блока питания вы используете в своем проекте электроники, зависит от уникальных требований вашего дизайна.

нерегулируемые источники питания

Эти источники питания не имеют регулятора напряжения и будут генерировать заданное напряжение только при максимальном выходном токе.Здесь выходное напряжение постоянного тока связано с внутренним трансформатором напряжения, и выходное напряжение будет увеличиваться или уменьшаться в зависимости от выходного тока нагрузки. Эти источники питания известны своей долговечностью и дешевизной, но не обеспечивают достаточной точности для чувствительных к электропитанию электронных устройств.

unregulated-power-supplies

Нерегулируемые источники питания содержат все общие компоненты, кроме регулятора.

Регулируемые источники питания

Стабилизированные источники питания включают в себя все основные компоненты, имеющиеся в нерегулируемом источнике питания с добавлением регулятора напряжения.Обратите внимание на три конфигурации источника питания регулятора:

Линейный источник питания . Эта конфигурация использует полупроводниковый транзистор или полевой транзистор для управления выходными напряжениями в определенном диапазоне. Хотя эти источники питания не являются самыми эффективными и генерируют много тепла, они известны своей надежностью, минимальным электрическим шумом и широкой коммерческой доступностью.

linear-power-supplies

Типичная линейная цепь электропитания. (Источник изображения)

Импульсный источник питания .В этой конфигурации используется полупроводниковый транзистор или полевой транзистор, который включается / выключается для подачи напряжения на выходной резервуарный конденсатор. Режимы переключения, как правило, меньше и легче линейных источников питания, предлагают большой диапазон выходного сигнала и более эффективны. Однако они требуют сложной схемы, генерируют больше шума и требуют снижения помех для своих высокочастотных операций.

switch-mode-circuit

Здесь мы можем видеть дополнительную сложность в схеме переключения режима. (Источник изображения)

Аккумуляторный блок питания .Эта конфигурация действует как накопитель энергии и обеспечивает постоянный поток постоянного тока на электронное устройство. По сравнению с линейными и импульсными источниками питания, батареи являются наименее эффективным методом питания устройств, и их также трудно согласовать с правильным напряжением в нагрузке. Тем не менее, у батарей есть преимущество в том, что они служат источником питания, когда сеть переменного тока недоступна и не создают электрических помех.

При рассмотрении вопроса о том, какой источник питания использовать для вашего следующего проекта в области электроники, мы рассмотрим следующие преимущества и недостатки для нерегулируемых и регулируемых источников питания:

Нерегулируемый Регулируемый
Преимущества:
  • Простая схема
  • Надежный и экономичный

Недостатки

  • Напряжение меняется в зависимости от тока нагрузки
  • Идеально подходит для устройств, работающих на фиксированный выходной ток / напряжение
Преимущества
  • Постоянное напряжение
  • Высшее качество
  • Лучшая фильтрация шума
  • Регулируемое выходное напряжение / ток

Недостатки

  • Требуется более сложная схема
  • дороже

При выборе между линейным, импульсным или батарейным регулируемым источником питания учитывайте следующее:

Регулируемые источники питания
Линейный Режим переключения Аккумулятор
Преимущества
  • Стабильный и надежный
  • Меньше электрических помех
  • Хорошая линия и регулировка нагрузки

Недостатки

  • Плохая эффективность <50%
  • Требуется больший радиатор
  • Большие компоненты и тяжелые
  • Дорого
Преимущества
  • Малый размер и легче
  • Широкий диапазон входного напряжения
  • Высокая эффективность
  • Менее дорогой по сравнению с линейным

Недостатки

  • Требуется более сложная схема
  • Может загрязнять сеть переменного тока
  • Более высокий шум
Преимущества
  • Не требует доступа к сети переменного тока
  • Портативный источник питания

Недостатки

  • Фиксированное напряжение на входе
  • Фиксированный срок службы
  • Выходное напряжение падает при использовании резервов энергии
Технические характеристики источника питания

, которые необходимо знать о

При выборе готовой схемы питания вместо разработки собственной, необходимо знать несколько спецификаций.К ним относятся:

  • Выходной ток . Это максимальный ток, который блок питания может подавать на нагрузку.
  • Регулятор нагрузки . Это определяет, насколько хорошо регулятор может поддерживать постоянный выходной сигнал при изменении тока нагрузки, обычно измеряемом в милливольтах (мВ) или максимальном выходном напряжении.
  • Noise & Ripple . Они измеряют нежелательные электронные помехи и изменения напряжения от преобразования переменного тока в постоянный, обычно измеряемые в пиковом напряжении для импульсных источников питания.
  • Защита от перегрузки . Это функция безопасности, которая отключит электропитание в случае короткого замыкания или перегрузки по току.
  • Эффективность . Это отношение мощности, преобразованной из сети переменного тока в постоянное. Высокоэффективные системы, такие как импульсные источники питания, могут достигать 80% рейтинга эффективности, снижать тепло и экономить энергию.

Последовательное Преобразование

Блоки питания

обеспечивают надежную основу для питания всех наших электронных устройств, будь то ваш компьютер, смартфон или телевизор, и этот список можно продолжить.Независимо от того, какой тип источника питания вы используете или проектируете, все они включают в себя несколько основных компонентов для преобразования сети переменного тока в постоянный постоянный ток (DC). Трансформатор сначала понижает напряжение, которое затем выпрямляется в необработанном формате постоянного тока. Затем он фильтруется и регулируется, чтобы обеспечить плавное постоянное напряжение для согласованного выхода. При проектировании собственной цепи электропитания следует использовать эти первичные компоненты вместе с уникальными спецификациями электропитания для вашей конструкции, чтобы обеспечить постоянный выход постоянного тока в любое время дня.

Нужен ли разъем питания для вашего будущего проекта дизайна электроники? У нас есть куча бесплатных библиотек! Попробуйте Autodesk EAGLE бесплатно сегодня!

,

Отправить ответ

avatar
  Подписаться  
Уведомление о