Схема подключения биполярного транзистора. Схемы включения биполярных транзисторов: особенности, режимы работы и применение

Как работают основные схемы включения биполярных транзисторов. Какие режимы работы транзистора существуют. Чем отличаются схемы с общей базой, эмиттером и коллектором. Как выбрать оптимальную схему включения транзистора для конкретной задачи.

Содержание

Основные схемы включения биполярных транзисторов

Существует три основные схемы включения биполярных транзисторов:

  • С общей базой (ОБ)
  • С общим эмиттером (ОЭ)
  • С общим коллектором (ОК)

Каждая из этих схем имеет свои особенности и области применения. Рассмотрим их подробнее.

Схема с общей базой (ОБ)

В схеме с общей базой база является общим электродом для входной и выходной цепей. Основные характеристики схемы ОБ:

  • Низкое входное сопротивление
  • Высокое выходное сопротивление
  • Коэффициент усиления по току близок к единице
  • Хорошие частотные свойства

Схема ОБ применяется в усилителях высокой частоты и в преобразователях импеданса.

Схема с общим эмиттером (ОЭ)

В схеме с общим эмиттером эмиттер является общим электродом. Особенности схемы ОЭ:


  • Среднее входное сопротивление
  • Среднее выходное сопротивление
  • Высокий коэффициент усиления по току и напряжению
  • Инвертирует входной сигнал

Схема ОЭ наиболее широко применяется в усилителях низкой и средней частоты.

Схема с общим коллектором (ОК)

В схеме с общим коллектором коллектор является общим электродом. Характеристики схемы ОК:

  • Высокое входное сопротивление
  • Низкое выходное сопротивление
  • Коэффициент усиления по напряжению близок к единице
  • Не инвертирует входной сигнал

Схема ОК используется как эмиттерный повторитель для согласования высокоомного источника сигнала с низкоомной нагрузкой.

Режимы работы биполярного транзистора

Биполярный транзистор может работать в трех основных режимах:

Активный режим

В активном режиме эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Это основной режим работы транзистора при усилении сигналов.

Режим отсечки

В режиме отсечки оба перехода транзистора смещены в обратном направлении. Транзистор закрыт и через него протекает очень малый ток.


Режим насыщения

В режиме насыщения оба перехода транзистора смещены в прямом направлении. Через транзистор протекает максимально возможный ток.

Понимание этих режимов важно для правильного проектирования и анализа транзисторных схем.

Сравнение схем включения транзисторов

Давайте сравним основные характеристики трех схем включения транзисторов:

ПараметрОБОЭОК
Входное сопротивлениеНизкоеСреднееВысокое
Выходное сопротивлениеВысокоеСреднееНизкое
Усиление по току≈1ВысокоеВысокое
Усиление по напряжениюВысокоеВысокое≈1
Фазовый сдвиг180°

Эта таблица наглядно показывает ключевые различия между схемами включения, помогая выбрать оптимальную конфигурацию для конкретной задачи.

Выбор схемы включения транзистора

При выборе схемы включения транзистора следует учитывать следующие факторы:

  • Требуемое усиление по току и напряжению
  • Входное и выходное сопротивление схемы
  • Частотный диапазон работы
  • Необходимость инвертирования сигнала
  • Температурную стабильность

Например, если требуется высокое усиление по току и напряжению, лучше использовать схему ОЭ. Для работы на высоких частотах предпочтительнее схема ОБ. А для согласования высокоомного источника сигнала с низкоомной нагрузкой оптимальным выбором будет схема ОК.


Особенности применения схем включения транзисторов

Каждая схема включения имеет свои особенности применения:

Схема ОБ

Схема с общей базой отлично подходит для:

  • Усилителей высокой частоты
  • Преобразователей импеданса
  • Каскадов с низким входным сопротивлением

Схема ОЭ

Схема с общим эмиттером часто используется в:

  • Многокаскадных усилителях низкой и средней частоты
  • Генераторах сигналов
  • Импульсных схемах

Схема ОК

Схема с общим коллектором применяется для:

  • Согласования высокоомных и низкоомных цепей
  • Эмиттерных повторителей
  • Буферных каскадов

Понимание этих особенностей помогает инженерам выбирать оптимальную схему включения для каждого конкретного случая.

Температурная стабилизация транзисторных схем

Температурная стабилизация — важный аспект проектирования транзисторных схем. Рассмотрим основные методы стабилизации:

Эмиттерная стабилизация

Эмиттерная стабилизация осуществляется путем включения резистора в цепь эмиттера. Это создает отрицательную обратную связь по току, которая компенсирует температурные изменения.


Коллекторная стабилизация

При коллекторной стабилизации часть напряжения с коллекторной нагрузки подается на базу транзистора, что также создает отрицательную обратную связь.

Стабилизация фиксированным током базы

В этом методе ток базы задается высокоомным резистором, подключенным к источнику питания. Это уменьшает влияние температурных изменений обратного тока коллектора.

Выбор метода стабилизации зависит от конкретной схемы и требований к ее работе.

Частотные свойства схем включения транзисторов

Частотные свойства транзисторных схем играют важную роль при проектировании усилителей и других высокочастотных устройств. Рассмотрим основные аспекты:

Схема ОБ

Схема с общей базой имеет наилучшие частотные характеристики среди трех схем включения. Это объясняется отсутствием эффекта Миллера, который ограничивает частотный диапазон в других схемах.

Схема ОЭ

Схема с общим эмиттером имеет худшие частотные свойства из-за эффекта Миллера. Однако это можно улучшить с помощью различных методов коррекции, например, введением емкости в цепь обратной связи.


Схема ОК

Схема с общим коллектором занимает промежуточное положение по частотным свойствам между ОБ и ОЭ. Она обеспечивает хорошую широкополосность при работе на емкостную нагрузку.

Понимание частотных свойств различных схем включения позволяет разработчикам выбирать оптимальную конфигурацию для конкретных задач.

Применение транзисторных схем в современной электронике

Несмотря на развитие интегральных схем, транзисторы остаются важными компонентами во многих областях электроники:

  • Аналоговые усилители звука высокого класса
  • Высокочастотные и СВЧ-устройства
  • Импульсные источники питания
  • Драйверы мощных устройств
  • Аналоговые интерфейсы в цифровых системах

В каждой из этих областей правильный выбор схемы включения транзистора играет ключевую роль в обеспечении требуемых характеристик устройства.


схемы включения. Схема включения биполярного транзистора с общим эмиттером

Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

Рис.8. Схема

измерений статических

параметров транзистора с ОЭ.

Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:

I Б = f (U БЭ) при U ЭК = const.

Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

Выходная статическая характеристика – это зависимость выходного тока

I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:

I К = f (U КЭ) при I Б = const.

Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера I Э .

Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис.10).


Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

Входная динамическая характеристика – это зависимость входного тока I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:

I Б = f (U БЭ)

Поскольку в статическом режиме для U КЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).

Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б ):

U КЭ = E К – I К R К

Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например:

А , В на Рис.11б .

Координаты точки А [U КЭ = 0; I K = Е К R К ] – на оси I K .

Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.

Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.

Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.

Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.

Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.

Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.


У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.


Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.


Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.


В итоге мы получаем два тока: маленький — от базы к эмиттеру I BE , и большой — от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.


2. Расчет входного тока базы I b

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно — I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:


2. Расчет выходного тока коллектора I С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).


3. Расчет выходного напряжения V out

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.


Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

Страница 1 из 2

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).

Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.

Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K p = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой

I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».

На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

В ней выходным током, как и в схеме ОБ, является ток коллектора I К , незначительно отличающийся от тока эмиттера I э , а входным — ток базы I Б , значительно меньший, чем коллекторный ток. Связь между токами I Б и I К в схеме ОЭ определяется уравнением: I К = h 21 Е I Б + I КЭО
Коэффициент пропорциональности h 21 Е называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е = h 21Б / (1 —h 21Б )
Если h 21Б находится в пределах 0,9…0,998, соответствующие значения h 21 Е будут в пределах 9…499.
Составляющая I кэо называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е раз больше, чем I КБО , т. е.I КЭО =(1+ h 21 Е) I КБО. Обратные токи I КБО и I КЭО не зависят от входных напряжений U ЭБ и U БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей — электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками — основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика — работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC — V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

схемы включения. Схема включения биполярного транзистора с общим эмиттером

Одним из типов трехэлектродных полупроводниковых приборов являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения биполярных транзисторов способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток Iб. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: Iэ = Iб + Iк.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению Uэк/Uбэ и току: β = Iк/Iб (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения биполярного транзистора с общим коллектором: сигнал поступает на резистор RL, который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.

Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения VБЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания VCC, а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: IC = (VCC — VCE)/RC. Из рисунка следует, что рабочая точка, определяющая ток коллектора IC и напряжение VCE, будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы IВ.

Зона между осью VCE и первой характеристикой выхода (заштрихована), где IВ = 0, характеризует режим отсечки. При этом обратный ток IC ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью IC и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Транзисторные ключи предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Схема, принцип работы, характеристики биполярных транзисторов

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Особенности устройства биполярного транзистора

Биполярный транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Принцип работы биполярного транзистора

Этот тип транзистора имеет два перехода:

  • электронно-дырочный между эмиттером и базой – эмиттерный;
  • между коллектором и базой – коллекторный.

Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.

Режимы работы биполярных транзисторов

Режим отсечки

Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.

Активный инверсный режим

Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.

Режим насыщения

Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».

Схемы включения биполярных транзисторов

В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Биполярный транзистор автосигнализации

Транзистор — это полупроводниковый прибор, который может усиливать слабые сигналы и управлять большой мощностью при помощи относительно слабых воздействий.

Рисунок 48. Транзистор управляет большим током при помощи малого

Транзистор, в отличие от диода, имеет 3 вывода. У биполярных транзисторов эти выводы называются база, эмиттер и коллектор.

Рисунок 49. Виды корпусов биполярных транзисторов

Состоит биполярный транзистор из кристалла полупроводника (в нем имеются границы сочетания полупроводников с разными типами проводимости), корпуса и металлических выводов, которыми транзистор впаивается в электрическую цепь.

Биполярные транзисторы бывают двух типов — п-р-п и р-п-р.

Рисунок 50. Типы биполярных транзисторов

Р-п-р транзисторы пропускают ток от эмиттера к коллектору, п-р-п — наоборот. В п-р-п транзисторах основные носители заряда — электроны, а в р-п-р — так называемые «дырки», которые менее мобильны (в смысле скорости переноса мощности), соответственно п-р-п транзисторы быстрее переключаются в общем случае.

В сигнализациях StarLine используются современные компактные транзисторы, предназначенные для поверхностного монтажа ( SMD-монтаж)

Рисунок 51. SMD-транзистор

Транзистор проявляет свои усилительные свойства в трех видах основных схем: схема с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Рисунок 52. Схема включения биполярного транзистора «общий эмиттер»

При включении транзистора по схеме ОЭ входной сигнал поступает между базой и эмиттером, а нагрузка включена между коллектором и источником питания. Такая схема является наиболее распространенной, так как она дает наибольшее усиление по мощности (в тысячи раз).

Достоинствами схемы с общим эмиттером являются: большой коэффициент усиления по току и большее, чем у схемы с общей базой, входное сопротивление.

Кроме того, для питания схемы требуются два однополярных источника, то есть, на практике можно обойтись одним источником питания.

Единственным серьезным недостатком является худшие температурные и частотные свойства по сравнению со схемой с общей базой.

Рисунок 53. Схема включения биполярного транзистора «общая база»

В схеме ОБ входной сигнал подается на эмиттер и базу, а нагрузка подключается между коллектором и источником питания. Входная цепь транзистора представляет собой открытый эмиттерный переход, поэтому входное сопротивление мало (десятки Ом).

Недостатки схемы: не усиливает ток и для ее питания требуется два разных источника напряжения. Но схема с общей базой имеет хорошие температурные и частотные свойства.

Рисунок 54. Схема включения биполярного транзистора «общий коллектор»

В схеме О К входной сигнал поступает на переход эмиттер-база, проходит через нагрузку, а сама нагрузка подключается к эмиттеру и источнику питания. В этой схеме выходное напряжение равно входному, поэтому она получила название «эмиттерный повторитель». При включении общего коллектора напряжение сигнала не усиливается, а лишь повторяется. При этом эмиттерная нагрузка может быть очень небольшой, выходное сопротивление усилителя измеряется сотнями и даже десятками ом. В то же время входное сопротивление очень большое — сотни килоом и даже мегаомы.

При монтаже автомобильных охранных систем биполярный транзистор чаще всего используется в качестве ключа, который либо заперт (не проводит ток), либо открыт (пропускает ток).

на базу не поступает ток управления — транзистор закрыт, тока нет, лампа не горит

на базу поступил ток управления — транзистор открылся, ток пошел, лампа зажглась

Рисунок 55. Работа транзистора в качестве ключа

Отпирание или запирание транзистора в режиме ключа происходит при подаче тока на его базу. Например, часто в описании сигнализации пишут «дополнительный канал выполнен по схеме «открытый коллектор». Это значит, что внутри блока сигнализации спрятан биполярный транзистор п-р-п типа, включенный по схеме ОЭ. При срабатывании этого канала на выходе будет появляться масса (через проводящую структуру транзистора), а в исходном состоянии выход ни к чему не подсоединен.

Как правило, выходы, выполненные по схеме «открытый коллектор», допускают небольшой ток нагрузки (до 300 мА). То есть подключить к этому выходу напрямую мощную нагрузку нельзя — оборудование выйдет из строя. Для подключения к такому выходу необходимо использовать дополнительное реле.

Рисунок 56. Схема-подсказка «Транзистор»


Схемы подключения биполярных транзисторов. Мгту «мами» — кафедра «автоматика и процессы управления

Усилитель представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим коллектором — это усилитель, где коллектор транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим коллектором приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим коллектором

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. Учитывая, что источник питания обладает нулевым сопротивлением для переменного тока, подключение вывода транзистора к источнику питания (стабилизатору напряжения) эквивалентно подключению к общему проводу. Основным преимуществом усилителя с общим коллектором является его большое входное сопротивление, поэтому схема с общим коллектором обычно применяется на низких частотах. С этим связан выбор схемы питания транзистора. Для питания транзистора в схеме с общим коллектором обычно используются стабилизированные по току схемы: и . Расчет резисторов, входящих в эти схемы не зависит от схемы включения транзистора и для схемы с общим коллектором проводится точно так же как и для . Схема с общим коллектором не инвертирует сигнал и не усиливает его по напряжению, поэтому она часто называется эмиттерным повторителем На рисунке 3 показана принципиальная на биполярном npn-транзисторе, выполненного по схеме с общим коллектором.


Рисунок 3 Схема включения транзистора с общим коллектором (коллекторная стабилизация)

В данной схеме R2 одновременно является резистором нагрузки и элементом коллекторной стабилизации. То, что резистор подключен к эмиттеру транзистора, ситуации не меняет. Ток коллектора все равно протекает через этот резистор и падение напряжения прикладывается к эмиттеру транзистора. Глубина обратной связи по постоянному току определяется соотношением сопротивления резистора R1 и входного сопротивления транзистора.

Схема каскада с общим коллектором и эмиттерной стабилизацией обладает лучшими характеристиками по стабильности параметров. В ней глубина обратной связи по постоянному току приближается к 100%. Принципиальная схема включения транзистора с общим коллектором и эмиттерной стабилизацией приведена на рисунке 4.


Рисунок 4 Схема включения транзистора с общим коллектором (эмиттерная стабилизация)

Отличительной особенностью схемы с общим коллектором является высокое входное сопротивление. Его можно определить по формуле, подобной формуле (4) . Однако в данном случае ко входу будет пересчитываться сопротивление цепи эмиттера, которое значительно больше внутреннего сопротивления эмиттера транзистора r э.

В схеме, приведенной на рисунке 3, в качестве сопротивления R э используется резистор R2, а в схеме, приведенной на рисунке 4, — резистор R3. При его номинале 1 кОм и h 21э, равным 100, входное сопротивление транзистора будет равно 100 кОм! При таком сопротивлении, расчитывая транзисторный каскад, следует учитывать влияние сопротивления цепи смещения, так как по нему тоже протекает входной ток. Пути протекания входного тока в схеме с общим коллектором показаны на рисунке 5.


Рисунок 5 Протекание тока по входным цепям эмиттерного повторителя

Как видно из данной схемы, входной ток протекает не только через базу транзистора и резистор R2, но и через резистор R1, источник питания и возвращается к источнику сигнала. В результате входное сопротивление эмиттерного повторителя будет определяться как параллельное включение входного сопротивления транзистора и резистора R1:

Например, при питании усилителя от источника напряжения 5 В, и токе коллектора 1 mA, для получения на выходе максимального динамического диапазона нужно напряжение на эмиттере задать равным 2,5 В. Тогда сопротивление R2 = 2,5кОм, ток базы транзистора iб = 1мА/100 = 10мкА. Сопротивление R1 = (5В − 2,5В − 0,7В)/10мкА = 180кОм. Входное сопротивление каскада Rвх = 100кОм || 180кОм = 64кОм.

Присущая схеме с ОК обратная связь не только увеличивает входное сопротивление, но и уменьшает выходное. Его можно приблизительно считать равным сопротивлению эмиттера транзистора:

Более точно выходное сопротивление схемы с общим коллектором можно определить как параллельное соединение сопротивления эмиттера транзистора и резистора R2:

Литература:

Вместе со статьей «Схема включения транзистора с общим коллектором» читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

У которых не меньше чем три вывода. В определенных ситуациях они способны усиливать мощность, генерировать колебания или преобразовывать сигнал. Существует очень много самых разных конструкций этих приборов, и среди них — pnp-транзистор.

Классифицируют транзисторы по полупроводниковому материалу. Они бывают из кремния, германия и др.

Если у транзистора из трех областей две имеют дырочную проводимость, он называется «транзистор с прямой проводимостью», или «транзистор с переходом pnp». Устройство, у которого две области имеют электронную проводимость, называют транзистором с обратной проводимостью, или с переходом npn. Работают оба транзистора одинаково, а разница заключается исключительно в полярности.

Где применяется pnp-транзистор?

В зависимости от того, какие характеристики у транзитора, он может использоваться для самых разных целей. Как уже было сказано, транзистор применяют для генерирования, преобразования и усиления электрических сигналов. За счет того, что входное напряжение или ток изменяются, осуществляется управление током входной цепи. Небольшие изменения параметров на входе приводят к еще большему изменению тока и напряжения на выходе. Такое свойство усиления применяется в аналоговой технике (радио, связь и т. д.).

В наше время для аналоговой техники применяется А вот другая, очень важная отрасль — цифровая техника — почти отказалась от него и использует только полевой. появился намного раньше полевого, потому его в обиходе называют просто транзистором.

Исполнение и параметры транзисторов

Транзисторы конструктивно изготавливаются в пластмассовых и металлических корпусах. Учитывая различное назначение транзисторов, подбираются эти устройства по определенным параметрам. Например, если нужен транзистор для усиления высоких частот, он должен обладать высокой частотой усиления сигнала. А если же транзистор pnp используется в у него должен быть высокий рабочий ток коллектора.

Справочная литература содержит основные характеристики транзисторов:

  • Ik — рабочий (максимально допустимый) коллекторный ток;
  • h31э — коэффициент усиления;
  • Fgr — максимальная частота усиления;
  • Pk — рассеиваемая мощность коллектора.

Фототранзисторы

Фототранзистор — это устройство, чувствительное к который его облучает. В герметичном корпусе такого транзистора проделано окно, к примеру, из прозрачной пластмассы или стекла. Излучение через него попадает в зону базы фототранзистора. Если база облучается, то носители заряда генерируются. Фототранзистор откроется, когда носители заряда перейдут в коллекторный переход, и чем больше будет освещена база, тем ток коллектора станет существеннее.

Без транзисторов нельзя представить современную электронику. Практически ни один серьезный прибор не обходится без них. За годы применения и совершенствования транзисторы существенно изменились, но принцип их работы остается тем же.

Существует два основных типа транзисторов — биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов — NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.

Транзистор NPN имеет одну P область, заключенную между двумя N областями:

Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

  • Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
  • Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
  • Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
  • Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):

Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, U Б должно быть выше, чем U К и U Э. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

Биполярный транзистор — трёхэлектродный полупроводниковый прибор , один из типов транзистора . Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости . По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative ) — электронный тип примесной проводимости, p (positive ) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора , используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой , электроды, подключённые к внешним слоям, называют коллектором и эмиттером . На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь P-n-перехода . Кроме того, для работы транзистора необходима малая толщина базы.

Упрощенная схема поперечного разреза биполярного NPN транзистора

Первые транзисторы были изготовлены на основе германия . В настоящее время их изготавливают в основном из кремния и арсенида галлия . Транзисторы на основе арсенида галлия используются в сверхбыстродействующих логических схемах и в схемах высокочастотных усилителей.

Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E , базы B и коллектора C . В зависимости от типа проводимости этих зон различают NPN (эмиттер − n -полупроводник, база − p -полупроводник, коллектор − n -полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие невыпрямляющие контакты. База расположена между эмиттером и коллектором и слаболегирована, поэтому имеет большое омическое сопротивление. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора), поэтому биполярный транзистор общего вида является несимметричным устройством (нецелесообразно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение).

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются ) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора . Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (I э =I б + I к ). Коэффициент α, связывающий ток эмиттера и ток коллектора (I к = α I э ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9-0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.

Рис. 1 — Схема включения транзистора с общим эмиттером

Услительные свойства транзистора характеризует один из главных его параметров — статический коэффициент передачи тока базы или статический коэффициент усиления по току?. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (R к = 0). Численно он равен:

при U к-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент k i всегда меньше, чем?, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению k u равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является перемнное напряжение u б-э, а выходным — перемнное напряжение на резисторе, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает едениц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E 2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление R вх, которое определяется по закону Ома:

и составляет обычно от сотен Ом до едениц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например,в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.

Рис. 2 — Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше еденицы:

т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается? и определяется:

при u к-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.

Рис. 3 — Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен k i , т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное — сравнительно небольшое. Это является немаловажным достоинством схемы.

Схемы включения биполярного транзистора. В зависимости от того, какой вывод транзистора является общим, различают три схемы включения: с общей базой ОБ

В зависимости от того, какой вывод транзистора является общим, различают три схемы включения: с общей базой ОБ, с общим эмиттером ОЭ и общим коллектором ОК. Эти схемы показаны на рис. 6. Полярность источников на схемах от­носится к полупроводниковому триоду типа р-n-p. Физические процессы, протекающие в указанных схемах, одинаковы, но уси­лительные свойства различны.

В рассмотренной выше схеме (см. рис.5), общим выводом яв­ляется вывод базы, поэтому эта схема соответствует схеме с ОБ (рис.6а). Аналогичной схемой в ламповых усилителях является схема с общей сеткой. Эта аналогия базируется на том, что эмиттер выполняет в полупроводниковом триоде функции катода коллектор — функции анода, а база — роль сетки. Усилительный каскад, собранный по схеме с ОБ, как отмеча­лось, имеет малое входное и большое выходное сопротивление. Ма­лое входное сопротивление каскада является существенным недос­татком данной схемы, поэтому схема с ОБ применяется в усилите­лях низкой частоты редко.

В схеме с ОБ можно получить усиление по напряжению и мощ­ности в десятки, сотни раз и больше в зависимости от сопротив­ления нагрузки. Усиление по току в схеме с ОБ не происходит.

В схеме с ОЭ (рис.6б) входной сигнал также подводится к выводам эмиттера и базы, а резистор Rк включается между выводами эмиттера и коллектора. Здесь общим выводом служит вывод эмиттера. Основной особенностью схемы с ОЭ является то, что входным током в ней яв­ляется не ток эмиттера, а ма­лый по величине ток базы. По­этому входное сопротивление в данной схеме значительно больше, чем в предыдущей, и со­ставляет сотни и тысячи Ом; выходное сопротивление — де­сятки кОм.

Коэффициент усиления по примерно такую же вели­чину, как для схемы с ОБ.

Коэффициент усиления по току усилительного каскада с ОЭ всегда меньше коэффициент передачи по току β и прибли­жается к нему при малых сопротивлениях нагруз­ки. Усилительный каскад с ОЭ обеспечивает

усиление по то­ку в несколько десятков раз.

Коэффициент усиления по мощности Кр1КU оказыва­ется значительно выше, чем для схемы с ОБ и может достигать нескольких тысяч. Схе­ма с ОЭ аналогична ламповому каскаду с общим катодом и яв­ляется наиболее распространенной.

В схеме о ОК (рис.5, а) сигнал подается на участок база – коллектор, а выходное напряжение снимается с резистора Rк, включенного между эмиттером и коллектором. Общим выводом слу­жит вывод коллектора. Входным током в этой схеме является ток базы, а выходным – ток эмиттера. В схеме о ОК К1 немного больше, чем в схема с ОЭ. Входное сопротивление схемы о ОК ве­лико – порядка десятков или сотен кОм, а выходное, наоборот, мало и составляет десятки или сотни Ом. Каскад с ОК усиления по напряжению не дает, а усиление по мощности – несколько мень­ше, чем в схеме с ОБ.

Схема с ОК применяется реже, чем предыдущая, и служит, в основном, для согласования сопротивлений между отдельными кас­кадами усилителей и в качестве входного каскада, когда требу­ется высокое входное сопротивление. Схема с ОК аналогична ламповому каскаду с общим анодом.

Конденсаторы С1 и С1 в схемах на рис.5 служат для отделения постоянной и переменной составляющих тока на входе и выходе.

Биполярные транзисторы — презентация онлайн

2. Общие сведения.

Транзистор- полупроводниковый прибор с двумя
электронно-дырочными переходами,
предназначенный для усиления и генерирования
электрических сигналов.
Используются оба типа носителей :
1. Основные.
2. Неосновные.
Поэтому его называют биполярным.
Биполярный транзистор состоит из трех областей
монокристаллического полупроводника с разным
типом проводимости: эмиттера, базы и
коллектора.
Переход, который образуется на границе эмиттербаза, называется эмиттерным, а на границе базаколлектор — коллекторным.
В зависимости от типа проводимости крайних слоев
различают транзисторы p-n-р и n-р-n

3. Обозначения транзистора

Обозначение биполярных
транзисторов на схемах
Простейшая наглядная схема
устройства транзистора

4. Схематическое изображение транзистора типа p-n-p:

Схематическое изображение транзистора типа p-n-p.
Э — эмиттер, Б — база, К — коллектор, W- толщина базы,
ЭП – эмиттерный переход, КП – коллекторный переход
База (Б) -область транзистора, расположенная между
переходами. Примыкающие к базе области чаще
всего делают неодинаковыми.
Одну изготовляют так, чтобы из неё эффективно
происходила инжекция в базу, а другую — так, чтобы
соответствующий переход наилучшим образом
осуществлял экстракцию инжектированных
носителей из базы.
Эмиттер (Э)- область транзистора, основным
назначением которой является инжекция носителей
в базу, а соответствующий переход эмиттерным.
Коллектор (К)- область, основным назначением
которой является экстракцией носителей из базы, а
переход коллекторным.
Каждый из переходов транзистора можно
включить либо в прямом, либо в обратном
направлении. В зависимости от этого
различают три режима работы транзистора:
1. Режим отсечки — оба p-n перехода закрыты,
при этом через транзистор обычно идёт
равнительно небольшой ток;
2. Режим насыщения — оба p-n перехода
открыты;
3. Активный режим — один из p-n переходов
открыт, а другой закрыт.
В режиме отсечки и режиме насыщения
управление транзистором почти отсутствует. В
активном режиме такое управление
осуществляется наиболее эффективно
• Если на эмиттерном переходе напряжение прямое, а на
коллекторном переходе – обратное, то включение
транзистора считают нормальным, при
противоположной полярности – инверсным.
• По характеру движения носителей тока в базе
различают диффузионные и дрейфовые биполярные
транзисторы.
• Если при отсутствии токов в базе существует
электрическое поле, которое способствует движению
неосновных носителей заряда от эмиттера к коллектору,
то транзистор называют дрейфовым, если же поле в
базе отсутствует – бездрейфовым (диффузионным).

в БТ реализуются четыре физических процесса:
— инжекция из эмиттера в базу;
— диффузия через базу;
— рекомбинация в базе;
— экстракция из базы в коллектор.

9. Режим отсечки

1.
Эмиттерный и коллекторный р-n-переходы подключены к
внешним источникам в обратном направлении.
Через оба р-n-перехода протекают очень малые обратные токи
эмиттера (IЭБО)и коллектора (IКБО).
Iб равен сумме этих токов и в зависимости от типа транзистора
находится в пределах от единиц мкА (у кремниевых транзисторов) до
единиц миллиампер — мА (у германиевых транзисторов).

10. Режим насыщения

1.
Эмиттерный и коллекторный р-n-переходы подключить к
внешним источникам в прямом направлении.
Диффузионное электрическое поле эмиттерного и коллекторного
переходов будет ослабляться электрическим полем, создаваемым
внешними источниками UЭБ и UКБ.
В результате уменьшится потенциальный барьер, ограничивавший
диффузию основных носителей заряда, и начнется проникновение
(инжекция) дырок из эмиттера и коллектора в базу, то есть через
эмиттер и коллектор транзистора потекут токи, называемые
токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

11. Активный режим

1. Применяется для усиления сигналов .
2. Эмиттерный переход включается в прямом, а коллекторный —
в обратном направлениях.
Под действием прямого напряжения UЭБ происходит инжекция
дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в
ней неосновными носителями заряда . Часть дырок в базе
заполняется (рекомбинирует) имеющимися в ней свободными
электронами. Так как ширина базы небольшая (от нескольких ед.до
10 мкм), основная часть дырок достигает коллекторного р-nперехода и его электрическим полем перебрасывается в коллектор.
В активном режиме ток базы в десятки и сотни раз меньше тока
коллектора и тока эмиттера.

12. Закон распределения инжектированных дырок рn(х) по базе .

x
pn ( x) pn0 exp( VG ) exp( )
Lp
• Процесс переноса инжектированных носителей через базу –
диффузионный.
• Характерное расстояние, на которое неравновесные носители
распространяются от области возмущения, – диффузионная
длина Lp.
• Чтобы инжектированные носители достигли коллекторного
перехода, длина базы W должна быть меньше диффузионной
длины Lp.
• Условие W
транзисторного эффекта – управления током во вторичной цепи
через изменение тока в первичной цепи.

14. Схемы включения биполярного транзистора

1. В предыдущей схеме( см. активный режим) электрическая цепь, образованная
источником UЭБ, эмиттером и базой транзистора, называется входной,
2. цепь, образованная источником UКБ, коллектором и базой этого же транзистора,—
выходной.
3. База — общий электрод транзистора для входной и выходной цепей, поэтому такое
его включение называют схемой с общей базой

15. Схемы включения биполярного транзистора

На рисунке изображена схема, в которой общим электродом для входной и выходной
цепей является эмиттер. Это схема включения с общим эмиттером,
1. выходной ток — коллектора IК, незначительно отличающийся от тока эмиттера Iэ,
2. входной — ток базы IБ, значительно меньший, чем коллекторный ток.
3. Связь между токами IБ и IК в схеме ОЭ определяется уравнением: IК= h31ЕIБ + IКЭО

16. Схемы включения биполярного транзистора

Схемы, в которых общим электродом для входной и выходной цепей
транзистора является коллектор . Это схема включения с общим
коллектором (эмиттерный повторитель).
Независимо от схемы
включения транзистора для
него всегда справедливо
уравнение, связывающее токи
его электродов:
Iэ = I к + I Б .

17. Сравнительная оценка схем включения биполярных транзисторов

KI — коэффициент усиления по току
KU — коэффициент усиления по
напряжению
KP — коэффициент усиления по мощности

18. Влияние температуры на характеристики транзисторов

1. Недостаток транзисторов — зависимость их
характеристик от изменения температуры
2. При повышении температуры увеличивается
электропроводность полупроводников и токи в них
возрастают. Возрастает обратный ток p-n
перехода(начальный ток коллектора). Это приводит к
изменению характеристик p-n перехода.
3. Схемы с общей базой и общим эмиттером имеют
различные значения обратного тока Iкбо. С
увеличением температуры T обратные токи
возрастают, но соотношение между ними остается
постоянным.

19. Влияние температуры на характеристики транзисторов

• Температурные изменения оказывают влияние на величину
коэффициентов передачи тока а и B
• Изменение обратных токов и коэффициентов усиления
приводит к смещению входных и выходных характеристик
транзисторов, что может привести к нарушению его
нормальной работы или схемы на его основе.

20. Выходная и входная характеристики биполярного транзистора, включенного по схеме с общим эмиттером при различных температурах:

21. Классификация транзисторов

1. Транзисторы классифицируются по допустимой мощности
рассеивания и по частоте.
2. Транзисторы по величине мощности, рассеиваемой
коллектором, делятся на транзисторы малой (Рк ЗООО
мВт), средней (Рк 1,5 Вт) и большой (Рк 1,5 Вт)
мощности.
3. По значению предельной частоты, на которой могут
работать транзисторы, их делят на низкочастотные (З
МГц), среднечастотные ( ЗО МГц), высокочастотные (
300 МГц) и сверхвысокочастотные ( > ЗООМГц).
4. Низкочастотные маломощные транзисторы обычно
изготавливают методом сплавления, поэтому их называют
сплавными.

Введение в биполярные переходные транзисторы (BJT) | Биполярные переходные транзисторы

Изобретение биполярного транзистора в 1948 году произвело революцию в электронике. Технические достижения, ранее требовавшие относительно больших, механически хрупких, энергоемких вакуумных ламп, внезапно стали возможны с помощью крошечных, механически прочных, экономных частичков кристаллического кремния. Эта революция сделала возможным разработку и производство легких и недорогих электронных устройств, которые мы сейчас принимаем как должное.Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется современной электроникой.

Функции и применение биполярных переходных транзисторов

Я намерен здесь сосредоточиться как можно более исключительно на практических функциях и применении биполярных транзисторов, а не на исследовании квантового мира теории полупроводников. На мой взгляд, обсуждение дырок и электронов лучше оставить в отдельной главе. Здесь я хочу изучить, как использовать эти компоненты, а не анализировать их внутренние детали.Я не хочу преуменьшать важность понимания физики полупроводников, но иногда пристальное внимание к физике твердого тела отвлекает от понимания функций этих устройств на уровне компонентов. Однако, принимая этот подход, я предполагаю, что читатель обладает определенным минимальным знанием полупроводников: разница между полупроводниками, легированными «P» и «N», функциональные характеристики PN (диодного) перехода и значения терминов «Смещенный назад» и «смещенный вперед».Если вам непонятны эти концепции, лучше всего обратиться к предыдущим главам этой книги, прежде чем переходить к этой.

Слои BJT

Биполярный транзистор состоит из трехслойного «сэндвича» из легированных (внешних) полупроводниковых материалов (a и c) либо P-N-P, либо N-P-N (b и c). Каждый слой, образующий транзистор, имеет определенное имя, и каждый слой снабжен проводным контактом для подключения к цепи. Условные обозначения показаны на рисунках (а) и (с).

Биполярный транзистор : (a) схематическое обозначение PNP, (b) расположение (c) схематическое обозначение NPN, (d) расположение.

Функциональное различие между транзистором PNP и транзистором NPN заключается в правильном смещении (полярности) переходов во время работы.

Биполярные транзисторы работают как регуляторы тока с регулируемым током . Другими словами, транзисторы ограничивают количество проходящего тока в соответствии с меньшим управляющим током.Основной ток, которым управляет , идет от коллектора к эмиттеру или от эмиттера к коллектору, в зависимости от типа транзистора (NPN или PNP, соответственно). Небольшой ток, которым управляет , основной ток идет от базы к эмиттеру или от эмиттера к базе, опять же, в зависимости от типа транзистора (NPN или PNP, соответственно). Согласно стандартам символики полупроводников, стрелка всегда указывает в направлении тока.

Направление малого управляющего тока и большого управляемого тока для (a) PNP и (b) NPN-транзистора.

Биполярные транзисторы содержат два типа полупроводникового материала

Биполярные транзисторы

называются bi полярными, потому что основной ток через них происходит в двух типах полупроводниковых материалов : P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда — электроны и дырки — составляют этот основной ток через транзистор.

Как вы можете видеть, , контролирующий ток , и , управляемый ток , всегда соединяются вместе через эмиттерный провод, и их токи текут в направлении стрелки транзистора.Это первое и главное правило при использовании транзисторов: все токи должны течь в правильном направлении, чтобы устройство могло работать как регулятор тока. Небольшой управляющий ток обычно называют просто базовым током , потому что это единственный ток, который проходит через базовый провод транзистора. И наоборот, большой контролируемый ток называется коллекторным током , потому что это единственный ток, который проходит через коллекторный провод.Ток эмиттера — это сумма токов базы и коллектора в соответствии с законом Кирхгофа о токах.

Отсутствие тока через базу транзистора отключает транзистор, как разомкнутый переключатель, и предотвращает прохождение тока через коллектор. Базовый ток включает транзистор, как замкнутый переключатель, и пропускает пропорциональную величину тока через коллектор. Ток коллектора в основном ограничивается базовым током, независимо от величины напряжения, доступного для его толкания.В следующем разделе более подробно рассматривается использование биполярных транзисторов в качестве переключающих элементов.

ОБЗОР:

  • Биполярные транзисторы названы так потому, что управляемый ток должен проходить через два типа полупроводникового материала : P и N. Ток состоит из потока электронов и дырок в разных частях транзистора.
  • Биполярные транзисторы состоят из полупроводниковой «сэндвич-структуры» типа P-N-P или N-P-N.
  • Три вывода биполярного транзистора называются эмиттером , базой и коллектором .
  • Транзисторы
  • функционируют как регуляторы тока, позволяя маленькому току управлять большим током. Величина допустимого тока между коллектором и эмиттером в первую очередь определяется величиной тока, проходящего между базой и эмиттером.
  • Для того, чтобы транзистор мог правильно функционировать в качестве регулятора тока, управляющий (базовый) ток и контролируемый (коллекторный) токи должны идти в правильных направлениях: аддитивно сцепляться на эмиттере и двигаться в направлении, указанном стрелкой на эмиттере. .

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Обозначения схем биполярного транзистора

»Примечания по электронике

Условные обозначения для различных форм биполярных транзисторов: NPN, PNP, Дарлингтона, светочувствительный транзистор или фототранзистор. .


Цепи, схемы и символы Включает:
Обзор условных обозначений цепей Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, переключатели и соединители Блоки аналоговых и функциональных схем Логика


Для биполярных транзисторов не так много условных обозначений схем.Конечно, существуют разные символы схем для обозначения транзисторов NPN и PNP.

В дополнение к этому, некоторые символы схем транзисторов имеют кружок вокруг них, а другие нет. Те, у которых нет, широко используются в схемах, детализирующих внутреннюю схему ИС, поскольку легче включить несколько эмиттеров и другие варианты базового транзистора, если круг не включен.

Другие символы схем биполярных транзисторов включают символы фототранзисторов, транзисторов Дарлингтона и т. Д.


Обозначения цепи биполярного транзистора
Описание транзистора Обозначение цепи
Транзистор биполярный NPN
Транзистор биполярный PNP
Биполярный транзистор NPN
с маркированными электродами.
Биполярный транзистор NPN
без внешнего круга
Фототранзистор биполярный NPN
Биполярный фототранзистор NPN
без подключения к базе
Фототранзистор биполярный NPN
NPN фотодарлингтон
Обозначение цепи транзисторной оптопары
Предыдущая страница Следущая страница

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Тестер биполярных транзисторов | Подробная принципиальная схема Avaialble

Подпишитесь на обновления Отписаться от обновлений

Этот тестер биполярных транзисторов может указывать тип транзистора, а также определять его выводы на базе, коллекторе и эмиттере. Схема очень простая. Направление протекания тока от выводов тестируемого транзистора (ТУТ) отображается парой светодиодов (зелено-красный).

NPN-транзистор излучает красно-зелено-красное свечение, а PNP-транзистор излучает зелено-красно-зеленое свечение, в зависимости от контрольной точки, которая подключается к выводу транзистора.Эмиттер и коллектор дифференцируются нажатием кнопочного переключателя S1, который фактически увеличивает напряжение питания схемы примерно на 5,1 В.

Схема тестера биполярных транзисторов

В основе схемы лежит микросхема CD4069 (IC3), которая генерирует колебания и генерирует импульсы, необходимые для проверки пары выводов транзистора на проводимость в обоих направлениях. Различные комбинации выбираются расположением счетчика CD4040 (IC1) и двустороннего переключателя CD4016 (IC2).

Схема тестера биполярных транзисторов

Схема тестера биполярных транзисторов выше.К каждой контрольной точке подключена пара светодиодов, через которые ток течет в обоих направлениях. Каждый светодиод соответствует определенному направлению. Таким образом можно проверить оба перехода транзистора.

Светодиоды расположены так, чтобы указывать тип полупроводника через p-n переход. Счетчик синхронизируется генератором переменного тока, построенным вокруг ворот N5 и N6. Благодаря этому светодиоды светятся непрерывно для облегчения наблюдения, показывая направление тока между различными контрольными точками.

Итак, если красный светодиод, подключенный к определенной точке, светится, это означает, что соединение n-типа подключено к этой контрольной точке, и наоборот. Таким образом, красно-зелено-красное свечение указывает на тип транзистора NPN, а зеленое-красно-зеленое свечение указывает на транзистор PNP. По этому наблюдению вы можете легко обнаружить базу.

Коллектор и эмиттер различаются по тому принципу, что переход база-эмиттер выходит из строя при обратном смещении намного легче, чем переход база-коллектор.Таким образом, при повышенном напряжении переменного тока вы можете легко увидеть, что эмиттер проводит больше в обратном направлении (связанный светодиод значительно светится), чем коллектор. Рекомендуется использовать прозрачные или полупрозрачные светодиоды.

Отрегулируйте предустановку VR1 (2 мегаома), чтобы получить равное свечение при замыкании любых двух контрольных точек. Нерегулируемое напряжение 15-18 В регулируется комбинацией стабилитрон-транзистор для питания схемы.

Схема работы

Процедура тестирования проста. Обычно транзисторы можно вставлять в любой ориентации, так как они имеют множество возможных расположений выводов базы, коллектора и эмиттера, таких как CEB, BEC и CBE.Просто подключите TUT к возможным комбинациям из трех точек. Свечение красно-зелено-красного цвета означает, что это транзистор NPN, а вывод, связанный с зеленым светодиодом, является базой.

Чтобы идентифицировать эмиттер и коллектор, просто нажмите переключатель S1 и наблюдайте за зелеными светодиодами рядом с уже горящими красными светодиодами. Зеленый светодиод, светящийся с высокой интенсивностью, указывает на сторону эмиттера, а светодиод с низкой интенсивностью указывает на сторону коллектора.

Точно так же свечение зелено-красно-зеленое означает, что транзистор типа PNP, а вывод, связанный с красным светодиодом, является базой.Чтобы идентифицировать эмиттер и коллектор, просто нажмите переключатель S1 и посмотрите на красные светодиоды, связанные с уже горящими зелеными светодиодами по бокам. Светодиод, светящийся с высокой интенсивностью, указывает на сторону эмиттера, а светодиод с низкой интенсивностью указывает на сторону коллектора.

Авторский прототип

Строительство и испытания

Соберите схему на печатной плате общего назначения и поместите в небольшую коробку. Держите ручку предварительной настройки посередине. Чтобы упростить подключение TUT, вы можете увеличить количество контрольных точек, как показано в авторском прототипе здесь.


Проект был впервые опубликован в августе 2010 г. и недавно был обновлен.

Биполярный транзистор

— обзор

3.3.1 Введение

В системах интеллектуальных датчиков температуры и микроэлектромеханических системах (МЭМС) часто используются встроенные датчики, которые объединяют чувствительные элементы с интерфейсной электроникой, необходимой для связи, например, с микроконтроллерами. Помимо встроенных датчиков, в таких системах могут применяться дискретные чувствительные элементы.Дискретные элементы используются, например, для калибровки и тестирования. Дискретные элементы также используются в средах, в которых температуры выходят за пределы допустимого диапазона интерфейсной электроники. Таблица 3.1 (Meijer, 2008a) суммирует основные характеристики некоторых обычно используемых на кристалле и дискретных чувствительных элементов для систем датчиков температуры и MEMS.

Таблица 3.1. Основные характеристики различных типов термочувствительных элементов согласно Meijer (2008a)

90 ° )
Характеристики Транзисторы (BJT) Термопары Платиновые резисторы Термисторы
Средний
−50 до +180
Очень большой
−270 до +3500
Большой
−260 до +1000
Средний
−80 до +180
Точность Средний Проблема, потому что опорного спая Высокая в широком диапазоне Высокая в небольшом диапазоне
Точность для измерения небольших перепадов температур Средняя Высокая Средняя Средняя
Подходит для интеграции на кремнии чип Да Да Не в стандартной технологии Не в стандартной технологии y
Чувствительность Высокая (2 мВК −1 ) Низкая (0.05–1 мВК −1 ) Низкое (0,4% K −1 ) Высокое (5% K −1 )
Линейность Хорошее Хорошее Очень хорошее сильная нелинейность
Электрическая величина, представляющая температуру Напряжение Напряжение Сопротивление Сопротивление

Биполярные переходные транзисторы (BJT) и термисторы относятся к наиболее чувствительным устройствам в этой таблице.Часто BJT используются с короткозамкнутым соединением коллектор-база 1 и смещены хорошо контролируемым током. Этот способ смещения имеет то преимущество, что результирующее напряжение база-эмиттер почти линейно связано с температурой (Meijer, 2008a). Также характеристики термистора можно линеаризовать, применяя последовательные или шунтирующие резисторы за счет снижения чувствительности (Meijer, 2008a). Высокая чувствительность может быть полезна, поскольку снижает требования к точности схем обработки.Фактически, любая эквивалентная входная ошибка схем обработки будет разделена на чувствительность датчика при вычислении соответствующей температурной погрешности. Часто создать хорошую схему обработки не так уж и сложно. В этом случае точность сенсорных элементов важнее их чувствительности.

По большей части неточность чувствительных к температуре элементов вызвана перекрестным воздействием механического напряжения и, следовательно, также изменениями механического напряжения во время, например, термоциклирования или старения.По тем же причинам на точность сенсора влияет механическое напряжение, остающееся после изготовления и упаковки сенсорных элементов. При сравнении свойств транзистора и термистора в важном диапазоне температур около 300K термисторы имеют лучшую точность. По этой причине термисторы часто используются в сенсорных системах. С другой стороны, транзисторы относятся к основным компонентам микросхем. Следовательно, транзисторы могут быть изготовлены как компонент датчика температуры на кристалле.Следовательно, инновации в датчиках температуры на основе BJT последовали за быстрым развитием и инновациями в технологии IC. По этой причине в интеллектуальных датчиках и МЭМС BJT являются излюбленными элементами измерения температуры. Поэтому данная глава будет в основном посвящена датчикам температуры на основе BJT и соответствующим системам датчиков температуры.

Термопары генерируют напряжение, которое пропорционально разнице температуры между, например, эталонным спаем и измерительным спаем.

Термобатареи состоят из ряда последовательно соединенных термопар и также используются для измерения разницы температур . Термобатареи могут быть изготовлены с использованием ИС-технологии и очень подходят для применения в термодатчиках. В термодатчиках физические величины измеряются путем преобразования физических сигналов сначала в разность температур, а затем преобразование этой разности температур в напряжение термобатареи. Обычно в таких датчиках также измеряется эталонная температура, например, с помощью биполярного транзистора или термочувствительного резистора.Инфракрасные датчики, в том числе популярные клинические ушные термометры, являются примерами тепловых датчиков, в которых излучение поглощается консольным лучом (Herwaarden van, 2008), что вызывает разницу температур, измеряемую с помощью термобатареи. Измерение абсолютной температуры с помощью термопары или ИК-датчика также требует использования датчика абсолютной температуры, например термистора или транзистора, для измерения эталонной температуры.

В промышленных системах часто используются дискретные термочувствительные элементы из-за их высокой точности и превосходной долговременной стабильности.Чаще всего используются платиновые резисторы, термопары и термисторы. Из-за своей стабильности платиновые резисторы перечислены в Международной температурной шкале 1990 г. как интерполирующий температурный стандарт в диапазоне температур от -259,4 ° C до 961,9 ° C (Michalski et al., 2001). Для более высоких температур используются другие типы датчиков, например, определенные типы термопар. Из-за их низкой стоимости и высокой надежности дискретные термопары широко используются в промышленных приложениях, где доступны разные типы для разных температурных диапазонов.

Термисторы очень чувствительны, но не так стабильны, как платиновые резисторы. Они широко применяются в диапазоне температур от -80 ° C до 180 ° C. Помимо высокой чувствительности, термисторы обладают небольшими размерами и недорого. Однако их сильная нелинейность затрудняет обработку сигнала термистора. Линеаризацию можно получить с помощью шунтирующих и последовательных резисторов (Meijer, 2008a) за счет снижения чувствительности. Некоторые сенсорные интерфейсы, такие как универсальный сенсорный интерфейс Smartec (2016a), предлагают специальные режимы обработки термисторов, включая линеаризацию.

За последние десятилетия инновации в системах датчиков температуры, реализованных с использованием дискретных чувствительных к температуре элементов, в основном касались разработки электронных интерфейсов (Smartec, 2016a; Meijer, 2008b; Khadouri et al., 1997). Для получения более подробной информации, касающейся дискретных чувствительных к температуре элементов и соответствующих систем измерения, читатель может отослать читателя к специальной литературе (Michalski et al., 2001).

Формулы и уравнения биполярного переходного транзистора (BJT)

Формула и уравнения для биполярного переходного транзистора «BJT»

Биполярный переходный транзистор:

Коэффициенты усиления по току в BJT:

Есть два типа усиления по току в BJT i.е. α и β.

Где

  • I E — ток эмиттера
  • I C — ток коллектора
  • I B — ток базы

Конфигурация общей базы:
Коэффициент усиления общей базы

В общей базовой конфигурации BJT используется в качестве усилителя усиления напряжения, где коэффициент усиления A В — это отношение выходного напряжения к входному напряжению:

Где

  • α = I C / I E
  • R L — сопротивление нагрузки
  • R in — входное сопротивление

Связанные сообщения:

Общая конфигурация эмиттера:
Коэффициент усиления по току в прямом направлении:

Это соотношение выходного тока i.е. ток коллектора I C к входному току, т.е. базовый ток I B.

β F = h FE = I C / I B

Где

  • Β F — коэффициент усиления прямого тока
  • I C — ток коллектора
  • I B — базовый ток
Ток эмиттера:

Ток эмиттера представляет собой комбинацию тока коллектора и базы.Его можно рассчитать с помощью любого из этих уравнений.

  • I E = I C + I B
  • I E = I C / α
  • I E = I B (1 + β)
Ток коллектора:

Ток коллектора для BJT определяется по формуле:

  • I C = β F I B + I CEO ≈ β F I B
  • I C = α I E
  • I C = I E — I B

Где

I CEO коллектор на эмиттер тока утечки (открытая база).

Альфа Формула преобразования α в бета β:

Коэффициент усиления альфа и бета взаимно конвертируются, и их можно преобразовать с помощью,

  • α = β / (β + 1)
  • β = α / (1- α)
Напряжение между коллектором и эмиттером:

V CE = V CB + V BE

Где

  • V CE — это напряжение между коллектором и эмиттером
  • В CB — это напряжение между коллектором и базой
  • В BE — это напряжение между базой и эмиттером

Связанное сообщение: Как проверить транзистор с помощью мультиметра (DMM + AVO) — NPN и PNP

Конфигурация с общим коллектором:
Коэффициент усиления по току:

Коэффициент усиления по току A i BJT с общим коллектором определяется соотношением выходного тока I E для ввода тока I B :

  • I E = I C + I B
  • A i = I E / I B
  • A i = ( I C + I B ) / I B
  • A i = (I C / I B ) + 1
  • A i = β + 1

Связанные формулы и уравнения Сообщений:

Драйвер двигателя HBridge биполярного транзистора

Классическая схема драйвера двигателя постоянного тока для начинающих, которая встречается в каждом учебнике по электронике, представляет собой H-мост на биполярных транзисторах.

Н-мост представляет собой схему транзисторов, которая позволяет схеме полностью управлять стандартным электродвигателем постоянного тока. То есть H-мост позволяет микроконтроллеру, логической микросхеме или пульту дистанционного управления электронным образом управлять двигателем для движения вперед, назад, торможения и выбега.

В этой статье я сосредоточусь на базовом H-мосте, который является хорошим выбором для большинства роботов (включая роботов BEAM) и портативных гаджетов.Этот H-мост может работать от источника питания всего лишь от двух почти разряженных батареек AAA (2,2 В) до новой батареи 9 В (9,6 В).

На следующих страницах я сравню характеристики трех разных каталожных номеров популярных транзисторов. (2N3904 / 2N3906 против 2N2222A / 2N2907A против Zetex ZTX1049A / ZTX968) с помощью обычного двигателя-робота от Solarbotics.

Схема H-моста (ниже) на первый взгляд выглядит сложной, но на самом деле это всего лишь четыре копии резистора + транзистора + диода.

Схема биполярного транзистора hbridge для привода двигателя постоянного тока. Вы видите букву «Н»?

Есть много разных способов нарисовать схему, но приведенная выше электрическая схема соответствует модели большинства h-мостов.

  • M1 : Это двигатель постоянного тока (DC). Это очень часто. Вы можете найти их в интернет-магазинах излишков или в использованных игрушках.У мотора должно быть всего два провода. Измерьте сопротивление двух проводов двигателя с помощью мультиметра. Если сопротивление двигателя меньше 5 Ом, то детали транзистора, перечисленные в этой статье, слишком слабы для питания двигателя.

Если вам нужна полная информация о том, как работает H-мост, или если вам нужны более простые или более мощные драйверы двигателей, тогда, пожалуйста, купите копию моей книги «Промежуточное создание роботов». В главах 9 и 10 содержится большое количество деталей, и они содержат множество вариаций, которые здесь не показаны.

Управление драйвером двигателя Н-моста

Резисторы — это входы, управляющие H-мостом. Подключая резистор к + VDC или GND, он включает или выключает соответствующий транзистор. (+ VDC — положительный полюс батареи. GND — отрицательный полюс батареи.) Когда конкретная пара транзисторов включается, двигатель что-то делает.

Команда R1 R2 R3 R4
Выбег / Roll / Off: GND или отключено + VDC или отключено GND или отключено + VDC или отключено
Вперед: GND или отключен GND + VDC + VDC или отключен
Реверс: + VDC + VDC или отключен GND или отключен GND
Тормоз / замедление: + VDC + VDC или отключен + VDC + VDC или отключен

Поскольку имеется 4 резистора, на самом деле существует шестнадцать возможных способов управления этой схемой.Не волнуйтесь с другими вариантами (они есть в книге, если вам интересно). Кроме…

Никогда. подавать + VDC на R1 и GND на R2 одновременно! Вы закоротите аккумулятор.

Никогда. подавать + VDC на R3 и GND на R4 одновременно! Вы закоротите аккумулятор.

Затем давайте построим схему H-моста из реальных деталей …


Биполярные переходные транзисторы (BJT) — Учебники по аналоговой электронике

Биполярный переходной транзистор — это активный полупроводниковый прибор с тремя выводами, образованный двумя встречно расположенными p-n переходами.Три клеммы обозначены как база, эмиттер и коллектор. Его основная функция — усиление тока между токами коллектора или эмиттера и током базы.

Существует 2 типа биполярных переходных транзисторов (BJT): NPN и PNP.

Анализ цепей

    Чтобы проанализировать схему транзистора,
  1. Выполните анализ постоянного тока, перерисовав схему
    • заменяет символ BJT на его модель DC.
    • Обрыв любой конденсатор и короткое замыкание любой индуктивности.
  2. Если требуется анализ переменного тока, перерисуйте схему
    • , заменив символ BJT на модель малого сигнала.
    • вычислить r e , используя I E из анализа постоянного тока и v T = 26 мВ. \ begin {уравнение} r_e = {v_ {T} \ over I_E} \ end {уравнение} обратите внимание, что анализ переменного тока действителен только для v T
    • закоротить любой конденсатор и разомкнуть цепь индуктивности. Замкните накоротко любой источник питания постоянного тока.

Конфигурация одной цепи BJT

Существует 3 конфигурации схем с одним биполярным переходным транзистором.Это схемы с общим эмиттером, общей базой и общим коллектором.

Характеристики конфигурации
Общий эмиттер Общий коллектор Общая база
Вход База База Излучатель
Выход Коллектор Излучатель Коллектор
Соотношение фаз входа / выхода 180 или 0 o 0 o
Коэффициент усиления напряжения Средний Единство Высокая
Коэффициент усиления по току Средний Высокая Единство
Входное сопротивление Средний Высокая Низкий
Выходное сопротивление Средний Низкий Высокая

Поскольку доходы от рекламы падают, несмотря на рост числа посетителей, нам нужна ваша помощь в поддержании и улучшении этого сайта, что требует времени, денег и тяжелого труда.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *