Схема подключения конденсатора на электродвигатель: Подключение пускового и рабочего конденсатора к электродвигателю

Содержание

Включение 3-фазного двигателя в однофазную сеть

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность, развиваемая двигателем в этом случае, составляет 50…60% от его мощности в трехфазном включении.

Электрическая принципиальная схема подключения 3-х фазного двигателя.

Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, модель с двойной клеткой короткозамкнутого ротора серии МА.

В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

Расчет параметров и элементов электродвигателя

Рисунок 1. Принципиальная схема включения трехфазного электродвигателя в сеть 220 В: С р – рабочий конденсатор; С п – пусковой конденсатор; П1 – пакетный выключатель.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380 В, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1.

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку “Разгон”.

После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в “треугольник” определяется по формуле:

, где

  • Ср – емкость рабочего конденсатора, в мкФ;
  • I – потребляемый электродвигателем ток, в А;
  • U -напряжение в сети, В.

А в случае соединения обмоток двигателя в “звезду” определяется по формуле:

, где

  • Ср – емкость рабочего конденсатора, в мкФ;
  • I – потребляемый электродвигателем ток, в А;
  • U -напряжение в сети, В.

Потребляемый электродвигателем ток в вышеприведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

, где

  • Р – мощность двигателя, в Вт, указанная в его паспорте;
  • h – КПД;
  • cos j – коэффициент мощности;
  • U -напряжение в сети, В.

Рисунок 2. Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.

Емкость пускового конденсатора Сп выбирают в 2…2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.

Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.

Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Общая емкость соединенных конденсаторов составит:

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.

Мощность трехфазного
двигателя, кВт:

  • 0,4;
  • 0,6;
  • 0,8;
  • 1,1;
  • 1,5;
  • 2,2.

Минимальная емкость  рабочего

конденсатора Ср, мкФ:

  • 40;
  • 60;
  • 80;
  • 100;
  • 150;
  • 230.

Минимальная емкость пускового
конденсатора Ср, мкФ:

  • 80;
  • 120;
  • 160;
  • 200;
  • 250;
  • 300.

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об./мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В

Рисунок 3. Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.

Для запуска электродвигателей различных серий мощностью около 0,5 кВт от однофазной сети без реверсирования можно собрать переносной универсальный пусковой блок (рис. 3).

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1  к сети 220 В.

Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1.

После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1.

Остановка двигателя осуществляется нажатием на кнопку SB2.

Детали

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об./мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Рисунок 4. Схема пускового устройства в металлическом корпусе размером 170х140х50 мм.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4):

  • 1- корпус;
  • 2 – ручка для переноски;
  • 3 – сигнальная лампа;
  • 4 – тумблер отключения пускового конденсатора;
  • 5 -кнопки “Пуск” и “Стоп”;
  • 6 – доработанная электровилка;
  • 7- панель с гнездами разъема.

На верхней панели корпуса расположены кнопки “Пуск” и “Стоп” – сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере  SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5).

Рисунок 5. Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети.

Кнопку “Пуск” держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.

Для остановки электродвигателя следует нажать кнопку “Стоп”. В усовершенствованном пусковом устройстве по схеме рис.5 можно использовать реле типа МКУ-48 или ему подобное.

Использование электролитических конденсаторов в схемах запуска электродвигателей

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки.

Рисунок 6. Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).

Схема замены обычног бумажного конденсатора дана на рис. 6.

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.

Например, если в схеме для однофазной сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене по вышеприведенной схеме можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

В приведенной схеме SA1 – переключатель направления вращения двигателя, SB1 – кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 – во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добиваются равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация.

Рисунок 7. Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.

Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.

При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Следует обратить внимание на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

Включение мощных трехфазных двигателей в однофазную сеть

Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой», и в клеммной коробке содержится всего 3 вывода.

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

Доработка трехфазного двигателя

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.

Рисунок 8. Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.

Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.

Детали

В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.

Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.

Как подключить 3фазный двигатель на 220

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

Подключение электродвигателя

Нас окружает огромное количество электроприборов, почти две трети из них оборудованы электродвигателями с разными мощностными и электрическими характеристиками. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок. Нужно только знать, какая схема подключения электродвигателя использована в данном конкретном приборе, и как правильно выполнить подключение асинхронного или коллекторного электропривода к сети.

Какие конструкции электродвигателя можно подключить своими руками


Из большого количества моделей и конструкций современных электромоторов в домашних условиях для самоделок можно выполнить подключение электродвигателя лишь нескольких схем:

  • Асинхронного трехфазного электродвигателя с обмоткой звездой и треугольником;
  • Асинхронного электродвигателя с однофазным питанием;
  • Коллекторного электромотора со щеточной схемой возбуждения потока.

Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в 220 В. К такой сети можно подключить и трехфазный двигатель на 380 В. Но даже в таком варианте подключения «выдавить» из электродвигателя боле 2,5-3 кВт мощности без риска сжечь электропроводку практически невозможно. Поэтому в гаражах и столярных мастерских владельцы выполняют проводку трехфазного электропитания, позволяющего использовать мощные двигатели на 5-10 кВт и более.

Что нужно знать для подключения электродвигателя своими руками


Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:

  • Понимать суть конструкций двигателей;
  • Знать предназначение обмоток и схему подключения;
  • Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.

Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.

Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Типовые схемы подключения электродвигателя


Наиболее простым в подключении является коллекторный двигатель со щеточным возбуждением магнитного поля ротора. Коллекторным электродвигателем оснащаются электроинструменты, стиралки, кофемолки, электромясорубки и прочие приборы, где время работы мотора одного включения небольшое, но важно, чтобы двигатель был максимально компактным, высокооборотным и мощным.

Подключение к двигателю простейшее. От однофазной сети напряжение подается через замыкаемую кнопку «Пуск» на обмотки статора и ротора последовательного соединения. Пока кнопка в нажатом состоянии, двигатель работает. На статоре может выполняться две обмотки, в этом случае с помощью переключателя двигатель способен работать на пониженной скорости вращения.

Коллекторные двигатели имеют малый ресурс и крайне чувствительны к качеству угольно-графитовых щеток, которыми через медное кольцо подается питание на ротор.

Подключение однофазного асинхронника


Устройство асинхронного электродвигателя на 220 В приведено на схеме. По сути, это стальной корпус с уложенными внутри двумя обмотками — рабочей и пусковой. Коллектор представляет собой алюминиевую цилиндрическую болванку, насаженную на рабочий вал. Преподаватели и инженеры любят подчеркивать, что у такого прибора обмоток не две, а три, имея в виду цилиндр ротора. Но практики оперируют только пусковой и рабочей обмотками.

Из всех способов и схем подключения однофазного асинхронного электродвигателя на практике используют только три:

  1. С балластными сопротивлениями на пусковой обмотке;
  2. С кнопочным или релейным пускателем и стартовым конденсатором в цепи пусковой обмотки;
  3. С постоянно включенным рабочим конденсатором на пусковой обмотке.

Кроме того, используется комбинация последних двух, в этом случае, в дополнение к рабочему конденсатору, в схеме присутствует реле или тиристорный ключ, с помощью которых в момент пуска подключается дополнительная группа стартовых конденсаторов.

Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов.

Достаточно просто подключить однофазный асинхронный электромотор с помощью балластного сопротивления и пускателя, как на схеме.

В любых однофазных асинхронных двигателях имеется две обмотки. Они могут быть изготовлены по схеме с разделением на четыре вывода или на три вывода. В последнем случае один из выводов является общим. Чтобы определить, какие контакты к какой обмотке относятся, потребуется схема двигателя, или можно прозвонить выводы мультиметром. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Рабочая обмотка асинхронного однофазного двигателя будет иметь минимальное сопротивление 10-13 Ом, сопротивление пусковой будет промежуточным 30-35 Ом.

Включение однофазных асинхронных моторов через пускатель очень простое, достаточно правильно выполнить соединение контактов с пускателем и сетевым кабелем по приведенной схеме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Выключение выполняется через обесточивание схемы. Управление асинхронными двигателями только с помощью пускателей является неэкономичным и не всегда эффективным способом раскрутить вал, особенно для высокооборотных моторов с небольшим моментом вращения.

Более экономичной является схема подключения электродвигателя 220 с конденсатором. Подключая через конденсаторы, как на приведенных схемах, получаем сдвиг фаз между двумя магнитным вращающимися потоками.

На практике отдают предпочтение схемам с одним конденсатором и комбинированной схеме с рабочим и пусковым конденсаторами. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Важно правильно подобрать емкость стартового конденсатора. Обычно для качественного запуска подключаемая к однофазному асинхроннику емкость конденсатора выбирается по схеме – на каждые 100 Вт мощности должно приходиться 7мкФ номинала.

Подключение трехфазных электродвигателей


В сравнении с однофазными трехфазные моторы обладают большей мощностью и пусковым моментом. Как правило, в домашних условиях такой электродвигатель применяется для деревообрабатывающих станков и приспособлений. При наличии трехфазной сети порядок подключения еще проще, чем у предыдущих асинхроников. Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией – в виде звезды или треугольника.

Конкретные варианты соединения обмоток по схеме звезда, а чаще треугольника определяются паспортным напряжением и указаниями производителя. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Для этого выполняют подключение, как на схеме.

Для одного киловатта мощности необходим рабочий конденсатор емкостью в 70 мкФ и пусковой в 25 мкФ. Рабочее напряжение не менее 600 В.

Зачастую возникает проблема в определении, какие выводы относятся к обмоткам электродвигателя. Для этого можно собрать схему, приведенную на рисунке.

Ко второму зажиму подключают один из шести контактов обмоток. Вторым проводом сети, к которому подключена контрольная лампа на 220 В, поочередно касаются всех остальных контактов двигателя. При вспыхивании лампы определяют второй контакт обмотки. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме. При прозвоне необходимо следить, чтобы контакты проводки не касались друг друга. Кроме того, нужно будет определить входные и выходные клеммы для каждой обмотки, прежде чем соединять их звездой или треугольником.

Заключение


Самостоятельное подключение трехфазных электродвигателей требует хороших знаний устройства и схем проверки работоспособности основных узлов. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.

Отправить комментарий

Подключение электродвигателя 380 на 220

2016-07-15 Советы  

Большинство асинхронных двигателей, предназначенных для работы в трехфазной сети 380 В можно спокойно переделать для работы в домашнем хозяйстве, например для точильного станка или сверлильного, где напряжение сети обычно составляет 220 В. На практике чаще всего применяется схема подключения в однофазную сеть с помощью конденсаторов.

При этом стоит отметить, что при таком подключении мощность электродвигателя составит 50-60% от его номинальной мощности, но и этого зачастую будет вполне достаточно.

Не все трехфазные электродвигатели хорошо работают при подключении к однофазной сети. Проблемы возникают, например, у двигателей серии МА с двойной клеткой короткозамкнутого ротора. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для чего нам нужны конденсаторы? Если вспомнить теорию, обмотки в асинхронном двигателе имеют фазовый сдвиг в 120 градусов, благодаря чему создаётся вращающееся магнитное поле. Вращающееся магнитное поле, пересекая обмотки ротора, индуцирует в них электродвижущую силу, что приводит к возникновению электромагнитной силы, под действием которой ротор начинает вращаться. Но это действительно только для трехфазной сети.

При подключении в однофазную сеть трехфазного двигателя вращающий момент будет создаваться только одной обмоткой и этого усилия будет недостаточно для вращения ротора. Чтобы создать сдвиг фазы относительно питающей фазы и применяют фазосдвигающие конденсаторы.

Наиболее распространенными схемами подключения трехфазного двигателя к однофазной сети являются схема «треугольник» и схема «звезда». При подключении в «треугольник» выходная мощность электродвигателя будет больше чем у «звезды», поэтому в быту обычно применяют ее.

Для того, чтобы определить по какой схеме выполнено подключение двигателя, надо снять крышку клеммника и посмотреть каким образом установлены перемычки.

В случае подключения «треугольником» все обмотки должны быть соединены последовательно, т. е. конец одной обмотки с началом следующей.

Если в клеммник выведено только 3 вывода, значит придется разбирать двигатель и находить общую точку подключения трех концов обмоток. Это соединение надо разорвать, к каждому концу припаять отдельный провод, после чего вывести их на клеммную колодку. Таким образом мы получим уже 6 проводов, которые соединим по схеме «треугольник».

После того как определились со схемой подключения, необходимо подобрать емкость конденсаторов. Емкость рабочего конденсатора можно определить по формуле С раб = 66·Р ном, где Р ном — номинальная мощность двигателя. То есть берем на каждые 100 Вт мощности берем примерно 7 мкФ емкости рабочего конденсатора. Если конденсатора необходимой емкости нет в наличии, можно набрать из нескольких конденсаторов, подключая их в параллель. Конденсаторы можно применять любого типа, кроме электролитических. Неплохо зарекомендовали себя конденсаторы типа МБГО, МБГП. Емкость пускового конденсатора должна быть примерно в в 2-3 раза больше, чем емкость рабочего конденсатора. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети.

Если двигатель после запуска начнет перегреваться, значит расчетная емкость конденсаторов завышена. Если емкости конденсаторов недостаточно, будет происходить сильное падение мощности двигателя. При правильном подборе емкости конденсаторов ток в обмотке, подключенной через рабочий конденсатор, будет одинаков или незначительно отличаться от тока, потребляемого двумя другими обмотками. Рекомендуют подбирать емкости, начиная с наименьшего допустимого значения, постепенно увеличивая емкость до необходимого значения.

В случае подключения маломощных двигателей, работающих первоначально без нагрузки, можно обойтись одним рабочим конденсатором.

Рис.1 Подключение с одним рабочим конденсатором

Рис.2 Схема подключения трехфазного двигателя в однофазную сеть

Сп — Пусковой конденсатор  Ср — Рабочий конденсатор  SB — кнопка  SA — тумблер

Конденсатор пусковой включается кратковременно кнопкой без фиксации только на время, пока электродвигатель 220в разгонится до номинальных оборотов. После выхода двигателя на оптимальный режим пусковой конденсатор необходимо отключить, иначе большая суммарная емкость вызовет перекос фаз и перегрев обмоток. Реверс двигателя осуществляется переключением тумблера.

Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

Именно на примере этой работы я и расскажу, как всё происходило

Содержание статьи

Что необходимо для подключения трёхфазного двигателя на 220 В

Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

Для работы потребуется:

  1. Непосредственно сам электромотор.
  2. Два конденсатора (пусковой и рабочий).
  3. Магнитный пускатель соответствующего номинала.
  4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
  5. Провода соответствующего сечения.
  6. Кнопочный пост на 2 точки управления.
  7. Плоскогубцы, отвёртки, ключи.

Подготовив всё необходимое, приступаем к работе.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Несколько слов о магнитном пускателе

Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Этапы подключения пускателя для второго конденсатора

Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

Устанавливаем перемычку между контактами второго пускателя

Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

Подключение провода для подачи питания на второй пускатель

Катушка второго магнитного пускателя

Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

Подключаем пусковой конденсатор: второй провод

Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

Подключение свободного провода пускового конденсатора

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Окончательные этапы сборки схемы подключения электродвигателя

Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

Почему всё так сложно

Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая

ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

Следующая

ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Подключение трехфазного двигателя к однофазной сети

Подключение трехфазного двигателя к однофазной сети не так сложно, как может показаться на первый взгляд. Среди разнообразных схем подключения в однофазную сеть трехфазных электродвигателей, простейшей считается схема включения его третьей обмотки, через сдвигающего фазу конденсатор.

КПД электродвигателя в этом случае уменьшается примерно до 60% от его номинальной мощности, по сравнению если бы он был подключен к штатной трехфазной сети.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Большинство трехфазных двигателей, при включении в электросеть, имеющую одну фазу, работают нестабильно. Среди подобных, к примеру, двигатель серии МА у которого короткозамкнутый ротор. Поэтому выбирая трехфазный электродвигатель для подключения по схеме к однофазной сети, необходимо смотреть с сторону двигателей серий УАД , АПН, АО, А, АО2, АОЛ и другие.

Для того чтобы электромотор хорошо работал с подключенным конденсатором, нужно, чтобы его емкость изменялась в зависимости от количества оборотов. В реальности, данное требование трудно реализовать. В связи с этим применяют схему подключения с двумя ступенями управления. Во время запуска трехфазного двигателя включают 2 конденсатора. После того как электродвигатель наберет обороты, оставляют только один конденсатор, а другой отключают.

Расчёт конденсатора для подключения трехфазного двигателя

Для того чтобы запустить электродвигатель нужно нажать и удерживать кнопку SA1. После полного набора оборотов кнопку можно отпустить, при этом контакты SA1.2 расцепляются, а SA1.1, SA1.3 должны остаться замкнутыми. Их расцепляют, когда необходимо остановить электродвигатель. Реверсное движение трехфазного электродвигателя осуществляется путем переключения SB1.

Для определения необходимой емкости Cр используют следующую формулу:

Ср = (4800*I)/U

где U = 220В, I – ток потребления двигателем, Ср – измеряется в микрофарадах.

Ток потребления можно высчитать по формуле:

Hantek 2000 — осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц….

I = P / (1.73*U*КПД*cosф)

Все данные для этого расчета можно узнать из паспорта двигателя.

Электроемкость Сп должна быть примерно в два раза больше Ср. Самыми распространенным являются бумажные конденсаторы серии МБГЧ, МБПГ, МБГО. Напряжение их должно быть не менее 500В.

При отсутствии бумажного конденсатора для пуска (Сп), допускается применение электролитических серии КЭ2, ЭГПМ, К503 с напряжением более 500В. Для надежной работы их необходимо соединить по следующей схеме:

Подключение сопротивления R1 в схеме нужно для разряда остатка энергии в конденсаторах после пуска двигателя. При такой схеме подключения, их суммарная емкость будет равна Сп = (С1+С2)/2.

Если трехфазный электромотор эксплуатируется не на полную мощь (часто крутится на холостых оборотах), то емкость Ср нужно уменьшить. Это связано с повышенным протеканием тока ( до 30%) по обмотке трехфазного электродвигателя на холостом ходу.

 Источник: «Домашний электрик и не только…», Пестриков В.М.

Схема подключения электродвигателя на 220 В через конденсатор

Такая проблема зачастую встает перед теми, кто любит что-либо конструировать и собирать своими руками. Если речь идет о самодельном станке, агрегате или ином механизме для бытового применения, возникает вопрос – как приспособить электродвигатель, рассчитанный на 380/3ф, к работе от обычной розетки 220 В.

Что необходимо сделать (доработать), какие практикуются схемы его включения в однофазную сеть – эти и подобные вопросы станут темой нашего разговора.

Способы включения двигателя в сеть 220 В

Они определяются той схемой, по которой соединены обмотки.

«Звезда»

Такой электродвигатель менее эффективен при подключении к 220 В, так как данное соединение обмоток снижает мощность примерно на 60 – 65%. Но иногда выбора просто нет.

«Треугольник»

Для подключения к сети 220 лучше выбрать этот вариант. Мощность также будет утеряна, но не более чем наполовину.

Но соединение обмоток – это еще не все. Сколько конденсаторов придется включить в схему?

Один – если мощность электродвигателя не превышает 1 500 Вт.

Два – при Pдв ˃ 1,5 кВт.

Расчет номинала конденсаторов

Условные обозначения: Сп – пусковой, Ср – рабочий.

Существует несколько несложных формул, но они будут малополезны читателю. Уж поверьте на слово.

Во-первых, для производства вычислений нужно будет замерить силу тока в какой-либо обмотке электродвигателя, а для этого его придется сначала включить в сеть 3 ф, да к тому же использовать специальные клещи. А они есть не у всех, даже у электриков. Это касается тех движков, у которых надписи на шильдике стерты или отсутствует паспорт на изделие. Кстати, для самоделок в основном такие образцы и используются – категории б/у.

Во-вторых, и самое главное – автор на практике убедился, что даже предельно точный расчет не является гарантией корректной работы движка.

В-третьих, не все принимают во внимание, что расчеты делаются «под нагрузку». На холостом ходу двигатель начнет перегреваться. Это еще раз доказывает, что целесообразнее конденсаторы подбирать практически.

Что рекомендовать?

Найти требуемую емкость опытным путем – самое правильное решение.  А сделать это несложно, если знать, что на каждые 1000 Вт электродвигателя необходим конденсатор порядка 70 – 80 мкф. Ставить один или целую сборку из нескольких образцов с разными номиналами – кому как удобнее. А вернее, что есть под рукой, то и использовать.

Что учесть?

  • Для тех, кто подзабыл школу – номиналы емкостей складываются при их параллельном включении. Последовательное дает сумму обратных величин, то есть 1/С. Это поможет подобрать оптимальное значение. «Фишка» в том, что промышленность выпускает конденсаторы, рассчитанные на определенную емкость, и найти именно тот, который требуется по результатам расчетов, вряд ли получится (проверено!). Вот и нужно быть готовым к тому, что придется экспериментировать.
  • Момент включения для электродвигателя – самый «трудный». Поэтому значение номинала конденсатора пускового (Сп) должно быть равно примерно трем рабочего (Ср). Иначе с запуском движка будут проблемы.

Особенности схем и их сборки

  • Как произвести подключение? Любой трехфазный электродвигатель имеет 3 провода, которые соединяются с его обмотками. Проводники могут просто торчать из корпуса или заводиться в клеммную коробку, которая на нем расположена. Это не важно. На схемах ясно показано, что с чем соединяется. Нюанс в том, что направление вращения ротора заранее угадать не получится. Если вал крутится не в ту сторону, достаточно поменять местами провода, присоединенные к емкости.
  • Кнопка «разгон». Она удерживается до тех пор, пока ротор не наберет номинальное число оборотов, то есть пока электродвигатель не выйдет на режим. Можно сделать и так, что она будет самоблокироваться, а потом автоматически размыкать контакты. Но это намного усложняет схему, поэтому приводить какие-либо чертежи автор не считает целесообразным. Кто с электротехникой на «ты», сам или сообразит, или найдет соответствующую информацию. Это же касается и организации реверсирования двигателя. Иногда нужно, чтобы его вал вращался или в одну, или в другую сторону. Решение – установка 3-х полюсного переключателя.
  • Изоляция выводов емкостей. Напряжение на них может достигать больших значений. Перед присоединением провода к конденсатору на проводник следует одеть кусочек трубки ПВХ соответствующего сечения (так называемый кембрик), а после фиксации и снижения температуры в рабочей зоне «насадить» его на место пайки.

Рекомендации

Не стоит забывать, что в моменты включения/выключения двигателя (особенно при его пуске) могут быть значительные скачки напряжения. Следовательно, раз он подключается к сети 220, все конденсаторы, задействованные в схеме, должны быть не менее чем на 400 В. Это – нижний предел по вольтажу. А вот больше (630, 750 и так далее) – пожалуйста; только их стоимость будет выше (если придется покупать).

Все емкости, которые включаются в схему, должны быть однотипными. В основном устанавливаются конденсаторы бумажные, и автор советует выбирать именно их. Использование образцов электролитических возможно, но для этого придется делать специальные расчеты и усложнять схему. Например, за счет введения в нее диодов, помещения емкостей под защитным кожухом.

Если нет базовых знаний в области электротехники, то лучше с двигателем не экспериментировать. Одновременно, в одной схеме, применять и бумажные, и электролитические конденсаторы нельзя!

Для подобных схем обычно берутся конденсаторы МБГ, МБГО, КБП, МБГП (это и есть бумажные). Их единственный недостаток – большие габариты. А если это сборка, то ее размеры более чем внушительные. Такие типы емкостей подходят для электродвигателя стационарной установки. Соорудить «короб», поместить в нем все конденсаторы и протянуть провода к движку – не проблема. А если монтируется мобильный аппарат? Как поступить?

Об электролитических конденсаторах уже сказано, хотя и не все. Пробой даже одного п/п прибора (диода) может инициировать взрыв емкости. Автор не рекомендует ни при каких условиях связываться с электролитами. Самое верное решение – использовать для схем мобильных устройств конденсаторы СВВ (металлизированные, полипропиленовые). Размеры – минимальные, номиналы емкостей – значительные. Плюс к этому – взрывобезопасные. Что еще нужно для подключения?

Если мощность превышает 3000 Вт, то подключать его к 220 В не рекомендуется. Одна из причин – большой пусковой ток. Это может привести к выходу других элементов эл/цепей, завязанных на данную линию. «Повыбивает» автоматы, подгорят контакты – это далеко не полный перечень возможных «сюрпризов».

Сразу же заниматься расчетами схемы подключения не имеет смысла. Для начала нужно уяснить, насколько целесообразно использование трехфазного движка в сети 220 В в той или иной ситуации. Дело в том, что его КПД при таком включении может уменьшиться на 55 – 65%.

Принципиально это или нет для нормальной работы «самоделки» или агрегата промышленного изготовления, будут ли способны устройства выполнять свои функции и насколько эффективно? Только ответив на все эти вопросы, можно приступать к поиску конденсаторов для схемы двигателя. Это самое правильное решение.

Асинхронный двигатель с конденсаторным пуском

: конструкция и принципы работы

— Объявление —

Асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. . В этой статье мы более подробно рассмотрим тип однофазного асинхронного двигателя, который называется асинхронным двигателем с конденсаторным пуском. Прочтите этот новый блог в Liquip, чтобы узнать, что такое асинхронный двигатель с конденсаторным пуском и принцип его работы.

Что такое асинхронный двигатель с конденсаторным пуском?

Двигатели с конденсаторным пуском — это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках. Название предполагает, что в двигателе для запуска используется конденсатор.

Конструкция асинхронного двигателя с конденсаторным пуском

Двигатель с конденсаторным пуском имеет ротор с сепаратором и две обмотки на статоре.Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки разнесены на 90 градусов. Конденсатор CS включен последовательно с пусковой обмоткой. В цепь также включен центробежный выключатель SC.

Схема подключения асинхронного двигателя конденсаторного пуска показана на рисунке ниже.

Принцип работы асинхронного двигателя с конденсаторным пуском

  • Когда обмотки статора запитаны от однофазного источника питания, основная обмотка и пусковая обмотка проходят два разных тока.Между двумя токами существует разница во времени-фазе 90 ° и пространственная разность 90 °. Эти два тока создают вращающееся магнитное поле, запускающее двигатель.
  • При пуске двигателя основная и вспомогательная обмотки включаются параллельно. Пусковой конденсатор остается в цепи достаточно долго, чтобы быстро довести двигатель до заданной скорости, которая обычно составляет от 70 до 80% от полной скорости.
  • Затем вспомогательная обмотка отключается от источника питания, часто центробежным переключателем, и двигатель остается запитанным от одной обмотки, создавая пульсирующее магнитное поле.В этом смысле вспомогательную обмотку в этой конструкции можно рассматривать как пусковую, поскольку она используется только при запуске двигателя.
  • Обратите внимание, что двигатель не будет работать должным образом, если центробежный выключатель сломан. Если переключатель всегда открыт, пусковой конденсатор не является частью цепи, поэтому двигатель не запускается. Если переключатель всегда замкнут, пусковой конденсатор всегда находится в цепи, поэтому обмотки двигателя, скорее всего, сгорят. Если двигатель не запускается, проблема скорее в конденсаторе, чем в переключателе.

Характеристики асинхронного двигателя с конденсаторным пуском

  • Пусковая обмотка конденсаторного двигателя нагревается менее быстро и хорошо подходит для применений, требующих частых или длительных периодов пуска.
  • Мощность таких двигателей составляет от 120 Вт до 7-5 кВт.
  • Конденсаторный пусковой двигатель развивает гораздо более высокий пусковой крутящий момент, примерно в 3–4,5 раза превышающий крутящий момент полной нагрузки. Для получения высокого пускового момента важны два следующих условия:
  • Емкость пускового конденсатора должна быть большой.
  • Клапан сопротивления пусковой обмотки должен быть низким.

Преимущества асинхронных двигателей с конденсаторным запуском

Ниже перечислены некоторые преимущества асинхронных двигателей с конденсаторным запуском.

  • Из-за высокого пускового момента и низкого пускового тока асинхронные двигатели с конденсаторным пуском имеют широкий спектр применения.
  • Конденсатор включен последовательно с пусковой цепью, поэтому он создает больший пусковой момент, обычно от 200 до 400% от номинальной нагрузки.И пусковой ток, обычно от 450 до 575% от номинального тока, намного ниже, чем у типов с расщепленной фазой, из-за большего провода в пусковой цепи. Это обеспечивает более высокую продолжительность цикла и надежную тепловую защиту.
  • Пусковой конденсатор обычно имеет большую емкость, чем тип асинхронного двигателя рабочего конденсатора, конденсатор емкостью от 7 до 9 мкФ, что улучшает характеристики двигателя после его запуска.
  • Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.

Применение асинхронного двигателя с конденсаторным пуском

  • Эти двигатели используются для нагрузок с большей инерцией, где требуется частый запуск.
  • Они используются в широком спектре приложений с ременным приводом, таких как небольшие конвейеры, большие воздуходувки и станки.
  • Применяются в насосах и компрессорах.
  • Применяются в компрессорах холодильников и кондиционеров.
  • Они также используются во многих приложениях с прямым приводом или редуктором.

Теперь, когда вы знаете ответ на вопрос, что такое индукционный двигатель с конденсаторным пуском, как насчет того, чтобы поделиться с нами своими мыслями и комментариями по этому поводу? Прокомментируйте ниже и дайте нам знать, что вы думаете! А если у вас есть какие-либо вопросы о капиллярных трубках, зарегистрируйтесь в Linquip прямо сейчас, и мы поможем вам в мгновение ока!

— Реклама —

% PDF-1.4 % 32 0 объект > эндобдж xref 32 116 0000000016 00000 н. 0000003001 00000 п. 0000003100 00000 н. 0000003883 00000 н. 0000004345 00000 п. 0000004456 00000 н. 0000004995 00000 н. 0000005108 00000 п. 0000005365 00000 н. 0000013046 00000 п. 0000013185 00000 п. 0000013762 00000 п. 0000013787 00000 п. 0000020899 00000 н. 0000027329 00000 н. 0000027470 00000 н. 0000033969 00000 п. 0000038512 00000 п. 0000042722 00000 н. 0000042835 00000 п. 0000042871 00000 п. 0000043221 00000 п. 0000043512 00000 п. 0000048913 00000 н. 0000053762 00000 п. 0000054213 00000 п. 0000054282 00000 п. 0000054540 00000 п. 0000058620 00000 п. 0000062819 00000 п. 0000062847 00000 п. 0000062953 00000 п. 0000063048 00000 п. 0000063191 00000 п. 0000063298 00000 п. 0000063404 00000 п. 0000063522 00000 п. 0000063671 00000 п. 0000063773 00000 п. 0000063871 00000 п. 0000063989 00000 п. 0000064132 00000 п. 0000064435 00000 п. 0000064792 00000 п. 0000065131 00000 п. 0000065275 00000 п. 0000065418 00000 п. 0000065530 00000 п. 0000065641 00000 п. 0000065759 00000 п. 0000065902 00000 п. 0000066205 00000 п. 0000066537 00000 п. 0000066854 00000 п. 0000067209 00000 п. 0000067377 00000 п. 0000067520 00000 п. 0000067632 00000 п. 0000067727 00000 н. 0000067870 00000 п. 0000068205 00000 п. 0000068540 00000 п. 0000068658 00000 п. 0000068801 00000 п. 0000068912 00000 п. 0000069020 00000 н. 0000069138 00000 п. 0000069281 00000 п. 0000069655 00000 п. 0000070009 00000 п. 0000070129 00000 п. 0000070274 00000 п. 0000070385 00000 п. 0000070497 00000 п. 0000070618 00000 п. 0000070763 00000 п. 0000071099 00000 п. 0000071453 00000 п. 0000071574 00000 п. 0000071719 00000 п. 0000071829 00000 п. 0000071942 00000 п. 0000072050 00000 п. 0000072196 00000 п. 0000072347 00000 п. 0000072456 00000 п. 0000072565 00000 п. 0000072685 00000 п. 0000072830 00000 п. 0000072941 00000 п. 0000073053 00000 п. 0000073173 00000 п. 0000073324 00000 п. 0000073423 00000 п. 0000073522 00000 п. 0000073643 00000 п. 0000073788 00000 п. 0000073897 00000 п. 0000074001 00000 п. 0000074122 00000 п. 0000074272 00000 п. 0000074381 00000 п. 0000074494 00000 п. 0000074614 00000 п. 0000074759 00000 п. 0000075596 00000 п. 0000075622 00000 п. 0000075956 00000 п. 0000076957 00000 п. 0000077216 00000 п. 0000079471 00000 п. 0000079732 00000 п. 0000093492 00000 п. 0000134137 00000 н. 0000135556 00000 н. 0000002616 00000 н. трейлер ] >> startxref 0 %% EOF 147 0 объект > поток xd + q_yjϣLKB $ ݴ) wGlg5’999RK ʁF> «ӷW ~ D xLRW6u-Zo dz_` (| Y {uvw @ i8NyyTYo: QlSn.% c. ֢) Ϋ & cYx? Ә2N9e-H * I ~; 2) HB ~ y9Q $ E * X «# + ׷ lMFg} J˟0 *]? 7c> RnEIH ا?` UK

Схема подключения пускового конденсатора

Однофазные двигатели sweethaven02 введение однофазных двигателей одиночные и электрические схемы производителей также используют диаграммы b и пусковой конденсатор с разделенным фазным сопротивлением.

Схема подключения пускового конденсатора . В больших электродвигателях с высоким пусковым моментом, таких как мотор компрессора кондиционера, часто используется комплект пускового конденсатора.Этот эксперимент относится к асинхронному двигателю с постоянным разделенным конденсатором, имеющему ротор с сепаратором. Выполните конфигурацию цепи, показанную на электрической схеме. Схема подключения конденсатора Start Run.

Схема подключения электродвигателя конденсатора переменного тока, запуск однофазного двигателя и конденсатора, запуск двигателя и конденсатора рис. 13 объяснил, как подключить электрическое соединение для csir baldor vl1309 часто задаваемые вопросы о воздушном компрессоре madcomics fixed ffre1233s1 frigidaire окно погружной насос стартовый комплект полный китайский потолочный вентилятор схемы знают.Конденсаторный асинхронный двигатель с его фазовой диаграммой Характеристики Применение Circuit Globe. Схема подключения асинхронного двигателя при пуске конденсатора для одиночного в фазе с 7.

Интересно, как можно использовать конденсатор для запуска однофазного двигателя. Схема электропроводки для кондиционера Hard Start Kit Полная версия Hd Quality Diagramate Strabrescia It. Схема подключения однофазного двигателя с конденсатором Схема подключения однофазного двигателя Baldor с конденсатором Схема подключения однофазного двигателя вентилятора с конденсатором Схема подключения однофазного двигателя с конденсатором Каждая электрическая схема состоит из различных уникальных частей.

Реле отключает пусковой конденсатор от электрической цепи двигателя, когда двигатель достигает рабочей скорости. Также читайте о характеристиках скорости-момента этих двигателей, а также о его различных типах. Сделай сам Как подключить однофазный электрический стеклоподъемник 115 В переменного тока Двигатель вентилятора с пускорегулирующим конденсаторомПровод только для целей тестирования Мне нужен был m.

Повторное подключение должно выполняться.Распечатайте электрическую схему и используйте маркеры для отслеживания сигнала. Когда вы используете свой палец или даже следите за схемой глазами, может быть легко ошибиться при отслеживании схемы.

Электрическая схема для кондиционера с жестким пусковым механизмом холодильника, пускового электродвигателя, однофазного пускового двигателя, запускающего двигателя, двух полных насосов и конденсаторов, конденсатора переменного тока. Установка комплекта конденсатора 5-2-1 для жесткого пуска на схеме электрических соединений рабочего конденсатора двигателя Tempstarcarrier.Принципиальная схема двигателя с постоянным разделением конденсаторов показана на рис.

Схема подключения однофазного однофазного двигателя с конденсатором. Один из приемов, который я использую, — это распечатать аналогичную схему подключения. Схема подключения двигателя однофазного конденсатора пускового конденсатора Схема подключения представляет собой упрощенное адекватное графическое представление электрической цепи.

На рисунке представлена ​​принципиальная схема двигателя с конденсаторным пуском.Узнайте, как асинхронный двигатель с конденсаторным пуском может создавать в два раза больший крутящий момент, чем двигатель с расщепленной фазой. Конденсатор Start amp.

Тип. Распечатайте электрическую схему и используйте маркеры, чтобы обвести цепь. Комплект пускового конденсатора содержит реле пускового конденсатора и провода.

Схема подключения — однофазные двигатели 1EMPCC — конденсаторные пусковые конденсаторные двигатели ELECTRIC MOTORS LIMITED Если требуется изменение направления вращения и должен использоваться переключающий переключатель, необходимо повторно подключить клемму на клеммной колодке.Он включает в себя инструкции и схемы для различных типов проводки и других предметов, таких как освещение домашних окон и т. Д. Ø KS8 ДО KS1.

3-х клеммный конденсатор Схема подключения кондиционера — ремонт кондиционеров в Мира Роуд Ссылка для просмотра — httpsgoogleQotgDcall- 8879979540www. Пусковой конденсатор дает обмоткам двигателя электрический импульс во время фазы запуска. Электродвигатель, пусковой конденсатор, проводка, руководство по установке, запуск, эксплуатация, схема, схема двигателей, объяснение того, как перейти к однофазному яркому концентратору и типам конденсаторов индукционного электрического качества 101 для Baldor.

Он показывает компоненты схемы в виде упрощенных форм, а также умение и умение общаться между устройствами. Щелкните здесь, чтобы просмотреть принципиальную схему двигателя с конденсаторным пуском для пуска однофазного двигателя. Когда вы используете свой палец или даже следите за схемой вместе глазами, легко ошибиться при отслеживании схемы.

Каждый компонент должен быть размещен и связан с разными частями особым образом.Повторное подключение должно выполняться квалифицированным электриком. Двигатель с постоянным разделенным конденсатором также имеет ротор с сепаратором и два. Схема подключения постоянного разделенного конденсатора.

Один из приемов, который мы используем, — это распечатать аналогичный план подключения дважды. Подключите синие провода к рабочему конденсатору или к COM и HERM на разделенном конденсаторе. 6 ноября 2020 1 Маргарет Берд.

Схема подключения — Однофазные двигатели 1EMPC — Двигатели с постоянным конденсатором 1EMPCC — Конденсаторные пусковые конденсаторные двигатели ELECTRIC MOTORS LIMITED Если требуется изменение направления вращения и должен использоваться переключающий переключатель, необходимо повторно подключить клемму на клеммный блок.Wiring Diagram предлагает не только исчерпывающие иллюстрации всего, что вы можете выполнять, но и процессы, которых вы должны придерживаться при выполнении. Вы можете не только открывать для себя различные диаграммы, но и получать пошаговые инструкции.

Схема подключения 3-фазного двигателя 9 отведений Справочная схема подключения для двигателя Save.

Схема подключения конденсатора электродвигателя премиум-класса для легких и тяжелых задач

Замечательно.Схема подключения конденсатора электродвигателя , выставленная на продажу на Alibaba.com, предоставляет отличную возможность для различных организаций, от частных лиц до крупных организаций, повысить свою производительность. Они доступны в огромном количестве. Схема подключения конденсатора электродвигателя различных форм, размеров и рабочих характеристик. Такое разнообразие гарантирует, что все покупатели, заинтересованные в этих инновационных товарах, найдут наиболее подходящие для удовлетворения их потребностей.

Для обеспечения высочайшей производительности и надежности сайт Alibaba.com предлагает. Схема подключения конденсатора электродвигателя производителей, которые поставляют бесспорно первоклассную продукцию. Они изготовлены из прочных материалов, которые выдерживают внешние и внутренние силы, такие как механические удары, химическое воздействие и тепло, среди прочего. В этом смысле они впечатляюще долговечны, а их производительность безупречна. Они просты в установке и обслуживании благодаря своей креативной форме и дизайну, которые позволяют оптимизировать работу с другими компонентами в более крупной системе.Это делает их удобными и популярными среди многих пользователей.

При покупке. Схема подключения конденсатора электродвигателя приведена на сайте, покупатели уверены в получении продукции высочайшего качества. Они поставляются ведущими мировыми брендами и производителями, которые соблюдают строгие требования к качеству и нормативным требованиям в энергетическом секторе. Возможность вторичной переработки и биоразлагаемость их материалов увеличивает их популярность среди пользователей, поскольку они поддерживают экологическую устойчивость. Они идеально подходят для людей и организаций, которые выступают за экологически чистую энергию и экологически чистые методы.

Изучение Alibaba.com обнаруживает непреодолимые скидки на эти товары. Все покупатели найдут для себя самое подходящее. Схема подключения конденсатора электродвигателя Варианты по мощности и бюджетным соображениям. Благодаря своим высочайшим характеристикам эти предметы стоят всех денег, которые покупатели вкладывают в них.

Схема электрических соединений Схема конденсаторного пускового двигателя 220 В Пуск конденсаторного двигателя Пусковой двигатель 220 В Конденсаторные пусковые двигатели:

  • Схема подключения 220 В конденсаторный пусковой двигатель Конденсаторные пусковые двигатели: схема и объяснение того, как a, Подключение однофазного двигателя с конденсаторным пуском — практический машинист, привет, счет i есть балдор 3л.с. 220в.Найдите ответы на вопрос, связанный со схемой подключения двигателя конденсаторного пуска. Получите бесплатную помощь У меня есть электродвигатель A.O Smith SE2F01 115 / 220v TypeC, у него 4 провода :.

    Пусковая обмотка включена последовательно с конденсатором (большой белый цилиндр). Я приложил изображение правильной схемы подключения, скопированной с вашего изображения. A-C OR. Электропроводка на китайский мотор. Купил новый деревообрабатывающий станок, для изготовления есть схема. Я не разбираю китайский язык, но моторная пластина кажется 2800 об / мин 220 В и запускаются моторы Googlecapacitor для электрических схем.Я подумал, что это будет проще простого: снимите крышку с проводки и красный цвет на красный. Чтобы реверсировать двигатель, вам нужно удалить металлические перемычки и переставить их, как показано на схеме. Это конденсатор, который позволяет двигателю запускаться и работать плавно, поскольку он был разработан. Правильная проводка 1-фазного электрического двигателя 220 В. Асинхронный двигатель переменного тока с конденсаторным пуском серии JY, 30–80 долл. США за штуку, JULANTE, JY, Асинхронный двигатель. (Материк), КПД: IE 1, высота: не более 1000 метров, цвет: синий, напряжение: 220 В, схема подключения трехфазного электродвигателя.

    Схема подключения электродвигателя с конденсаторным пуском 220 В >>> НАЖМИТЕ ЗДЕСЬ

  • Схема подключения однофазного электродвигателя, 2 с, 220 В, установка и подключение переключателя Схема подключения Конфигурация подключения электродвигателя для запуска электродвигателя с разделенным фазным конденсатором. Как подключить однофазный электродвигатель на 220 В. Ремонт и обслуживание дома. Пусковой конденсатор двигателя DAYTON 6FLV4 710850 MFD Round $ 20,87, SPP8E Supco 108 130MFD Пусковые конденсаторы 220 В МНОГО 25 конденсаторов $ 24,25, Лот 10. Однофазная схема подключения 220 В, однофазная проводка China 220 В Подключение однофазного двигателя 220 В и конденсатора — FixYa Как расшифровать конденсаторный пуск, двухвольтный однофазный мотор, что не могу разобраться в правильной разводке.Найдите схему подключения пускового конденсатора двигателя переменного тока, найдите лучшую часть двигателя переменного тока Источник питания переменного тока 220 В / 240 В Частота 50 Гц Ток 5A MotorPower. Кондиционер 220 В — правильный калибр проводов — Здравствуйте, у меня есть специальная розетка для оконного воздушного конденсатора 220 В, Схема проводки / СКАЧАТЬ. leeson электрические типы электродвигателей Схема подключения трехфазного электродвигателя электродвигатели для асинхронного двигателя, однофазные, без конденсатора для запуска не требуется. Античный General Electric RepulsionInduction Motor Однофазный 110 / 220V демонстрационный электродвигатель мощностью 3 л.с., мотор-редуктор Sayama, мотор-редуктор с сервоприводом, проводка 3-фазного двигателя.

    # Схема подключения инвертора мощности 5000 Вт # 3-х портовая схема подключения клапана # 3-фазная электрическая схема конденсатора # 3-фазный двигатель «звезда-треугольник».

    Пусковой конденсатор на 220 В будет в диапазоне от 40 мфд и выше. Затем ваш компрессор проверьте вашу проводку по приведенной выше схеме. Затем проверьте изоляцию.

  • Это двигатель с конденсаторным пуском — конденсаторный двигатель 220 В. Я не нашел информации об этом определить это? После того, как пожарные машины уйдут, нельзя научиться безопасной проводке.

    Интересно, может ли кто-нибудь, досконально разбирающийся в электропроводке двигателя переменного тока 220 В, помочь мне составить схему проводки, когда кнопка нажата, что двигателю требуется вращение, чтобы запустить холостой двигатель, если у него нет конденсаторов для его запуска.

    начать охлаждение и дать возможность образоваться ледяной банке во время завершения установки. Приблизительно три (3) D. Обратитесь к электрической схеме и исправьте. E. Неисправный электродвигатель вентилятора конденсатора. E. Заменить конденсатор 220V СХЕМА ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ, пусковой конденсатор, реле или реле защиты от перегрузки), оценочный сбор в размере пятидесяти долларов (50 долларов.00) может взиматься плата. ПЕРЕСМОТРЕННЫЙ ЗАПУСК. СЕРИЙНЫЙ № 110710019 51300-50 2EC-2B / 50. ЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ 2HP, 50 Гц, 1-ФАЗНЫЙ, 110/220 В Рисунок 19: Схема электрических соединений двигателя Baldor 2 и 3 л.с. КОНДЕНСАТОР, ПУСК, БАЛДОР, 850-950MFD 115 В. Существует ряд проводов от двигателя, которые необходимо подключить к новому трехпозиционному поворотному переключателю высокого и низкого уровня вместе с конденсатором и пусковым контактором. Двигатель является встроенным. Есть ли шанс найти оригинальную электрическую схему? Есть два набора.

    СХЕМА СОЕДИНЕНИЙ ОДНОФАЗНОГО ДВИГАТЕЛЯ С КОНДЕНСАТОРОМ ЗАПУСКА.Дата обновления 220V ОДНОФАЗНАЯ ПРОВОДКА ПЕРЕДАЧИ ОБРАТНОГО УПРАВЛЕНИЯ. ЭЛЕКТРИЧЕСКАЯ СХЕМА ДЛЯ ОДНОФАЗНОГО ДВИГАТЕЛЯ 220 В. Формат: PDF. Оборудование: источник питания, DAI, двухфазный / конденсаторный пусковой двигатель (8251). 843 Просмотр. Где найти 3-фазный трансформатор 220 В 440 В? Где найти 3-фазный трансформатор с 220 В на 440 В? Может ли кто-нибудь отправить мне схему подключения конденсаторного двигателя.

  • >>> НАЖМИТЕ ЗДЕСЬ

  • Конденсаторы для подключения к двигателю воздушного компрессора Baldor VL1309

    Вам не нужно больше трех проводов, так как один является общим для пускового и пускового колпачков, а два других — для пускового и прогон, который может быть проведен параллельно электролитическим пускателям, т.е.е. к одному полюсу группы пластин или полюсов, соединенных параллельно перемычкам, а другой провод, т. е. рабочий провод, можно протянуть через один полюс колпачка. В конструкции Baldor, которая у меня есть, есть две обмотки, A и B. Одна вспомогательная, а другая — основная. Что интересно, оба провода запуска и запуска идут от вспомогательной обмотки, а общий ТАКЖЕ идет на вспомогательную обмотку. Вспомогательная обмотка вообще НЕ вырезана в этой конструкции, но продолжает работать с небольшим сдвигом фазы по отношению к основной обмотке, работая с меньшим и более низким конденсатором MuF на масляной основе.Центробежный переключатель отключает только большую батарею электролитических конденсаторов и ее провод, в случае с проводом E или так называемым стартовым проводом. Таким образом, пусковой провод и рабочий провод идут параллельно к вспомогательной обмотке. Так что мультиметром ОЧЕНЬ сложно проверить, какой провод какой. Вам практически придется потянуть за колпачок двигателя, чтобы открыть центробежный переключатель, и проследить провода до и после переключателя с помощью омметра, чтобы увидеть, какой из них какой. Разница в сопротивлении между O и E, Run и Start будет очень низкой.Кроме того, поскольку O и E имеют короткое замыкание друг на друга при испытании на сопротивление, сопротивление, следовательно, очень низкое, около 0,4 Ом, как отмечали некоторые. Только через общий провод провода E и O пересекают обмотку, и тогда сопротивление становится выше, примерно 2,6 Ом. Таким образом, должно быть ясно, какой из них является общим, то есть тот, который обеспечивает более высокую устойчивость к тесту E или O.

    Но какой из них O, а какой E, часто остается загадкой. Возвращение к L1 и L2 не поможет (выводные линии), поскольку O и E все еще параллельны — и за исключением E, проходящего через переключатель, сопротивления будут почти одинаковыми.

    На фото колпачков на скамейке видно, что перемычки установлены правильно. За исключением одного провода, который не подключен к электролизеру, они полностью подключены, как и должно быть. За исключением всей важной проводки двигателя.

    Два больших «Elecs» соединены перемычкой через одну сторону пластины или группы с помощью одной перемычки, и эта «сторона» соединяется на одном полюсе перемычки с проводом E или START от двигателя, согласно прилагаемой электрической схеме двигателя. — а также мы видим, из загруженной диаграммы шапки.

    Все схемы, предоставленные Baldor для 3 HP FDL3610TM, или, как они его еще называют, Spec. №36х29W655. [Трудно найти в сети номера Baldor относительно «молодых» двигателей. Настоящая модель паспортной таблички не та, что у меня есть, и ее не ищу даже на сайте Baldor !! Не так уж и сложно держать в сети руководства или старые номера двигателей. Похоже на корпоративную политику кластера F для старых клиентов. Я заполнил это множеством лодочных якорей, которые в остальном были бы полезны.]

    Провод RUN (O) подключается к меньшему масляному конденсатору меньшей емкости на одной батарее, которая НЕ перемычана.

    ОБЩИЙ провод [двигателя], который подключается к вспомогательной обмотке последовательно, подключается к одной батарее из ВСЕХ ТРЕХ конденсаторов, соединенных двумя проводами.

    Провод ПУСКА или провод Е на схеме [помните, что Е параллелен проводу О или ПУСК, т. Е. Находится напротив пластины конденсатора по отношению к соединениям с общим проводом], и этот провод двигателя ПУСКА, обозначенный E на Схема подключения подключается к полюсу, который соединен одним проводом через два больших электролитических элемента.

    1.Провод ПУСК (O) находится «сам по себе» на оголенном полюсе небольшой крышки ПУСК на масляной основе.

    2. Провод ПУСКА (E) находится на электролитической клемме с перемычкой.

    Если вы поменяете местами провода START и RUN, провод RUN будет переключен, а провод START останется неизменным, и вы сожжете электролитический конденсатор START за несколько секунд. Вы не можете с уверенностью сказать, какой именно провод, без непредвиденных разработок Baldor, маркировки проводов, окраски или информации о сборке, которая является четкой и однозначной, поэтому ДОЛЖНО отследить провода внутри двигателя от центробежного переключателя.

    Совсем не красиво.

    Muf конденсаторов START, Elecs, составляет 216-259 Muf, при максимальном напряжении 250 В. Колпачок RUN на масляной основе составляет 25 мкФ и максимальное напряжение 370 В.

    Может быть способ определить, что есть что с помощью ометра, поэтому я открыт для предложений, но следует помнить, что в этой модели можно проверить только одну обмотку, поскольку вспомогательная обмотка НЕ ​​отключается только СТАРТ шапки. Даже при отключенной вспомогательной обмотке может показаться, что все конструкции могут не показывать значительную разницу сопротивлений между проводами ПУСК и ПУСК.У меня вопрос: показывает ли центробежный переключатель разность сопротивлений между O и E или нет. Точно не знаю.

    EC <: -}

    Однофазные двигатели: типы двигателей с конденсаторным пуском

    Типы двигателей с конденсаторным пуском

    Некоторые из важных типов таких двигателей приведены ниже:

    1. Одно напряжение, внешне реверсивное, тип

    В этом двигателе четыре вывода выведены за пределы его корпуса; два от основной обмотки и два от цепи пусковой обмотки.Эти четыре провода необходимы для внешнего реверсирования. Как обычно, внутри пусковая обмотка соединена последовательно с электролитическим конденсатором и центробежным переключателем. Направление вращения двигателя можно легко изменить внешне, поменяв местами выводы пусковой обмотки относительно проводов ходовой обмотки.

    2. Одно напряжение, нереверсивное исполнение

    В этом случае выводы пусковой обмотки соединены внутри с выводами бегущей обмотки.Следовательно, в таких двигателях есть только два внешних вывода. Очевидно, что направление вращения не может быть изменено на противоположное, если двигатель не будет разобран и не поменять местами выводы пусковой обмотки.

    3. Реверсивные на одно напряжение и с термостатом типа

    Многие двигатели оснащены устройством, называемым термостатом, которое обеспечивает защиту от перегрузки, перегрева, короткого замыкания и т. Д. Термостат обычно состоит из биметаллического элемента, который соединен последовательно с двигателем и часто устанавливается снаружи. мотор.

    Схема подключения электродвигателя с конденсаторным пуском, оснащенного этим защитным устройством, показана на рис.

    .

    36,17. Когда по каким-либо причинам через двигатель протекает чрезмерный ток, это вызывает ненормальный нагрев биметаллической ленты, в результате чего она изгибается и размыкает точки контакта, тем самым отключая двигатель от линий питания. Когда элемент термостата остывает, он автоматически замыкает контакты * .

    В случае двигателей с конденсаторным пуском, используемых для холодильников, обычно к двигателю присоединяется клеммная колодка.Три из четырех блочных клемм имеют маркировку T , T L и L , как показано на рис. 36.18. Термостат подключен к T и T L , конденсатор между L и немаркированной клеммой и линиями питания к T L и L .

    4. Одно напряжение, нереверсивное, с магнитным переключателем типа

    Такие двигатели обычно используются в холодильниках, где невозможно использовать центробежный выключатель.Принципиальная схема аналогична изображенной на рис. 36.6. Поскольку для их применения требуется только одно направление вращения, эти двигатели не подключаются для реверсирования.

    Один недостаток двигателя с конденсаторным пуском, имеющего магнитный переключатель, заключается в возможности того, что небольшие перегрузки могут привести в действие плунжер, тем самым подключив цепь пусковой обмотки к источнику питания. Поскольку эта обмотка предназначена для работы в течение очень коротких периодов времени (3 секунды или меньше), она может сгореть.

    5. Двухвольтный, нереверсивный Тип

    Эти двигатели могут работать от двух источников переменного тока. напряжение 110 В и 220 В или 220 В и 440 В. Такие двигатели имеют две основные обмотки (или одну главную обмотку в двух секциях) и одну пусковую обмотку с соответствующим количеством выводов, выведенных для переключения с одного напряжения. к другому.

    Когда двигатель должен работать от более низкого напряжения,

    две основные обмотки соединены параллельно (рис. 36.19). Тогда как для более высокого напряжения они включаются последовательно (рис. 34.20). Как видно из приведенных выше принципиальных схем, пусковая обмотка всегда работает от низкого напряжения, для чего она подключается к одной из основных обмоток.

    6. Двухвольтный, реверсивный

    Внешнее реверсирование возможно за счет двух дополнительных выводов, выведенных из пусковой обмотки.

    На рис. 36.21 и 36.22 показаны соединения для вращения по часовой стрелке и против часовой стрелки соответственно, когда двигатель работает от более низкого напряжения.Аналогичную схему подключения можно нарисовать для источника более высокого напряжения.

    7. Одно напряжение, трехпроводное, реверсивное, типа

    В таких двигателях используется двухсекционная ходовая обмотка. Две секции R 1 и R 2 внутренне соединены последовательно, и один вывод пусковой обмотки подключен к средней точке R 1 и R 2.

    Второй вывод пусковой обмотки и оба вывода ходовой обмотки выведены наружу, как показано на рис.36.23. Когда внешний вывод пусковой обмотки подключен к точке A, , обмотка подключается к точке R 1, и двигатель вращается по часовой стрелке. Когда вывод обмотки стартера подключен к точке B , он подключается к R 2. Поскольку ток, протекающий через пусковую обмотку, меняется на противоположное, двигатель вращается против часовой стрелки.

    8. Одно напряжение, мгновенно-реверсивное

    Обычно двигатель должен быть полностью остановлен, прежде чем его можно будет запустить в обратном направлении.Это происходит потому, что центробежный выключатель не может включиться, если двигатель практически не остановился. Так как пусковая обмотка отключена от питания во время работы двигателя, реверсирование проводов пусковой обмотки не повлияет на работу двигателя. Это реверсирование достигается с помощью трехполюсного двухпозиционного переключателя ( TPD T ), как показано на рис. 36.24. Переключатель состоит из трех ножек или полюсов, которые перемещаются вместе как одно целое в любом из двух положений. В одном положении переключателя (показано на одном рисунке) двигатель вращается по часовой стрелке, а в другом — против часовой стрелки.Очевидно, что при таком расположении необходимо дождаться остановки двигателя.

    В некоторых приложениях, где требуется мгновенное реверсирование при работе двигателя на полной скорости, в цепь устанавливается реле для короткого замыкания центробежного переключателя и подключения пусковой обмотки в цепи в обратном направлении (рис. 36.25).

    Видно, что в состоянии покоя двухконтактный центробежный переключатель находится в положении «старт». В этом положении выполняются два подключения:

    (i) пусковая обмотка и конденсатор C размещены последовательно поперек линии питания и

    (ii) катушка нормально замкнутого реле подключена через C

    С ручным переключателем TPD T в положении «вперед» ( a ) бегущая обмотка подключается поперек линии ( b ), пусковая обмотка и C последовательно поперек линии и ( c ) обмотка реле подключена к клемме C .Напряжение, развиваемое на C , прикладывается к катушке реле, что приводит к размыканию контактов реле. При увеличении скорости двигателя центробежный переключатель переводится в положение «работа». Это отключает C из цепи и оставляет пусковую обмотку последовательно с катушкой реле. Поскольку катушка реле имеет высокое сопротивление, она пропускает через пусковую обмотку только ток, достаточный для того, чтобы контакты реле оставались открытыми.

    Во время интервала долей секунды, когда переключатель TPD T перемещается из «прямого» в «обратное» положение, ток через катушку реле не протекает, в результате чего контакты реле замыкаются.Когда переключатель TPD T достигает «обратного» положения, ток течет через теперь замкнутые контакты реле к пусковой обмотке, но в противоположном направлении. Это создает крутящий момент, который прилагается в направлении, противоположном вращению. Следовательно, ротор ( i ) немедленно останавливается, а центробежный переключатель ( ii ) падает в положение «пуск». Как и раньше, C включается последовательно с обмоткой стартера, и двигатель начинает вращаться в обратном направлении.

    9. Двухскоростной тип

    Скорость может быть изменена путем изменения количества полюсов в обмотке, для чего в пазы статора помещаются две отдельные рабочие обмотки, одна из которых является 6-полюсной обмоткой, а другая — 8-полюсной обмоткой. Используется только одна пусковая обмотка, которая всегда действует вместе с более высокоскоростной ходовой обмоткой. Центробежный переключатель двустороннего или передаточного типа S имеет два контакта

    очка за «старт» и одно за «бег».Как показано на рис. 36.26, внешний переключатель скорости используется для изменения скорости двигателя. Двигатель всегда будет запускаться на высокой скорости независимо от того, находится ли переключатель скорости в положении «высокий» или «низкий». Если переключатель скорости установлен в положение «низкая», то, как только двигатель набирает скорость, центробежный переключатель

    (а) отключает пусковую обмотку и быстроходную обмотку и

    (б) врезки в тихоходной обмотке.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *