Радиосхемы. — Прибор для проверки конденсаторов
Самодельные приборы
материалы в категории
При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.
Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1— DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.
Схема прибора для проверки конденсаторов
Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 … 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.
Полярный конденсатор «плюсовым» выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.
Настройка прибора для проверки конденсаторов
После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3. Затем к гнездам «Сх» подключают конденсатор емкостью 220 … 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.
Печатная плата прибора
В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:
Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно «родной» шкалы он будет находиться в районе 8…20 Ом по верхним делениям. Вот так она будет выглядеть
Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.
Внешний вид прибора
Примеры измерений
Примечание:
Источник: Массовая радиобиблиотека (МРБ), И.А.Нечаев, «Конструкции на логических элементах цифровых микросхем» стр.43, Издательство «Радио и связь»
Фото с сайта radio-hobby.org
Пробник для проверки конденсаторов
Очень простой прибор для проверки конденсаторов, схема которого показана на рис. 1, описан в одном из американских радиолюбительских журналов.
Прибор может быть использован для проверки различных конденсаторов, в том числе и электролитических, однако в этом случае необходимо следить за полярностью включения таких конденсаторов.
При подключении конденсаторов к прибору неоновая лампочка вспыхнет на короткое время, а затем сразу же потухнет.
Рис. 1. Принципиальная схема прибора для проверки конденсаторов.
При наличии утечки лампочка потухает медленно. Если конденсатор пробит— лампочка светится, не потухая. Следует помнить, что таким прибором нельзя проверять низковольтные конденсаторы, так как напряжение, подаваемое на конденсаторы, относительно высоко — от 50 до 125 в. В случае, если прибором проверяются конденсаторы очень малой емкости, прибор может указать лишь наличие утечки и короткого замыкания.
Конденсаторы большой емкости следует после проверки разряжать, так как на них может оставаться заряд. «CQ», октябрь, 1959 г.
При изменении I’ переключатель П1, ставится в положение 2, а выключатель Вк2 замыкается. Стрелочный прибор покажет тогда непосредственно значение тока Iко ‘ .
Для измерения параметра b переключатель П1, ставится в положение 3. Потенциометр R4 («Установка нуля») устанавливается в положение, при котором стрелочный прибор будет показывать нуль. При замыкании выключателя Вк1, стрелка прибора отклонится и даст непосредственно показание параметра b.
Для измерения входного сопротивления h21′ и граничной частоты fгр, как уже упоминалось, необходимо дополнительно использовать генератор (с диапазоном частот от 1 до 200 кгц) и ламповый вольтметр (можно заменить осциллоскопом). Эти приборы подключаются к соответствующим зажимам, показанным на схеме.
Сигнал от генератора при этом попадает на испытываемый триод через сопротивление R1. Нагрузкой коллекторной цепи триода служит в данном случае сопротивление R9 (выключатель Вк2 остается в замкнутом положении).
При этом триод работает в режиме близком к режиму разомкнутого входа и закороченного выхода. Выходное напряжение триода усиливается затем широкополосным вспомогательным усилителем измерительного прибора и подается на вход лампового вольтметра.
Порядок измерения входного сопротивления следующий. Выключатель Вк3 замыкается, затем частота генератора устанавливается в 1 кгц и напряжение, подаваемое с него, регулируется так, чтобы ламповый вольтметр показал 0,5 в.
Далее выключатель Вк3 размыкается, и записывается новое показание вольтметра. Если это новое показание обозначить как л, то входное сопротивление (в ком) можно вычислить по формуле h21 = 2n—1.
Если затем провести еще одно измерение при разомкнутом выключателе Вк2, то можно найти входное сопротивление, соответствующее коллекторной нагрузке в 4,4 ком.
Предельная частота триода определяется следующим образом. Выключатель Вк2 замыкается, а Вк3 — размыкается. Напряжение на входе вольтметра должно быть равно 1 в.
Затем частота генератора увеличивается (генерируемое напряжение должно оставаться постоянным) до тех пор, пока вольтметр не покажет 0,7 в. Частоту Д, на которой это наблюдается, используют для расчета предельной рабочей частоты триода по формуле: fгр = b * f3,
В усилителе прибора применены два высокочастотных ПП триода с граничной частотой в 6 Мгц. Цепь обратной связи, соединяющая коллектор второго триода с эмиттером первого, стабилизирует усиление, расширяет полосу частот и повышает входное сопротивление.
Усиление такого устройства равномерно в пределах от 200 гц до 200 кгц и составляет 30 дб, однако в случае необходимости полоса за счет введения коррекции может быть расширена до 500 кгц.
Следует сказать, что точность измерений в значительной степени зависит от подбора сопротивлений R1, R2, R3, R5, R7, и R8. Отклонение величины их от номинала, указанного на схеме, должно быть минимальным.
«Electronic Engineering», октябрь, 1969 г.
Прибор для проверки оксидных конденсаторов на ЭПС (ESR)
Проблема быстрого контроля исправности оксидных конденсаторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируемой аппаратуры. Предлагается еще один вариант простого прибора, аналогичного уже описанному в «Радио», но с использованием стрелочного индикатора.
Многих радиолюбителей, да и профессиональных мастеров по ремонту радио- и телеаппаратуры, наверняка заинтересовала статья Р. Хафизова «Пробник оксидных конденсаторов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позволяя приблизительно оценить емкость и измерить утечку оксидных конденсаторов, далеко не всегда дает полную информацию об их качестве. Оперативная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Особенно это касается наиболее часто используемых конденсаторов емкостью от единиц до нескольких десятков микрофарад.
После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 применил, как мне кажется, более распространенную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использовал стрелочный индикатор уровня М68501 от магнитофона.
Применение стрелочного индикатора позволило сделать прибор более точным, достаточно компактным и более экономичным. Ток потребления не зависит от режима работы и составляет около 1 мА, что дает возможность использовать малогабаритный источник питания — батарею из трех миниатюрных дисковых элементов для лазерной указки.
Несколько измененная схема приведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конденсатора в пределах от 2 до 50 Ом и емкость от 5 до 50 мкФ.
Конструктивно прибор может быть выполнен в виде мини-тестера с выносными щупами и выключателем питания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением питания, что существенно увеличит срок службы батареи.
В данном варианте размеры корпуса составляют 90 x 45 x 20 мм. Индикатор расположен с левой стороны поперек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней стороны. Монтаж элементов прибора выполнен на печатной плате, чертеж которой приведен на рис. 2
Детали и замена
Для выбора вида измерений использован переключатель SA1 с фиксацией из серии ПКН. Выключатель питания SA2 — миниатюрный движковый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.
Вместо указанной на схеме микросхемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.
Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы — малогабаритные керамические, резисторы — мощностью 0,125 — 0,25 Вт. Оксидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора существенного значения не имеет.
Настройка прибора
Налаживание прибора заключается в установке частоты генератора в пределах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соответственно С2 и С1, а также в установке стрелки индикатора на конец шкалы в режиме холостого хода подбором резисторов R4, R5, R8. Предварительно резистором R6 выставляют постоянное напряжение на коллекторе транзистора, примерно равное половине напряжения питания.
Градуировка шкалы не составит большого труда, так как пластмассовые индикаторы уровня легко вскрываются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем наносят соответствующие риски и надписи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.
Нелинейность шкалы таких индикаторов играет положительную роль, позволяя несколько расширить диапазон измерений. Градуировка шкалы электрической емкости производилась путем усреднения замеров нескольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные непроволочные резисторы.
После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них пришлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор побывал уже у двух мастеров и был возвращен назад ввиду «отсутствия электрической схемы и сложности ремонта». В течение нескольких минут оказалось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди которых был обнаружен один с завышенным значением ЭПС и заниженной емкостью. После его замены монитор заработал!
Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.
Редактор — А. Соколов, графика — Ю. Андреев
Вариант изготовленной печатной платы прибора
Вид со стороны дорожек
Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)
Вариант внешнего вида прибора
От редакции журнала «Радио». Эквивалентное последовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факторов: его типа, емкости, номинального напряжения, частоты, на которой проводят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверхностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, находится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряжение от 6,3 до 160 В ЭПС, также измеренное на частоте 100 кГц, увеличивается от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки пригодности конденсатора в зависимости от значения ЭПС не существует решение по отбраковке следует принимать в каждом конкретном случае.
Радио №10, 2005г.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Индикатор уровня заряда батареи на ARDUINO
- ESR-tester своими руками
- Цифровой осциллограф своими руками
Ранее мы рассматривали различные схемы на основе набора ARDUINO. В этой статье, сегодня мы будем конструировать индикатор уровня заряда батареи. В ней ряд из 6-ти разноцветных светодиодов показывают уровень заряда батареи. Эта схема может пригодится для контроля вашего 12 В аккумулятора. Есть много схем на этом сайте более простых, но у нас цель собрать схему на основе ARDUINO, рассмотреть её работу.
Подробнее…
Прибор для проверки эквивалентного последовательного сопротивления (ЭПС) электролитических конденсаторов
При ремонте аппаратуры часто появляется необходимость в проверке электролитических конденсаторов. Они наиболее частые виновники поломок.
Состояние конденсаторов часто видно визуально: они вздутые, подтёкшие. Но иногда казалось бы на вид хороший конденсатор при проверке оказывается неисправным.
Эту задачу поможет решить прибор для проверки ESR или эквивалентного последовательного сопротивления (ЭПС) .
Подробнее…
Осциллограф — это незаменимый помощник в мастерской радиолюбителя. С его помощью можно наблюдать форму сигнала, измерить длительность, частоту, амплитуду. Цифровой осциллограф способен запомнить изображение на экране, выводить на экран сопутствующую информацию о сигнале и многое другое.
Стоит осциллограф дорого, особенно цифровой, а вот сделать его из набора не сложно и не дорого.
Подробнее…
Популярность: 37 671 просм.
Проверка электролитических конденсаторов
Конденсаторы – самые распространенные после резисторов компоненты электронных схем. Кроме этого они применяются в устройствах силовой электроники и электротехнике: блоках питания, схемах пуска электродвигателей, в установках компенсации реактивной мощности. Поэтому проверять исправность конденсаторов приходится не так уж редко. Рассмотрим, как это делается.
Конденсаторы разделяются на категории, у которых есть свои особенности при проверке.
Конденсаторы | |||
Полярные | Неполярные | ||
Электролитические | Постоянной емкости | Переменной емкости | Подстроечные |
Рассмотрим методики проверки каждой категории в отдельности.
Обязательно прочитайте статью-обзор «Принцип работы конденсаторов»
Проверка электролитических конденсаторов
Сначала проверяется их внешний вид. У зарубежных конденсаторов бочкообразной формы сверху нанесена крестообразная насечка. Неисправности электролитических конденсаторов часто сопровождаются повышением давления внутри корпуса. При этом отечественные компоненты могут взорваться, испачкав содержимым все вокруг. Насечка у импортных конденсаторов позволяет этого избежать. При повышении давления она вздувается, а затем лопается. Если при осмотре обнаружены элементы с вздувшимся или поврежденным корпусом, то их неисправность не вызывает сомнений.
Повреждения электролитических конденсаторовДля дальнейшей проверки конденсатор придется выпаять. Проверка его в составе схемы невозможна, так как в ней всегда найдется элементы, искажающие результаты теста. То же относится и к остальным категориям конденсаторов.
Перед тем, как проверять исправность конденсатора, его разряжают. Для этого замыкают его выводы между собой при помощи пинцета, отрезка проволоки или другим доступным металлическим предметом. Конденсаторы большой емкости, рассчитанные на напряжение 50 В и более, работающие в силовых устройствах, лучше разряжать в два этапа. Сначала – через нагрузку (лампочку или резистор), затем – замыканием выводов накоротко. Если устройство, в состав которого они входят, только что отключено от питающей сети, то разрядить элемент нужно до выпаивания из схемы и после этого.
Разряд конденсатора щупом от мультиметраДля проверки потребуется мультиметр или тестер. Тестер в этом случае предпочтительнее, так как движение стрелки нагляднее иллюстрирует процесс. Прибор переключают на предел измерения сопротивлений не менее 1 мегаома. Обратите внимание: у некоторых приборов для работы на этом пределе требуется внешний источник питания.
Про то, как пользоваться мультиметром читайте статью: «Как пользоваться мультиметром?»
При проверке соблюдаем полярность подключения: плюсовой вывод прибора подключаем к выводу конденсатора, обозначенного знаком «+». Нельзя касаться руками одновременно обоих щупов прибора. Так он измерит сопротивление вашего тела.
Касаемся щупами выводов проверяемого элемента. Проверка заключается в том, что измерительный прибор своей батарейкой будет заряжать конденсатор. В момент начала зарядки ток наибольший, при этом сопротивление элемента стремиться к нулю. По мере заряда ток падает, а сопротивление – увеличивается. Когда конденсатор заряжен, ток через исправный элемент равен нулю, а его сопротивление – бесконечности. При токе утечки через конденсатор сопротивление в конце заряда отличается от бесконечности. При замыкании между обкладками прибор покажет ноль.
Чем больше емкость конденсатора, тем медленнее он заряжается. Но чтобы по времени заряда определить емкость, нужен богатый опыт, полученный при проверке не одной сотни элементов. А потеря емкости – одна из неисправностей конденсаторов. Чтобы ее измерить, понадобится мультиметр с возможностью измерения емкостей. Но эти приборы имеют недостаток: верхний предел измеряемой емкости у них ограничен 20 микрофарадами.
Мультиметр с функцией измерения емкостиДля измерения емкости в широких пределах используются LC-метры или цифровые измерители емкости. Выглядят они, как обыкновенный мультиметр, но ничего, кроме емкости, не измеряют.
Цифровой измеритель емкостиНе всегда описанные методы помогают определить неисправный элемент. Некоторые неисправности проявляют себя только при рабочем напряжении на обкладках конденсатора, а все приборы имеют питание не более 1,5 – 4,5 В. В таких случаях поможет только установка заведомо исправного элемента вместо проверяемого.
Проверка неполярных конденсаторов постоянной емкости
Заряжая конденсатор от мультиметра или тестера можно проверить исправность элементов, емкость которых не ниже 0,5 мкФ. Полярность подключения при этом не имеет значения. При меньших значениях вы не успеете заметить изменений показаний прибора. В этом случае поможет только цифровой измеритель емкости. Если емкость проверяемого элемента не укладывается в границы, определяемые ее номинальным значением с учетом допуска, то он неисправен. Мультиметр же сможет показать только ярко выраженное замыкание между обкладками.
Конденсаторы с рабочим напряжением 400В и выше можно проверить, зарядив его от сети. При этом место подключения должно быть защищено от короткого замыкания автоматическим выключателем, а последовательно с конденсатором нужно подключить резистор, сопротивлением не менее 100 Ом для ограничения первоначального броска тока. Сразу после зарядки и через некоторое время измеряется напряжение на выводах элемента, заряд должен сохраняться продолжительное время. Затем его нужно разрядить, для чего лучше использовать тот же резистор, через который он был заряжен.
При выпаивании элемента из схемы он неизбежно нагревается. Иногда при этом его работоспособность восстанавливается, поэтому полной гарантии в исправности выпаянного конденсатора после успешной проверки не бывает никогда. Если в ходе поиска неисправности вы зашли в тупик, пробуйте поочередно менять элементы на новые.
Особенности проверки конденсаторов с переменной емкостью
Номинальное значение емкости переменных и подстроечных конденсаторов состоит из двух значений – минимального и максимального. В этих пределах изменяется емкость при регулировке. Поэтому и проверять их исправность нужно, выполняя измерения цифровым измерителем емкости на крайних положениях. К тому же стоит посмотреть, как изменяться показания при перемещении регулятора от одного крайнего положения к другому. При скачкообразных изменениях измеренных значений или при их исчезновении конденсатор тоже бракуется.
У конденсаторов переменной емкости визуально проверяется отсутствие механических повреждений, отсутствие затираний и замыканий обкладок между собой при движении.
Оцените качество статьи:
Измеритель esr конденсаторов на базе мультиметра схема
То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель – тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR – mikro». Остановило то, что уж больно здорово хвалили – «через край». В общем, решился на самостоятельные действия. Так как на микроконтроллерные устройства замахиваться не хотелось – выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось – не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.
Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.
Схема ESR метра
А печатную плату доделал по-хитрому. Стала она «двухсторонней» – со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества – пробник нужен.
Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.
Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал – способны на контакт с электролитическим конденсатором любого размера.
Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.
И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.
А 10 Ом соответствует 49 мВ.
Исправный конденсатор, соответствует примерно 0,1 Ом.
Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:
А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее – враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.
Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР
В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.
Не буду перечислять все дестабилизирующие факторы в работе этих трудяг, (об этом сейчас разве что только на заборах не пишут), рассмотрим лучше вкратце один из параметров – ESR и конструкции нескольких простых приборов для оценки качества электролитических конденсаторов, которые были мною успешно повторены, кое чего изменено, но главное, и самое ценное, это конечно полученный опыт, которым я и собираюсь в данной статье поделиться с вами. Статья написана для начинающих, поэтому и изложение будет простым, совсем без формул.
Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.
Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» – так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html
Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.
Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.
Мой первый пробник ЕПС, исправно работающий по сегодняшний день.
Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:
Были произведены следующие изменения:
1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.
В общем получился такой вот девайс:
После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички :).
Для большей универсализации, мною были добавлены дополнительный функции:
1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях .
А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.
Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:
Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:
Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.
Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)
Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:
Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».
Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.
Корпус приспособил от маркера
Печатку выцарапал скальпелем, щупы-контакты от реле мку48.
Трансформатор намотал на кольце от КЛЛ, остальное собрал на макетке.
В корпусе платку приклеил дусторонним скотчем.
Частота генератора АЦП немного низковата, поэтому, путем уменьшения емкости из 100 до 33 пикофарад удалось довести до примерно 40-45 килогерц, это уже более менее приемлемо.
Отсюда берем прямоугольные импульсы. Конденсатор под белым проводником меняем на меньшего значения, в пределах 30-40 пик номинал не критичен
Не секрет, что наибольшее число отказов современной аппаратуры происходит по вине оксидных конденсаторов. Это не только обрыв, потеря емкости, короткое замыкание, но и дефект, выражающийся в увеличении активной составляющей конденсатора.
Идеальный конденсатор, работая на переменном токе должен обладать только реактивным (емкостным) сопротивлением. Активная составляющая должна быть близка к нулю. Реально, хороший оксидный (электролитический) конденсатор должен обладать активным сопротивлением (ESR) не более 0,5-5 Ом (зависит от емкости, номинального напряжения). Практически, в аппаратуре, проработавшей несколько лет, можно встретить, казалось бы исправный конденсатор емкостью 10 мкФ с ESR до 100 Ом и более. Такой конденсатор, несмотря на наличие емкости, – негоден, и скорее всего является причиной неисправности или некачественной работы аппарата, в котором он работает.
На рисунке 1 показана схема приставки к мультиметру для измерения ESR оксидных конденсаторов. Чтобы измерить активную составляющую сопротивления конденсатора необходимо выбрать такой режим измерения, при котором реактивная составляющая будет очень мала. Как известно, реактивное сопротивление емкости снижается с увеличением частоты. Например, на частоте 100 кГц при емкости 10 мкФ реактивная составляющая буде менее 0,2 Ом. То есть, измеряя сопротивление оксидного конденсатора емкостью более 10 мкФ по падению на нем переменного напряжения частотой 100 кГц и более, можно утверждать, что. при заданной погрешности 10-20% результат измерения можно будет принять практически только как величину активного сопротивления.
И так, схема, показанная на рисунке 1, представляет собой генератор импульсов частоты 120 кГц, выполненный на логических инверторах микросхемы D1, делитель напряжения, состоящий из сопротивлений R2,R3 и тестируемого конденсатора СХ, и измерителя переменного напряжения на СХ, состоящего из детектора VD1-VD2 и мультиметра, включенного на измерение малых постоянных напряжений.
Частота установлена цепью R1-C1. Элемент D1.3 является согласующим, а на элементах D1.4-D1.6 сделан выходной каскад.
Подстройкой сопротивления R2 выполняют юстировку прибора. Так как в популярном мультиметре М838 нет режима измерения малых переменных напряжений (а именно с этим прибором у автора работает приставка), в схеме пробника имеется детектор на германиевых диодах VD1-VD2. Мультиметр измеряет постоянное напряжение на С4.
Источником питания служит «Крона». Это такая же батарея, как та, которой питается мультиметр, но приставка должна питаться от отдельной батареи.
Монтаж деталей приставки выполнен на печатной плате, разводка и расположение деталей которой показаны на рисунке 2.
Конструктивно приставка выполнена в одном корпусе с источником питания. Для подключения к мультиметру используются Собственные щупы мультиметра. Корпусом служит обычная мыльница.
От точек Х1 и Х2 сделаны коротенькие щупы. Один из них жесткий, в виде шила, а второй гибкий длиной не более 10 см, око-неченый таким же заостренным щупом. Эти щупы можно подключать к конденсаторам, как к немонтированным, так к расположенным на плате (выпаивать их не требуется), что значительно упрощает поиск дефектного конденсатора при ремонте. Желательно подобрать к этим щупам «крокодильчики» для удобства проверки немонтированных (или демонтированных) конденсаторов.
Микросхему К561ЛН2 можно заменить аналогичной К1561ЛН2, ЭКР561ЛН2, а с изменениями в плате – К564ЛН2, CD4049.
Диоды Д9Б – любые гарманиевые, например, любые Д9, Д18, ГД507. Можно попробовать применить и кремниевые.
Выключатель S1 – микротумблер предположительно китайского производства. У него плоские выводы под печатный монтаж.
Налаживание приставки. После проверки монтажа и работоспособности подключите мультиметр. Желательно частотомером или осциллографом проверить частоту на Х1-Х2. Если она лежит в пределах 120-180 кГц, -нормально. Если нет, – подберите сопротивление R1.
Подготовьте набор постоянных резисторов сопротивлением 1 Ом, 5 Ом, 10 Ом, 15 Ом, 25 Ом, 30 Ом, 40 Ом, 60 Ом, 70 Ом и 80 Ом (или около того). Подготовьте лист бумаги. Подключите вместо испытуемого конденсатора резистор сопротивлением 1 Ом. Поверните ползунок R2 так, чтобы мультиметр показал напряжение 1 mV. На бумаге запишите «1 Ом = 1mV». Далее, подключайте другие резисторы, и, не меняя положение R2, делайте аналогичные записи (например. «60Ом = 17mV»).
Получится таблица расшифровки показаний мультиметра. Эту таблицу нужно аккуратно оформить (вручную или на компьютере) и наклеить на корпус приставки, так чтобы таблицей было удобно пользоваться. Если таблица бумажная, – наклейте на её поверхность скотч-ленты, чтобы защитить бумагу от истирания.
Теперь, проверяя конденсаторы, вы считываете показания мультиметра в милливольтах, затем по таблице примерно определяете ESR конденсатора и принимаете решение о его пригодности.
Хочу заметить, что эту приставку можно приспособить и для измерения емкости оксидных конденсаторов. Для этого нужно существенно понизить частоту мультивибратора, подключив параллельно С1 конденсатор емкостью 0,01 мкФ. Для удобства можно сделать переключатель «С / ESR». Так же потребуется сделать еще одну таблицу, – со значениями емкостей.
Желательно, для соединения с мультиметром использовать экранированный кабель, чтобы исключить влияние наводок на показания мультиметра.
Аппарат, на плате которого вы ищите неисправный конденсатор, должен быть выключен, как минимум за полчаса до начала поисков (чтобы конденсаторы, имеющиеся в его схеме, разрядились).
Приставку можно использовать не только с мультиметром, но и с любым прибором, способным измерять милливольты постоянного или переменного напряжения. Если ваш прибор способен измерять малое переменное напряжение (милливольтметр переменного тока или дорогой мультиметр) можно детектор на диодах VD1 и VD2 не делать, а измерять переменное напряжение прямо на испытуемом конденсаторе. Естественно, табличку нужно делать под конкретный прибор, с которым вы планируете работать в дальнейшем. А в случае использования прибора со стрелочным индикатором можно на его шкалу нанести дополнительную шкалу для измерения ESR.
Литература:
1 С Рычихин. Пробник оксидных конденсаторов Радио, №10, 2008, стр.14-15.
Как проверить исправность конденсатора, его емкость и сопротивление
Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.
Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.
Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.
Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.
Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.
Проверка конденсаторов
Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.
Проверка конденсатора мультиметром
С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.
Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.
И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.
Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.
Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.
Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.
Проверка конденсаторов стрелочным тестером
Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.
Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.
Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?
Проверка переменным напряжением
Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора
Проверяем емкость конденсатора
Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.
Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».
Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.
Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.
Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.
«Зарядка напряжением».
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.
Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).
Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.
ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание
ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.
Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.
Тестер транзисторов / ESR-метр / генератор Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.
Теория
Итак, обо всем по порядку.
Для начала позвольте немного теории, чтобы полнее представлять суть проблемы. ESR — это аббревиатура от английских слов Equivalent Serial Resistance, в переводе означает «эквивалентное последовательное сопротивление».
В упрощенном виде электролитический (оксидный) конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного специальным составом — электролитом.
Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности.
К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.
В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками.
Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, причем последний находится в самом конденсаторе.
Зарядные и разрядные токи вызывают нагрев этого «резистора», что еще больше усугубляет разрушительный процесс. Другая причина выхода из строя электролитического конденсатора — это известное радиолюбителям «высыхание», когда из-за плохой герметизации происходит испарение электролита.
В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается.
Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением 10…20 Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения.).
Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до 3…5 Ом) на работе импульсных блоков питания, выводя из строя более дорогостоящие транзисторы или микросхемы.
Принцип работы описываемых измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Из курса радиотехники известна формула:
где Хс — емкостное сопротивление, Ом; f -частота, Гц; С — емкость, Ф. Например, конденсатор емкостью 10 мкФ на частоте 100 кГц будет иметь емкостное сопротивление 0,16 Ом, 100 мкФ — 0,016 Ом и т.д. В реальном конденсаторе это значение будет несколько выше из-за наличия паразитной индуктивности (сопротивления потерь), однако для наших целей особая точность измерений не нужна.
Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (т.е. ESR) задают именно на этой частоте.
Следует отметить, что формула (1) справедлива для переменного тока синусоидальной формы, описываемые же измерители работают с генераторами прямоугольных импульсов. Но, как было замечено выше, нам нужно не точность измерений, а возможность различать конденсаторы с ESR, например, 0,5 и 5 Ом.
Возможные неисправности конденсатора
Прибор для измерения емкости аккумулятора
Как и всякие элементы электрических схем, ёмкостные тоже выходят из строя, что влечёт за собой отказ в работе аппаратуры. Чаще отказываются работать электролитические конденсаторы. К их основным неисправностям можно отнести:
- обрыв конденсатора, в этом случае ёмкости нет вообще, или она снижена;
- пробой элемента в результате короткого замыкания обкладок;
- снижение максимально возможного напряжения;
- увеличение ёмкостного сопротивления Rc.
Неисправный элемент обнаружить не всегда просто, но возможно.
Схема простейшего измерителя ESR
Рассмотрим работу схемы простейшего измерителя ESR, показанную на рис.1. На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2) и буферный усилитель (элементы D1.3, D1.4). Частота генерации определяется элементами С1 и R1 и приблизительно равна 100 кГц.
Рис. 1. Схема простейшего измерителя ESR.
Прямоугольные импульсы через разделительный конденсатор С2 и резистор R2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде VD1 включен микроамперметр РА1, по шкале которого отсчитывают значение ESR.
Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению «бесконечность» измеряемого ESR.
Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению (помните, при С=10 мкФ, Хс=0,16 Ом на частоте 100 кГц) конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю.
При наличии же в измеряемом конденсаторе какого-пибо из описанных выше дефектов, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения «бесконечность».
Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению «бесконечность» находится стрелка.
Шкала прибора нелинейная и напоминает шкалу омметра обычного тестера. В качестве измерительной головки можно использовать любой микроамперметр на ток до 500 мкА, хорошо подходят головки от индикаторов уровня записи магнитофонов. Градуировать шкалу не обязательно, достаточно засечь, где будет находиться стрелка, подключая калибровочные резисторы.
Благодаря разделительному повышающему трансформатору напряжение на измерительных щупах прибора не превышает значения 0,05…0,1 В, при котором еще не открываются переходы полупроводниковых приборов. Это дает возможность проверять конденсаторы, не выпаивая их из схемы.
Обозначения на конденсаторах
От размеров элемента зависит количество данных, характеризующих его параметры. На корпус элемента наносятся обязательные электрические характеристики:
- ёмкость конденсатора, С;
- максимальное напряжение, на которое рассчитан элемент, В.
Маркировка конденсаторов
На очень мелких деталях может быть отмечена только ёмкость, по стандарту EIA. Если нарисованы только цифры и буква, то цифры обозначают ёмкость, буквы могут иметь расшифровку, применимую к типу конструкции. При наличии трёх цифр первые две – это ёмкость. Третья цифра, лежащая в пределах 0-6, – это множитель нуля (505 – 55*100000). Когда третья цифра 8, значение умножают на 0,01, если 9 – на 0,1.
К сведению. Буква, обозначающая ёмкость, может стоять как после числового значения, так перед ним и между цифрами. Например, Н15; 1Н5; 15Н. Таким образом, может обозначаться десятичный разряд числа – 0,15нФ; 1,5нФ; 15нФ.
Дополнительно могут быть обозначены значения:
- тип – конструктивное исполнение;
- вид тока – постоянный, переменный, AC – DC;
- рабочая частота, Гц;
- величина допустимых отклонений ёмкости, %;
- полярность выводов у электролитических конденсаторов, « + » и « – ».
Обозначения на корпусе электролитического конденсатора
Доработанная схема измерителя
Схема, показанная на рис. 1, вполне работоспособна, однако имеет один существенный недостаток. Нетрудно заметить, что если к схеме подключить неисправный конденсатор, имеющий пробой диэлектрика, стрелка прибора так же, как и в случае проверки исправного конденсатора, приблизится к нулевой отметке. Для устранения указанного недостатка в схему введен переключатель S1 (рис.2).
Рис. 2. Модернизированная схема измерителя ESR для оксидных конденсаторов.
В верхнем положении контактов переключателя (как показано на схеме) прибор работает как измеритель ESR, и стрелка измерительной головки отклоняется под воздействием выпрямленного напряжения
генератора. В нижнем же положении контактов переключателя S1 стрелка измерителя отклоняется под воздействием постоянного напряжения источника питания, а измеряемый конденсатор подключают параллельно головке.
Процедура измерения выглядит так: подключают щупы к измеряемому конденсатору и наблюдают за стрелкой. Допустим, стрелка приблизилась к нулю, по части ESR конденсатор исправен. Переключают S1 в нижнее положение.
При исправном конденсаторе стрелка измерительного прибора должна вернуться в положение «бесконечность», так как конденсаторы не проводят (вернее, не должны проводить) постоянный ток. Пробитый же конденсатор зашунтирует головку, и стрелка измерителя останется в нулевом положении. Отклонения стрелки на конечную отметку шкалы на постоянном токе (в нижнем положении S1) добиваются подбором резистора R3.
Для защиты измерительной головки от механических повреждений импульсом разрядного тока (при случайном подключении измерительных щупов к заряженному конденсатору) служат кремниевые диоды VD2, VD3. Заряженный конденсатор будет разряжаться через обмотку I трансформатора Т1.
Будьте внимательны, не подключайте щупы к заряженному конденсатору! Автор как-то подключил прибор к конденсатору на 220 мкФх400 В в схеме компьютерного монитора, только что отключенного от сети. Прибор выдержал, но щупы приварились к выводам конденсатора. Пришлось менять «цыганские» иголки, которые служили щупами.
Естественно, подключать щупы к измеряемому конденсатору нужно в верхнем положении переключателя S1, чтобы он разрядился через обмотку трансформатора, в противном случае можно сжечь головку и диоды! Чтобы не задумываться, в каком положении находится переключатель, в качестве S1 лучше применить кнопку (или переключатель типа П2К) без фиксации. Подключают щупы, измеряют ESR, конденсатор разрядился, затем нажимают кнопку и проверяют конденсатор на пробой.
Наличие переключателя S1 дает возможность «прозванивать» проводники печатной платы, позволяя выявлять обрывы, микротрещины или случайные замыкания между дорожками.
На переменном токе этого сделать нельзя, так как, например, из-за наличия в схеме блокировочного конденсатора прибор покажет замыкание между общим проводом и проводником питания.
Существуют и другие области применения прибора. С его помощью, благодаря наличию генератора импульсов, можно проверять исправность трактов РЧ и ПЧ радиоприемников и телевизоров, а также видеоусилители, формирователи импульсов и т.д.
Спектр гармоник сигнала прямоугольной формы генератора, работающего на частоте 100 кГц, простирается вплоть до сотен мегагерц. Телевизор реагирует на подключение щупов прибора даже к антенному входу ДМВ диапазона! В диапазоне МВ на экране телевизора отчетливо просматриваются горизонтальные полосы.
Снижение напряжения пробоя конденсатора
Снижение максимально возможного напряжения – это так называемый обратимый пробой. Его не определить тестером. Но в схеме при работе при номинально допустимом значении напряжения элемент ведёт себя как пробитый. При этом он будет измеряться тестером как рабочий.
Определить можно постепенной подачей напряжения от отдельного источника питания до величины, указанной на корпусе. У неисправного конденсатора пробой будет происходить раньше этой величины. Электролит закипит, и корпус начнёт греться.
Внимание! Если на маркировке стоит значение «60V», то при плавной подаче напряжения на выводы от нуля до 50V элемент должен вести себя нормально. Пробоя быть не должно.
Измерение ёмкости конденсаторов с помощью измерительных приборов заводского изготовления или самодельных устройств позволяет производить ремонт и наладку электронных схем. Выявление неисправного конденсатора путём измерения его физических ёмкостных значений сохранит работоспособность электронного устройства и снизит время, затраченное на ремонт.
Третий вариант схемы измерителя ESR
Чтобы иметь возможность проверять тракты ЗЧ, в схему прибора необходимо ввести еще один переключатель, с помощью которого частота генератора импульсов понижается до 1 кГц.
Кроме того, измерения показали, что потребляемый прибором ток не превышает 3…5 мА, и его лучше сделать малогабаритным переносным, чтобы иметь всегда под рукой. Питать такой вариант прибора можно от батареи типа «Крона» через маломощный 5-вольтовый стабилизатор.
Схема такого варианта прибора показана на рис.З. Переключателем S2 выбирают частоту генератора, а переключателем S3 включают питание прибора.
Рис. 3. Схема самодельного измерителя ESR с питанием от батареи.
Длительная работа с прибором позволила выявить еще один «скрытый резерв»: с помощью него можно проверять катушки индуктивности (обмотки трансформаторов) на наличие короткозамкнутых витков.
При этом прибор измеряет все то же реактивное сопротивление, только на этот раз индуктивное Х|_. Индуктивное сопротивление можно рассчитать по формуле:
где Xl ~ индуктивное сопротивление, Ом; f — частота, Гц; L — индуктивность, Гн. Например, катушка индуктивностью в 100 мкГн на частоте 100 кГц имеет индуктивное сопротивление Хр=62,8 Ом.
Ели такую катушку подключить к нашему прибору, стрелка измерителя практически останется в положении «бесконечность», отклонение будет едва заметно. Наличие же в обмотке катушки короткозамкнутого витка (витков) приведет к резкому уменьшению индуктивного сопротивления, до единиц ом, и стрелка прибора в этом случае покажет какое-то малое сопротивление.
Индуктивность катушек, применяемых в радиотехнических устройствах, может находиться в очень широких пределах: от единиц микрогенри в ВЧ дросселях до десятков генри в силовых трансформаторах.
Поэтому проверка катушек с большой индуктивностью на частоте 100 кГц может вызвать затруднения. Чтобы проверять такие катушки (например, первичные обмотки маломощных силовых трансформаторов), частоту генератора нужно установить в 1 кГц (переключателем S2).
Вакансии
- QA Middle Engineer или QA Junior Engineer
ИнтелКон Москва
от 100 000 до 160 000
- Fullstack разработчик
SoftMediaLab Екатеринбург Можно удаленно
до 140 000
- Full stack developer (JavaScript, PHP) — Vimbox
Skyeng Москва Можно удаленно
от 150 000 до 250 000
- Руководитель разработки/ ИТ-архитектор
ЭКОПСИ Консалтинг Москва
от 150 000 до 300 000
- Senior PHP developer (Yii2)
Americor Можно удаленно
от 150 000
Все вакансии
AdBlock похитил этот баннер, но баннеры не зубы — отрастут Подробнее
Детали
Трансформатор Т1 наматывают на ферритовом кольце с внешним диаметром 10… 15 мм и магнитной проницаемостью 600…2000 (значения не критичны). Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,4…0,5 мм, вторичная -200 витков провода ПЭВ-2 диаметром 0,1 …0,15 мм.
В качестве провода для первичной обмотки идеально подходит монтажный провод марки МГТФ-0,5 или одножильный провод в ПВХ-изоляции («кроссировка»).
Диод VD1 обязательно должен быть германиевым, например, типов Д9, ДЗ10, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5…0,7 В), что приведет к сильной нелинейности шкалы прибора в области измерения малых сопротивлений. Германиевые же диоды начинают проводить ток при прямом напряжении 0,1…0,2 В.
Печатные платы для прибора не разрабатывались. Все варианты прибора собирались на макетных печатных платах с шагом отверстий 2,5 мм (продаются на радиорынках) методом навесного монтажа.
Правильно собранный прибор начинает работать сразу, нужно лишь подобрать сопротивление резисторов, как было указано выше. Чтобы облегчить настройку, в качестве резисторов R2 и R3 можно использовать подстроечные резисторы.
Задающий генератор может быть собран и по другой схеме. В радиолюбительской литературе подобные схемы встречаются часто. Важно, чтобы частота сигнала генератора была около 100 кГц. Можно вообще обойтись без внутреннего генератора, используя уже имеющийся в распоряжении стационарный генератор и стрелочный авометр, а прибор оформить в виде приставки к ним.
Градуировка прибора
Градуируют прибор с помощью нескольких постоянных резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании.
Поэтому провода, идущие к щупам, должны быть по возможности короткими, сечением 0,75…1 мм2. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом.
Затем подключают резисторы но 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, например, в качестве разделительных в УНЧ, но, скорее, не очень долго.
Самое читаемое
- Сутки
- Неделя
- Месяц
- 10 признаков того, что хороший программист из вас не получится +104 151k 415 329
- Дейкстра: Величайшей победой Запада в холодной войне над СССР был переход на IBM — myth busted
+88 45,6k 73 331 - О работе ПК на примере Windows 10 и клавиатуры ч. 1
+53 22,4k 290 184 - Какие английские слова IT-лексикона мы неправильно произносим чаще всего
+98 19,8k 251 149 - Новые фичи Python 3.8 и самое время перейти с Python 2
+60 23,7k 127 61
- 10 признаков того, что хороший программист из вас не получится +104 151k 415 329
- Пропаганда тоталитарного режима, антисемитизм и гомофобия в учебнике по программированию 2020 года? — Это возможно
+178 70,9k 82 187 - Я был главой отдела международных отношений в Google. Вот почему я ушел
+92 58k 137 117 - Вентиляция с рекуперацией в квартире. Без воздуховодов и СМС
+148 55k 455 194 - Что делать, если забыт код от замка чемодана?
+90 51,6k 181 90
- [Обновлено в 10:52, 14.12.19] В офисе Nginx прошел обыск. Копейко: «Nginx был разработан Сысоевым самостоятельно» +791 294k 285 1489
- 10 признаков того, что хороший программист из вас не получится
+104 151k 415 329 - Хроника противостояния Рамблера и Nginx (обновлено 23 декабря, в 12:00)
+198 145k 77 262 - Что значит наезд Rambler Group на Nginx и основателей и как это отразится на онлайн-индустрии
+423 131k 101 525 - 23 минуты. Оправдание тугодумов
+341 127k 515 327
Работа с прибором
Автор не разделяет мнения, что электролитические конденсаторы с ESR более 1 Ом всегда нужно выбрасывать. Значение ESR новых исправных конденсаторов зависит от фирмы-производителя, типа, свойств применяемых при изготовлении материалов и др.
Как-то на радиорынке автор купил миниатюрные электролитические конденсаторы емкостью 10 мкфхі 6 В. ESR у них у всех оказалось на уровне 2,5…3 Ом, — это не брак. Повышенным (до 3…6 Ом) ESR обладает большинство конденсаторов емкостью 1 …4,7 мкФх50…400 В, а также низковольтные малогабаритные конденсаторы. Проверенный же конденсатор, например, емкостью 1000 мкф 16В, имеющий ESR 5 Ом, явно плохой и подлежит замене.
Как было отмечено выше, в особо ответственных узлах радиоаппаратуры, например в импульсных блоках питания, схемах развертки телевизоров, должны использоваться качественные конденсаторы с ESR не более 0,5… 1 Ом.
Для междукаскадных конденсаторов НЧ цепей эти требования могут быть не такими жесткими. Именно в УНЧ, собранном пару лет назад, благополучно работают упомянутые выше миниатюрные электролитические конденсаторы.
Для проверки возможности прибора обнаруживать короткозамкнутые витки проведите такой эксперимент: подключите прибор к исправному дросселю, например, ДМ-0,1 с индуктивностью 20…100 мкГн на измерительной частоте 100 кГц.
Стрелка прибора слегка отклониться в сторону уменьшения измеряемого сопротивления. Затем намотайте поверх дросселя 2-3 витка монтажного провода со снятой изоляцией и скрутите вместе его концы.
Снова подключите прибор. На этот раз стрелка должна отклониться на значительно больший угол, показывая сопротивление несколько ом. Следует подчеркнуть, что функция проверки катушек индуктивности является дополнительной для данного прибора, и полученные результаты могут быть весьма приблизительными.
Как измерить емкость с помощью цифрового мультиметра
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры предлагают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
- Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
- Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.
Обзор измерения емкости
Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
Связанные ресурсы
Как проверить конденсатор без демонтажа [испытание цепи]
Эй! надеюсь, у вас все хорошо.
Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.
Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы. А иногда перенапряжение их выгорает.
Когда дело доходит до резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате.Сгоревшая микросхема или резистор вскрыты, и вы можете найти их на плате за секунды.
Однако это не относится к конденсатору.
В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.
Но что, если тебе не повезло?
Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим. Таким образом, вам нужно снять с платы весь конденсатор, проверить каждый, найти плохого парня и перепаять всех без исключения на плате.Это не лучший способ, и никто не хочет этого делать.
Не волнуйтесь.
В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.
Надеюсь, вам понравится эта статья.
Проверить конденсатор, не снимая его
Давай посмотрим правде в глаза.
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра.Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.
Почему?
- Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним. Таким образом, вы получаете эквивалентное значение, а не фактическое.
- Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.
Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.
Итак, как я могу проверить эту суку?
Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).
Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета.Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.
В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.
Измеритель СОЭ
Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.
Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.
У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.
Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.
Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший ли конденсатор или плохой.
Как проверить конденсатор с помощью измерителя ESR?
Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.
- Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительных сведений всегда разряжайте конденсатор перед измерением любого его параметра.
- Разряд конденсатора можно произвести, закоротив его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
- Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
- Подсоедините красный провод измерителя ESR к положительному выводу, а черный провод — к отрицательному выводу тестируемого конденсатора.
- Запишите показания ESR-метра.
- Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
- Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.
В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.
Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.
Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.
Просто найдите это.
Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на продукт) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его с бесплатной доставкой по всему миру. Если вы любитель или новичок и ищете лучшую недорогую альтернативу, вы должны попробовать этот измеритель СОЭ (Product Link) .
Умный пинцет
Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет.Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) — это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.
Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.
Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.
Визуально неисправный конденсатор
Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.
Плохой электролитический конденсатор проглатывается на верхней стороне, вы видите такой в цепи; просто замените его, не теряя времени на тестирование.
Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.
Заключение
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.
Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR). Это значение измеряется измерителем СОЭ.
Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.
Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.
Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу. Но вы читатель, зашедший так далеко. Я надеюсь, что вам понравилось.
Спасибо и хорошо проводите время.
Другие полезные посты
Как проверить конденсатор?
Как проверить конденсатор?
В этом руководстве мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор должным образом или он неисправен.Конденсатор — это электронный / электрический компонент, который хранит энергию в виде электрического заряда. Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций.
Когда конденсатор помещается в активную цепь (цепь с протекающим активным током), в конденсаторе (на одной из его пластин) начинает накапливаться заряд, и как только пластина конденсатора больше не может удерживать заряд, происходит накопление заряда. выпущен обратно в цепь через другую пластину.
Это действие называется зарядкой и разрядкой конденсатора. В основном конденсаторы можно разделить на электролитические и неэлектролитические.
Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.
Электролитический конденсаторчасто выходит из строя из-за разряда большего тока за короткий период времени или не может удерживать заряд из-за высыхания со временем. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.
Существуют различные методы проверки правильности работы конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.
ПРИМЕЧАНИЕ: Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы только для того, чтобы указать возможности. Не осуждай.
Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости
Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.
Измеритель емкости цифровых мультиметров часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.
- Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно выполнить следующие шаги.
- Отсоедините конденсатор от печатной платы и полностью разрядите его.
- Если на его корпусе видны номиналы конденсатора, запишите это. Обычно емкость в фарадах (часто микрофарадах) печатается на корпусе вместе с номинальным напряжением.
- В цифровом мультиметре установите ручку настройки емкости.
- Подключите щупы мультиметра к клеммам конденсатора. В случае поляризованного конденсатора подключите красный щуп к положительной клемме конденсатора (как правило, с более длинным проводом), а черный щуп к отрицательной клемме.В случае неполяризованного конденсатора, подключите его в любом случае, поскольку они не имеют полярности.
- Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.
- Если разница между фактическим значением и измеренным значением значительно (или иногда равна нулю), то вам следует заменить конденсатор, так как он мертв.
Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.
Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости
Большинство дешевых цифровых мультиметров не имеют измерителя емкости или настроек емкости. Даже с этими мультиметрами мы можем проверить конденсатор.
- Снимите конденсатор со схемы или платы и убедитесь, что он полностью разряжен.
- Установите мультиметр на измерение сопротивления, т. Е. Установите ручку в положение «Ом» или «Настройки сопротивления». Если существует несколько диапазонов измерения сопротивления, выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
- Подключите щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
- Цифровой мультиметр покажет значение сопротивления на дисплее и вскоре отобразит сопротивление разомкнутой цепи (бесконечность). Запишите показания, отображаемые за этот короткий период.
- Отсоедините конденсатор от мультиметра и повторите тест несколько раз.
- Каждая попытка теста должна показывать одинаковый результат на дисплее для исправного конденсатора.
- Если при дальнейших испытаниях сопротивление не изменилось, конденсатор неисправен.
Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.
Метод 3 Тестирование конденсатора путем измерения постоянной времени
Этот метод применим, только если известно значение емкости и если мы хотим проверить, исправен ли конденсатор или нет.В этом методе мы измеряем постоянную времени конденсатора и выводим емкость из измеренного времени. Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.
Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63,2% приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или греческий алфавит Tau — τ) задается как τ = RxC.
- Сначала убедитесь, что конденсатор отключен от платы и правильно разряжен.
- Подключите известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
- Завершите цепь, подключив источник питания известного напряжения.
- Включите источник питания и измерьте время, за которое конденсатор заряжается до 63,2% напряжения питания. Например, если напряжение питания составляет 12 В, то 63,2% от этого значения составляет около 7,6 В.
- Используя время и сопротивление, измерьте емкость и сравните ее со значением, указанным на конденсаторе.
- Если они похожи или почти равны, конденсатор работает нормально. Если разница огромна, нам нужно заменить конденсатор.
Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.
Метод 4 Проверка конденсатора простым вольтметром
Все конденсаторы рассчитаны на максимальное допустимое напряжение. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.
- Снимите конденсатор с платы или схемы и правильно его разрядите. При желании можно удалить из цепи только один вывод.
- Посмотрите номинальное напряжение на конденсаторе. Обычно он обозначается как 16 В, 25 В, 50 В и т. Д. Это максимальное напряжение, которое может выдерживать конденсатор.
- Теперь подключите выводы конденсатора к источнику питания или батарее, но напряжение должно быть меньше максимального номинального значения. Например, на конденсаторе с максимальным номинальным напряжением 16 В вы можете использовать батарею 9 В.
- Зарядите конденсатор на короткое время, скажем, 4–5 секунд, и отключите питание.
- Установите цифровой мультиметр на настройки вольтметра постоянного тока и измерьте напряжение на конденсаторе. Подключите соответствующие клеммы вольтметра и конденсатора.
- Начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению в исправном конденсаторе. Если разница большая, значит конденсатор неисправен.
Следует учитывать только начальные показания мультиметра, так как значение будет медленно падать.Это нормально.
Метод 5 Проверка конденсатора с помощью аналогового мультиметра (измеритель AVO) Аналоговые мультиметры
, как и цифровые мультиметры, могут измерять различные величины, такие как ток (A), напряжение (V) и сопротивление (O). Чтобы проверить конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функцию омметра.
- Как обычно, отключите конденсатор и разрядите его. Вы можете разрядить конденсатор, просто закоротив провода (очень опасно — будьте осторожны), но простой способ — использовать нагрузку, такую как резистор высокой мощности или светодиод.
- Установите аналоговый мультиметр в положение омметра и, если имеется несколько диапазонов, выберите более высокий диапазон.
- Подсоедините выводы конденсатора к щупам мультиметра и наблюдайте за показаниями мультиметра.
- Для исправного конденсатора сопротивление вначале будет низким и будет постепенно увеличиваться.
- Если сопротивление постоянно низкое, конденсатор закорочен, и его необходимо заменить.
- Если стрелка не движется или сопротивление всегда имеет более высокое значение, конденсатор является открытым конденсатором.
Этот тест может применяться как к сквозным, так и к поверхностным конденсаторам.
Метод 6 Замыкание выводов конденсатора (традиционный метод — только для профессионалов)
Описанный здесь метод — один из старейших методов проверки конденсатора и проверки того, хороший он или плохой.
Предупреждение: Этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.
Безопасность: Метод описан для источника переменного тока 230 В. Но из соображений безопасности можно использовать источник питания 24 В постоянного тока. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (высокой номинальной мощности) для ограничения тока.
- Проверяемый конденсатор должен быть отключен от цепи и должным образом разряжен.
- Подключите выводы конденсатора к клемме питания. Для 230 В переменного тока необходимо использовать только неполяризованные конденсаторы. Для 24 В постоянного тока можно использовать как поляризованные, так и неполяризованные конденсаторы, но с правильным подключением поляризованных конденсаторов.
- Включите источник питания на очень короткое время (обычно от 1 до 5 секунд), а затем выключите его. Отсоедините выводы конденсатора от источника питания.
- Замкните клеммы конденсатора металлическим контактом. Убедитесь, что вы хорошо изолированы.
- Искра конденсатора может использоваться для определения состояния конденсатора. Если искра большая и сильная, то конденсатор в хорошем состоянии.
- Если искра малая и слабая, нужно заменить конденсатор.
Этот метод можно использовать для конденсаторов с меньшей емкостью. Этот метод может только определить, может ли конденсатор удерживать заряд или нет.
Как проверить конденсатор? Использование различных методов
Как проверить конденсатор с помощью мультиметра? Различные методы проверки конденсаторовВ электронных схемах конденсатор является одним из наиболее часто используемых компонентов. При поиске неисправностей в таких схемах необходимо знать , как проверить конденсатор .
В этой статье мы обсудим, как проверить конденсатор на хорошее, короткое замыкание или разомкнутое состояние , используя разные методы.
Перед испытанием конденсатора необходимо узнать о самом конденсаторе.
КонденсаторКонденсатор — это электронный компонент с двумя выводами, способный накапливать заряд в электрическом поле. Он состоит из двух металлических пластин, разделенных средой, известной как диэлектрик .
Когда конденсатор подключен к батарее, между металлическими пластинами возникает электрическое поле. Благодаря этому электрическому полю металлические пластины накапливают заряд.
Способность конденсатора накапливать заряд называется емкостью . Он измеряется в фарадах и обозначается F .
Клеммы конденсатораЕсть два вывода конденсатора, т.е. положительный и отрицательный, также известные как анод и катод соответственно.
Конденсаторы бывают двух типов в зависимости от полярности вывода.
Полярные конденсаторы Конденсаторы Polar, также известные как электролитические конденсаторы , используют электролит в качестве одного из своих выводов для увеличения емкости накопления заряда. Он имеет большую емкость по сравнению с неполярными конденсаторами.
Его пластины поляризованы, т.е. две уникальные клеммы, известные как анод (положительный) и катод (отрицательный).
При использовании полярного конденсатора очень важно проверить полярность его клеммы .На клемме анод всегда должно поддерживаться на более высокое напряжение , чем на клеммах катод . Изменение полярности может повредить конденсатор и даже разрушить его.
Проще говоря, всегда соединяйте положительную клемму с положительной клеммой, а отрицательную — с отрицательной клеммой аккумулятора.
Неполярный конденсаторНеполярный конденсатор или неполяризованный конденсатор без полярности . Между его клеммами нет никакой разницы.Оба вывода могут действовать как катод и анод.
Неполярные конденсаторы имеют очень низкую емкость в диапазоне от нескольких пикофарад до нескольких микрофарад.
Также прочтите: Тест транзисторов для идентификации клемм, типа и состояния.
Нет положительных и отрицательных выводов. Клемма, подключенная к положительной клемме батареи, действует как анод. В то время как клемма, подключенная к отрицательной клемме аккумулятора, действует как катод. Изменение полярности батареи не влияет на конденсатор.
Визуальная идентификация клеммКак известно, неполярные конденсаторы не имеют разных выводов. Таким образом, нет необходимости идентифицировать его терминалы.
Однако очень важно идентифицировать выводы полярного электролитического конденсатора.
Первый метод
При изготовлении анод ветвь полярного конденсатора делается на длиннее по сравнению с катодной ветвью.Этот метод работает только тогда, когда конденсатор не используется. Второй метод работает как с новыми, так и с использованными конденсаторами.
Второй метод
Отрицательный вывод конденсатора обозначен на его корпусе маркировкой «–», указывающей на катодную ножку .
Однако полярные конденсаторы SMD имеют маркировку над положительной клеммой (анод).
Различные методы проверки конденсаторовДля проверки конденсатора необходимо удалить конденсатор из его цепи, если он есть в какой-либо цепи.Затем разряжает конденсатор , так как он может иметь некоторый накопленный заряд. Это может повредить ваше испытательное оборудование.
Чтобы правильно разрядить конденсатора , подключите резистор между его выводами. Заряд будет рассеиваться через резистор.
Мультиметр — важный инструмент, необходимый для проверки конденсатора . Ниже рассматриваются различные методы проверки конденсаторов с помощью мультиметра.
Проверка конденсатора с помощью проверки целостности цепиМетод проверки целостности конденсатора показывает, является ли он разомкнутым, коротким или хорошим .
- Удалите подозрительный конденсатор из цепи.
- Разрядите с помощью резистора.
- Установите мультиметр в режим проверки целостности .
- Поместите красный щуп мультиметра на анод, а черный (общий) щуп на катод конденсатора.
- Если мультиметр показывает признак обрыва цепи ( звуковой сигнал или светодиод ), а затем он останавливается (показывает OL ). Значит конденсатор хороший .
Также прочтите: Различия между конденсатором и батареей
- Если конденсатор не показывает никаких признаков непрерывности, конденсатор разомкнут .
- Если мультиметр издает непрерывный звуковой сигнал, конденсатор закорочен и нуждается в замене.
Тест сопротивления также используется для проверки конденсатора. Этот тест может выполнять как цифровой, так и аналоговый мультиметр.Метод остается одинаковым для обоих мультиметров.
- Убрать конденсатор из цепи.
- Разрядите конденсатор с помощью резистора.
- Установите ручку мультиметра в режим с высоким сопротивлением (выше 10 кОм).
- Поместите красный щуп на анод, а черный щуп на катодный вывод конденсатора.
- Показание сопротивления должно начинаться с некоторой точки посередине и начинаться с , увеличиваясь с до до бесконечности .Он показывает, что конденсатор хорошо .
Также читайте: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов
- Если конденсатор показывает высокое сопротивление даже после разряда, конденсатор разомкнут .
- Если конденсатор показывает 0 или очень низкое сопротивление, это короткое замыкание .
Причина увеличения сопротивления в том, что изначально конденсатор заряжал от мультиметра .Таким образом, он пропускает ток (в этом случае омметр измеряет сопротивление ). Когда конденсатор полностью зарядил , он больше не пропускал ток. Из-за чего он выглядит как открытый путь ( бесконечное сопротивление )
Проверить конденсатор в режиме измерения емкостиРежим измерения емкости — это уникальный режим в цифровых мультиметрах, используемый для измерения емкости. Если вы хотите проверить конденсатор этим методом, вам нужно знать, как считать значение конденсатора.
Как считать значение конденсатора:Электролитический конденсатор обычно указывает полное значение, как показано на рисунке ниже.
Однако значение керамического конденсатора записывается в виде кода. Вы можете преобразовать / расшифровать его, используя его особый метод. Пример считывания керамического конденсатора приведен ниже.
Керамический конденсатор показывает номер 103 .
- Первые две цифры являются значащими цифрами и пишутся как есть.Например, 10 .
- Третья цифра « 3 » показывает множитель 10 3 . Таким образом, общая емкость составляет 10 * 10 3 , что равно 10000 пФ .
- Керамические конденсаторы измеряются в пикофарадах 10 -12 F .
- Таким образом, емкость этого конденсатора составляет 10 нФ .
Следующим шагом будет поиск допуска . Он дает минимальный и максимальный диапазон, в котором емкость может отличаться от номинального значения.
Некоторые из общих значений допуска указываются буквами j, k, l, m и n для добавления / вычитания процентов от 5,10,15,20 и 30 соответственно.
Теперь перейдем к тесту измерения емкости.
- Убрать конденсатор из цепи.
- Разрядите конденсатор с помощью резистора.
- Установите мультиметр в режим измерения емкости .
- Некоторые модели мультиметров имеют специальные клеммы для измерения емкости.
- Поместите щупы мультиметра на конденсатор.
- Если измеренная емкость соответствует записанному значению (включая допуск) конденсатора, емкость конденсатора хорошо .
Способность конденсатора заключается в том, чтобы накапливать заряд, который отражается как напряжение на его выводах.
Этот тест показывает, что конденсатор может удерживать заряд или нет.Если конденсатор хорошо , он будет хранить некоторый заряд. который будет отображаться как напряжение на его клемме, и мы можем измерить его с помощью вольтметра .
Перед испытанием конденсатора на испытание напряжением вам необходимо узнать о номинальном напряжении конденсатора.
Номинальное напряжение конденсатора всегда записывается рядом с его значением емкости, как показано на рисунке ниже.
При зарядке конденсатора с помощью аккумулятора напряжение аккумулятора должно быть на меньше , чем номинальное напряжение конденсатора.В противном случае конденсатор перегорит .
В этом тесте мы используем конденсатор номиналом 63 В с 12-вольтовой батареей.
- Убрать конденсатор из цепи.
- Обозначьте клеммы и разрядите конденсатор с помощью резистора.
- Подключите положительный полюс аккумулятора к положительному, а отрицательный — к отрицательному на конденсаторе. ( будьте осторожны, не касайтесь клемм аккумулятора вместе)
- Дайте зарядить в течение нескольких секунд.
- Снимите аккумулятор.
- Установите мультиметр в диапазон настройки вольтметра постоянного тока более 12 В.
- Запишите начальное мгновенное показание напряжения конденсатора.
- , если показание составляет около 12 вольт, конденсатор хорошо .
- Если показание напряжения намного ниже 12 вольт, конденсатор плохой и не может хранить достаточный заряд.
Постоянная времени RC (обозначается греческим словом tau ‘τ’ ) — это время, в течение которого конденсатор заряжается до 63.2% от приложенного напряжения.
Постоянная времени τ рассчитывается как сопротивления , умноженного на емкости :
τ = R C
В этом уравнении резистор R имеет известное значение, и во время этого теста мы измерим τ .
В этом тесте мы используем батарею 12 В с резистором 10 кОм . Мы соединили их последовательно с конденсатором. Мы используем вольтметр для измерения напряжения на конденсаторе и секундомер для измерения времени.
- Настройте схему , как показано ниже.
- Подключите клеммы аккумулятора, чтобы начать зарядку конденсатора.
- Включите секундомер, как только вы подключите клеммы аккумулятора.
- Наблюдать за показаниями напряжения с помощью вольтметра.
- Как только он достигнет 63,2% из 12v (что составляет 7,5v ). Запишите время на секундомере.
Также прочтите: Цифровой логический шлюз NAND (универсальный шлюз), его символы, схемы и детали IC
Предположим, секундомер показывает 9 секунд .
- Используйте уравнение постоянной времени RC для расчета емкости.
C = τ / R
C = 9/10 3
C = 0,9 мФ = 900 мкФ
- Сравните это вычисленное значение емкости с указанным значением конденсатора.
- Если разница очень мала, включая диапазон допуска от 10% до 20%. Конденсатор хороший .
- Если рассчитанное значение емкости слишком низкое, чем указанное значение.конденсатор плохой .
Вы можете определить неисправный конденсатор, просто наблюдая за его признаками.
Неисправный или поврежденный конденсатор будет иметь любой из следующих признаков.
Выпуклый верхний дефлектор:В электролитических конденсаторах есть отверстие (не собственно вентиляционное отверстие, а слабые места) в форме X, K, T на его вершине. Он предназначен для сброса давления во время выхода конденсатора из строя, чтобы избежать повреждения (взрыва) любых других компонентов.
При выходе из строя электролит внутри конденсатора выделяет газ. Этот газ создает давление и разрушает верхнее вентиляционное отверстие. В результате иногда получается выпуклая верхняя часть или электролитический разряд . Разряд бывает черного, оранжевого или белого цвета в зависимости от электролитических химикатов.
Ящик с выпуклым дном и приподнятым корпусомИногда при выходе из строя конденсатора не выходит из строя верхнее вентиляционное отверстие. в таком случае давление внутри проходит через нижнюю часть .Дно электролитического конденсатора покрыто резиной . Газ внутри выталкивает эту резину наружу, в результате чего нижняя часть выпирает , а поднимает корпус над своей печатной платой.
Керамические конденсаторы и конденсаторы поверхностного монтажаВы можете определить неисправный керамический конденсатор по следующим признакам.
- имеет поврежденных обсадных труб или скважин в обсадных колоннах.
- Любая из ножек повреждена рядом с корпусом.
- Трещины в корпусе.
Вы также можете прочитать:
Создайте измеритель СОЭ для вашего испытательного стенда
Время идет, и в конце концов все идет под откос. Это включает меня, вас и, что удивительно, большинство тех конденсаторов, которые вы хранили в своей мусорной коробке в течение многих лет, просто ожидая проекта, чтобы их использовать. Почему упоминаются конденсаторы? Потому что типы с высокой емкостью, такие как алюминиевые электролиты и тантал, со временем могут медленно ухудшаться.Внутреннее сопротивление, называемое «эквивалентным последовательным сопротивлением» (или ESR), может увеличиваться, вызывая потерю мощности и нагрев. Это может произойти, если конденсатор подвергся электрическому напряжению или повышенной температуре, или даже когда он просто находится в хранилище, ни к чему не подключенный.
С помощью прибора, который я описываю в этой статье, вы можете проверить свой запас конденсаторов или конденсаторов в каком-то старинном оборудовании, которое вы, возможно, восстанавливаете, чтобы отсеять те, которые могут не соответствовать номиналу.Более того, эту конструкцию легко построить и настроить, используя только обычные детали со сквозным отверстием (без устройств для поверхностного монтажа!) И без микропроцессоров. В сочетании с этим «ретро» подходом результат измерения отображается на обычном панельном измерителе с подвижной катушкой.
Я считаю это устройство полезным гаджетом для работы на рабочем столе. У меня есть куча конденсаторов, которые я накопил за многие годы — некоторые из них были восстановлены из старого оборудования или использовались в нескольких проектах. Невозможно предсказать, каким злоупотреблениям и деградации они могли подвергнуться, и я определенно не хочу использовать компонент в моем следующем проекте, который меня подведет, каким бы безупречным он ни выглядел.
Измерение СОЭ
Как подробно описано во врезке («Как на самом деле выглядит конденсатор»), ряд факторов влияет на потерю мощности в конденсаторе. Эти потери можно объединить в единое целое как ESR, которое выглядит как небольшое сопротивление, соединенное последовательно с идеальным (без потерь) конденсатором.
Простым методом измерения ESR является подача на конденсатор известного переменного тока (Icap) на некоторой частоте, при которой реактивное сопротивление конденсатора очень низкое, так что ESR преобладает.Измерьте результирующее переменное напряжение, развиваемое на выводах конденсатора (Vcap), и вы сможете определить ESR, потянув за закон Ома:
СОЭ = Vcap / Icap
Это основа измерителя СОЭ, который я описываю в этой статье. Взглянув на модель эквивалентной схемы, показанную на боковой панели, вы должны это понять.
Все конденсаторы имеют индуктивный компонент, который может мешать измерению ESR. В некоторых измерителях ESR для проверки конденсатора используется прямоугольный или импульсный источник, и возникающие в результате индукционные выбросы могут вызывать аномально высокие значения ESR.Соответственно, я включил в конструкцию источник синусоидальной волны, чтобы избежать такой возможности.
Блок-схема на рис. 1 показывает, что измеритель ESR состоит из четырех основных секций:
- Синусоидальный генератор для подачи переменного тока на проверяемый конденсатор
- Детектор ESR для определения переменного напряжения, возникающего на конденсаторе
- Измерительный усилитель и выпрямитель для отображения ESR на панельном измерителе
- Секция преобразователя мощности и регулятора напряжения, аналогичная той, что используется во многих электронных узлах
РИСУНОК 1. Блок-схема измерителя СОЭ.
Полная электрическая принципиальная схема измерителя ESR показана на рис. 2 .
РИСУНОК 2. Электрическая схема измерителя СОЭ.
Осциллятор
Обеспечивает необходимый сигнал переменного тока для прохождения тока через проверяемый конденсатор. Схема здесь работает на частоте примерно 100 кГц, что является отраслевым стандартом для измерения ESR. Одна секция сдвоенного операционного усилителя U1 в этом приложении работает как генератор с фазовым сдвигом.Мне нравится эта схема, и я использовал ее в нескольких проектах. Его просто реализовать, и он дает довольно хорошее приближение к синусоиде. Он идеально подходит для генерации сигнала фиксированной частоты через звуковые частоты и выше, если требования не слишком высокие.
Другая часть U1 действует как буфер и усилитель. Поскольку схема генератора со сдвигом фазы имеет умеренно высокий выходной импеданс, это предотвращает нагрузку на схему генератора. Также имеется потенциометр регулировки усиления (R8), который позволяет регулировать уровень сигнала 100 кГц.Резисторы R6 и R7 вносят небольшое смещение постоянного тока в переменный ток от генератора, так что сигнал, передаваемый на детектор ESR, имеет небольшое положительное смещение. Поскольку этот сигнал подается на проверяемый конденсатор, для поляризованных конденсаторов требуется некоторое смещение постоянного тока.
Цепь между генератором и буферным усилителем проходит через коммутирующий моно-разъем 3,5 мм J1 на передней панели. Разъем подключен так, что подключенный к нему внешний источник переменного тока прерывает работу встроенного генератора 100 кГц и действует как его замена.Эта функция позволяет при желании измерять СОЭ на разных частотах.
Если вас интересует подробное объяснение того, как работает генератор с фазовым сдвигом, вы можете найти PDF-файл в файлах для загрузки.
Детектор СОЭ
Вот и все, ребята! Здесь происходит большая часть действия. Первая секция операционного усилителя U2 представляет собой преобразователь напряжения в ток, в котором сигнал генератора частотой 100 кГц преобразуется в ток около 7 мА от пика к пику. Тестируемый конденсатор (CUT) подключается внутри контура обратной связи этого каскада через две клеммы на передней панели, поэтому через CUT протекает одинаковый ток.
Диод D1 — параллельно с CUT — обеспечивает путь разряда для CUT, когда вы подключаете его к измерителю ESR, если он уже заряжен. При нормальной работе напряжение на CUT настолько низкое, что D1 никогда не включается, поэтому не влияет на работу схемы.
Теперь, когда мы установили известный переменный ток через CUT, осталось только измерить напряжение, возникающее на нем. Величина этого напряжения прямо пропорциональна ESR CUT.ESR обычно очень низкое — максимум несколько десятков Ом, поэтому это напряжение будет ниже милливольтного диапазона. Вторая секция U2 сконфигурирована как дифференциальный усилитель со связью по переменному току с коэффициентом усиления 22, который повышает переменную составляющую напряжения на CUT до более удобного уровня для каскада измерительного усилителя.
Измерительный усилитель
Я хотел, чтобы ESR отображался на обычном панельном измерителе с подвижной катушкой 0–1 мА. (Это мой личный вкус.) Для такого инструмента я просто предпочитаю внешний вид традиционного панельного измерителя цифровым цифровым показаниям.Чтобы это произошло, переменное напряжение от детектора ESR должно быть соответствующим образом масштабировано и преобразовано в постоянный ток. Это работа U3 и диодного моста D2-D5.
Переменный ток от детектора ESR, который представляет уровень ESR, который мы пытаемся измерить, подается на операционный усилитель U3. Выходной сигнал U3 проходит через R24, через мостовую схему, состоящую из диодов Шоттки D2-D5, и через токоизмерительные резисторы R20 и R21 на землю. Напряжение, возникающее на этих резисторах, возвращается на инвертирующий вход U3, замыкая цепь обратной связи.
Внутри диодного моста переменный ток выпрямляется и проходит через измеритель на передней панели, который реагирует только на среднюю (т. Е. Постоянную) составляющую. Заключение моста в контур обратной связи операционного усилителя позволяет устранить большую часть нелинейностей, присущих при использовании моста для управления измерителем с подвижной катушкой.
Переключатель SW1 подключает резистор R20 параллельно с резистором R21, уменьшая номинальное значение комбинации резисторов, считывающих ток, тем самым увеличивая чувствительность измерителя. Когда SW1 закрыт, полная шкала чувствительности ESR-метра составляет 1 Ом.Когда он открыт, для вывода измерителя на полную шкалу требуется ESR в пять Ом.
Коэффициент усиления этого каскада устанавливается R17, R18 и R19. Последний представляет собой подстроечный потенциометр 10 кОм, используемый для настройки калибровки измерителя ESR после построения схемы.
Если на прибор ESR подается питание без подключенного CUT, R24 ограничивает средний ток через приборную панель до максимального значения около 2 мА, тем самым облегчая жизнь прибора.
Секция преобразования энергии
В этой конструкции я выбрал для операционных усилителей шины питания + 5В и -5В.Это, на мой взгляд, упрощает схему и упрощает отслеживание. Подход с однополярным питанием потребует дополнительных сложностей, связанных с обеспечением виртуального заземления через измеритель ESR. Обычный трехконтактный стабилизатор напряжения на входе U5 питает шину + 5В. Шина -5 В легко запитывается от U4 — стильного компонента от Texas Instruments (TI), который удобно выдает постоянное напряжение, равное по величине входному, но с обратной полярностью.
Строительство
Воспользовался услугами ExpressPCB ( www.expresspcb.com ) для компоновки и изготовления печатной платы (PCB) для этого проекта. Их стандартная недорогая доска MiniBoard очень хорошо помещается в алюминиевый корпус размером 3 x 4 x 5 дюймов, с достаточным пространством для измерителя 0–1 мА и двух крепежных стержней, которые могут быть установлены на передней панели. Печатная плата (показана на , рис. 3, ) расположена с J1 (разъем внешнего источника), SW1 (переключатель диапазона измерителя) и D7 (индикатор включения питания) вдоль одного края.
РИСУНОК 3. Печатная плата.
Печатная плата устанавливается на стойки 1/4 дюйма на одной стене корпуса с соответствующими отверстиями, просверленными в передней панели для доступа к этим трем компонентам. См. Рисунки 4 , 5 и 6 .
РИСУНОК 4. ESR-метр после калибровки. Измеритель отображает значение испытательного резистора сопротивлением 1 Ом.
РИСУНОК 5. Измеритель ESR в действии, считывающий ESR старого (код даты 1966) танталового конденсатора емкостью 100 мкФ как 0.3 Ом.
РИСУНОК 6. Внутренняя проводка, показывающая монтаж печатной платы и кабелей к передней и задней панелям.
Схему ExpressPCB и файлы печатной платы можно найти в загружаемых файлах.
Каждая из контрольных точек для заземления — +5 В, -5 В, TP1, TP2 и TP3 — состоит из короткого сплошного соединительного провода. Один конец впаян в отверстие на печатной плате, а свободный конец сформирован в виде петли для удобного захвата зажимными выводами или тестовыми щупами.
Рис. 6 — вид корпуса изнутри, показывающий внутреннюю проводку. Здесь вы можете видеть, что подключения к измерителю на передней панели и зажимным контактам выводятся из печатной платы с помощью четырехконтактного штекерного разъема J2, а питание от задней панели через двухконтактный штекерный разъем J3.
Необработанное питание постоянного тока (от 9 до 16 В постоянного тока) подается через коаксиальный разъем 2,1 мм и тумблер SPST на задней панели, как показано на Рисунок 7 .
РИСУНОК 7. Задняя панель измерителя СОЭ.
Текущие требования довольно скромные. Вся цепь работает при токе менее 40 мА. Хороший источник питания с настенными бородавками работает очень хорошо, как и щелочная батарея на 9 В.
Лист с этикетками на передней панели и новая лицевая сторона для измерителя панели были нарисованы с помощью Microsoft Visio, напечатаны на плотной бумаге и приклеены.
Настройка и калибровка
На печатной плате есть два подстроечных потенциометра.Один (R8) используется для регулировки выходного сигнала генератора с фазовым сдвигом примерно на 1,8 В от пика до пика, а другой (R19) устанавливает чувствительность измерителя. Полную информацию об этой процедуре можно найти в загрузках по ссылке на статью.
На рис. 4 показан результат этой настройки с резистором сопротивлением 1 Ом, подключенным к клеммам CUT. На рис. 5 танталовый конденсатор емкостью 100 мкФ измеряется на ESR.
Заключительные ноты
Большинство проектов наталкиваются на две проблемы на своем пути, и этот тоже.Если вы посмотрите внимательно, вы можете заметить небольшое несоответствие между фотографией печатной платы на , рис. 3 и файлом макета ExpressPCB, включенным в онлайн-файлы. Это результат моей первоначальной ошибки в дизайне, которая потребовала от меня вырезать пару дорожек на печатной плате и переместить компоненты R7 и C4. Я пересмотрел компоновку печатной платы после этого, и файл компоновки ExpressPCB в загружаемых файлах содержит эти исправления и соответствует схеме.
Этот измеритель, в принципе, подходит для проверки ESR конденсатора, не снимая его с оборудования, к которому он подключен.Импеданс окружающих схем обычно намного выше, чем измеряемое ESR, а напряжение, развиваемое на CUT, довольно мало: менее 100 милливольт — слишком мало для включения любых полупроводниковых переходов поблизости. Разумеется, питание оборудования должно быть отключено, а измеритель ESR, вероятно, должен работать от изолированного источника питания, такого как батарея 9 В. Я сам не пробовал этот тип измерения, но не вижу причин, по которым это не увенчалось бы успехом.
Здесь я хотел бы упомянуть некоторые ограничения этого прибора или почти любого измерителя СОЭ:
- Этот измеритель не подходит для тестирования конденсаторов менее 30 мкФ.Если CUT слишком низкий, реактивное сопротивление на измерительной частоте становится значительным, что приводит к завышению значения ESR. Решение этой проблемы — перепроектировать систему для использования более высокой частоты. Если возникнет необходимость, я могу попробовать это в качестве будущего проекта.
- Конденсатор с внутренним коротким замыканием будет иметь обманчиво низкое значение ESR, так что не обманывайтесь (как я). Если есть сомнения, проверьте с помощью омметра постоянного тока.
- Поскольку измеритель СОЭ по сути является омметром низкого диапазона, длинные измерительные провода от CUT могут вносить ошибки в показания СОЭ.
- ESR может зависеть от внешних факторов, таких как температура или приложенное напряжение, поэтому конденсатор может вести себя немного иначе в реальной цепи, чем когда он тестируется сам по себе.
- Хотя это устройство имеет некоторую встроенную защиту, применение полностью заряженного конденсатора высокой емкости к испытательным клеммам может привести к повреждению схемы. Перед тестированием всегда рекомендуется вручную разрядить конденсатор.
Последнее замечание: измерение ESR обычно не требует высокой степени точности, и измеритель, описанный в этой статье, должен подходить для повседневного поиска и устранения неисправностей.В моем случае это было очень полезно в выявлении сомнительных компонентов, возможно, избавив меня от некоторых разочарований, связанных с выдергиванием волос / скрежетом зубами в будущем проекте. NV
Список деталей
ТОВАР | ОПИСАНИЕ | MFR / НОМЕР ДЕТАЛИ |
---|---|---|
C1, C2, C3 | 1 нФ, 100 В, керамический | Vishay K102K10X7RH5UH5 |
C4, C5, C6, C9 | 0,1 мкФ, 50 В, керамический | Vishay K104K10X7RF5UH5 |
C7 | 22 мкФ, 16 В, тантал | Кемет T350F226K016AT7301 |
C8 | 10 мкФ, 35 В, тантал | Кемет T350G106K035AT7301 |
D1 | 1N4148 | |
D2, D3, D4, D5 | 1N5711 диод Шоттки | |
D6 | 1N4007 | |
D7 | Красный светодиод | |
J1 | 3. Коммутируемый разъем 5 мм | CUI MJ-3502N |
J2 | Четырехконтактная вилка | |
J3 | Двухконтактная вилка | |
R1, R15, R16 | 22K | |
R2 | 1 мегапиксель | |
R3, R4, R5 | 2.2K | |
R6 | 100 тыс. | |
R7 | 820К | |
R8, R19 | Триммер 10K | Борнс 3339P-1-103LF |
R9, R18 | 10K | |
R10 | 0 | [проволочная перемычка] |
R11 | 47 | |
R12 | 270 | |
R22 | 220 | |
R13, R14 | 1K | |
R17 | 1.5K | |
R20 | 180 | |
R21, R23 | 680 | |
R24 | 560 | |
R25 | 330 | |
SW1 | Тумблер SPDT | C&K 7101SD9ABE |
TP1, TP2, TP3 | Контрольная точка | [нет] |
U1, U2, U3 | Двойной операционный усилитель | Texas Inst.TL082CP |
U4 | Преобразователь напряжения | Texas Inst. TL7660CP |
U5 | Прил. регулятор напряжения | Texas Inst. TL317CLP |
(4) Восьмиконтактные разъемы DIP IC (опция) | ||
Панельный счетчик 0-1 мА | ||
(2) стержня для переплета | ||
Кулисный переключатель (выключатель питания), SPST | ||
Коаксиальный разъем постоянного тока 2. 1 мм | CUI PJ-011A | |
Печатная плата 2,5 x 3,8 дюйма | ExpressPCB | |
Корпус 3 x 4 x 5 дюймов | Hammond Mfg. 1411-LU | |
ПРИМЕЧАНИЕ. Все резисторы с осевым выводом, 1/8 Вт или выше. |
Как на самом деле выглядит конденсатор
В этом мире нет ничего идеального, включая электронные компоненты. У резисторов немного емкости и индуктивности; индукторы имеют небольшое сопротивление; и конденсаторы имеют все вышеперечисленное.К счастью, в большинстве случаев этими «паразитными» величинами можно пренебречь, и мы можем рассматривать компоненты, которые мы используем, как идеальные резисторы, катушки индуктивности и конденсаторы.
Обратите внимание, я сказал «большую часть времени». Конденсаторы — особенно электролитические с большим номиналом — могут страдать от иллюзорно низкого резистора, который, по-видимому, включен последовательно с идеальным конденсатором. Это называется эквивалентным последовательным сопротивлением (ESR) конденсатора. Это «иллюзорно», потому что СОЭ не является истинным сопротивлением; скорее, это результат комбинации многих факторов, каждый из которых в той или иной мере способствует потере мощности в конденсаторе. Рисунок A — это модель эквивалентной схемы типичного реального конденсатора, которая дает лучшее представление о том, о чем я говорю. Для конденсаторов высокой емкости и на низких частотах паразитной индуктивностью, показанной в модели, обычно можно пренебречь и объединить два сопротивления в одно.
РИСУНОК A. Модель эквивалентной схемы конденсатора (вверху) и то, как она упрощается до идеального конденсатора и одного сопротивления (внизу).
Поскольку вы читаете этот журнал, вы, вероятно, уже знаете, что каждый конденсатор — это просто пара проводников, разделенных диэлектриком. Проводники в электролитическом конденсаторе большой емкости обычно представляют собой полосы фольги. Диэлектрик представляет собой изолирующий оксидный слой, сформированный на одной из полос («анод» или положительный электрод), плюс жидкий или пастообразный электролит, который действует как второй электрод конденсатора («катод»). Этот материал может вызывать коррозию, поэтому, если у вас есть физически поврежденный конденсатор, из которого вытекает электролит, будьте осторожны, чтобы он не попал на кожу.
Потери в диэлектрике плюс утечка через конденсатор и сопротивление в сварных швах и механических обжимных контактах на клеммах — все это влияет на ESR.
Вот проблема: со временем — особенно при повышенных температурах — жидкий электролитный компонент диэлектрика высыхает (или протекает). Емкость может не сильно измениться, но будет увеличиваться удельное сопротивление; следовательно, повышается СОЭ. Что еще хуже, в зависимости от диэлектрического вещества ESR может меняться в зависимости от частоты. Это может быть проблемой, если конденсатор должен выдерживать значительный переменный ток, как, например, в импульсном источнике питания. Высокое ESR в сочетании с большим током означает дополнительную мощность, рассеиваемую конденсатором.Возникающее в результате повышение температуры может вызвать дальнейшее ухудшение характеристик и преждевременный выход из строя.
Алюминиевые электролитические конденсаторы особенно подвержены этой проблеме, особенно если они существуют уже давно. Твердотельные танталовые конденсаторы также имеют проблемы с ESR, но в меньшей степени. Маленькие керамические конденсаторы практически избавлены от этой чумы.
Загрузки
Файл и схема печатной платы Express
Передняя панель Art
Процедура настройки и калибровки
Секреты осциллографа фазового сдвига.pdf
Capacitor Testing — Пошаговый метод тестирования конденсатора различными способами
Чтобы проверить правильность работы конденсатора, необходимо выполнить тестирование конденсатора. В этой статье мы обсудим, что вы понимаете под тестированием конденсаторов, методы пошаговой проверки конденсатора различными способами и их преимущества.
Что такое конденсаторКонденсатор — это устройство, используемое для электростатического накопления энергии в электрическом поле.Это пассивный двухконтактный электрический компонент. Конденсатор состоит из двух близких проводников или пластин, разделенных диэлектрическим материалом. Пластины накапливают электрический заряд при подключении к источнику питания.
Рис.1 — Введение в тестирование конденсаторов
Подробнее о конденсаторах: Теория конденсаторов Как работает конденсатор Цикл зарядки и разрядки конденсатора Маркировка номера конденсатора - как декодировать на примере Как считывать значения цветовой маркировки конденсаторов - Расчетные и идентификационные коды Различные типы конденсаторов на рынке с описанием - Часть I Различные типы конденсаторов на рынке с описанием - Часть II Электролитический конденсатор - Свойства, применение, значение емкости и полярность Керамический конденсатор - Состав, типы, свойства и применение Что такое суперконденсатор (ультраконденсатор) - характеристики, работа, типы и применениеКак проверить конденсатор — пошаговые методы
Как и все электрические устройства, конденсатор также чувствителен к скачкам напряжения.Такие колебания напряжения могут повредить конденсаторы. Следовательно, необходимо регулярно проверять конденсаторы, следуя любому из методов, приведенных ниже. Конденсаторы различных типов показаны на рис. 2.
Рис.2 — Различные типы конденсаторов
- Тестирование конденсатора с помощью мультиметра с настройкой емкости
- Тестирование конденсатора с помощью мультиметра без настройки емкости
- Тестирование конденсатора путем измерения постоянной времени
- Проверка конденсатора простым вольтметром
- Тестирование конденсаторов с помощью аналогового мультиметра
- Тестирование конденсатора путем замыкания проводов
- Конденсатор необходимо отсоединить от печатной платы, а затем полностью разрядить.
- Следует отметить, если номинальные параметры конденсатора видны на его корпусе.
- Ручка цифрового мультиметра должна быть установлена на настройку емкости.
- Затем щупы мультиметра должны быть подключены к клеммам конденсатора.
- После этого необходимо проверить показания цифрового мультиметра. Если показания мультиметра ближе к фактическим значениям (указанным на конденсаторе), в этот момент конденсатор можно считать исправным.Напротив, если разница между фактическим значением и измеренным показанием значительно велика (или иногда равна нулю), то конденсатор следует заменить, так как он мертв.
Рис.3 — Изображение цифрового мультиметра
Конденсатор Тестирование с использованием мультиметра без настройки емкости- Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
- Затем ручку мультиметра необходимо установить в положение «Ом» или «Настройки сопротивления». В случае нескольких диапазонов измерения сопротивления следует выбрать более высокий диапазон (обычно от 20 кОм до 200 кОм).
- Затем щупы мультиметра должны быть подключены к клеммам конденсатора. В случае электролитического конденсатора красный зонд должен быть подключен к положительной клемме конденсатора, а черный зонд должен быть подключен к отрицательной клемме конденсатора. В случае неэлектролитического конденсатора его можно подключить любым способом.
- После этого цифровой мультиметр отобразит на дисплее значение сопротивления. Затем он отобразит сопротивление разомкнутой цепи (т. Е. Бесконечность). Следует записать показания за этот короткий период.
- Затем необходимо отключить конденсатор от мультиметра и повторить испытание несколько раз.
- Для исправного конденсатора каждая попытка теста должна показывать аналогичный результат на дисплее. Если при дальнейших испытаниях сопротивление не изменится, то конденсатор следует заменить, так как он мертвый.
- Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
- Затем необходимо подключить известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
- После этого цепь необходимо замкнуть, подключив блок питания известного напряжения. Эта схема представляет собой не что иное, как RC-схему, показанную на рис.4.
- Затем необходимо включить источник питания и измерить время, за которое конденсатор зарядится до 63,2% напряжения питания.
- Затем, исходя из этого времени и сопротивления, необходимо измерить емкость и сравнить ее со значением, напечатанным на конденсаторе. Если они похожи или почти равны, то конденсатор можно считать исправным. Напротив, если разница существенно большая; то следует заменить конденсатор, так как он мертв.
Рис. 4 — RC-цепь, используемая при испытании конденсатора
Конденсатор Тестирование с вольтметром- Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
- Затем необходимо соблюдать номинальное напряжение на конденсаторе (обычно оно указывается как 16 В, 25 В, 50 В и т. Д.). После этого выводы конденсатора должны быть подключены к источнику питания или батарее, но напряжение должно быть меньше максимального рейтинга.
- Затем конденсатор необходимо зарядить на короткое время (обычно 4-5 секунд), а затем его следует отключить от источника питания.
- Затем цифровой мультиметр должен быть настроен на настройки вольтметра постоянного тока и должно быть измерено напряжение на конденсаторе. Должны быть подключены соответствующие клеммы вольтметра и конденсатора.
- Для исправного конденсатора начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению. Напротив, если разница большая, то конденсатор считается неисправным.
Рис.5 — Конденсатор, подключенный к батарее
Конденсатор Тестирование с использованием аналогового мультиметра- Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
- Затем аналоговый мультиметр следует установить в положение омметра, и если имеется несколько диапазонов, необходимо выбрать более высокий диапазон.
- После этого выводы конденсатора должны быть подключены к щупам мультиметра и должны быть сняты показания мультиметра.
- Вначале сопротивление будет низким, а затем постепенно будет увеличиваться для хорошего конденсатора. Для закороченного конденсатора сопротивление всегда будет низким. Для открытого конденсатора либо не будет движения стрелки, либо сопротивление всегда будет показывать более высокое значение.
Рис.6 — Аналоговый мультиметр
Конденсатор Тестирование путем замыкания проводов- Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
- Затем выводы конденсатора необходимо подключить к клемме питания.
- После этого источник питания следует включить на очень короткий промежуток времени (обычно от 1 секунды до 5 секунд), а затем выключить. Конденсатор ведет; затем необходимо отключить от источника питания.
- Клеммы конденсатора должны быть закорочены с помощью металлического контакта. Этот шаг необходимо сделать, приняв надлежащие изоляционные меры.
- Состояние конденсатора можно определить по искре от конденсатора.Для конденсатора в хорошем состоянии искра большая и сильная. Для плохого конденсатора искра маленькая и слабая.
Рис.7 — Клеммы конденсатора закорочены
Преимущества тестирования конденсаторовК преимуществам можно отнести:
- Тестирование предотвращает системные потери.
- Это может предотвратить колебания тока.
- Помогает улучшить коэффициент мощности.
Также читают: Что такое стабилизатор напряжения - зачем он нам, как он работает, типы и применение Как выбрать батарею - метод и краткосрочные / долгосрочные требования к питанию Микроконтроллер - классификация, архитектура, применение, преимущества
Чакрастхита — B.E (медицинская электроника) и имеет опыт работы в MatLab и Lab View Software в качестве инженера-проектировщика в BCS Innovations и в больнице Manipal в качестве инженера-биомедицина. Она является автором, редактором и партнером Electricalfundablog.
Конденсаторы для тестовых прогонов— умный (и простой) способ
При проверке рабочего конденсатора многие специалисты отсоединяют провода и используют настройку емкости на своем измерителе для проверки конденсатора. В системе, которая не работает, в этом тесте нет ничего плохого, но когда вы ПОСТОЯННО проверяете конденсаторы в рамках регулярного тестирования и обслуживания, этот дополнительный этап отсоединения разъемов может занять много времени, а в этих случаях также совершенно ненужный.Тестирование конденсаторов ПОД НАГРУЗКОЙ (во время работы) — отличный способ убедиться, что конденсатор выполняет свою работу в условиях реальной нагрузки, что также является более точным, чем снятие показаний при выключенном устройстве.
Во-первых, если вы привыкли проверять конденсаторы на этапе «очистки» PM, вам придется изменить свои методы и проводить тесты на этапе «тестирования». Эти показания будут сняты одновременно с измерением других значений силы тока и напряжения во время рабочего теста.
Этот метод является практическим и представляет собой сочетание двух различных методов тестирования —
- Считайте показания вольт (ЭДС) и усилителя (тока) как обычно и запишите свои показания.
- Измерьте силу тока только на пусковом проводе (проводка, соединяющая пусковую обмотку), это будет провод между вашим конденсатором и компрессором. В случае 4-проводных двигателей это обычно коричневый провод, а НЕ коричневый с белой полосой. Обратите внимание на силу тока на этом проводе..
- Измерьте напряжение между двумя выводами конденсатора для компрессора, который будет между HERM и C, для двигателя вентилятора конденсации, который будет между FAN и C. Запишите показания напряжения
- Теперь возьмите значение амперметра, которое вы сняли на стартовом проводе (провод от конденсатора), и умножьте на 2652 (некоторые говорят, что 2650, но 2652 немного точнее), а затем разделите полученное значение на измеренное вами вольт конденсатора. простая формула: ампер пусковой обмотки X 2652 ÷ напряжение конденсатора = микрофарады
- Прочтите паспортную табличку MFD на конденсаторах и сравните с вашими фактическими показаниями.Большинство конденсаторов допускают допуск 6% +/-, если за пределами этого диапазона, то может быть рекомендована замена конденсатора. Всегда дважды проверяйте свои математические расчеты, прежде чем цитировать клиента. Мы должны быть уверены в точности рекомендаций по ремонту.
- Повторите этот процесс для всех рабочих конденсаторов, и вы будете уверены, полностью ли они работают под нагрузкой или нет.
- Имейте в виду, что установленный конденсатор может быть НЕ ПРАВИЛЬНЫМ конденсатором. Двигатель или компрессор могли быть заменены, или кто-то поставил неправильный размер.В случае сомнений обратитесь к паспортной табличке или техническим характеристикам конкретного двигателя или компрессора.
Если вам нужна наглядность, вот несколько хороших видео по этой теме. Обратите внимание, что некоторые будут использовать 2650, некоторые 2652 и некоторые 2653. Все зависит от того, сколько знаков после запятой они используют в своих вычислениях, но все они приведут к достаточно точному выводу для нашего использования.
Вначале это может занять несколько минут дольше, но в конечном итоге вы будете действовать быстрее, будете иметь меньше ошибок (вы забудете вернуть клеммы на место), лучше поймете, как работает оборудование, и получите более точные результаты.