Схема работы ветрогенератора. Принцип работы ветрогенератора: устройство и схема ветряной электростанции

Как устроен и работает ветрогенератор. Из каких основных частей состоит ветряная турбина. По какому принципу ветряк преобразует энергию ветра в электричество. Какие бывают схемы работы ветрогенераторов.

Содержание

Устройство и основные компоненты ветрогенератора

Ветрогенератор состоит из следующих основных частей:

  • Лопасти — обычно 3 штуки, улавливают энергию ветра
  • Ротор — вал, на который крепятся лопасти
  • Генератор — преобразует механическую энергию вращения в электричество
  • Редуктор — повышает скорость вращения вала генератора
  • Башня — несущая конструкция, на которой установлена гондола с механизмами
  • Система ориентации на ветер — поворачивает ротор навстречу ветру
  • Контроллер — управляет работой всех систем

Ключевую роль в работе ветрогенератора играют лопасти, улавливающие энергию ветра, и генератор, преобразующий ее в электричество. От их конструкции и характеристик зависит эффективность всей установки.

Принцип работы ветрогенератора

Принцип работы ветрогенератора основан на преобразовании кинетической энергии ветра в электрическую энергию. Как это происходит?


  1. Ветер обтекает лопасти ротора, создавая подъемную силу
  2. Под действием этой силы ротор начинает вращаться
  3. Вращение ротора через вал передается на генератор
  4. В генераторе вращение преобразуется в электрический ток
  5. Полученный ток подается в сеть или аккумулируется

Таким образом, механическая энергия вращения преобразуется в электрическую энергию. Чем выше скорость ветра, тем быстрее вращается ротор и тем больше вырабатывается электричества.

Аэродинамика лопастей ветрогенератора

Лопасти ветрогенератора имеют особую аэродинамическую форму, напоминающую крыло самолета. Как они работают?

  • Набегающий поток воздуха обтекает лопасть
  • Из-за разницы в длине пути возникает разность давлений
  • Образуется подъемная сила, перпендикулярная потоку
  • Эта сила создает крутящий момент, вращающий ротор

Чем длиннее лопасти, тем больший объем воздуха они захватывают и тем выше мощность турбины. Современные ветрогенераторы имеют лопасти длиной более 50 метров.

Виды и особенности ветрогенераторов

Существуют различные типы ветрогенераторов, отличающиеся конструкцией и принципом работы:


  • С горизонтальной осью вращения — классический тип
  • С вертикальной осью — роторные, ортогональные
  • Безредукторные — с прямым приводом генератора
  • Многолопастные — с большим количеством лопастей

Наиболее распространены горизонтально-осевые ветрогенераторы с 3 лопастями. Они обладают оптимальным соотношением эффективности и стоимости.

Мощность и производительность ветрогенераторов

От каких факторов зависит мощность, вырабатываемая ветрогенератором?

  • Скорость ветра — с увеличением скорости растет кубически
  • Площадь ометаемой поверхности — пропорционально квадрату радиуса
  • КПД ветроколеса и генератора
  • Плотность воздуха

Современные ветрогенераторы большой мощности (2-5 МВт) способны выработать за год более 6 млн кВт*ч электроэнергии при среднегодовой скорости ветра 7-8 м/с.

Системы управления и безопасности ветрогенератора

Для обеспечения эффективной и безопасной работы ветрогенератора используются различные системы управления:

  • Система ориентации на ветер — поворачивает ротор
  • Система изменения угла атаки лопастей
  • Тормозная система — останавливает ротор при сильном ветре
  • Система мониторинга параметров работы
  • Молниезащита

Все эти системы управляются автоматически с помощью контроллера, который обеспечивает оптимальный режим работы ветрогенератора в зависимости от силы и направления ветра.


Схемы работы ветрогенераторов

Существуют различные схемы работы ветрогенераторов в зависимости от способа использования вырабатываемой энергии:

  • Автономная работа — энергия запасается в аккумуляторах
  • Параллельная работа с сетью — излишки отдаются в сеть
  • Работа в составе ветропарка
  • Гибридные системы с солнечными панелями

Выбор оптимальной схемы зависит от конкретных условий и целей использования ветрогенератора. Наиболее эффективны крупные ветропарки, работающие параллельно с сетью.

Преимущества и недостатки ветрогенераторов

Каковы основные плюсы и минусы использования ветрогенераторов?

Преимущества:

  • Экологически чистый возобновляемый источник энергии
  • Не требует топлива
  • Низкие эксплуатационные расходы
  • Возможность автономного энергоснабжения

Недостатки:

  • Зависимость от силы и постоянства ветра
  • Шумовое загрязнение
  • Высокая стоимость оборудования
  • Необходимость больших площадей для ветропарков

Несмотря на недостатки, ветроэнергетика активно развивается во многих странах как перспективный источник «зеленой» энергии.


Применение ветрогенераторов

Где и как используются ветрогенераторы сегодня?

  • Крупные ветропарки для выработки электроэнергии
  • Автономное энергоснабжение удаленных объектов
  • Резервные источники питания
  • Опреснение морской воды
  • Подзарядка электромобилей

Наиболее активно ветроэнергетика развивается в Китае, США, Германии и других странах Европы. Доля ветроэнергетики в общем энергобалансе некоторых стран достигает 20% и продолжает расти.


Схема работы и подключения ветрогенераторов

Дата Автор ElectricianКомментироватьПросмотров: 22 171

Для питания электроприемников от ветроустановки необходимо осуществить подключение ее к нагрузке. Бывают не сетевые (без подключения к общественной сети) и сетевые (с подключением к общественной сети) схемы подключения инверторов напряжения. Рассмотрим их.

Не сетевая схема подключения

Данная схема подключения позволит частично или полностью использовать автономное электропитание. При такой схеме подключения совершенно неважно наличие общественной электросети.

В данной системе питание потребителей осуществляется с помощью инвертора напряжения или тока напрямую от ветряной электростанции или аккумуляторных батарей.

Сетевая схема подключения

Подключение таких систем целесообразно выполнять при большой мощности ветроустановки или довольно малой мощности потребителей. Такое подключение позволяет не только питать приемники электроэнергии от общественной сети, но и при излишней выработке энергии ветряной электростанции (солнечной электростанции или их комбинаций)  продавать электроэнергию по так называемому «зеленому тарифу».

 Аккумуляторные батареи

Как их часто еще обозначают  АБ или АКБ – накапливают выработанную ветрогенератором электроэнергию. Их главной задачей есть хранение энергии в промежутке между ее выработкой и потреблением. Если емкость аккумуляторной батареи будет мала, то она быстро зарядится и последующая выработка энергии будет бессмысленна, так как хранить ее будет негде. При питании от такой батареи потребителей возникнет обратная ситуация – она слишком быстро разрядится, соответственно не позволит питать от нее нагрузку длительное время. Поэтому следует выбирать аккумуляторные батареи большой емкости, для устранения перечисленных выше недостатков. Если купить аккумуляторы огромной емкости, то они никогда не будут заряжаться на полную емкость. Также емкость аккумуляторов влияет на их стоимость и габариты. При длительном хранении электрической энергии аккумуляторные батареи саморазряжаются, что также нужно учитывать. Поэтому для правильного выбора данных устройств необходимо проанализировать все варианты, чтоб подобрать наиболее оптимальный вариант именно для вашей системы, в зависимости от требований, которые вы задаете для вашей системы.

Емкость аккумуляторной батареи

Емкость должна быть такой, чтоб при работе солнечной или ветряной электростанции при максимальной мощности заряда (или потребления) электроэнергии заряд – разряд аккумуляторной батареи  должен составлять не менее 10 часов (что является обязательным условием для AGM, кислотных, щелевых, гелевых и свинцовых батарей).  Как пример, если мощность ветряка будет 5 кВт, то емкость аккумулятора должна составить не менее 50 кВт-часов.

Инвертор напряжения

Это устройство необходимо чтоб преобразовать постоянный ток аккумулятора в переменный промышленной частоты (для бытовых потребителей 220 В 50 Гц). Именно к инвертору подключаются потребители электрической энергии.

Немаловажным фактором является и правильный выбор инвертора напряжения или тока по мощности. Если мощность инвертора 5 кВт, то вы не можете подключить к нему нагрузку в 7 кВт. То есть максимальная суммарная нагрузка  на инвертор не должна превышать 5 кВт. Если, к примеру, вам необходимо подключить бойлер мощностью 4 кВт и чайник 2 кВт то у вас есть два выхода – либо увеличить мощность инвертора (до 6-7 кВт) или же подключать  нагрузку поочередно – сначала бойлер, а потом чайник, или наоборот. Если в инверторов слишком большой разброс в мощностях (например, 7 кВт и следующий 14 кВт) можно использовать параллельную работу частотных преобразователей.

Не следует также забывать, что в инверторов есть еще и напряжение собственных нужд, которые в нашем случае составляют примерно 5-10% электроэнергии. Если же мощность на выходе инвертора составляет 5 кВт, то необходимая мощность аккумуляторной батареи возрастет до 5,2 – 5,5 кВт. Поэтому необходим инвертор или группа инверторов тока или напряжения, которые смогут обеспечить нормальное подключение всех потребителей.

Основные характеристики ветроустановки

Данную систему можно охарактеризовать следующим образом:

  • Силой ветра;
  • Мощностью ветрогенератора;
  • Мощностью аккумуляторных батарей;
  • Мощностью инвертора;

Каждый из компонентов системы работает независимо от других компонентов, но оказывает важное влияние на работоспособность системы в целом. Для правильного расчета и, как следствие, успешной работы системы необходимо четко сформулировать задачи, которые необходимо решить при проектировании, а также собрать правильные исходные данные для расчета.

Posted in Альтернативная энергетика

Устройство и принцип работы ветрогенератора

Главная » Автономное электроснабжение дома

Опубликовано:

Содержание

  1. Как устроен ветрогенератор
  2. Принцип действия ветрогенератора
  3. Схемы работы ветрогенераторов

Как устроен ветрогенератор

Любой ветрогенератор состоит из таких компонентов как;

— генератор, который вырабатывает переменный ток, и в дальнейшем преобразуется в постоянное напряжение, предназначенное для зарядки аккумуляторов. От скорости ветра зависит и мощность генератора;- лопасти, предназначены для передачи вращения к валу генератора через редукторы и стабилизаторы скорости вращения ротора генератора;
— мачта ветряка должна иметь достаточную высоту. Чем выше находятся лопасти, тем больше они получат энергии ветра.

Также в устройство ветрогенератора входят;

— контроллер, необходимый для преобразования переменного напряжения идущего с генератора, в постоянное напряжение и последующей зарядкой аккумуляторов. Контроллер управляет поворотом лопастей, и контролируют направление ветра;
— аккумуляторы накапливают электроэнергию, чтобы использовать ее при небольшом ветре или его отсутствии. Батарея также хорошо стабилизирует электроэнергию, полученную от генератора;
— датчик направления ветра помогает лопастям «поймать» ветер;
— АВР представляет собой устройство автоматического переключения между ветрогенератором и другими источниками электроэнергии, например электросетью, генератором, солнечными панелями;
— инвертор предназначен для преобразования постоянного тока, поступающего с аккумуляторов, в переменное напряжение для домашней электросети. Инверторы могут разделяться по типу синусоиды для разных потребителей электроэнергии.

Устройство ветрогенератора
  1. Инвертор модифицированной синусоиды на выходе выдает квадратную синусоиду, предназначенную для не требовательных потребителей к качеству сети – это тэны, накальные лампы освещения.
  2. Инверторы с чистой синусоидой по качеству выходного напряжения подходят даже для самых требовательных потребителей электроэнергии.
  3. Инверторы трехфазного напряжения предназначены для трехфазных сетей.
  4. Сетевой инвертор работает без аккумулятора и способен к выводу электроэнергии в общую сеть.

Принцип действия ветрогенератора

Принцип работы ветрогенератора построен на преобразовании кинетической энергии силы ветра в энергию вращения вала генератора. Для вертикальных ветрогенераторов, вертикальная ось соединена с вертикальным ротором. Генератор и ротор расположены внизу конструкции. Лопасти закреплены в вертикальной оси.

Вращаясь, лопасти заставляют вращаться ротор генератора, который начинает вырабатывать переменный и нестабильный ток. Это ток идет на контроллер, который преобразует его в постоянное напряжение и заряжает аккумуляторы. С аккумулятора питание идет на инвертор, назначение которого превращение постоянного тока в переменное напряжением 220 В или 380 В, которое поступает к потребителям электроэнергии.

Схемы работы ветрогенераторов

Вариантов работы ветрогенератора может быть несколько:

  1. Автономная работа ветрогенератора.
Автономная работа ветрогенератора
  1. Такая совместная работа считается очень надежным и эффективным способом автономного электроснабжения. При отсутствии ветра, работают солнечные батареи. Ночью, когда не работают солнечные батареи, аккумулятор заряжается от ветровой установки.
Параллельная работа ветрогенератора с солнечными панелями
  1. Ветрогенератор также может работать параллельно с электросетью. При избытке электроэнергии, она поступает в общую сеть, а при недостатке ее потребители электроэнергии работают от общей электросети.
Параллельная работа ветрогенератора с электросетью

Ветряные генераторы могут прекрасно работать с любыми видом автономного электроснабжения и общей электросетью. Создавая при этом единую систему энергоснабжения.

 

 

Помогла вам статья?

Рейтинг

( 1 оценка, среднее 5 из 5 )

Понравилась статья? Поделиться с друзьями:

Как работает ветряная турбина — текстовая версия

Сила ветра

Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии. На этой странице представлена ​​текстовая версия интерактивной анимации: Как работает ветряная турбина.

Как работает ветряная турбина

Ветряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют физически уменьшить генератор. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Как работает ветряная электростанция

Ветряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте.

На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. В ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.

Передача инфекции

Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.

Трансформеры

Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (таким образом, уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач.

Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.

Подстанция

Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению. Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.

Башня ветряной турбины

Изготовленная из трубчатой ​​стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.

Направление ветра

Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные — в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.

Флюгер

Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

 

 

 

Анемометр

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Лезвия

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.

Наземная турбина с редуктором

Трансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Гондола

Гондола находится на вершине башни и содержит редуктор, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.

Система рыскания

Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.

Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.

Система подачи

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Центр

Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.

Коробка передач

Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Ротор

Лопасти и ступица вместе образуют ротор турбины.

Тихоходный вал

Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.

Подшипник главного вала

Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Высокоскоростной вал

Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.

Генератор

Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.

Контроллер

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз

Турбинные тормоза не похожи на автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Морская ветряная турбина с прямым приводом

Турбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.

Морской флюгер и анемометр с прямым приводом

Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Система рыскания с прямым приводом

Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.

Лопасти генератора с прямым приводом

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую ​​же длину, как футбольное поле!

Система шага с прямым приводом

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Концентратор прямого привода

Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.

Ротор с прямым приводом

Лопасти и ступица вместе образуют ротор турбины.

Генератор с прямым приводом

Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.

Контроллер прямого привода

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз с прямым приводом

Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Подшипник ротора прямого привода

Подшипник ротора поддерживает основной вал и снижает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Узнайте больше об энергии ветра

Как работают ветряные турбины?

Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.

Учить больше

Основы ветроэнергетики

Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.

Учить больше

History of U.S. Wind Energy

На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…

Учить больше

Сколько мощности составляет 1 гигаватт?

Дата, которую большинство любителей кино знает наизусть, 21 октября 2015 года — это день, когда Марти МакФлай и Док Браун путешествуют в «Назад в будущее, часть 2».

Учить больше

Как работает ветряная турбина — схема и руководство

Изучить принцип работы ветряной турбины  легко, если вы сначала убедитесь, как работает турбогенератор.

Схема ветряной турбины вверху представляет собой вид сбоку ветряной турбины с горизонтальной осью и лопастями турбины слева. Большинство современных ветряных турбин построены с горизонтальной осью, подобной той, что показана на рисунке.

На рисунке также показана обычная ветряная турбина, а это означает, что для эффективной работы турбины нос и лопасти турбины должны быть обращены к ветру.

Чтобы узнать больше о том, как работают ветряные турбины, можно начать с рассмотрения приведенной выше схемы и изучения каждого компонента ветряной турбины.

Пошаговый просмотр каждой части ветряной турбины на приведенной выше схеме:

(1)  Обратите внимание на рисунок, что направление ветра дует вправо и в носовую часть ветряной турбины сталкивается с ветром.

(2)   Носовая часть ветряной турбины имеет аэродинамическую конструкцию и обращена к ветру.

(3)  Лопасти ветряной турбины крепятся к носу и ротору и начинают вращаться при достаточной скорости ветра.

(4) Главный вал турбины соединяет вращающиеся лопасти с внутренними механизмами машины. Вал турбины вращается вместе с лопастями и является механизмом, передающим вращательную/механическую энергию лопастей электрическому генератору.

(5)  A тормоз устанавливается для предотвращения механических повреждений от сильного ветра и высоких скоростей вращения. Он также может останавливать турбину, когда в ней нет необходимости.

(6) Редуктор используется для увеличения скорости вращения вала турбины. Коробка передач работает как шестерня на велосипеде, когда шестерни меняются, скорость вращения тоже меняется. Затем он передает энергию вращения на вал высокоскоростной турбины и на генератор.

(7)   9Вал высокоскоростной турбины 0274 соединяет коробку передач и генератор. Высокие скорости вращения — это то, что вращает турбогенератор.

(8) Турбогенератор является наиболее важной частью работы ветряной турбины. Турбогенератор преобразует механическую энергию ветра в электрическую энергию, используя вращающую силу, передаваемую от шестерен и вала турбины.

(9)   Анемометр  – устройство, измеряющее скорость ветра. Обычно они устанавливаются, чтобы дать контроллеру команду остановить или запустить турбину при определенных условиях скорости ветра.

(10) Контроллер устанавливается на случай, если скорость ветра достигает нежелательной скорости, анемометр может дать указание контроллеру использовать тормоз и остановить вращающиеся лопасти. Контроллер также используется для запуска вращения лопастей и ротора при низких скоростях ветра.

(11)   флюгер — прибор для измерения направления ветра. Флюгер важен для направленных вверх ветряных турбин, которые должны быть обращены к ветру, чтобы работать должным образом.

(12)   Привод рыскания в механизме, который получает данные от флюгера и дает команду ветряной турбине повернуться лицом к ветру.

(13)  Двигатель рыскания — это устройство, которое физически поворачивает турбину так, чтобы она была направлена ​​против ветра или в соответствии с указаниями привода рыскания.

(14)   Башня турбины содержит электропроводку, поэтому генератор может подавать электроэнергию в трансформатор или аккумулятор, который в конечном итоге распределяет полезную электроэнергию. Башня также является важной структурной опорной системой, которая удерживает турбину высоко в воздухе, где скорость ветра более желательна.

(15) Ветряная турбина хорошо работает на открытом воздухе и при сильных ветрах благодаря тому, что все компоненты установлены наверху башни турбины и надежно размещены внутри турбины гондола . Башня и гондола ветряной турбины обычно изготавливаются из цилиндрической стали и могут поддерживаться растяжками и растяжками или стоять отдельно, используя решетчатое стоячее основание.

Опять же, на этой диаграмме показан пример ветряной турбины с горизонтальной осью, направленной против ветра, которая может быть сделана из стали и иметь высоту в несколько этажей. То, как работает ветряная турбина, требует не только тщательного проектирования, но и вдумчивого анализа и стратегии, чтобы найти желаемые места с достаточной скоростью ветра.

Сколько энергии производят ветряные турбины?

В 1919 году немецкий физик Альберт Бетц обнаружил, что ни один ветряной двигатель не может физически улавливать более 59,3% кинетической энергии ветра. Простой способ объяснить это состоит в том, что если бы ветряная турбина когда-либо захватывала 100% ветра, через другую сторону лопастей ветряной турбины не проходил бы ветер. Если нет ветра, проходящего с другой стороны, то, согласно физическому закону движения ветра, больше не будет места для прохождения ветра через переднюю часть ветряной турбины, что сделает ветряную турбину бесполезной.

Итак, для расчета выработки ветровой энергии или количества ветровой электроэнергии, которое, как ожидается, будет произведено ветровой турбиной, вам потребуется краткий список зависимых переменных:

                     ( Cp ) – коэффициент полезного действия турбины, максимум 0,593

                              ( ρ )  –  Плотность воздуха, измеренная в фунтах на кубический фут

                       0262 ( V ) — скорость ветра, мили/час

( K ) — k — это постоянная, которая равна 0,000133, это покрывает ответ на киловаттс

( p ) — Выходная сила, независимая мы. хотите рассчитать, в киловаттах

С приведенными выше переменными уравнение для расчета ветровой электрической мощности ветровой турбины:

P = k * Cp * (1/2) * ρ * A * (V^3 )

Обратите внимание на взаимосвязь каждой переменной в уравнении и на то, как она связана с работой ветряной турбины. Площадь лопасти ротора (A) имеет прямую положительную зависимость от выходной мощности, а скорость ветра (v) имеет положительную кубическую зависимость от выходной мощности.

Количество электроэнергии, которое может генерировать ветряная турбина, в основном зависит от размера турбины, площади, охватываемой лопастями турбины, плотности воздуха и скорости ветра. Общая конструкция ветряной турбины также имеет решающее значение для того, насколько эффективно лопасти могут захватывать ветер.

Меньшие ветряные турбины, используемые для лодок, караванов или небольших машин, обычно производят от 250 Вт до 100 киловатт ветровой электроэнергии. Некоторые из самых больших ветряных турбин в мире производят около 7 мегаватт электроэнергии.

Важно помнить, что скорость ветра непостоянна, поэтому теоретическая мощность электроэнергии, которую может производить ветряная турбина, представляет собой максимальный потенциал выработки энергии, который редко достигается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *