Как работает тиристорный регулятор напряжения. Какие бывают схемы тиристорных регуляторов. Где применяются регуляторы напряжения на тиристорах. Как собрать простой регулятор своими руками.
Принцип работы тиристорного регулятора напряжения
Тиристорный регулятор напряжения работает по принципу фазового управления. Его основным элементом является тиристор или симистор, который выполняет роль электронного ключа.
Принцип действия заключается в следующем:
- На управляющий электрод тиристора подаются импульсы в определенной фазе сетевого напряжения
- Чем позже в полупериоде подается импульс, тем на меньшее время открывается тиристор
- Изменяя фазу управляющих импульсов, можно плавно регулировать среднее значение напряжения на нагрузке
Таким образом достигается возможность плавной регулировки мощности в нагрузке от нуля до максимума.
Основные схемы тиристорных регуляторов напряжения
Существует несколько базовых схем тиристорных регуляторов напряжения:
Простейшая однополупериодная схема
Включает один тиристор, который пропускает только одну полуволну сетевого напряжения. Позволяет регулировать мощность от 50% до 100%.
Двухполупериодная схема на симисторе
Использует симметричный тиристор (симистор), который работает в обоих полупериодах. Обеспечивает регулировку от 0 до 100%.
Мостовая схема на четырех тиристорах
Позволяет регулировать как положительную, так и отрицательную полуволну напряжения. Дает возможность плавной регулировки во всем диапазоне.
Применение тиристорных регуляторов напряжения
Тиристорные регуляторы напряжения широко применяются в различных областях:
- Регулировка яркости ламп освещения (диммеры)
- Управление скоростью вращения электродвигателей
- Регулировка температуры нагревательных элементов
- Стабилизация выходного напряжения источников питания
- Системы плавного пуска мощных электроприводов
- Преобразователи частоты для асинхронных двигателей
Популярность этих устройств обусловлена их простотой, надежностью и возможностью управлять большой мощностью.
Как собрать простой тиристорный регулятор напряжения своими руками
Для сборки простейшего регулятора понадобятся следующие компоненты:
- Тиристор или симистор на требуемый ток
- Диоды для выпрямительного моста
- Переменный резистор 220-470 кОм
- Конденсатор 0.1 мкФ
- Резисторы ограничительные
- Диод стабилитрон
Порядок сборки:
- Собрать схему согласно выбранной топологии
- Установить компоненты на монтажную плату
- Подключить потенциометр и выходные клеммы
- Поместить схему в корпус
- Подключить к сети и нагрузке через предохранитель
При работе соблюдать меры электробезопасности, так как схема имеет прямой контакт с сетевым напряжением.
Преимущества и недостатки тиристорных регуляторов
Основные достоинства тиристорных регуляторов напряжения:
- Простота конструкции
- Высокий КПД (до 95-98%)
- Возможность управления большой мощностью
- Плавная регулировка во всем диапазоне
- Надежность и долговечность
К недостаткам можно отнести:
- Создание помех в электросети
- Искажение формы напряжения и тока
- Низкий коэффициент мощности
- Чувствительность к перегрузкам
Несмотря на недостатки, тиристорные регуляторы остаются одними из самых распространенных устройств для управления мощностью в электротехнике.
Области применения тиристорных регуляторов напряжения
Тиристорные регуляторы напряжения нашли широкое применение в различных сферах:
Промышленность
- Управление электроприводами станков и механизмов
- Регулирование температуры в печах и нагревателях
- Системы плавного пуска мощных электродвигателей
- Регулирование освещения в производственных помещениях
Бытовая техника
- Диммеры для регулировки яркости освещения
- Регуляторы оборотов электроинструмента
- Управление мощностью бытовых электронагревателей
- Регуляторы температуры утюгов, обогревателей
Транспорт
- Системы управления тяговыми электродвигателями
- Регуляторы яркости панелей приборов
- Управление вентиляторами охлаждения
Перспективы развития тиристорных регуляторов напряжения
Основные направления совершенствования тиристорных регуляторов:
- Применение более совершенных полупроводниковых приборов (IGBT-транзисторы, силовые модули)
- Внедрение микропроцессорных систем управления
- Улучшение энергетических показателей (КПД, коэффициент мощности)
- Снижение уровня создаваемых электромагнитных помех
- Разработка «интеллектуальных» адаптивных регуляторов
Эти усовершенствования позволят расширить сферы применения тиристорных регуляторов и повысить их эффективность.
Простейший регулятор напряжения на тиристоре ку202н
В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию — регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно. Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Please turn JavaScript on and reload the page.
- Изготовление регулятора мощности на симисторе своими руками
- Трехфазный и однофазный тиристорный регулятор мощности — принцип работы, схемы
- Схемы тиристорных регуляторов
- На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками
- Тиристорный регулятор напряжения простая схема, принцип работы
- Простой регулятор напряжения на тиристоре
- ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ
Тиристорный регулятор напряжения своими руками. Напряжение регулятор - Тиристорный регулятор мощности
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Простой регулятор напряжения на тиристоре
Please turn JavaScript on and reload the page.
В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные. Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке подробнее об этом методе будет рассказано ниже.
Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку.
На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода. На графике показано время, когда тиристор закрыт t1 фаза управляющего сигнала , как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной близкой к минимальной.Рассмотрим случай, представленный на следующем графике. Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике. Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии t3 — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.
Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах. Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала.
Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети. В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль.
Наглядно работу такого регулятора мощности можно посмотреть на следующем графике. Недостаток такой реализации — невозможность плавного регулирования, но для нагрузки с большой инерционностью например, различных нагревательных элементов этот критерий не основной. Видео: Испытания тиристорного регулятора мощности. Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции.
Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства являющиеся по сути регуляторами мощности не составит труда сделать своими руками.
Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника. Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Ниже показан график работы устройства. Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике.
Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы. Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:. Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.
В качестве альтернативы можно использовать логику серии ;. Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется.
Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5. В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов не забудьте перед этим отключить его от сети.
Довольно приятно описан принцип, но не хватает подробного описания происходящего на конкретных схемах. Понравилась статья?
Поделиться с друзьями:. Вам также может быть интересно. Комментарии и отзывы Комментарии: 1. Добавить комментарий Отменить ответ. Политика конфиденциальности Пользовательское соглашение О нас.
Изготовление регулятора мощности на симисторе своими руками
Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки. Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два. Стабильный регулятор мощности своими руками. Как сделать цифровой осциллограф из компьютера своими руками?
Регулятор напряжения на тиристоре кун Принципиальная Схема, Как сделать простой регулятор оборотов, скорости вращения для.
Трехфазный и однофазный тиристорный регулятор мощности — принцип работы, схемы
Управлять можно величиной напряжения или тока. Применяется тиристорный регулятор для управления мощностью бытовых паяльники, электронагреватели, лампы накаливания и т. Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Благодаря этому регулятор способен быстро изменять мощность.
Схемы тиристорных регуляторов
Войти на сайт Логин:. Сделать стартовой Добавить в закладки. Мы рады приветствовать Вас на нашем сайте! Мы уверены, что у нас Вы найдете много полезной информации для себя, читайте, скачивайте, все абсолютно бесплатно и без паролей.
Генератор является самым важным устройством в системе регулирования. В систему регулирования напряжения входят следующие элементы: выпрямитель, генератор и аккумулятор.
На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками
Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток. Так-же нужно заменять и тиристор, ведь КУ рассчитан на предельный ток до 10А. Из более мощных рекомендуются отечественные тиристоры серии Т, Т, Т и другие аналогичные. Диод Шоттки. Данный регулятор напряжения собирался мной для использования в различных направлениях: регулирование скорости вращения двигателя, изменение температуры нагрева паяльника и т. Возможно название статьи покажется не совсем корректным, и эта схема иногда встречается как регулятор мощности , но тут надо понимать, что по сути происходит регулировка фазы.
Тиристорный регулятор напряжения простая схема, принцип работы
Устройство, схема которого приведена на рисунке, можно использовать для регулировки напряжения на нагрузке активного и индуктивного характера, питаемой от сети переменного тока напряжением и в. Напряжение на нагрузке можно менять от нуля до номинального напряжения сети. Тиристор Д5, включенный в диагональ моста, составленного из диодов Д1—Д4 играет роль управляемого ключа, который открывается при разряде конденсатора С1 через ограничительный резистор R2 и управляющий переход тиристора при включении переключающего диода Д6. Напряжение, при котором тиристор включается, можно регулировать потенциометром R1. Вместо переключающего диода Д6 можно использовать стабилитрон, но в этом случае уменьшается диапазон регулировки напряжения на нагрузке. Средний балл статьи: 0 Проголосовало: 0 чел. Для добавления Вашей сборки необходима регистрация.
Здравствуйте, уважаемые хабровчане! Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов.
Простой регулятор напряжения на тиристоре
В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные. Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке подробнее об этом методе будет рассказано ниже. Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку.
ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ
ВИДЕО ПО ТЕМЕ: Тиристорный регулятор напряжения на одном тиристоре
youtube.com/embed/729aN9kefv4″ frameborder=»0″ allowfullscreen=»»/>В статье описан регулятор мощности переменного тока, принцип работы которого основан на изменении целого числа полупериодов сетевого напряжения, подаваемого в нагрузку, в единицу времени. Включение и выключение нагрузки происходят вблизи моментов перехода сетевого напряжения через нуль, что практически исключает коммутационные помехи, присущие регуляторам с фазоимпульсным управлением. Частота коммутации сравнительно невелика, поэтому регулятор следует использовать только …. Копирование материалов сайта возможно только с указанием ссылки на первоисточник — сайт meandr. Обратная связь.
You will be able to contact the author only after he or she has been invited by someone in the community.
Тиристорный регулятор напряжения своими руками. Напряжение регулятор
Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности. В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей. Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей , температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности.
Тиристорный регулятор мощности
Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности. Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!
Простой регулятор мощности для паяльника – схема
Собери простой регулятор мощности для паяльника за час
Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки. https://oldoctober.com/
Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два.
Самые интересные ролики на Youtube
Близкие темы.
Стабильный регулятор мощности своими руками
Как сделать цифровой осциллограф из компьютера своими руками?
Как за час сделать импульсный блок питания из сгоревшей лампочки?
Вступление.
Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/
Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.
Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.
Как это работает?
Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.
Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.
На картинке видно, что куда поступает и откуда выходит.
Ремарка.
В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.
Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.
При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.
Схемные решения.
Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.
Регулятор мощности на симисторе КУ208Г.
VS1 – КУ208Г
HL1 – МН3… МН13 и т.д.
R1 – 220k
R2 – 1k
R3 – 300E
C1 – 0,1mk
На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.
Назначение элементов.
HL1 – линеаризует управление и является индикатором.
С1 – генерирует пилообразный импульс и защищает схему управления от помех.
R1 – регулятор мощности.
R2 – ограничивает ток через анод — катод VS1 и R1.
R3 – ограничивает ток через HL1 и управляющий электрод VS1.
Регулятор мощности на мощном тиристоре КУ202Н.
VS1 – КУ202Н
VD1 — 1N5408
R1 – 220k
R3 – 1k
R4 – 30k
C1 – 0,1mkF
Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.
На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.
Регулятор мощности на маломощном тиристоре.
VS1 – BT169D
VD1 – 1N4007
R1 – 220k
R3 – 1k
R4 – 30k
R5* – 470E
C1 – 0,1mkF
Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.
Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.
VS1 – BT169D
VD1… VD4 – 1N4007
R1 – 220k
R3 – 1k
R4 – 30k
R5* — 470E
C1 – 0,1mkF
Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.
Теперь схема работает аналогично симисторному регулятору.
Конструкция и детали.
Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».
Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.
Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.
Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.
Так выглядят регуляторы мощности, которые я использую много лет.
Get the Flash Player to see this player. | ||
А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.
Дополнительный материал.
Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.
Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.
Тип прибора | Катод | Управ. | Анод |
BT169D(E, G) | 1 | 2 | 3 |
CR02AM-8 | 3 | 1 | 2 |
MCR100-6(8) | 1 | 2 | 3 |
28 Апрель, 2011 (23:10) в Источники питания, Сделай сам
Иногда, чтобы решить поставленную задачу, самодельщику приходится искать нетривиальные решения. Может быть, они Вас ожидают здесь. Если Вы решили покинуть сайт, то имейте в виду, что этого спонсора сюда никто не звал, он сам навязался. :)
Тиристорные регуляторы напряжения. Регулятор постоянного напряжения на тиристоре
Регуляторы, способные изменять напряжение в устройстве, применяются в самых разных областях. Простой пример — управление свечением лампы. Кроме того, регуляторы этого типа используются в паяльниках. Там они играют роль блока контроля температуры. Часто регуляторы напряжения называют димерами. Это связано с тем, что принцип работы этих устройств основан на изменении фазы.
Из чего состоит регулятор?
Основным элементом регулятора считается тиристор. Зенер в системе, как правило, установлен один. В свою очередь количество резисторов зависит от типа модели. Кроме того, в цепи должен быть предусмотрен резистор, который подключается к конденсатору через предохранитель. На выходе системы стоят специальные резисторы переменного типа.
Принцип действия устройства
Работа регулятора начинается с появления искровых перебоев в системе. На этом этапе тиристор активируется. Его основная задача – подавить сигнал. В этот момент он меняет угол. В зависимости от настроек устройства потом постепенно нарастает. Угол увеличен с помощью транзисторов. Для преобразования энергии в цепь установлен конденсатор. При перегрузках простой регулятор напряжения на тиристоре управляется предохранителем. Кроме того, в моделях можно использовать диоды.
Выполняемые функции
Основной функцией регулятора напряжения считается изменение частоты пробоя. Кроме того, устройства способны влиять на индекс деионизации. Во многом это связано с разными режимами работы. Автоматическое отключение в моделях предусмотрено. Восстановление напряжения происходит довольно быстро. Также обратите внимание на функцию первичного тока. Он заключается в контроле предельного значения напряжения. Функция вторичного тока подразумевает установку угла отпирания тиристора. В случае аварийной ситуации регуляторы напряжения способны блокировать помехи. Также может быть проведена диагностика источников питания.
Ручной режим работы
Для изменения параметров устройства вручную на контроллере обычно есть сенсорные панели. По умолчанию все индикаторы сброшены. Значения контролируются с помощью центрального блока управления. Алгоритмы задач зависят от конструктивных элементов устройства
Особенности работы в автоматическом режиме
В автоматическом режиме нет необходимости регулировать ограничение напряжения. Ток электрофильтра также будет регулироваться независимо. Время деионизации в этом случае зависит от выбранного алгоритма. От этого будет зависеть и шаг снижения напряжения. Для увеличения тока вводятся индивидуальные настройки.
Самодельные регуляторы
Самодельный регулятор напряжения на тиристоре 12В можно сделать. Коэффициент полезного действия составит не более 70%. Тиристоры проще всего использовать с маркировкой «КУ202». Диафрагмы Зенера устанавливают разной мощности. Многое в этой ситуации зависит от того, какие резисторы применены. Самые простые типы — «МЛТ». В свою очередь транзисторы следует брать не ниже серии «КТ3».
Если рассматривать резисторы серии «МЛТ-2», то они имеют показатель сопротивления 2 кОм. Таким образом, конденсатор в сети должен быть хорошим. Выбирая модель «К73», следует знать, что она рассчитана на напряжение 250 В. При этом максимальное отклонение в сети не может превышать 10 %. Предохранители в регуляторах обычно устанавливаются на 10 А.
Регуляторы с динисторами
Стабилизатор напряжения 220В на тиристоре данного типа отличается от обычных устройств наличием двух выходов. Как правило, аналоговых каналов в системе три. Благодаря этому измерение амплитуды колебаний происходит достаточно быстро. Выходное напряжение многих моделей достигает чуть более 230 В. Имеется система фильтрации в регуляторах. Для синхронизации в моделях есть только один канал.
Минимальное напряжение в нем поддерживается на уровне 210 В. Имеется два канала для дискретного управления устройством. Параметр выходного тока достаточно высок из-за хорошего качества передачи сигнала. Минимальный угол открытия тиристора 160 градусов. Максимум одновременно можно выставить 200 градусов. Потребляемая мощность регуляторов этого типа достигает не более 20 кВт. По габаритам можно сказать, что устройства не слишком громоздкие и весят в среднем около 2 кг.
Чем отличаются триодные тиристоры?
Триодный регулятор напряжения на тиристоре (схема показана ниже) отличается тем, что не пропускает сигнал обратного хода. В результате достаточно сложно контролировать импульсы тока. Регуляторы этого типа обычно используются для сопряжения с низкочастотными устройствами. Работают они, как правило, в автоматическом режиме. В этой конфигурации есть три аналоговых канала. Параметр входного напряжения колеблется в районе 24 В.
Максимальное отклонение в цепочке может составлять 15%. В устройстве есть два канала синхронизации. Таким образом, предельную частоту можно регулировать. Для дискретного управления предусмотрено два выходных канала. Минимальный угол тиристора в системе 150 градусов. Максимальной является возможность выставить его в среднем на 180 градусов. Потребляемая мощность многих моделей составляет 220 В. По габаритам эти устройства достаточно разные.
Свойства регуляторов с запираемыми тиристорами
Эти стабилизаторы напряжения на тиристорах называются запираемыми, потому что они могут быть отключены импульсом тока. В это время изменяется и обратный ток. К недостаткам этого типа можно отнести небольшой коэффициент полезного действия. Большинство моделей этого типа выпускаются однофазными, но существуют и двухфазные модификации.
Предельные регуляторы напряжения поддерживаются на уровне 110 В. Максимальное отклонение в цепи может составлять только 10%. Номинальную частоту регуляторы напряжения на тиристорах способны поддерживать на отметке 50 Гц. Устройство выдерживает токовую нагрузку в 1 А. Автоматическое управление предусмотрено во многих моделях производителем. В результате можно изменить дискретное значение тока. Таким образом, можно напрямую воздействовать на переменный цикл, от которого зависит мощность электродвигателя.
Системы отображения в устройствах очень разнообразны. Чаще всего на рынке можно встретить четырехразрядные дисплеи. С их помощью можно вполне комфортно наблюдать за всеми показателями регулятора напряжения. Существуют также системы ступенчатой индикации. Их особенностью является быстрая обработка данных. Для более точных показателей в тиристорных регуляторах напряжения установлены штриховые системы индикации. Они также быстро обрабатывают информацию. Наконец, последний тип индикаторных систем можно назвать светодиодными устройствами.
Регуляторы комбинированно-переключаемые
Комбинировано-разъединяющие тиристорные регуляторы напряжения (показаны ниже) очень похожи на запираемые устройства. Выключение занимает немного больше времени. Большинство моделей на сегодняшний день изготавливаются однофазными. Параметр приложенного напряжения составляет в среднем около 120 В. Предельная частота таких регуляторов колеблется в районе 30 Гц. Для них предусмотрено автоматическое управление.
Кроме того, следует отметить возможность использования обратной связи. В результате качество выходного сигнала значительно повышается. Регуляторы напряжения резистивной нагрузки на тиристорах выдерживают плохо, и это надо учитывать. Средняя потребляемая мощность составляет 8 Вт. Индикаторные системы, как правило, сенсорные. Однако существуют конфигурации в виде полос для отображения данных. Кроме того, регуляторы имеют вентиляторы для охлаждения резисторов. С их помощью можно добиться значительного повышения эффективности. Также могут быть установлены выпрямители с тиристорным регулятором напряжения этого типа на двигателе.
Модели с симисторами
Тиристоры в таких моделях расположены параллельно друг другу. Токонесущая способность в этом случае значительно возрастает. Напряжение в цепи может распространяться во всех направлениях. Поляризованные импульсы регулятором воспринимаются хорошо из-за большого количества аналоговых каналов. Входное напряжение обычно составляет 50 Вт.
В устройстве 3 канала для синхронизации. За счет них напряжение в цепи держится на высоком уровне. Величина допустимого тока 3 А. Сопротивление транзисторов поддерживается на уровне 4 МПа. Напряжение питания системы во многих моделях 240 В. Таким образом, предельная частота может находиться на уровне 45 Гц. Угол наклона тиристора в регуляторе зависит исключительно от величины напряжения входного сигнала.
Обзор лавинных регуляторов
Лавинный регулятор напряжения на тиристоре называется так из-за того, что характеристики устройства со временем увеличиваются, а показатели становятся больше. Отличительной чертой этих устройств смело можно считать хорошую устойчивость к различным колебаниям. Благодаря этому модели данного типа абсолютно не боятся перенапряжения.