Схема сетевого фильтра 220в: Как работают схемы сетевого фильтра: обзор

Содержание

Сетевой фильтр своими руками: схема 220 В

Сетевой фильтр чаще всего используется для подключения к электросети компьютера, периферийных и других устройств. Благодаря фильтрующему прибору исключается проникновение помех, которые могут влиять на работоспособность оборудования. Рассмотрим в деталях, как сделать сетевой фильтр своими руками на 220 В, воспользовавшись схемой и пошаговой инструкцией.

Принцип работы фильтра

Сетевое напряжение 220 вольт является переменным и имеет синусоидальную форму. Однако синусоида представлена не в чистом виде, а с помехами электромагнитного характера. В идеале синусоида выглядит в виде волнообразной линии, но в реальности напряжение имеет всплески, перекосы фаз и т.п.

Сетевые помехи влияют на работоспособность чувствительных электроприборов. Поэтому возникает необходимость фильтровать ток от ненужных помех. Для этих целей используется сетевой фильтр, который подключается между электрической сетью и потребителем. Фильтрующий прибор выполнен по своеобразной схеме из конденсаторов и дросселей. Основная функция фильтра – не пропускать высокочастотные помехи и паразитные импульсы. С первыми справляются индуктивности, со вторыми – емкости.

Как устроен сетевой фильтр

Рассматриваемые устройства бывают:

  • встроенные;
  • стационарные.

Первый вариант является частью какого-либо электроприбора и устанавливается непосредственно в его корпусе или блоке питания. Конструктивно изделие выполнено из конденсаторов, емкостей, катушек, термопредохранителя и варистора. Последний предназначен для защиты устройства от скачков напряжения.

Стационарные устройства выполнены в виде отдельного прибора с несколькими розетками. Это позволяет одновременно подключить к электросети несколько единиц электротехники, задействовав всего одну розетку. Очистка ВЧ-помех обеспечивается при помощи LC-фильтра. Скачки напряжения предотвращаются несгораемыми предохранителями.

Что находится внутри фильтра

В корпусе сетевого фильтра располагаются:

  • фильтрующие элементы;
  • варистор;
  • выключатель;
  • розеточные элементы.

Для подключения фильтра к сети используется сетевой кабель. Подобный конструктив применяется в качественных фильтрах.

Читайте также: Индукционный нагреватель металла своими руками

Сетевые фильтры для бытовой техники

Для безопасного подключения современной быттехники рекомендуется использовать сетевые фильтры. Они предназначены не только для подавления помех, но и для сглаживания скачков напряжения. Для питания старых холодильников, в которых из электрических компонентов использовались лишь двигатель компрессора и лампочка подсветки, перепады сетевого напряжения не страшны. Однако современные холодильники оснащены сложными электронно-вычислительными системами, и применение сетевого фильтра является крайне необходимым.

Аналогичная ситуация со стиральной машинкой. При наличии сетевого фильтра, в случае кратковременных скачков напряжения техника сохранит свою работоспособность благодаря накопленной энергии в конденсаторах. В стиралках, оснащенных сенсорным управлением, еще с завода должны устанавливаться фильтрующие устройства. В противном случае сенсор при скачках напряжения практически сразу выходит из строя.

Все это указывает на то, что для питания техники в квартире следует устанавливать фильтрующие приборы. К тому же сегодня есть широкий выбор таких устройств, рассчитанных на потребление как в 1 кВт, так и на 4 кВт.

Как самостоятельно сделать фильтр

Выяснив, для чего предназначен сетевой фильтр на 220 В, следует рассмотреть, как сделать его своими руками, используя разные схемы и пошаговые инструкции.

Простая схема

Чтобы собрать самый простой и лучший сетевой фильтр, понадобится переноска на несколько розеток с сетевым шнуром. Изделие изготавливается из доступных деталей по приведенной схеме:

Порядок работы таков:

  1. Раскрываем корпус удлинителя.
  2. Согласно схеме, припаиваем сопротивления соответствующего номинала и катушки индуктивности.
  3. Обе ветви соединяем между собой посредством конденсатора C1 и сопротивления R3.
  4. Между розетками устанавливаем концевой конденсатор C2.

Если места для установки конденсатора C2 внутри корпуса не найдется, то можно обойтись и без него. Подробнее с конструкцией простого фильтра можно ознакомиться в видео:


С дросселем из двух обмоток

Самодельный фильтр с двумя обмотками дросселя используется для аппаратуры с высокой чувствительностью. К таковой относится аудиотехника, колонки которой довольно чутко реагируют на помехи электросети. В результате динамики воспроизводят искаженный звук с посторонним фоновым шумом. Сетевой фильтр с двухобмоточным дросселем позволяет решить эту проблему. Монтаж удобнее выполнить в отдельном корпусе на печатной плате.

Сборку фильтра можно выполнить следующим образом:

  1. Для намотки дросселя используем ферритовое кольцо марки НМ с проницаемостью 400-3000. Деталь можно найти в советской аппаратуре.
  2. Сердечник изолируем тканью, а затем покрываем лаком.
  3. Для обмотки используем провод ПЭВ. Его диаметр напрямую зависит от мощности нагрузки. Для начала можно взять провод 0,25-0,35 мм.
  4. Обмотку ведем одновременно двумя проводами в разных направлениях. Каждая катушка состоит из 12 витков.
  5. При конструировании применяем емкости с рабочим напряжением 400 В.

Обмотки дросселя включены последовательно, что приводит к взаимному поглощению магнитных полей. В момент прохождения тока ВЧ увеличивается сопротивление дросселя. Благодаря конденсаторам происходит поглощение и закорачивание нежелательных импульсов. Печатную плату желательно смонтировать в металлический корпус. Если он пластиковый, то необходимо установить металлические пластины, что позволит избежать лишних помех.

С развязкой от фазного провода

Чтобы исключить непосредственную связь между фазой и потребителем, можно собрать несколько схем. Самый простой вариант – подключить пару трансформаторов от старых источников бесперебойного питания по представленной схеме:

Однако в чистом виде такая схема не дает должного результата. Поэтому ее следует доработать.

При таком схематическом решении удается получить АЧХ, как на фото ниже:

Читайте также: Катушка Тесла своими руками

Для питания радиоаппаратуры

Современная техника, которая оснащается импульсными блоками питания, более чувствительна к различным явлениям в электрической сети. Например, для такой аппаратуры опасно попадание молнии в электросеть 0,4 кВ. Не меньшую опасность несет подключение к сети таких устройств, как мощные электромоторы, электромагниты, трансформаторы.

Приведенная схема отличается более высоким уровнем подавления сетевых помех, в отличие от стандартных недорогих устройств. Через такую схему можно подключать телевизор, усилитель, радиоприемник, ПК и компьютерную технику, которые рассчитаны на работу от сети 220 В/50 Гц.

Монтаж фильтрующего устройства приведен ниже. Выполнить его можно навесным способом. Силовые линии сделаны из медного провода с ПВХ-изоляцией сечением 1 мм². Резисторы можно использовать обычные МЛТ. Конденсатор С1 должен быть рассчитан на постоянное напряжение 3 кВ и иметь емкость около 0,01 мкФ, С2 – такой же емкости на напряжение 250 В переменного тока.

Дроссель L1 применяется двухобмоточный. Выполнить его можно на ферритовом сердечнике 600 НН диаметром 8 мм и длиной около 70 мм. Каждая обмотка состоит из 12 витков литцендрата 10х0,27 мм. Дроссели L2 и L3 изготовлены на броневых сердечниках Б36 из НЧ феррита. Каждый из них имеет по 30 витков провода, аналогичного L1. Намотка ведется виток к витку. В качестве разрядников можно использовать варистор на напряжение 910 В. В остальном сборка схемы не вызывает сложностей.

Стоит учесть, что в корпусе не должно быть никаких отверстий. После монтажа изделие начинает работать практически сразу и какой-либо настройки не требует.

Качественный фильтр сетевых помех для аудио

Сегодня фильтры хорошего качества хоть и продаются, но стоят они недешево. Если вы разбираетесь в электросхемах и умеете обращаться с паяльником, то самостоятельно можно изготовить фильтр ничем ни хуже заводского. Схему качественного фильтра и как она работает, разберем детальнее.

Блокировочная емкость

Устраняет ВЧ-помехи, исключая их прохождение в потребитель. В обязательном порядке следует поставить указанные резисторы, чтобы при выключении аппарата емкость разряжалась. Это исключит вероятность поражения электрическим током при случайном касании вилки фильтра после его отключения.

Дроссель

Индуктивность представляет собой Г-образный фильтр вместе с конденсатором. Дроссель должен использоваться с запасом по току, а конденсатор иметь напряжение не менее 310 В.

Трансформатор

Обмотки такого трансформатора одинаковые и имеют встречное включение. Сердечник трансформатора остается неподмагниченным основной нагрузкой. В результате создается большая индуктивность на пути прохождения синфазной помехи, препятствуя ее попаданию в аппаратуру.

Конденсаторы

Емкости после трансформатора коротят на массу синфазную помеху и создают вместе с трансформатором Г-образный фильтр. При отсутствии емкостей помеха все равно проникнет в радиоаппаратуру.

Антизвон

RC-цепочка совместно с первичной обмоткой трансформатора в потребителе формирует колебательный контур, чтобы погасить то, что «выскочит» из первички после отключения напряжения.

Разрыв контура заземления

Подобное включение выполнено между корпусом прибора и защитным заземлением. Схема позволяет исключить появление на корпусе прибора напряжения, опасного для жизни человека. На небольших напряжениях посредством диодов цепь разрывается.

Сопротивление создает путь для малых токов. При отсутствии резистора даже малые утечки приводили бы к избыточному размаху напряжения на корпусе по отношению к земле.

Читайте также: Схема подключения люминисцентных ламп

Монтаж

Сборку фильтра удобнее выполнить на печатной плате. В целом конструкция во многом имеет сходство с теми, что устанавливаются в дорогих компьютерных БП. С последних можно использовать детали для конструирования приведенной схемы.

Рассмотрев назначение сетевого фильтра на 220 В, а также как сделать его своими руками с разными вариациями схем и пошаговой инструкцией, повторить подобное устройство сможет каждый, кто умеет обращаться с паяльником и разбирается в электросхемах. Минимальный перечень элементов позволяет собрать действительно качественное фильтрующее устройство, которое будет в полной мере выполнять свои функции, в отличие от многих заводских изделий.


Схема изготовления сетевого фильтра под напряжение 220В

Работа электротехнических и электронных устройств происходит за счёт питания сетевым током. Энергопоток через провода приносит с собой сателлитные электромагнитные поля. Они несут угрозу точности выполнения своих функций абонентами электросети. Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.

Сетевой фильтр

Принцип работы сетевого фильтра

Напряжение переменного тока в сети 220 в изменяется в синусоидальном виде. Правильная форма электрического импульса «загрязняется» электромагнитными помехами. Синусоида выглядит в виде изгибающейся линии чистого сигнала, окружённой вязью блуждающих токов, вызванных фазными перекосами, подсадками и всплесками напряжения.

График сетевого тока

Сопровождающие помехи влияют на чувствительные компоненты электронных схем различных приборов и аппаратуры. Возникает проблема очистки тока от паразитных образований. Для этого применяют сетевой фильтр (СФ).

СФ встраивают между источником сетевого тока и потребителями. Он состоит из соединённых в определённом порядке дросселей и конденсаторов. Работа фильтра – выстраивание индуктивного сопротивления катушек, не пропускающего помехи высокой частоты. Ёмкости устройства отсекают нежелательные помехи. Конденсаторы замыкают цепь и не пропускают паразитные импульсы.

Устройство простого сетевого фильтра

СФ бывают двух видов:

  1. Встроенные.
  2. Стационарные – многоканальные.

Встроенные

Компактные платы СФ являются частью внутреннего устройства различного электронного оборудования. Ими оснащается компьютерная и другая сложная техника.

Плата встраиваемого сетевого фильтра

На фото видно устройство СФ. На плате установлены следующие детали:

  • VHF – конденсатор;
  • тороидальный дроссель;
  • добавочные конденсаторы;
  • варистор;
  • индукционные катушки;
  • термический предохранитель.

Варистором называют резистор с переменным сопротивлением. При превышении нормативного порога напряжения (280 в) его сопротивление может уменьшиться в десятки раз. Варистор выполняет функцию защиты от импульсного перенапряжения.

Стационарные – многоканальные

Корпус прибора имеет несколько розеток. Благодаря этому, есть возможность подключить через фильтр всю имеющуюся электротехнику в одном помещении к одной розетке. Для очистки от радиопомех высокой частоты применяется простой LC-фильтр. Несгораемые термопредохранители предотвращают скачки напряжения. В некоторых моделях применяются одноразовые плавкие предохранители.

Самостоятельное изготовление сетевого фильтра

Сделать самый простой сетевой фильтр своими руками в домашних условиях радиолюбителю будет совсем не трудно. Для этого нужно встроить небольшую схему внутрь корпуса сетевого удлинителя с несколькими розетками. На нижнем рисунке показано, как это сделать.

СФ своими руками

Устанавливают СФ в удлинителе следующим образом:

  1. Вскрывают корпус сетевого удлинителя.
  2. В параллельные ветви после выключателя и варистора впаивают резисторы R1, R2 и дроссели (индуктивные катушки) L1, L2.
  3. Затем ветви поочерёдно замыкают через конденсатор С1 и один резистор R3.
  4. Установка концевого конденсатора С2 может быть сделана в любом месте между розетками.

Важно! Если внутри корпуса удлинителя не найдётся места для второго конденсатора С2, то можно обойтись без него. Достаточно скорректировать параметры С1.

Дроссели применяются с незамкнутыми ферритовыми сердечниками индуктивностью от 10 мкГн. Конденсаторы подбираются в диапазоне 0,22-1 мкФ. Сопротивление резисторов коррелируют с планируемой мощностью потребителей. При нагрузке 500 Вт потребуются резисторы 0,22 Ом. Сопротивление R3 должно быть не меньше 500 кОм.

Видоизменённая схема

Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.

Видоизменённая схема СФ

Схема СФ защиты от сетевых помех

Типовая схема сетевого фильтра является основой всех устройств такого типа за исключением дополнительных мелочей. Классикой является подключение к точкам: Земля, Фаза и Ноль. На входе устанавливается варистор VDR 1. Он подавляет всплески напряжения сетевого тока. При высоком скачке напряжения сопротивление варистора резко падает, этим он не пропускает помеху далее по схеме.

Для гашения небольших изменений напряжения используются дроссель Tr1 и три ёмкости С. Конденсаторы С1, С2 и С3 – реактивные радиодетали, постоянно меняющие уровень сопротивления. Оно при изменении частоты тока резко возрастает.

Нормальный ток беспрепятственно проходит через фильтр. В то же время помехи высокой частоты задерживаются в СФ. Сопротивление фильтра находится в прямой пропорциональной зависимости от величины частоты тока. Оба показатели одновременно возрастают, что позволяет задерживать помехи на пути к потребителю.

Обратите внимание! Трёхпроводная сеть питания может подвергаться возникновению помех на участках фаза – ноль, земля – фаза, земля – ноль. Эффективное подавление таких негативных явлений осуществляется нормальным стандартным заземлением СФ.

Пути улучшения схемы фильтра

Существует множество вариантов улучшения схемы сетевого фильтра. Один из них отличается остроумием и позволяет существенно экономить потребляемую электроэнергию. Суть метода заключается в следующем:

  1. Вскрывают корпус многоразъёмного СФ удлинителя.
  2. Одну из токоведущих шин разрезают.
  3. Отрезки соединяют с 5 вольтовым реле, рассчитанным на коммутацию тока 3А, 250 в.
  4. Два других контакта реле соединяют проводами с USB разъёмом на конце.
  5. Разъём подключают к USB входу телевизора.

В результате получается управляемая система питания, состоящая из ТВ, цифровой приставки и блока питания спутниковой антенны. Если ранее при выключении телевизора все части системы оставались в режиме ожидания, то с модернизированным фильтром они полностью отключаются. Стоит с пульта включить телеприёмник, как все коммутированные приборы тоже приводятся в действие и наоборот.

Дополнительная информация. Различные модернизированные СФ всегда можно найти на радиорынке, но стоят они довольно дорого. Поэтому намного выгоднее сделать усовершенствование устройства своими руками.

В другом случае идут по пути добавления в СФ LC-фильтра, который, помимо гашения помех от сети, понижает взаимно возникающие электрические помехи от подключённых потребителей.

Штатный варистор (470 в) часто не вызывает срабатывание автоматического предохранителя. Его меняют на аналогичное устройство, рассчитанное на напряжение 620 в. Это позволяет подавлять помехи от работающей стиральной машины, пылесоса и другой мощной электротехники.

Домашние мастера оснащают сетевые фильтры-удлинители звуковой сигнализацией. При превышении в сети уровня напряжения 280 в фильтр оповещает об этом сигналом.

Сетевой фильтр с 2-х обмоточным дросселем

СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.

Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:

  1. Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
  2. Магнитопровод оборачивают тканью и покрывают лаком.
  3. Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
  4. Намотку ведут двумя проводами в разных направлениях.
  5. Делают 10, 12 оборотов каждого проводника.
  6. Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.

СФ с 2-х обмоточным дросселем

Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.

Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.

С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.

Видео

Сетевые фильтры - как они работают, примеры схем

Что такое сетевой фильтр? - это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра - пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20...40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) - вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” - “ноль” (“нейтраль”) - “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача - подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль" - “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай - подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это - идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный - выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства - на номинальный ток 16 А.

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4...6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 - “евро”, рис.8).

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Фильтры

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Рис. 9. Фильтр-удлинитель.

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 - варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6...10 мм).

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 - промышленные высокочастотные, типа ДМ-1 индуктивностью 50...100 мкГн. Конденсаторы - пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ - не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках - рис.13).

Рис. 12Сборка фильтра.

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12x14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки - около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 - 120 мкГн.

Конденсаторы первого звена фильтра - слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1...R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 - типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

Источники информации:

  1. electroclub.info
  2. corumtrage.ru
  3. potrebitel.ru

как сделать по схеме помехоподавляющий фильтр 220 В для аудиотехники? Инструкция по сборке фильтра из доступных деталей

На сегодняшний день практически в каждом доме есть предмет, который большинство из нас называет просто удлинителем. Хотя его корректное название звучит, как сетевой фильтр. Этот предмет позволяет нам подключить в розетку электропитания различного рода технику, которую по каким-то причинам мы не можем переместить ближе к источнику электричества, а родного кабеля устройства просто не хватает по длине. В этой статье попытаемся разобраться, как сделать простой сетевой фильтр своими руками.

Устройство

Если говорить об устройстве такой вещи, как сетевой фильтр, то следует сказать, что он может относиться к одной из 2 категорий:

  • стационарно-многоканальной;
  • встроенной.

В целом схема обычного сетевого фильтра, рассчитанного на напряжение в 220 В, будет стандартной и в зависимости от типа устройства может лишь чуть-чуть отличаться.

Если говорить о встроенных моделях, то их особенностью является то, что контактные платы таких фильтров будут часть внутреннего устройства электронного оборудования.

Такие платы имеет и другая техника, что относится к категории сложных. Такие платы обычно состоят из следующих компонентов:

  • конденсаторы добавочного типа;
  • индукционные катушки;
  • дроссель тороидального типа;
  • варистор;
  • предохранитель термического типа;
  • VHF-конденсатор.

Варистором является резистор, что имеет переменное сопротивление. Если нормативный порог напряжения в 280 вольт превышается, то его сопротивление снижается. Причем оно может снизиться не в один десяток раз. Варистор по своей сути представляет предохранитель от импульсного перенапряжения. А стационарные модели обычно отличаются тем, что имеют несколько розеток. Благодаря этому появляется возможность подключить через сетевой фильтр к электрической сети несколько моделей электрической техники.

Кроме того, все сетевые фильтры оснащены LC-фильтрами. Такие решения применяются для аудиотехники. То есть такой фильтр – помехоподавляющий, что для аудио и работы с ним будет крайне важно. Также сетевые фильтры иногда оснащаются термическими предохранителями, что позволяют предотвратить появление скачков напряжения. Иногда в ряде моделей используются одноразовые предохранители плавкого типа.

Как сделать?

Чтобы сделать максимально простой сетевой фильтр, потребуется иметь самую обычную переноску на несколько розеток со шнуром сетевого типа. Изделие делается очень просто. Для этого потребуется раскрыть корпус удлинителя, после чего осуществить припаивание сопротивления необходимого номинала в зависимости от модели удлинителя и катушки индуктивности. После этого обе ветки должны быть соединены при помощи конденсатора и сопротивления. А между розетками должен быть установлен специальный конденсатор – сетевой. Данный элемент, кстати, не является обязательным.

Его устанавливают в корпус устройства лишь тогда, когда в нем присутствует для этого достаточно пространства.

Также можно сделать модель сетевого фильтра с дросселем из пары обмоток. Такой прибор будет применяться для аппаратуры, что имеет высокую чувствительность. Например, для аудиотехники, что довольно сильно реагирует даже на малейшие помехи в электрической сети. В результате динамики выдают звук с искажениями, а также посторонними фоновыми шумами. А сетевой фильтр такого типа дает возможность решить данную проблему. Сборку устройства лучше будет делать в удобном корпусе на плате печатного типа. Она выполняется так:

  • для наматывания дросселя следует применять кольцо из феррита марки НМ, проницаемость которого находится в диапазоне 400-3000;
  • теперь его сердечник следует заизолировать при помощи ткани, после чего покрыть лаком;
  • для обмотки следует применить ПЭВ-кабель, диаметр которого будет зависеть от нагрузочной мощности, для начала подойдет вариант кабеля в диапазоне 0,25 – 0,35 миллиметров;
  • обмотку следует осуществлять одновременно 2 кабелями в разных направлениях, каждая катушка будет состоять из 12 витков;
  • при создании такого фильтра следует применять емкости, рабочее напряжение которых составляет где-то 400 Вольт.

Тут следует добавить, что дроссельные обмотки включены последовательно, что приводит к взаимопоглощению полей магнитного типа.

Когда ВЧ ток проходит через дроссель, то увеличивается его сопротивление, а благодаря конденсаторам осуществляется поглощение и закорачивание нежелательных импульсов. Теперь остается печатную плату установить в корпус, выполненный из металла. В случае если вы решили использовать корпус, выполненный из пластика, в него потребуется вставить металлические пластины, что даст возможность избежать возникновения лишних помех.

Также можно сделать специальный сетевой фильтр для питания радиоаппаратуры. Такие модели нужны для техники, что имеет импульсные блоки питания, которые являются крайне чувствительным к возникновению различного рода явлений в электросети. Например, такая аппаратура может пострадать, если в электросеть 0,4 кВ попадает молния. В данном случае схема будет практически стандартной, просто уровень подавления сетевых помех будет выше. Тут силовые линии будут должны быть выполнены из медного провода с изоляцией из поливинилхлорида сечением 1 квадратный миллиметр.

В данном случае можно применять обычные МЛТ-резисторы. Здесь также должны быть применены специальные конденсаторы.

Один должен быть рассчитан на напряжение постоянного типа емкостью 3 киловольта и иметь емкость около 0,01 мкФ, а второй с такой же емкостью, но рассчитанный на напряжение 250 В переменного тока. Также здесь будет присутствовать 2-обмоточный дроссель, что должен быть сделан на ферритовом сердечнике с проницаемостью 600 и диаметром 8 миллиметров и длиной около 7 сантиметров. Каждая обмотка должен иметь 12 витков, а остальные дроссели должны быть сделаны на броневых сердечниках, каждый из которых будет иметь по 30 витков кабеля. В качестве разрядника можно применить варистор на напряжение 910 В.

Меры предосторожности

Если говорить о мерах предосторожности, то для начала следует вспомнить о том, что самодельный сетевой фильтр, который вам хочется собрать из доступных деталей – это довольно-таки сложный технический прибор. И без знаний в области электроники, причем довольно обширных, правильно сделать его попросту невозможно. Кроме того, все работы по созданию или доработке уже существующего устройства должны вестись исключительно с соблюдением всех мер безопасности. Иначе высок риск поражения электрическим током, что может быть не только опасно, но и смертельно.

Тут следует помнить, что конденсаторы, применяющиеся для создания сетевых фильтров, рассчитаны на довольно высокое напряжение.

Это позволяет им производить накопление остаточного заряда. По этой причине получить удар током человек может даже после того, как устройство было полностью отключено от электрической сети. Поэтому при работе обязательно должно присутствовать параллельно включенное сопротивление. Еще одним важным моментом будет то, что перед работой с паяльником следует удостовериться в том, что все элементы сетевого фильтра находятся в исправном состоянии. Для этого следует использовать тестер, которым необходимо замерить основные характеристики и сравнить их с теми значениями, которые заявлены.

Последний важный момент, о котором не будет лишним сказать, состоит в том, что не следует допускать пересечения кабелей, особенно в местах, где потенциальный нагрев может быть очень большим. Например, речь идет об оголенных контактах, а также резисторах сетевого фильтра. Да и не будет лишним убедиться перед тем, как включать устройство в сеть, что не будет никаких замыканий. Это можно осуществить при помощи прозвонки тестером. Как можно убедиться, сделать сетевой фильтр своими руками возможно. Но для этого следует четко знать, какие действия вы осуществляете и иметь определенные знания в области электроники.

Как встроить сетевой фильтр в обычную переноску смотрите далее.

Схема сетевого фильтра | Микросхема

Сетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования. Это основные задачи устройств, носящих название сетевой фильтр. Как бы он ни выглядел, в какой бы корпус его ни запихал производитель, какой бы прочей эргономичности не придумали, главное, чтобы все это внешнее изящество не затмило основных задач. А сегодня можно наблюдать, к сожалению, совершенно иную картину. Производители подобных устройств не задумываются об их функциях, берут простейшую электрическую схему сетевого фильтра, состоящую из двух дросселей и двух конденсаторов, суммарная стоимость которых копейки и камуфлирует это под красивый дизайн. Для примера:

Или:

Причем стоимость такого аксессуара под названием сетевой фильтр немаленькая. В итоге, мы покупаем обычный сетевой удлинитель в красивой обертке. При всем этом показатель цены, что якобы, чем дороже, тем лучше и качественней, в данной ситуации значения не имеет. Этим введением мы хотим показать и раскрыть суть вопроса о сетевых фильтрах. Отчасти это ещё и ответ на комментарий уважаемого радиолюбителя в публикации простейшей схемы сетевого фильтра. Конечно, мы согласны, что начинка очень даже влияет на стоимость. Но всё дело в нерадивых производителях сетевых фильтров, которые не хотят «заморачиваться» над их содержимым, не пытаются разрабатывать принципиально новые электрические схемы для улучшения эффективности. Поэтому многие опытные радиолюбители для ежедневных нужд проектируют схемы сетевых фильтров сами. И качество получается на высоте, и надёжность, и собираются в основном из подручных радиокомпонентов, что сводит затраты к минимуму, и приобретается дополнительный радиотехнический опыт. Также стоит заметить, что в большинстве случаев схемы сетевых фильтров входят в состав более сложных схем сетевых стабилизаторов напряжения, о которых мы неоднократно упоминали на страницах радиолюбительского сайта.

Сегодня мы опубликуем несколько электрических схем и их описаний, по которым вам не составит особого труда изготовить сетевой фильтр своими руками, по функциональности и характеристикам превосходящий покупной. На рисунке ниже приведена электрическая схема сетевого фильтра, предназначенного для защиты питаемого устройства от внешних помех (за это отвечает цепочка C3C4C5C7L1) и импульсных выбросов сети (варистор R5 с характеристическим напряжением 275 вольт). Приведенная схема также защищает сеть от помех, создаваемых питаемым устройством.

Дроссель L1 имеет индуктивность магнитосвязанных встречно включенных электрически изолированных половинок 5,6 мГн. Светодиод D4 светится в рабочем состоянии, а D2 – только при перегорании плавкого предохранителя F1. По сути, схема этого сетевого фильтра является модернизированным вариантом простейшей электрической схемы устройства.

Собранный по следующей схеме универсальный фильтр не пропускает высокочастотные сетевые помехи как в питающий прибор, так и обратно в электрическую сеть.

В фильтре используются конденсаторы С1…С4, С9…С12 - КПБ - 0,022 мкФ - 500 вольт, С5…С8, С13, С14 - КТП-3 - 0,015 мкФ - 500 вольт (керамические, красного цвета, с резьбой М8 - 0,75). Неоновая лампочка VL1 служит обычным индикатором работы. Дроссели Др1 и Др1′ намотаны обычным двойным сетевым проводом в изоляции на семи, сложенных вместе плоских ферритовых стержнях для магнитной антенны. Общее сечение магнитопровода 4,2 см2. Стержни плотно уложены друг на друга и обмотаны тремя слоями лакоткани. Поверх нее намотана обмотка, содержащая 7 витков провода. Получившийся элемент больше похож на проходной трансформатор, чем на дроссель. Дроссели Др2, Др2′ (на керамических стержнях диаметром 12 мм и длиной 115 мм до полного заполнения), Др3 и Др3′ (бескаркасные, содержат по 9 витков, намотаны с шагом для уменьшения межвитковой емкости и лучшей защиты от самых высокочастотных наводок на оправке диаметром 10 мм и длиной 41 мм) намотаны проводом ПЭВ-2 диаметром 1,5 мм. Максимальный ток для дросселей равен: Imax=d2 * плотность тока(4…6) / 1,28 = 1,52*4,5/1,28=7,91 ампер. Отсюда мощность равна P=220*7,91=1740 ватт. Конструктивно, что показано ниже на рисунке, сетевой фильтр собран в трех экранированных секциях, которые помещаются в металлический корпус 190х190х70 мм. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Крепятся дроссели с помощью стоек из оргстекла толщиной 10 мм, в которых просверливают отверстия нужного диаметра.

Итак, с этим универсальным фильтром все, надеемся, понятно. Защита включает в себя и НЧ, и СЧ, и, наконец, ВЧ фильтрацию.

Далее рассмотрим знакомые большинству потребителей схемы сетевых фильтров Pilot. Они приведены ниже на рисунках.

Первая примитивная схема – Pilot L с максимальным током до 10 ампер.

Вторая схема более эффективная, от этого и соответствующее название сетевого фильтра производителем – Pilot Pro, максимальный ток которого также 10 ампер; но по существу тоже примитивная.

На последнем рисунке изображена электрическая схема фильтра APC E25-GR. Она идентична схеме Pilot Pro. Главное отличие в том, что вместо конденсатора 1 мкФ x 250 В установлен конденсатор 0,33 мкФ x 275 В и в качестве сердечника у катушек вместо воздуха используется ферритовый стержень. У каждой катушки свой. Оси катушек расположены под углом 90 градусов.

Также стоит сказать, что непосредственно в схемах самих блоков питания компьютера есть, хоть и примитивные, но все-таки сетевые фильтры, схемы которых как раз и копируют большинство нерадивых производителей.

Итак, кроме рассмотренной нами ранее универсальной (а пока только она, как вы, наверно, поняли, заслуживала внимания) мы вплотную подошли к эксклюзивной схеме сетевого фильтра. Функциональную схему работы устройства можно отразить на следующих диаграммах. Т.е. на них показано прохождение переменного тока через функциональные узлы и блоки фильтра, сглаживание посторонних разнородных помех и выделение на выход «чистого» напряжения.

Более детально это можно представить так:

Для реализации поставленных задач отлично справляются сетевые фильтры, собранные по схемам ниже:

Последний рассчитан для питания не только аналоговых приборов, но и цифровой техники.

В схемах можно применять варисторы типа CNR14D221 (S14K140) 220В, 60 Дж или JVR-14N221K (S14K140) 220В или FNR-14K221 220В, 40 Дж. В качестве катушек-дросселей можно применить вот такие уже готовые – скачать. В качестве конденсаторов подавления электромагнитных помех подойдут так называемые Y конденсаторы, которые подключаются между фазой и нейтралью, эффективны при подавлении асимметричной (дифференциальной) помехи.

Подытожим, что две последние, а также универсальная схема сетевого фильтра наиболее предпочтительны. В заключение для интереса приведу стандарты сети электропитания стран мира. Приведены значения напряжения и частоты бытовой электросети различных государств, а также показан внешний вид сетевых разъемов, применяемых для подключения электроприборов.

А вообще, если вы приобрели или собрали сетевой фильтр своими руками, проверить его эффективность можно, подключив к одной розетке, например, системный блок и радиоприёмник. Но до этого стоит проверить их «совместимость» без фильтра. Если при применении сетевого фильтра уровень помех, доносящихся из динамика радиоприемника, становится заметно меньше или вообще пропадает, то устройство выполняет свои непосредственные задачи. И напоследок. Если вы все-таки покупаете готовый сетевой фильтр, то обращайте внимание на устройства, прошедшие испытания по ГОСТ Р 53362-2009, который заменяет предыдущий ГОСТ Р 50745-99.

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
УНЧ на микросхеме TDA7293

Схема изготовления сетевого фильтра под напряжение 220В > Флэтора

Содержание

Работа электротехнических и электронных устройств происходит за счёт питания сетевым током. Энергопоток через провода приносит с собой сателлитные электромагнитные поля. Они несут угрозу точности выполнения своих функций абонентами электросети. Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.

Сетевой фильтр

Принцип работы сетевого фильтра

Напряжение переменного тока в сети 220 в изменяется в синусоидальном виде. Правильная форма электрического импульса «загрязняется» электромагнитными помехами. Синусоида выглядит в виде изгибающейся линии чистого сигнала, окружённой вязью блуждающих токов, вызванных фазными перекосами, подсадками и всплесками напряжения.

График сетевого тока

Сопровождающие помехи влияют на чувствительные компоненты электронных схем различных приборов и аппаратуры. Возникает проблема очистки тока от паразитных образований. Для этого применяют сетевой фильтр (СФ).

СФ встраивают между источником сетевого тока и потребителями. Он состоит из соединённых в определённом порядке дросселей и конденсаторов. Работа фильтра – выстраивание индуктивного сопротивления катушек, не пропускающего помехи высокой частоты. Ёмкости устройства отсекают нежелательные помехи. Конденсаторы замыкают цепь и не пропускают паразитные импульсы.

Устройство простого сетевого фильтра

Блок питания для шуруповерта 12в своими руками

СФ бывают двух видов:

  1. Встроенные.
  2. Стационарные – многоканальные.

Встроенные

Компактные платы СФ являются частью внутреннего устройства различного электронного оборудования. Ими оснащается компьютерная и другая сложная техника.

Плата встраиваемого сетевого фильтра

На фото видно устройство СФ. На плате установлены следующие детали:

  • VHF – конденсатор;
  • тороидальный дроссель;
  • добавочные конденсаторы;
  • варистор;
  • индукционные катушки;
  • термический предохранитель.

Варистором называют резистор с переменным сопротивлением. При превышении нормативного порога напряжения (280 в) его сопротивление может уменьшиться в десятки раз. Варистор выполняет функцию защиты от импульсного перенапряжения.

Стационарные – многоканальные

Корпус прибора имеет несколько розеток. Благодаря этому, есть возможность подключить через фильтр всю имеющуюся электротехнику в одном помещении к одной розетке. Для очистки от радиопомех высокой частоты применяется простой LC-фильтр. Несгораемые термопредохранители предотвращают скачки напряжения. В некоторых моделях применяются одноразовые плавкие предохранители.

Самостоятельное изготовление сетевого фильтра

Сделать самый простой сетевой фильтр своими руками в домашних условиях радиолюбителю будет совсем не трудно. Для этого нужно встроить небольшую схему внутрь корпуса сетевого удлинителя с несколькими розетками. На нижнем рисунке показано, как это сделать.

СФ своими руками Точечная сварка для аккумуляторов своими руками

Устанавливают СФ в удлинителе следующим образом:

  1. Вскрывают корпус сетевого удлинителя.
  2. В параллельные ветви после выключателя и варистора впаивают резисторы R1, R2 и дроссели (индуктивные катушки) L1, L2.
  3. Затем ветви поочерёдно замыкают через конденсатор С1 и один резистор R3.
  4. Установка концевого конденсатора С2 может быть сделана в любом месте между розетками.

Важно! Если внутри корпуса удлинителя не найдётся места для второго конденсатора С2, то можно обойтись без него. Достаточно скорректировать параметры С1.

Дроссели применяются с незамкнутыми ферритовыми сердечниками индуктивностью от 10 мкГн. Конденсаторы подбираются в диапазоне 0,22-1 мкФ. Сопротивление резисторов коррелируют с планируемой мощностью потребителей. При нагрузке 500 Вт потребуются резисторы 0,22 Ом. Сопротивление R3 должно быть не меньше 500 кОм.

Видоизменённая схема

Осциллограф своими руками

Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.

Видоизменённая схема СФ

Схема СФ защиты от сетевых помех

Типовая схема сетевого фильтра является основой всех устройств такого типа за исключением дополнительных мелочей. Классикой является подключение к точкам: Земля, Фаза и Ноль. На входе устанавливается варистор VDR 1. Он подавляет всплески напряжения сетевого тока. При высоком скачке напряжения сопротивление варистора резко падает, этим он не пропускает помеху далее по схеме.

Для гашения небольших изменений напряжения используются дроссель Tr1 и три ёмкости С. Конденсаторы С1, С2 и С3 – реактивные радиодетали, постоянно меняющие уровень сопротивления. Оно при изменении частоты тока резко возрастает.

Нормальный ток беспрепятственно проходит через фильтр. В то же время помехи высокой частоты задерживаются в СФ. Сопротивление фильтра находится в прямой пропорциональной зависимости от величины частоты тока. Оба показатели одновременно возрастают, что позволяет задерживать помехи на пути к потребителю.

Обратите внимание! Трёхпроводная сеть питания может подвергаться возникновению помех на участках фаза – ноль, земля – фаза, земля – ноль. Эффективное подавление таких негативных явлений осуществляется нормальным стандартным заземлением СФ.

Пути улучшения схемы фильтра

Существует множество вариантов улучшения схемы сетевого фильтра. Один из них отличается остроумием и позволяет существенно экономить потребляемую электроэнергию. Суть метода заключается в следующем:

  1. Вскрывают корпус многоразъёмного СФ удлинителя.
  2. Одну из токоведущих шин разрезают.
  3. Отрезки соединяют с 5 вольтовым реле, рассчитанным на коммутацию тока 3А, 250 в.
  4. Два других контакта реле соединяют проводами с USB разъёмом на конце.
  5. Разъём подключают к USB входу телевизора.

В результате получается управляемая система питания, состоящая из ТВ, цифровой приставки и блока питания спутниковой антенны. Если ранее при выключении телевизора все части системы оставались в режиме ожидания, то с модернизированным фильтром они полностью отключаются. Стоит с пульта включить телеприёмник, как все коммутированные приборы тоже приводятся в действие и наоборот.

Дополнительная информация. Различные модернизированные СФ всегда можно найти на радиорынке, но стоят они довольно дорого. Поэтому намного выгоднее сделать усовершенствование устройства своими руками.

В другом случае идут по пути добавления в СФ LC-фильтра, который, помимо гашения помех от сети, понижает взаимно возникающие электрические помехи от подключённых потребителей.

Штатный варистор (470 в) часто не вызывает срабатывание автоматического предохранителя. Его меняют на аналогичное устройство, рассчитанное на напряжение 620 в. Это позволяет подавлять помехи от работающей стиральной машины, пылесоса и другой мощной электротехники.

Домашние мастера оснащают сетевые фильтры-удлинители звуковой сигнализацией. При превышении в сети уровня напряжения 280 в фильтр оповещает об этом сигналом.

Сетевой фильтр с 2-х обмоточным дросселем

СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.

Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:

  1. Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
  2. Магнитопровод оборачивают тканью и покрывают лаком.
  3. Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
  4. Намотку ведут двумя проводами в разных направлениях.
  5. Делают 10, 12 оборотов каждого проводника.
  6. Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.
СФ с 2-х обмоточным дросселем

Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.

Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.

С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.

Видео

Как сделать сетевой фильтр своими руками

Представляем очень простой фильтр подавления помех электросети 220 В. Фильтр состоит из основного фильтрующего конденсатора 470nF, разрядного резистора 560K, двух фильтрующих катушек с сердечником, двух конденсаторов Cy 4.7nF и конденсатора на выходе Cx 100nF. Сетевой фильтр имеет защиту от перегрузки по току в виде предохранителя на выходе.

Блок: 1/3 | Кол-во символов: 344
Источник: https://2shemi.ru/setevoj-filtr-svoimi-rukami/

Зачем нужен сетевой фильтр: краткое пояснение

Само название этой электронной схемы объясняет ее назначение. Слово «фильтр» указывает на отсеивание вредных помех, а «сетевой» — определяет их источник.

Другими словами, весь электрический мусор, поступающий из сети питания, отсеивается на входе нашего устройства и не влияет на качество работы бытового прибора. Основной же сигнал сети 220 вольт с частотой 50 герц беспрепятственно проходит через фильтр.

Электромагнитные помехи в сети появляются спонтанно, предугадать их появление невозможно. Даже простое включение лампы накаливания формирует начальный бросок тока, создающий зону переходных процессов.

Подключение электродвигателей холодильника, стиральной или посудомоечной машины связано с изменением индуктивного сопротивления. Ток такого включения может превышать в десятки и более раз номинальную величину нагрузки.

При этом в сети создается значительная «просадка» напряжения. А далее следует его всплеск, формирующий высоковольтные помехи.

Эти процессы протекают кратковременно. Во времена пользования аналоговой бытовой техникой они особого вреда не причиняли, а в аудио и видео аппаратуру встраивали простейшие фильтры, отлично выполняющие свои функции.

Они надежно сглаживали все эти быстрые провалы и пики напряжения своей конструкцией, предотвращая их попадание к чувствительной электронной схеме.

Важно понимать, что фильтр работает исключительно с кратковременными провалами и пиками входного сигнала. Если же подобный процесс немного затянется, то здесь нужно другое устройство — стабилизатор напряжения.

Какой вред наносят электромагнитные помехи

  1. Напряжение кратковременных импульсов накладывается на основной сигнал питания сети 220. При этом в точке амплитуды может возникнуть перенапряжение, способное прожечь рабочий слой изоляции или повредить электронный компонент.
  2. Проникающие внутрь слаботочных цепей посторонние сигналы искажают работу звукозаписывающих или звуковоспроизводящих устройств, видеотехники, телеприемников, дорогой цифровой аппаратуры.
  3. Специальная техника позволяет через электромагнитные шумы, передающиеся по нулевому проводнику, проложенному вне квартиры, получать доступ к конфиденциальной информации.

Чтобы надежно бороться с помехами необходимо знать особенности своей бытовой сети.

Блок: 2/6 | Кол-во символов: 2269
Источник: https://ElectrikBlog.ru/shemy-setevogo-filtra-220-volt-dlya-potrebitelej-dvuhprovodnoj-i-trehprovodnoj-seti/

Что потребуется — подбор инвентаря и схем

В первую очередь можно переделать под высокочастотную (ВЧ) фильтрацию купленный недорогой фильтр с варисторной защитой.

Для его модификации понадобятся: 

  • Катушки индуктивности / дроссели,
  • Варистор (можно оставить имеющийся в удлинителе, если он там был),
  • Конденсаторы,
  • Резисторы,
  • Ферритовый фильтр.

Блок: 2/4 | Кол-во символов: 333
Источник: https://filteru.ru/%D0%BA%D0%B0%D0%BA-%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C-%D1%81%D0%B5%D1%82%D0%B5%D0%B2%D0%BE%D0%B9-%D1%84%D0%B8%D0%BB%D1%8C%D1%82%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/

2 варианта подключения бытовой проводки, влияющие на работу сетевого фильтра

В наших квартирах существует 2 типа заземления электрической схемы:

  1. двухпроводная, выполненная по системе TN-C с проводниками фазы и рабочего нуля;
  2. трехпроводная (TN-S, TN-C-S. TT), дополненная РЕ-проводником или по-простому — землей.

Под них разрабатывается индивидуальная схема подавления посторонних импульсов, обеспечивающая качество работы фильтра.

В двухпроводной схеме опасность создает дифференциальный сигнал напряжения помехи, который идет только через провода фазы и нуля. Другого пути замкнутой цепи для прохождения постороннего тока высокой частоты здесь просто нет.

Для трехпроводной схемы добавляется еще синфазное напряжение помех. Оно проникает через земляной проводник и цепочку фазы либо нуля.

По этим причинам конструкции фильтров для двухпроводной и трехпроводной сети питания отличаются. Использовать их необходимо по назначению, а путать или произвольно подключать не рекомендуется.

Устройство, фильтрующее только дифференциальное напряжение помехи, не станет бороться с синфазными составляющими.

Фильтрация же посторонних в/ч токов, поступающих из двухпроводной сети, устройствами с защитой от синфазных сигналов происходит лучше, но требует их корректировки.

Когда удлинитель типа «Пилот» с контактом земли подключают в двухпроводную сеть, то он объединяет все корпуса периферии (системный блок, монитор, принтер…). В итоге через мощный земляной провод постоянно выравниваются потенциалы, уменьшается их переток по слаботочным цепям интерфейсного проводника.

Однако здесь не все так просто. Для фильтрации синфазных помех конденсаторами создается искусственная средняя точка, которая подключена в трехпроводной схеме РЕ проводником на контур земли.

По этой цепочке снимается создаваемый потенциал порядка ста вольт, образующийся на корпусах подключенного оборудования. У двухпроводной схемы магистрали отвода этого потенциала нет.

Человек, оказавшийся случайно между таким корпусом и землей, получает непередаваемые ощущения прохождения тока сквозь свое тело.

Доступ к системному блоку компьютера, подключенному через схему Pilot к двухпроводной сети необходимо ограничивать. Поэтому его помещают под компьютерный стол в отсек с хорошей вентиляцией, а в нерабочем положении отключают полностью, исключая функцию «спящий» режим.

Блок: 3/6 | Кол-во символов: 2315
Источник: https://ElectrikBlog.ru/shemy-setevogo-filtra-220-volt-dlya-potrebitelej-dvuhprovodnoj-i-trehprovodnoj-seti/

Как устроен сетевой фильтр

Рассматриваемые устройства бывают:

  • встроенные;
  • стационарные.

Первый вариант является частью какого-либо электроприбора и устанавливается непосредственно в его корпусе или блоке питания. Конструктивно изделие выполнено из конденсаторов, емкостей, катушек, термопредохранителя и варистора. Последний предназначен для защиты устройства от скачков напряжения.

Стационарные устройства выполнены в виде отдельного прибора с несколькими розетками. Это позволяет одновременно подключить к электросети несколько единиц электротехники, задействовав всего одну розетку. Очистка ВЧ-помех обеспечивается при помощи LC-фильтра. Скачки напряжения предотвращаются несгораемыми предохранителями.

Что находится внутри фильтра

В корпусе сетевого фильтра располагаются:

  • фильтрующие элементы;
  • варистор;
  • выключатель;
  • розеточные элементы.

Для подключения фильтра к сети используется сетевой кабель. Подобный конструктив применяется в качественных фильтрах.

Индукционный нагреватель металла своими руками

Сетевые фильтры для бытовой техники

Для безопасного подключения современной быттехники рекомендуется использовать сетевые фильтры. Они предназначены не только для подавления помех, но и для сглаживания скачков напряжения. Для питания старых холодильников, в которых из электрических компонентов использовались лишь двигатель компрессора и лампочка подсветки, перепады сетевого напряжения не страшны. Однако современные холодильники оснащены сложными электронно-вычислительными системами, и применение сетевого фильтра является крайне необходимым.

Аналогичная ситуация со стиральной машинкой. При наличии сетевого фильтра, в случае кратковременных скачков напряжения техника сохранит свою работоспособность благодаря накопленной энергии в конденсаторах. В стиралках, оснащенных сенсорным управлением, еще с завода должны устанавливаться фильтрующие устройства. В противном случае сенсор при скачках напряжения практически сразу выходит из строя.

Все это указывает на то, что для питания техники в квартире следует устанавливать фильтрующие приборы. К тому же сегодня есть широкий выбор таких устройств, рассчитанных на потребление как в 1 кВт, так и на 4 кВт.

Блок: 3/4 | Кол-во символов: 2176
Источник: https://mainavi.ru/kvartira/samodelnyj-setevoj-filtr-na-220-v/

Схема сетевого фильтра 220в

Простой варисторный фильтр выглядит так.

Возможны две простые его модификации.

Первая на RLC-фильтре:

Вторая схема на LC-фильтре:

Такие элементы и схемы выбраны не случайно, так как все комплектующие могут поместиться в старый корпус удлинителя без необходимости монтирования отдельного корпуса на проводе и т.п.

Принцип работы, как и всех низкочастотных LC-фильтров, прост: 

  1. Высокочастотные колебания, попадая на катушку индуктивности, повышают ее сопротивление и потому не проходят дальше (сопротивление индукции прямо пропорционально частоте),
  2. Попадая на контакты конденсатора высокие частоты гасятся при правильном подборе емкости (сопротивление емкости при таком подключении обратно пропорционально частоте колебаний электрического тока).

На обоих схемах параллельно конденсатору включается резистор с большим сопротивлением. Он выполняет роль нагрузки для конденсатора при отключении питания (на конденсаторе может накапливаться свободный заряд, который будет опасен даже после полного отключения фильтра от сети переменного тока).

Ферритовый фильтр лучше всего приобрести разъемным по диаметру кабеля удлинителя. Его назначение в работе схемы – гашение высокочастотных помех по цепи питания за счет повышения индуктивности проводника, а также поглощения излучений самим ферритом. Это отличное решение для подключения к сети питания цифровой техники.

Возможны и другие реализации сетевого электрического фильтра. В качестве примера можно привести схемы, используемые в технике Pilot.

И т.д.

Инструкция по сборке простого сетевого фильтра своими руками

Собрать фильтр из указанных схем (рис.2 и рис.3) достаточно просто, для этого не понадобится печатных плат или отдельного корпуса на удлинителе. При правильном подборе габаритов элементов и их компоновке можно уместить их в корпусе недорогого варисторного сетевого фильтра.

Имеющаяся цепь разрезается (контакты от варистора к розеткам, сам варистор оставляется), элементы размещаются в соответствие со схемой и спаиваются.

Должно получится так по схеме из рис.2:

И так по рис.3:

Только катушки индуктивности необходимо разместить перпендикулярно друг другу.

Элементы схем 

Касательно схемы с рис.2. Сопротивления R1 и R2 следует подбирать исходя из предполагаемой нагрузки. Например, при фактической мощности потребителя до 250 Вт, подойдут резисторы 0,82 Ом, до 380 Вт – 0,36 Ом, до 500 Вт – 0,22 Ом. Если планируется большая мощность – резисторы можно исключить из схемы, однако работа дросселей ухудшится.

Дроссели L1 и L2 – должны иметь ферритовый сердечник, показатель максимально допустимого тока должен быть не менее планируемого тока нагрузки, индуктивность – от 10 мкГн до 10 мГн (лучше всего в большую сторону, то есть чем больше, тем лучше, но до 10 мГн).

Конденсаторы C1 и C2 можно объединить в один, если позволяет свободное место и показатели. Или наоборот, набрать несколькими параллельно соединенными, если позволяет свободное место. Лучше всего использовать пленочные емкости от 0,22 до 1 мкФ. Максимально допустимое напряжение лучше взять с запасом (на случай помех со скачками напряжения), например, до 680 В.

Сопротивление R3 должно быть в пределах 0,5-1,5 МОм. Мощность тоже лучше взять с запасом для лучшей теплоотдачи – 0,5 Вт.

В схеме на рис.3 изменяются конденсатор и катушки, последние обладают самыми оптимальными показателями индуктивности при миниатюрных габаритах и стоящих перед ними задач. Соответственно меньше деталей к пайке.

Блок: 3/4 | Кол-во символов: 3422
Источник: https://filteru.ru/%D0%BA%D0%B0%D0%BA-%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C-%D1%81%D0%B5%D1%82%D0%B5%D0%B2%D0%BE%D0%B9-%D1%84%D0%B8%D0%BB%D1%8C%D1%82%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/

Меры предосторожности — что стоит учесть

Самодельный сетевой фильтр 220в своими руками – это сложное техническое устройство. Его сборка невозможна без знаний в области электротехники.

Все работы должны проводиться с соблюдением мер безопасности. В противном случае возможно поражение электрическим током.

Как и было сказано выше, конденсаторы рассчитаны на высокое напряжение. Они могут накапливать остаточный заряд. Удар током будет возможен даже после полного отключения фильтра от сети переменного тока. Поэтому наличие параллельно включенного сопротивления обязательно!

Перед пайкой следует убедиться в исправности всех элементов (тестером замеряются основные параметры и сравниваются с заявленными).

Не стоит допускать пересечения проводов, особенно в местах потенциального нагрева (на резисторах, оголенных контактах и т.п.). Перед включением в сеть обязательно следует убедиться («прозвонить» тестером) в отсутствии замыкания.

Блок: 4/4 | Кол-во символов: 928
Источник: https://filteru.ru/%D0%BA%D0%B0%D0%BA-%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C-%D1%81%D0%B5%D1%82%D0%B5%D0%B2%D0%BE%D0%B9-%D1%84%D0%B8%D0%BB%D1%8C%D1%82%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/

Схема фильтра защиты от сетевых помех

Этот фильтр — очень простая и аккуратная конструкция. В плане усовершенствования конструкции он может включать в себя дроссель на тороидальном сердечнике, защиту от перенапряжения на термисторах и варисторах.

Дроссели здесь использованы от фильтра EMI / RFI от импульсного источника питания, естественно дросселя с обмотками, намотанными на одно ядро, конечно будут в приоритете для такого фильтра, но не у каждого они есть (и есть желание грамотно намотать их), поэтому выбран упрощенный вариант — все равно будет отличная фильтрация.

Резистор немного нагревается, так что желательно заменить его более мощным, потому что с некоторым увеличением напряжения сети выше 250 В он может нагреться уже значительно.

Плавкий предохранитель лучше чтоб находился за розеткой, чтобы конденсаторы не вызывали пожар при коротком замыкании в случае сильного перенапряжения. По возможности добавьте варисторы высокой энергии для защиты от перенапряжения. Что касается резистора, это должен быть металлизированный резистор из высоковольтной серии. Вот пример промышленного фильтра:

Использование небольших расстояний между дорожками платы также оправдано, особенно когда речь идет о защите от перенапряжения. На приведенном ниже рисунке показано установленное на заводе решение по защите от перенапряжения, конечно же это не заменяет искровой разрядник, но как отсутствие какой-либо защиты вообще обеспечит большие потери в случае возможной проблемы.

Этот высокоэнергетический искровой промежуток, так называемая молниезащита. Его задача — взять на себя и уничтожить большую часть энергии в случае повреждения варистора. Предполагается, что в случае разряда высокой энергии между электродами искрового промежутка возникает дуга, вызывающая не только потерю большей части энергии, но и распыление медных дорожек, вызывающих металлизацию зазора и, следовательно, короткое замыкание на землю. Условием правильной работы является требование подключения физического заземления, а также автоматических предохранителей и выключателей остаточного тока. Такие фильтры и подобные схемы искрового разрядника находятся практически на любом оборудовании, таком как сетевые фильтры, источники питания, инверторы, как правило имеющие физическое соединение с землей.

К сожалению, когда кажущееся заземление построено с использованием конденсаторов и варисторов, которые дополнительно подключены к выходной массе источника питания, это обычно приводит к повреждению питаемого оборудования. В общем это соответствует условиям противопожарной защиты, предотвращая воспламенение низкотемпературных компонентов, что может вызвать пожар.

Блок: 2/3 | Кол-во символов: 2645
Источник: https://2shemi.ru/setevoj-filtr-svoimi-rukami/

2 простые схемы для повторения своими руками в двухпроводной сети

Основное преимущество этих конструкций состоит в том, что они занимают мало места. Все компоненты можно встроить внутрь корпуса обычного заводского удлинителя.

Схема LC-фильтра

Вначале показываю схему попроще, обеспечивающую вполне приемлемые результаты.

Токовый ключ SC обеспечивает защиту подключенных потребителей от перегрузок и токов коротких замыканий.

Высокоомный резистор на 1 мегаом практически никак не влияет на прохождение сигналов. Его роль — разряд конденсатора C при выключении питания для повышения безопасной эксплуатации.

Схема RLC-фильтра

Предыдущую конструкцию можно доработать добавкой низкоомных резисторов и изменением характеристик электронных компонентов.

Номиналы конденсаторов показаны на схемах. Их изоляция обкладок должна выдерживать рабочее напряжение сети, увеличенное импульсом помехи. Подбирайте их минимум на 300 вольт, а лучше — больше.

Обе схемы гасят входящие высокочастотные помехи индуктивными сопротивлениями дросселей и емкостными — конденсаторов. Ликвидация высоковольтных импульсов возложена на варистор.

Блок: 5/6 | Кол-во символов: 1105
Источник: https://ElectrikBlog.ru/shemy-setevogo-filtra-220-volt-dlya-potrebitelej-dvuhprovodnoj-i-trehprovodnoj-seti/

Видоизменённая схема

Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.

Видоизменённая схема СФ

Блок: 5/9 | Кол-во символов: 283
Источник: https://amperof.ru/sovety-elektrika/setevoj-filtr-svoimi-rukami.html

Промышленные и самодельные фильтры для трехпроводной системы питания

Среди серийно выпускаемых изделий имеются довольно полезные технические решения, на которые домашнему мастеру стоит обратить внимание.

Краткий обзор полезных функций заводских моделей

Одной из популярных разработок, широко представленной в торговле, считается серия фильтров Pilot разных конструкций.

Принципиальная электрическая схема сетевого фильтра Пилот показана на картинке для облегчения понимания его возможностей.

Остановлюсь на задачах, которые призван решать Pilot XPro, специально созданный для комфортной работы, продления ресурса подключенных потребителей и снижения расхода электричества. Это:

  • защита варисторами от импульсных перенапряжений;
  • предотвращение действия высокочастотных помех индуктивно-емкостными сопротивлениями;
  • управление электропитанием за счет введения функции Master Control;
  • защита от перенапряжений, связанных с обрывом нуля;
  • плавное отключение и включение оборудования под нагрузку функцией Zero Start за счет исключения бросков тока встроенной схемой;
  • автоматика включения потребителей после устранения аварийного пропадания питания;
  • два уровня защиты от токовых перегрузок или коротких замыканий за счет плавкого предохранителя и биметаллического расцепителя;
  • индикация подключения к сети и уровня напряжения питания;
  • контроль температуры и автоматическое отключение при перегреве.

Функция Master Control определяет одну розетку основной (как master-розетка). На нее подключают основной потребитель мощностью более 50ватт, например, системный блок компьютера.

При его включении автоматика одновременно запитывает три других розетки с периферийным оборудованием. Она же отключает их при снятии питания с основного блока.

На корпусе имеются розетки, не управляемые микропроцессорной автоматикой. Их используют для освещения, телефона, другого оборудования

Более подробные сведения об этом оборудовании можете узнать в коротком видеоролике владельца ZIS Company.

2 самодельные схемы, обеспечивающие качественную работу аудиоустройств

Сразу замечу, что нашел их я на просторах интернета и не проверял. Однако автор этих разработок sergeon вызвал доверие своими комментариями и объяснениями. Поэтому публикую их для повторения в порядке сложности.

Простой сетевой фильтр для аудио

Слева показан десятиомный резистор, подключенный параллельно с диодами, расположенными встречно между корпусом аудиоприбора и землей. Диоды устраняют токи утечек, которые могут возникнуть в этой цепочке. Резистор же пропускает их небольшую величину, ограничивая вероятность образования перенапряжение.

Синфазный трансформатор собран из двух одинаковых индуктивностей 4,7 mH, подключенных встречно. Он устраняет синфазные помехи, но хорошо пропускает основной сигнал.

Его работу дополняют два конденсатора по 1nF, соединенные средней точкой с контуром земли. По этому пути они отводят ослабленные трансформатором помехи, не пропускают их дальше в рабочую схему.

На конечном участке пути сигнала работает резистивно-емкостная цепочка Цобеля. Она предохраняет всю конструкцию от бросков ЭДС самоиндукции, которые появляются при отключениях питания.

Улучшенная конструкция сетевого фильтра для истинных меломанов

Ниже показываю вторую, более доработанную разработку этого же автора.

Принцип ее работы кратко поясню по маршруту прохождения основного сигнала: слева на право. Индексом PGND помечен защитный РЕ-проводник, а GND — это корпус устройства.

Сразу на входе две емкости по 1nF снижают электромагнитные синфазные шумы. Диоды и резистор работают, как и в предыдущем случае.

Сюда же добавлен предохранитель с плавкой вставкой на 1 ампер. Его вполне достаточно для защиты внутренней схемы.

Но, если ток потребления у вашей аудио системы большой и предохранитель выбивается от нагрузки, то всю схему этого девайса необходимо пересчитать под повышенную мощность и заново выполнить ее перемонтаж.

Роль варистора R2 уже описана выше. Терморезистор же R3 здесь добавлен для снижения величины бросков тока во время включения. Он сберегает ресурс оборудования, частично срезает частоту.

Два резистора R4 и R5 автоматически разряжают конденсатор C3 при отключении питания, а их последовательное включение повышает надежность системы за счет обеспечения запаса по величине напряжения.

Индуктивность первого синфазного трансформатора повышена до 25 миллигенри.

Емкости C4 и C5 дополнительно погашают синфазные шумы на землю. Но в двухпроводной схеме питания они просто затруднят работу трансформатора Т1, шунтируя его выход. Для такого случая предусмотрена перемычка на J7. Ее снятие обеспечивает подключение T1 в режим борьбы только с дифференциальными помехами.

Далее идут две индуктивности L1, L2 и емкость C6, создающие главное препятствие для диф помех.

Синфазный трансформатор T2 качественно завершает борьбу с посторонними электромагнитными сигналами.

Дополнительной задачей емкости С7 является снижения искрения в контактах выключателя. А последние элементы C8 и R6 подавляют образование резонансных явлений выключателем, исключают искрение.

Заканчивая статью хочется еще раз обратить внимание, что схемы сетевого фильтра устраняют помехи только в двух случаях, когда они приходят:

  1. по земляному проводу;
  2. или по сети питания.

Если же помеха наводится после фильтра на подключенный к оборудованию слаботочный кабель или внутреннюю схему самого аппарата, то здесь требуется применять совсем другие меры.

Если у вас есть что добавить к изложенному мной материалу, то воспользуйтесь разделом .

Блок: 6/6 | Кол-во символов: 5427
Источник: https://ElectrikBlog.ru/shemy-setevogo-filtra-220-volt-dlya-potrebitelej-dvuhprovodnoj-i-trehprovodnoj-seti/

Сетевой фильтр с 2-х обмоточным дросселем

СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.

Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:

  1. Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
  2. Магнитопровод оборачивают тканью и покрывают лаком.
  3. Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
  4. Намотку ведут двумя проводами в разных направлениях.
  5. Делают 10, 12 оборотов каждого проводника.
  6. Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.

СФ с 2-х обмоточным дросселем

Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.

Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.

С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.

Блок: 8/9 | Кол-во символов: 1903
Источник: https://amperof.ru/sovety-elektrika/setevoj-filtr-svoimi-rukami.html

Кол-во блоков: 17 | Общее кол-во символов: 31367
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://ElectrikBlog.ru/shemy-setevogo-filtra-220-volt-dlya-potrebitelej-dvuhprovodnoj-i-trehprovodnoj-seti/: использовано 4 блоков из 6, кол-во символов 11116 (35%)
  2. https://filteru.ru/%D0%BA%D0%B0%D0%BA-%D1%81%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C-%D1%81%D0%B5%D1%82%D0%B5%D0%B2%D0%BE%D0%B9-%D1%84%D0%B8%D0%BB%D1%8C%D1%82%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/: использовано 3 блоков из 4, кол-во символов 4683 (15%)
  3. https://elquanta.ru/sovety/setevojj-filtr-svoimi-rukami.html: использовано 1 блоков из 5, кол-во символов 1285 (4%)
  4. https://mainavi.ru/kvartira/samodelnyj-setevoj-filtr-na-220-v/: использовано 2 блоков из 4, кол-во символов 9108 (29%)
  5. https://amperof.ru/sovety-elektrika/setevoj-filtr-svoimi-rukami.html: использовано 2 блоков из 9, кол-во символов 2186 (7%)
  6. https://2shemi.ru/setevoj-filtr-svoimi-rukami/: использовано 2 блоков из 3, кол-во символов 2989 (10%)

NorthReliance Technologies | Устройства безопасности и противодействия шпионажу


Устройство представляет собой техническое средство активной защиты информации для объектов сверхсекретной категории. Устройство обеспечивает защиту систем связи и передачи данных, использующих однофазное 220 В с заземляющей сетью в качестве канала передачи информации от любых устройств перехвата путем генерации цифрового шума широкого диапазона.SEL SP-44 предотвращает утечку информации через линии питания и заземления, обеспечивая там маскирующий шум в диапазоне частот 0,01 - 300 МГц. Он также подавляет прослушивание телефонных разговоров, которые используют эти линии в качестве канала передачи данных.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Фильтр предназначен для защиты от утечки информации по линиям питания 220 В.Применяется для электромагнитной развязки электропитания электронного оборудования от электрической сети.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Шумофильтр ФСП-1Ф-10А-1,5, с пониженной утечкой реактивного тока, предназначен для защиты электронных устройств и компьютерной техники от утечки информации через электрические цепи и заземление. линии 220 В, 50 Гц или постоянного тока до 220 В, а также обеспечивающие защиту от импульсных и радиопомех за счет повышения помехозащищенности в диапазоне частот от 150 кГц до 2000 МГц.Обеспечивает защита от скачков напряжения в сети. Дополнительно обеспечивает фильтрацию высокочастотных помех в нагрузке цепи заземления.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

ФСП-3Ф-15А предназначен для защиты электронных устройств и компьютерной техники от утечки информации через электрические цепи и заземляющие линии электропередачи 220/380 В, 50 Гц, а также обеспечивает защиту. от импульсных и радиопомех за счет повышения помехозащищенности в диапазоне частот 0.От 15 МГц до 1000 МГц. Фильтр изготавливается пятипроводным, с изолированным нулевым проводом, с рабочим ток до 15А на фазу. Может использоваться в линиях постоянного тока напряжением до 300 В с рабочим током до 30 А.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Сетевой фильтр для защиты от утечки данных в однофазных двухпроводных сетях электроснабжения и подавления внешних помех по линиям электроснабжения 220В / 50Гц с максимальной рабочий ток 10А в диапазоне частот 0,15 МГц 1000 МГц.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Сетевой фильтр для защиты информации от утечки по однофазным двухпроводным линиям питания и максимального подавления напряжения внешних помех питающей сети. рабочий ток 40В.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Сетевой фильтр для защиты информации от утечки через четырехпроводные (трехфазные) сети электропитания напряжением 220/380 В частот.50 Гц с максимальным рабочим током 100А ответственного объектов информатизации и связи, а также для подавления внешних помех в электросети в диапазоне частот 20 Гц 1000 МГц.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

Сетевой фильтр для защиты информации от утечки по четырехпроводным (трехфазным) сетям электроснабжения напряжением 220/380 В частотой 50 Гц с максимальным рабочим током 200 ответв. объекты информатизации и связи, а также для подавления внешних помех в электросети в диапазоне от 20 кГц до 1000 МГц.

Подробнее> & nbsp & nbsp Запросить дополнительную информацию>

NorthReliance Technologies

92 Caplan Ave, Suite 309, Barrie, ON, L4N 9J2, Канада & nbsp | & nbsp Тел .: +14169874168 & nbsp Факс: +18668000565

Источники питания, схемы фильтров

  • Изучив этот раздел, вы сможете:
  • Опишите принцип действия емкостного конденсатора в базовых источниках питания.
  • • Резервуар-конденсатор действия.
  • • Влияние накопительного конденсатора на постоянную составляющую.
  • • Влияние накопительного конденсатора на ток диода.
  • Опишите принципы работы фильтра нижних частот, используемого в базовых источниках питания.
  • • LC-фильтры.
  • • RC-фильтры.

Компоненты фильтра

Типичную схему фильтра источника питания можно лучше всего понять, разделив схему на две части: накопительный конденсатор и фильтр нижних частот.Каждая из этих частей способствует удалению оставшихся импульсов переменного тока, но по-разному.

Резервуарный конденсатор

Рис. 1.2.1 Резервуарный конденсатор

На рис. 1.2.1 показан электролитический конденсатор, используемый в качестве накопительного конденсатора, названный так потому, что он действует как временный накопитель выходного тока источника питания. Выпрямительный диод подает ток для зарядки накопительного конденсатора в каждом цикле входной волны. Накопительный конденсатор представляет собой большой электролитический конденсатор, обычно на несколько сотен или даже тысячу и более микрофарад, особенно в БП с сетевой частотой.Это очень большое значение емкости требуется, потому что накопительный конденсатор при зарядке должен обеспечивать достаточный постоянный ток, чтобы поддерживать стабильный выходной сигнал блока питания в отсутствие входного тока; то есть во время промежутков между положительными полупериодами, когда выпрямитель не проводит ток.

Действие емкостного конденсатора на полуволновую выпрямленную синусоидальную волну показано на рис. 1.2.2. В течение каждого цикла анодное переменное напряжение выпрямителя увеличивается до Vpk. В некоторой точке, близкой к Vpk, анодное напряжение превышает катодное напряжение, выпрямитель проводит ток, и протекает импульс тока, заряжающий накопительный конденсатор до значения Vpk.

Рис. 1.2.2 Действие резервуарного конденсатора

Когда входная волна проходит через Vpk, напряжение на аноде выпрямителя падает ниже напряжения конденсатора, выпрямитель становится смещенным в обратном направлении и проводимость прекращается. Цепь нагрузки теперь питается только от емкостного конденсатора (отсюда и необходимость в конденсаторе большой емкости).

Конечно, даже несмотря на то, что резервуарный конденсатор имеет большое значение, он разряжается по мере того, как питает нагрузку, и его напряжение падает, но не очень сильно. В какой-то момент во время следующего цикла подключения к сети входное напряжение выпрямителя поднимается выше напряжения на частично разряженном конденсаторе, и резервуар снова заряжается до пикового значения Vpk.

Пульсация переменного тока

Величина разряда накопительного конденсатора в каждом полупериоде определяется током, потребляемым нагрузкой. Чем выше ток нагрузки, тем сильнее разряд, но при условии, что потребляемый ток не является чрезмерным, количество переменного тока, присутствующего на выходе, значительно уменьшается. Обычно размах амплитуды оставшегося переменного тока (называемого пульсацией, поскольку волны переменного тока теперь значительно уменьшены) не превышает 10% от выходного напряжения постоянного тока.

Выход постоянного тока выпрямителя без накопительного конденсатора равен 0.637 Впик для двухполупериодных выпрямителей или 0,317 Впик для однополупериодных. Добавление конденсатора увеличивает уровень постоянного тока выходной волны почти до пикового значения входной волны, как видно из рис. 1.1.9.

Для получения наименьших пульсаций переменного тока и наивысшего уровня постоянного тока было бы разумно использовать максимально возможный резервуарный конденсатор. Однако есть загвоздка. Конденсатор обеспечивает ток нагрузки большую часть времени (когда диод не проводит ток). Этот ток частично разряжает конденсатор, поэтому вся энергия, используемая нагрузкой в ​​течение большей части цикла, должна быть восполнена за очень короткое оставшееся время, в течение которого диод проводит в каждом цикле.

Формула, связывающая заряд, время и ток, гласит, что:

Q = Оно

Заряд (Q) конденсатора зависит от величины тока (I), протекающего в течение времени (t).

Следовательно, чем короче время зарядки, тем больший ток должен подавать диод для его зарядки. Если конденсатор очень большой, его напряжение практически не будет падать между импульсами зарядки; это вызовет очень небольшую пульсацию, но потребует очень коротких импульсов гораздо более высокого тока для зарядки накопительного конденсатора.И входной трансформатор, и выпрямительные диоды должны обеспечивать этот ток. Это означает использование более высокого номинального тока для диодов и трансформатора, чем было бы необходимо для емкостного конденсатора меньшего размера.

Таким образом, есть преимущество в уменьшении емкости резервуарного конденсатора, что позволяет увеличить имеющуюся пульсацию, но это может быть эффективно устранено путем использования ступеней фильтра нижних частот и регулятора между резервуарным конденсатором и нагрузкой.

Это влияние увеличения размера резервуара на ток диода и трансформатора следует учитывать при любых операциях по обслуживанию; Замена накопительного конденсатора на конденсатор большей емкости, чем в исходной конструкции, «для уменьшения гула сети» может показаться хорошей идеей, но может привести к повреждению выпрямительного диода и / или трансформатора.

При двухполупериодном выпрямлении характеристики резервуарного конденсатора по устранению пульсаций переменного тока значительно лучше, чем с полуволновым, для резервуарного конденсатора того же размера пульсация составляет примерно половину амплитуды, чем в полуволновых источниках, потому что в двухполупериодных схемах периоды разряда короче, так как накопительный конденсатор заряжается с частотой, вдвое превышающей частоту полуволновой конструкции.

Фильтры нижних частот

Хотя полезный источник питания может быть изготовлен с использованием только резервуарного конденсатора для устранения пульсаций переменного тока, обычно необходимо также включать фильтр нижних частот и / или ступень регулятора после резервуарного конденсатора, чтобы удалить любые оставшиеся пульсации переменного тока и улучшить стабилизацию. выходного напряжения постоянного тока в условиях переменной нагрузки.

Рис. 1.2.3 LC-фильтр

Рис. 1.2.4 RC-фильтр

Фильтры нижних частот LC или RC могут использоваться для удаления пульсации, остающейся после накопительного конденсатора.LC-фильтр, показанный на рис. 1.2.3, более эффективен и дает лучшие результаты, чем RC-фильтр, показанный на рис. 1.2.4, но для базовых источников питания конструкции LC менее популярны, чем RC, поскольку катушки индуктивности, необходимые для фильтрации Для эффективной работы на частотах от 50 до 120 Гц необходимы большие и дорогие ламинированные или тороидальные сердечники. Однако в современных конструкциях, использующих импульсные источники питания, где любые пульсации переменного тока имеют гораздо более высокие частоты, можно использовать индукторы с ферритовым сердечником гораздо меньшего размера.

Фильтр нижних частот пропускает низкую частоту, в данном случае постоянный ток (0 Гц), и блокирует более высокие частоты, будь то 50 Гц или 120 Гц в базовых схемах или десятки кГц в схемах с переключением.

Реактивное сопротивление (X C ) конденсатора в любом из фильтров очень низкое по сравнению с сопротивлением резистора R или реактивным сопротивлением дросселя X L на частоте пульсаций. В конструкциях RC сопротивление R должно быть довольно низким, так как весь ток нагрузки, может быть, несколько ампер, должен проходить через него, выделяя значительное количество тепла. Поэтому типичное значение составляет 50 Ом или меньше, и даже при этом значении обычно необходимо использовать большой проволочный резистор.Это ограничивает эффективность фильтра, поскольку соотношение между сопротивлением R и реактивным сопротивлением конденсатора не будет больше примерно 25: 1. Тогда это будет типичный коэффициент уменьшения амплитуды пульсаций. При включении фильтра нижних частот на резисторе теряется некоторое напряжение, но этот недостаток компенсируется лучшими характеристиками пульсаций, чем при использовании только емкостного конденсатора.

LC-фильтр работает намного лучше, чем RC-фильтр, потому что можно сделать соотношение между X C и X L намного большим, чем соотношение между X C и R.Обычно соотношение в LC-фильтре может составлять 1: 4000, что дает гораздо лучшее подавление пульсаций, чем RC-фильтр. Кроме того, поскольку сопротивление постоянному току катушки индуктивности в LC-фильтре намного меньше, чем сопротивление R в RC-фильтре, проблема выделения тепла большим постоянным током значительно снижается в LC-фильтрах.

С помощью комбинированного накопительного конденсатора и фильтра нижних частот можно удалить 95% или более пульсаций переменного тока и получить выходное напряжение, примерно равное пиковому напряжению входной волны.Однако простой источник питания, состоящий только из трансформатора, выпрямителя, резервуара и фильтра нижних частот, имеет некоторые недостатки.

Рис. 1.2.5 Адаптер постоянного тока

Выходное напряжение блока питания имеет тенденцию падать по мере увеличения тока на выходе. Это связано с:

а. Резервуарный конденсатор разряжается больше в каждом цикле.

г. Большее падение напряжения на резисторе или дроссель в фильтре нижних частот при увеличении тока.

Эти проблемы можно в значительной степени преодолеть, включив на выходе источника питания каскад регулятора, как описано в модуле 2 источника питания.

Однако основные схемы питания, описанные здесь в Модуле 1, обычно используются в обычных адаптерах постоянного тока типа «настенная бородавка», поставляемых со многими электронными продуктами. Наиболее распространенные версии включают трансформатор, мостовой выпрямитель и иногда накопительный конденсатор. Дополнительная фильтрация и регулировка / стабилизация обычно выполняются в цепи, питаемой от адаптера.

Как можно улучшить выходную мощность базового источника питания с помощью схем регулирования, объясняется в Модуле 2 источников питания

Конструкция входного фильтра для импульсных источников питания

% PDF-1.4 % 1 0 obj> поток application / pdf Конструкция входного фильтра для импульсных источников питания

  • Замечания по применению
  • Texas Instruments, Incorporated [SNVA538,0]
  • iText 2.1.7 от 1T3XTSNVA5382011-12-07T23: 10: 50.000Z2011-12-07T23: 10: 50.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Сеть фильтров, 220 В, Startrac 18/35/39/40/45 [FILTER220R] Восстановленный / Обмен *

    Восстановленное / Обменная политика

    Когда вы видите термин «Восстановленное / Обменяемое» как часть описания предмета, это означает, что мы предлагаем полностью отремонтированную запасную часть на основе обмена.Большинство товаров в разделах «ЭЛЕКТРОНИКА» и «ВОССТАНОВЛЕНИЕ И ОБНОВЛЕНИЕ» относятся к категории «Восстановленное / Обменяемое».

    Когда вы заказываете сменную деталь у Glide, мы отправим вам полностью восстановленную деталь с 90-дневной ограниченной гарантией. Настоящая гарантия не распространяется на выход из строя деталей из-за внешних обстоятельств, таких как скачки напряжения и связанные с ними детали, которые являются некондиционными или нефункциональными. Например, по опыту мы знаем, что если контроллер мотора выходит из строя, чаще всего возникают посторонние факторы (помимо MCB), которые в первую очередь вызывали проблему (беговые дорожки не на выделенной цепи, плохое состояние ремня / деки из-за на отсутствие смазки и тому подобное).

    Перед отправкой заменяемой части мы запросим подпись на исходном Заказе на продажу, чтобы обозначить ваше согласие с условиями обмена - то есть, если мы не получим вашу нерабочую часть (ядро), вы будете счет за ядро ​​вам не вернули. Сумма основного заряда варьируется в зависимости от заменяемой детали. Это будет полностью прописано в документе, который вас попросят подписать.

    После получения отремонтированной детали тщательно упакуйте и верните сердечник, используя этикетку предоплаты, прилагаемую к отремонтированной детали, чтобы завершить обмен.Пожалуйста, позвоните в отдел продаж Glide по телефону (714) 862-2307, если у вас есть какие-либо вопросы о вашей транзакции.

    Ремонт

    Одна из самых сильных сторон Glide - это способность исправить то, что сломано! Если у вас есть сломанные двигатели, верхняя / нижняя электроника, приводы, тормозные генераторы, ролики или сварные детали, позвоните нам по телефону 866-637-4600, чтобы мы обсудили вашу ситуацию и назначили ремонтный номер для транзакции. ВАЖНО: Напишите свой ремонтный номер на коробке и отправьте сломанную деталь по адресу:

    .

    Продукты для фитнеса Glide
    1609 E.McFadden Avenue, Suite F
    Santa Ana, CA 92705

    После завершения ремонта мы уведомим вас о доставке отремонтированной детали и предоставим информацию для отслеживания.

    Сеть фильтров, 220 В, беговые дорожки Startrac Pro [FILTERPRO220R] Восстановленное / обменянное *

    Восстановленное / Обменная политика

    Когда вы видите термин «Восстановленное / Обменяемое» как часть описания предмета, это означает, что мы предлагаем полностью отремонтированную запасную часть на основе обмена.Большинство товаров в разделах «ЭЛЕКТРОНИКА» и «ВОССТАНОВЛЕНИЕ И ОБНОВЛЕНИЕ» относятся к категории «Восстановленное / Обменяемое».

    Когда вы заказываете сменную деталь у Glide, мы отправим вам полностью восстановленную деталь с 90-дневной ограниченной гарантией. Настоящая гарантия не распространяется на выход из строя деталей из-за внешних обстоятельств, таких как скачки напряжения и связанные с ними детали, которые являются некондиционными или нефункциональными. Например, по опыту мы знаем, что если контроллер мотора выходит из строя, чаще всего возникают посторонние факторы (помимо MCB), которые в первую очередь вызывали проблему (беговые дорожки не на выделенной цепи, плохое состояние ремня / деки из-за на отсутствие смазки и тому подобное).

    Перед отправкой заменяемой части мы запросим подпись на исходном Заказе на продажу, чтобы обозначить ваше согласие с условиями обмена - то есть, если мы не получим вашу нерабочую часть (ядро), вы будете счет за ядро ​​вам не вернули. Сумма основного заряда варьируется в зависимости от заменяемой детали. Это будет полностью прописано в документе, который вас попросят подписать.

    После получения отремонтированной детали тщательно упакуйте и верните сердечник, используя этикетку предоплаты, прилагаемую к отремонтированной детали, чтобы завершить обмен.Пожалуйста, позвоните в отдел продаж Glide по телефону (714) 862-2307, если у вас есть какие-либо вопросы о вашей транзакции.

    Ремонт

    Одна из самых сильных сторон Glide - это способность исправить то, что сломано! Если у вас есть сломанные двигатели, верхняя / нижняя электроника, приводы, тормозные генераторы, ролики или сварные детали, позвоните нам по телефону 866-637-4600, чтобы мы обсудили вашу ситуацию и назначили ремонтный номер для транзакции. ВАЖНО: Напишите свой ремонтный номер на коробке и отправьте сломанную деталь по адресу:

    .

    Продукты для фитнеса Glide
    1609 E.McFadden Avenue, Suite F
    Santa Ana, CA 92705

    После завершения ремонта мы уведомим вас о доставке отремонтированной детали и предоставим информацию для отслеживания.

    Конструкция фильтра блока питания для печатной платы

    Неправильная конструкция фильтра блока питания приводит к ненадежному оборудованию. Это удручающе распространенное явление. Правильная конструкция фильтра блока питания помогает устранить целый класс загадочных проблем цепи и улучшает шунтирование блока питания.Чтобы создать лучший дизайн, выполните следующие действия:

    1. Ознакомьтесь с требованиями к фильтрам блока питания.
    2. Используйте простые эмпирические правила, чтобы найти значения компонентов.
    3. Итерируйте проект с помощью симулятора схем.

    Высокочастотные пульсации проходят через линейный регулятор. Пульсации возникают из-за импульсных источников питания, цифровых схем и радиопомех. На частотах выше 10 кГц большинство линейных регуляторов начинают терять эффективность.Небольшие байпасные конденсаторы, распределенные между микросхемами, становятся эффективными на частоте около 1 МГц. Простой развязывающий фильтр источника питания, состоящий из катушки индуктивности и конденсатора, покрывает промежуток между 10 кГц и 1 МГц. Правильная конструкция развязывающего фильтра гарантирует, что он не вызовет больше проблем, чем решит.

    На приведенной выше диаграмме показаны типичные диапазоны частот фильтрации источника питания. Тщательная конструкция с использованием высокопроизводительных компонентов может расширить эти частотные диапазоны, и не все конструкции предъявляют одинаковые требования к подавлению пульсаций.

    Хороший фильтр источника питания может быть построен из одной катушки индуктивности и демпфированного конденсатора. Это называется LC-фильтром. Возможны другие конструкции с большим или меньшим количеством компонентов. Процесс проектирования состоит в том, чтобы сначала сформировать требования для катушки индуктивности L B , выбрать кандидата на роль катушки индуктивности, а затем спроектировать вокруг нее фильтр. Если подходящий фильтр не может быть сконструирован, выясните, что не так с индуктором, выберите лучший индуктор и попробуйте еще раз.

    В примере конструкции предполагается, что регулятор источника питания находится вне платы, и регулируемое напряжение поступает через разъем. При наличии местного регулятора конструкция проще и иногда фильтр источника питания может быть уменьшен.

    Фильтр блока питания идет после регулятора, поэтому он должен иметь низкое падение напряжения постоянного тока. В таблице катушки индуктивности указано значение сопротивления постоянному току. Падение напряжения примерно на 20% больше, чем это сопротивление, умноженное на силу тока. Дополнительные 20% объясняют увеличение сопротивления медного провода индуктора при более высоких температурах.

    Выбор индуктора

    Значение индуктивности, необходимое для фильтра, не так сложно вычислить. Он должен быть примерно в десять раз больше, чем все остальные индуктивности, включенные последовательно с источником питания. Если в источнике питания нет других катушек индуктивности или ферритовых бусинок, эта индуктивность возникает из-за кабелей и следов на печатной плате. Не очень точное приближение для расчета этой индуктивности состоит в том, чтобы взять максимальную длину, на которую передается мощность, и умножить ее на 1 нГн на миллиметр.Индуктивность силовых плоскостей намного ниже, и для этого расчета длину путей силовых плоскостей можно не учитывать.

    В этом примере я хочу, чтобы плата работала с удлинительным кабелем длиной около 300 мм, а плата размером около 100 мм на 100 мм. Общая длина составляет 500 мм, а это значит, что индуктивность распределения питания у меня примерно 500 нГн. Чтобы сделать катушку индуктивности фильтра источника питания примерно в 10 раз больше этой, я выбрал катушку индуктивности 10 мкГн +/- 30%. Дополнительная индуктивность обеспечивает допуск -30%.Помимо начального допуска, значение индуктивности падает с увеличением тока. Для этой части при 2,4 А индуктивность падает еще на 35%.

    Я выбрал индуктор серии Bourns SRU1028. Он имеет небольшую высоту, самозащищен и легко доступен. Я нашел его, выполнив поиск в Digi-Key недорогой катушки индуктивности 10 мкГн с номинальным током не менее 2 А. Мне также нравится таблица Bourns, потому что в ней есть спецификации, необходимые для создания хорошей имитационной модели индуктора.

    В этой модели индуктора используются четыре компонента.Индуктивность L такая же, как в даташите L . Последовательное сопротивление R ESR такое же, как R DC из таблицы. Значения R Q и C SRF рассчитываются на основе значений из таблицы данных для f SRF , частоты Q и Q теста.

    Эти дополнительные компоненты заставляют катушку индуктивности иметь поведение, показанное на графике импеданса выше. Сплошная кривая - величина импеданса в дБ, а пунктирная кривая - фазовый угол импеданса.Ниже 1 кГц катушка индуктивности действует как небольшой резистор R DC . Выше 1 кГц он действует как индуктор, вплоть до частоты, близкой к саморезонансной частоте (SRF). Для узкого диапазона частот около SRF индуктор действует как резистор большого номинала со значением R Q . Над SRF индуктор действует как конденсатор C SRF .

    С этого момента имитатор схем экономит время. Бесплатный симулятор LTspice создал приведенный выше график импеданса катушки индуктивности, используя приведенную ниже схему моделирования.

    Источник напряжения V1 - это источник переменного тока 1 Вольт. Импеданс можно изобразить с помощью выражения -1 / (i (V1)). Чтобы узнать о LTspice, см. Мои учебные пособия по серии Simulation Series на YouTube. Анализ LTspice AC входит в первую и вторую части, а анализ переходных процессов - в третью. Общее время видео составляет около 12 минут.

    Выбор конденсатора

    Можно легко преобразовать схему модели индуктора в фильтр нижних частот, добавив к схеме конденсатор. Я выбрал конденсатор Kemet T491A106010A, поляризованный танталовый конденсатор емкостью 10 мкФ с максимальным ESR 3.8 Ом и номинальное напряжение 10 В.

    Частотная характеристика этого фильтра равна V (VOUT) / V (VIN), но поскольку V (VIN) = 1 в моем моделировании, я получаю тот же ответ из графика V (VOUT).

    Керамические конденсаторы

    с высокой добротностью и низким ESR заменили танталовые конденсаторы во многих областях применения. Затем я попробовал симуляцию с керамическим конденсатором с низким ESR вместо тантала:

    Пик на частоте 15,9 кГц - это резонанс L B и C B

    Колебания напряжения питания на этой частоте увеличиваются, а не уменьшаются.Из-за узкого частотного диапазона этого резонанса его эффекты легко не заметить при тестировании. Значения L B и C B имеют свободный допуск, а также дрейфуют во времени и температуре.

    Добавьте резистор, чтобы решить эту проблему резонанса. Хорошее первоначальное предположение о стоимости демпфирующего резистора:

    .

    Используйте симулятор цепи, чтобы найти первый резонанс, и отрегулируйте номинал резистора, чтобы найти лучшее значение для хорошего демпфирования.Керамический конденсатор и резистор имеют более повторяемую конструкцию, чем танталовый конденсатор. Это связано с большим диапазоном возможных значений ESR танталового конденсатора.

    Модель сети нагрузки

    Пока в этом примере нет импеданса нагрузки или тока нагрузки. Чтобы увидеть, что этот фильтр будет делать на печатной плате, моделирование должно включать в себя индуктивность следа печатной платы и байпасные конденсаторы. На частотах выше 100 МГц эффекты линии передачи еще больше усложняют модель.В следующем примере схемы представлена ​​упрощенная модель, которая представляет типичные нагрузки в источниках питания печатных плат. Вы можете посмотреть на свои собственные схемы, чтобы оценить индуктивность следа, используя грубое приближение индуктивности, равное 1 нГн на миллиметр. Более точные модели можно создать с помощью инструмента САПР Power Integrity (PI).

    Эти типичные следовые индуктивности демонстрируют дополнительные резонансы в распределительной сети.

    Дополнительные смоделированные резонансы вызваны выходной нагрузкой катушек индуктивности и конденсаторов.Характеристики этого фильтра по-прежнему хорошие, даже с этими резонансами. Общая форма фильтра сохраняется, потому что катушка индуктивности намного больше, чем сумма катушек индуктивности малой нагрузки, а затухающий конденсатор намного больше, чем сумма байпасных конденсаторов.

    Между этой платой и реальной схемой все еще есть различия. Реальная схема будет иметь другой отклик выше 100 МГц из-за эффектов линии передачи. Также становятся важными другие небольшие конденсаторы и катушки индуктивности, особенно на частотах выше примерно 500 МГц.

    Отсутствие фильтра источника питания или использование большого незатухающего конденсатора без катушки индуктивности приводит к таким резонансам, как эти:

    Ток нагрузки

    Локальные байпасные конденсаторы обеспечивают локальное накопление заряда, которое обеспечивает переходный ток к высокочастотным пульсирующим нагрузкам. Для поддержания постоянного напряжения питания более высокие импульсные токи нагрузки требуют больших байпасных конденсаторов. Примером импульсной нагрузки является переход процессора в спящий режим с низким энергопотреблением и выход из него.Проанализируйте каждую сильноточную импульсную нагрузку на наличие пульсаций напряжения в источнике питания.

    Байпасные конденсаторы также могут резонировать с индуктивностью в распределительной сети. Подавление резонансов на входном фильтре источника питания не гарантирует, что все резонансы, вызванные током нагрузки, также будут подавлены, но это часто помогает. Чтобы продемонстрировать потенциальную проблему, вот незатухающий (R3 = 0,01 Ом) вариант фильтра с источником переменного тока в одной из точек нагрузки:

    Импеданс при VLOAD равен v (VLOAD) / i (I1).Поскольку переменный ток в I1 установлен на 1, полное сопротивление равно v (VLOAD):

    .

    Незатухающий резонанс, обведенный выше, находится на частоте 1,87 МГц. Это та частота, на которой импульсная нагрузка вызовет проблему.

    Я смоделировал импульсную нагрузку с помощью источника импульсного тока, показанного на схеме выше. В этом примере показаны импульсы с амплитудой 20 мА и периодом 535 нс. Наибольшие колебания напряжения происходят, когда период импульсного источника тока обратно пропорционален частоте резонанса.

    Форма синусоидальной волны пульсаций напряжения в этом примере типична для незатухающих резонансов с высокой добротностью в распределении мощности. Незатухающий резонанс действует как фильтр, преобразующий импульсы тока в синусоидальную форму волны напряжения:

    Если напряжение все еще растет в конце моделирования, увеличьте время моделирования, чтобы найти максимальный уровень. Для установления более острых (с более высоким фактором добротности) резонансов требуется больше времени.

    В примере импульсов тока режима ожидания изменение программного обеспечения может вызвать изменение частоты импульсов.Сильные колебания напряжения из-за резонанса возникают только тогда, когда период цикла сна совпадает с резонансной частотой. В процессе разработки это может вызвать загадочные ошибки, которые кажутся связанными с программным обеспечением, но на самом деле вызваны аппаратным обеспечением. При производстве изменение компонентов приведет к смещению резонансных частот и вызовет проблемы с урожайностью. При использовании изменения температуры и дрейф компонентов будут сдвигать резонансные частоты, что приведет к выходу продукта из строя.

    Следующая симуляция показывает демпфированную версию с резистором R3, установленным на 3.8 Ом. Анализ переменного тока показывает, что два самых больших резонанса с высокой добротностью затухают:

    Это изменяет форму и уменьшает форму волны напряжения, вызванной импульсным током нагрузки.

    Треугольная форма сигнала типична для импульсной нагрузки. Это результат цикла заряда и разряда конденсаторов местного байпаса. Амплитуду этой треугольной волны можно уменьшить, установив байпасные конденсаторы большего размера. Если форма волны пульсаций больше похожа на прямоугольную, это связано с сопротивлением байпасной сети и может быть уменьшено с помощью байпасных конденсаторов с меньшим ESR или более широкими дорожками.Длинный медленный импульс при включении вызван затухающим низкочастотным резонансом на частоте 100 кГц. Короткие выбросы проходят через края источника тока 10 нс и могут быть уменьшены за счет более низкой индуктивности через путь обходного конденсатора. Оставшийся резонанс на частоте около 4 МГц требует дальнейшего моделирования.

    Заключение

    Избегайте резонансов распределения мощности, используя правильно спроектированный демпфированный фильтр нижних частот с:

    • Значение индуктивности намного больше паразитной индуктивности
    • Емкость конденсатора намного больше суммы байпасных конденсаторов
    • Демпфирующее сопротивление для устранения высокодобротных резонансов
    • Байпасные конденсаторы, достаточные для питания импульсных нагрузок

    Диодные приложения (блоки питания, регуляторы и ограничители напряжения) [Analog Devices Wiki]

    6.1 выпрямитель

    Выпрямитель - это электрическое устройство, которое преобразует переменный ток (AC) в постоянный (DC), процесс, известный как выпрямление. Выпрямители находят множество применений, в том числе в качестве компонентов источников питания и в качестве детекторов амплитудной модуляции (детекторов огибающей) радиосигналов. В выпрямителях чаще всего используются твердотельные диоды, но при очень высоких напряжениях или токах могут использоваться и другие типы компонентов. Когда для выпрямления переменного тока используется только один диод (блокируя отрицательную или положительную часть формы волны), разница между термином «диод» и термином «выпрямитель» заключается просто в использовании.Термин выпрямитель описывает диод, который используется для преобразования переменного тока в постоянный. Большинство выпрямительных схем содержат несколько диодов в определенной конфигурации для более эффективного преобразования мощности переменного тока в мощность постоянного тока, чем это возможно с одним диодом.

    6.1.1 Полуволновое выпрямление

    При полуволновом выпрямлении либо положительная, либо отрицательная половина волны переменного тока проходит, а другая половина блокируется. Поскольку только половина входного сигнала достигает выходного сигнала, его эффективность составляет только 50%, если используется для передачи энергии.Полупериодное выпрямление может быть достигнуто с помощью одного диода в однофазном питании, как показано на рисунке 6.1, или с помощью трех диодов в трехфазном питании.

    Рисунок 6.1 Однополупериодный выпрямитель с одним диодом

    Выходное постоянное напряжение полуволнового выпрямителя при синусоидальном входе можно рассчитать по следующим идеальным уравнениям:

    6.1.2 Двухполупериодное выпрямление

    Двухполупериодный выпрямитель преобразует как положительную, так и отрицательную половины входного сигнала в одну полярность (положительную или отрицательную) на своем выходе.При использовании обеих половин формы волны переменного тока двухполупериодное выпрямление более эффективно, чем полуволновое.

    При использовании простого трансформатора без вторичной обмотки с отводом по центру требуются четыре диода вместо одного, необходимого для полуволнового выпрямления. Четыре расположенных таким образом диода называются диодным мостом или мостовым выпрямителем, как показано на рисунке 6.2. Мостовой выпрямитель также может использоваться для преобразования входа постоянного тока неизвестной или произвольной полярности в выход известной полярности. Обычно это требуется в электронных телефонах или других телефонных устройствах, где полярность постоянного тока на двух телефонных проводах неизвестна.Существуют также приложения для защиты от случайного переключения батарей в цепях с батарейным питанием.

    Рисунок 6.2 Мостовой выпрямитель: двухполупериодный выпрямитель с 4 диодами.

    Для однофазного переменного тока, если трансформатор с центральным ответвлением, то два диода, соединенные спина к спине (, т.е. анод-анод или катод-катод) могут образовать двухполупериодный выпрямитель. На вторичной обмотке трансформатора требуется вдвое больше обмоток, чтобы получить такое же выходное напряжение, чем у мостового выпрямителя, описанного выше.Это не так эффективно с точки зрения трансформатора, потому что ток течет только в одной половине вторичной обмотки в течение каждого положительного и отрицательного полупериода входа переменного тока.

    Рисунок 6.3 Двухполупериодный выпрямитель с центральным ответвлением трансформатора и 2 диодами.

    Если включить вторую пару диодов, как показано на рисунке 6.4, то могут генерироваться напряжения как положительной, так и отрицательной полярности относительно центрального отвода трансформатора. Можно также рассматривать эту схему как такую ​​же, как добавление центрального ответвления ко вторичной обмотке в двухполупериодном мостовом выпрямителе, показанном на рисунке 6.2.

    Рисунок 6.4 Двухполюсный двухполупериодный выпрямитель с центральным отводным трансформатором и 4 диодами.

    ALM1000 Лабораторные диодные выпрямители

    6.1.3 Сглаживание выхода выпрямителя

    Полупериодное или двухполупериодное выпрямление не создает постоянного напряжения постоянного тока, как мы видели на предыдущих рисунках. Чтобы обеспечить стабильное постоянное напряжение от источника выпрямленного переменного тока, необходим фильтр или сглаживающая схема. В простейшей форме это может быть просто конденсатор, подключенный к выходу постоянного тока выпрямителя.По-прежнему останется некоторое количество пульсаций переменного тока, при котором напряжение не будет полностью сглажено. Амплитуда оставшейся пульсации зависит от того, насколько нагрузка разряжает конденсатор между пиками формы волны.

    Рисунок 6.5 (a) RC-фильтр однополупериодного выпрямителя

    Рисунок 6.5 (b) Двухполупериодный RC-фильтр выпрямителя

    Выбор конденсатора фильтра C 1 представляет собой компромисс. Для данной нагрузки, R L , конденсатор большего размера уменьшит пульсации, но будет стоить дороже и создаст более высокие пиковые токи во вторичной обмотке трансформатора и в источнике питания, питающем его.В крайних случаях, когда много выпрямителей загружено в цепь распределения мощности, для распределительной сети может оказаться затруднительным поддерживать правильно сформированную синусоидальную форму волны напряжения.

    Для данной допустимой пульсации требуемый размер конденсатора пропорционален току нагрузки и обратно пропорционален частоте питания и количеству выходных пиков выпрямителя за цикл входа. Ток нагрузки и частота питания обычно находятся вне контроля разработчика выпрямительной системы, но на количество пиков на входной цикл может повлиять выбор конструкции выпрямителя.Максимальное пульсирующее напряжение, присутствующее в схеме полноволнового выпрямителя, определяется не только значением сглаживающего конденсатора, но и частотой и током нагрузки, и рассчитывается как:

    Где:
    В пульсации - максимальное напряжение пульсаций на выходе постоянного тока
    I Нагрузка - постоянный ток нагрузки
    F - частота пульсаций (обычно в 2 раза больше частоты переменного тока)
    С - сглаживающий конденсатор

    Однополупериодный выпрямитель, рисунок 6.5 (а) будет давать только один пик за цикл, и по этой и другим причинам используется только в очень небольших источниках питания и там, где важны стоимость и сложность. Двухполупериодный выпрямитель, рис. 6.5 (b), дает два пика за цикл, и это лучшее, что можно сделать с однофазным входом. Для трехфазных входов трехфазный мост будет давать шесть пиков за цикл, и даже большее количество пиков может быть достигнуто за счет использования трансформаторных цепей, размещенных перед выпрямителем, для преобразования в фазу более высокого порядка.

    Чтобы еще больше уменьшить эту пульсацию, можно использовать π-фильтр LC (пи-фильтр), такой как показано на рисунке 6.6. Это дополняет накопительный конденсатор C 1 последовательной катушкой индуктивности L 1 и вторым фильтрующим конденсатором C 2 , так что на выводах конечного конденсатора фильтра может быть получен более стабильный выходной сигнал постоянного тока. Последовательный индуктор имеет высокий импеданс на частоте пульсаций тока.

    Рисунок 6.6 LC π-фильтр (пи-фильтр)

    Более обычная альтернатива фильтру, необходимая, если для нагрузки постоянного тока требуется очень плавное напряжение питания, - это установка конденсатора фильтра с регулятором напряжения, который мы обсудим в разделе 6.3. Конденсатор фильтра должен быть достаточно большим, чтобы избежать падения пульсаций ниже напряжения падения используемого регулятора. Регулятор служит как для устранения последней пульсации, так и для устранения отклонений в характеристиках питания и нагрузки. Можно было бы использовать конденсатор фильтра меньшего размера (который может быть большим для сильноточных источников питания), а затем применить некоторую фильтрацию, а также регулятор, но это не обычная стратегия проектирования. Крайний вариант этого подхода - полностью отказаться от конденсатора фильтра и направить выпрямленный сигнал прямо во входной фильтр катушки индуктивности.Преимущество этой схемы состоит в том, что форма волны тока более плавная, и, следовательно, выпрямителю больше не приходится иметь дело с током в виде большого импульса тока только на пиках входной синусоидальной волны, а вместо этого подача тока распространяется на большую часть цикл. Обратной стороной является то, что выходное напряжение намного ниже - приблизительно среднее значение полупериода переменного тока, а не пиковое.

    6.2 Выпрямители с удвоением напряжения

    Простой однополупериодный выпрямитель может быть построен в двух версиях с диодом, направленным в противоположных направлениях: одна версия подключает отрицательную клемму выхода непосредственно к источнику переменного тока, а другая подключает положительную клемму выхода непосредственно к источнику переменного тока.Комбинируя оба из них с отдельными выходными сглаживающими конденсаторами, можно получить выходное напряжение, почти вдвое превышающее пиковое входное напряжение переменного тока, рисунок 6.7. Это также обеспечивает отвод посередине, что позволяет использовать такую ​​схему в качестве источника питания с разделенной шиной (положительной и отрицательной).

    Рисунок 6.7 Простой удвоитель напряжения.

    Вариант этого состоит в том, чтобы использовать два последовательно соединенных конденсатора для сглаживания выходного сигнала на мостовом выпрямителе, а затем установить переключатель между средней точкой этих конденсаторов и одной из входных клемм переменного тока.При разомкнутом переключателе эта схема будет действовать как обычный мостовой выпрямитель, а при замкнутом - как выпрямитель с удвоением напряжения. Другими словами, это позволяет легко получить напряжение примерно 320 В (+/- около 15%) постоянного тока из любой сети в мире, которое затем можно подать в относительно простой импульсный источник питания.

    Обзор раздела:

    • Выпрямление - это преобразование переменного тока (AC) в постоянный (DC).

    • Полупериодный выпрямитель - это схема, которая позволяет приложить к нагрузке только один полупериод формы волны переменного напряжения, в результате чего на ней будет одна неизменяющаяся полярность.Результирующий постоянный ток, подаваемый на нагрузку, значительно «пульсирует».

    • Двухполупериодный выпрямитель - это схема, которая преобразует оба полупериода формы волны переменного напряжения в непрерывную серию импульсов напряжения одинаковой полярности. Результирующий постоянный ток, подаваемый на нагрузку, не так сильно «пульсирует».

    • Конденсаторы используются для сглаживания или фильтрации пульсаций, присутствующих в выпрямленном постоянном токе, а иногда используются более сложные фильтры с катушками индуктивности и конденсаторами.

    6.3 Стабилитрон как регулятор напряжения

    Стабилитроны широко используются в качестве источников опорного напряжения и шунтирующих стабилизаторов для регулирования напряжения в небольших цепях. При параллельном подключении к источнику переменного напряжения, такому как диодный выпрямитель, который мы только что обсудили, так что он имеет обратное смещение, стабилитрон проводит ток, когда напряжение достигает обратного напряжения пробоя диода. С этого момента относительно низкий импеданс диода поддерживает напряжение на диоде на этом значении.

    Рисунок 6.8 Опорное напряжение на стабилитроне

    В схеме, показанной на рисунке 6.8, типичный шунтирующий стабилизатор, входное напряжение В IN стабилизируется до стабильного выходного напряжения В OUT . Напряжение пробоя обратного смещения диода D Z стабильно в широком диапазоне токов и поддерживает относительно постоянное значение V OUT , даже если входное напряжение может колебаться в довольно широком диапазоне.Из-за низкого импеданса диода при такой работе используется последовательный резистор R S для ограничения тока в цепи.

    В случае этой простой ссылки ток, протекающий в диоде, определяется с использованием закона Ома и известного падения напряжения на резисторе R S .

    Стоимость R S должна удовлетворять двум условиям:

    • R S должен быть достаточно малым, чтобы ток через D Z удерживал D Z в обратном пробое.Значение этого тока указано в паспорте производителя для D Z . Например, обычное устройство BZX79C5V6, 5,6 V 0,5? стабилитрон, имеет рекомендуемый обратный ток 5 мА . Если через D Z существует недостаточный ток, то V OUT будет нерегулируемым и будет меньше номинального напряжения пробоя. При расчете R S необходимо сделать поправку на любой ток через любую внешнюю нагрузку, которая может быть подключена к V OUT , не показанному на этой диаграмме.
    • R S должен быть достаточно большим, чтобы ток через D Z не превысил номинальный максимум и не разрушил устройство. Если ток через D Z равен I D , его напряжение пробоя В B и максимальная рассеиваемая мощность P MAX , тогда:

    Нагрузка может быть помещена поперек диода в этой опорной цепи, и пока стабилитрон остается в обратном пробое, диод будет обеспечивать стабильный источник напряжения для нагрузки.Стабилитроны в этой конфигурации часто используются в качестве стабильных эталонов для более сложных схем регулятора напряжения, включающих каскады буферного усилителя для подачи больших токов на нагрузку.

    Шунтирующие регуляторы просты, но требования, чтобы балластный резистор R S был достаточно малым, чтобы избежать чрезмерного падения напряжения в худшем случае (низкое входное напряжение одновременно с большим током нагрузки), как правило, оставляет много тока, протекающего в диод, что делает стабилизатор довольно неэффективным с высокой рассеиваемой мощностью в режиме покоя, подходящим только для небольших нагрузок.

    Эти устройства также встречаются, обычно последовательно с переходом база-эмиттер, в транзисторных каскадах, где можно использовать выборочный выбор устройства, сосредоточенного вокруг точки лавины или стабилитрона, для введения компенсационного температурного коэффициента балансировки PN перехода транзистора. Примером такого использования может быть усилитель ошибки постоянного тока, используемый в системе обратной связи цепи регулируемого источника питания.

    В качестве примечания: стабилитроны также используются в устройствах защиты от перенапряжения для ограничения скачков переходного напряжения.Еще одно примечательное применение стабилитрона - использование шума, вызванного его лавинным пробоем, в генераторе случайных чисел, который никогда не повторяется.

    Пример конструкции регулятора:

    Требуется выходное напряжение 5 В и требуемый выходной ток 60 мА.

    Сначала мы должны выбрать стабилитрон, В Z = 4,7 В, что является ближайшим доступным значением.

    Нам нужно определить номинальное входное напряжение, и оно должно быть на несколько вольт больше, чем В Z .В этом примере мы будем использовать V IN = 8V.

    Как правило, мы выбираем номинальный ток через стабилитрон равным 10% от требуемого выходного тока нагрузки или 6 мА. Затем определяется ток I max = 66 мА, который будет протекать через R S (выходной ток плюс 10%).

    Последовательный резистор R S = (8 В - 4,7 В) / 66 мА = 50 Ом, мы бы выбрали R S = 47 Ом, что является ближайшим стандартным значением.

    Номинальная мощность резистора P RS > (8В - 4.7 В) × 66 мА = 218 мВт, поэтому выбираем P RS = 0,5 Вт

    Максимальную мощность, которая может рассеиваться в стабилитроне при нулевом токе в выходной нагрузке, можно рассчитать как P Z > 4,7 В × 66 мА = 310 мВт, поэтому мы бы выбрали P Z = 400 мВт.

    Лабораторная работа ADALM2000: стабилизатор стабилитрона

    Упражнение 6.3.1

    Для показанной схемы, если напряжение источника питания В IN увеличивается, напряжение на нагрузочном резисторе R L будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Для показанной схемы, если напряжение источника питания В IN уменьшается, напряжение на нагрузочном резисторе R L будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Для показанной схемы, если напряжение источника питания В IN увеличивается, напряжение на последовательном резисторе R S будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Для показанной схемы, если напряжение источника питания V IN увеличивается, ток через нагрузочный резистор R L будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Для показанной схемы, если напряжение источника питания В IN уменьшается, ток через стабилитрон D Z будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Для показанной схемы, если напряжение источника питания В IN увеличивается, ток через последовательный резистор R L будет:

    1. увеличение

    2. уменьшение

    3. осталось прежним

    Вернуться к предыдущей главе

    Перейти к следующей главе

    Вернуться к содержанию

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *