Как работают схемы управления тиристорами. Какие существуют варианты схем для постоянного и переменного тока. Как рассчитать параметры схемы управления тиристорным ключом. Какие преимущества и недостатки имеют тиристорные схемы коммутации.
Принцип работы тиристора как управляемого полупроводникового прибора
Тиристор представляет собой полупроводниковый прибор с тремя электродами — анодом, катодом и управляющим электродом. Основные особенности работы тиристора:
- Включение тиристора в открытое состояние происходит при подаче импульса тока на управляющий электрод
- После открытия тиристор остается в проводящем состоянии даже при снятии управляющего сигнала
- Закрытие тиристора возможно только при снижении тока через него ниже тока удержания
- В открытом состоянии падение напряжения на тиристоре составляет около 1 В
Благодаря этим свойствам тиристоры эффективно применяются в качестве мощных управляемых ключей в силовой электронике.
Схемы управления тиристором на постоянном токе
При работе на постоянном токе тиристор выполняет функцию электронной защелки. Рассмотрим простейшую схему включения/выключения нагрузки с помощью тиристора:
«` «`
Принцип работы схемы:
- При нажатии кнопки КН1 подается ток на управляющий электрод, тиристор открывается
- Нагрузка Л1 подключается к источнику питания
- Тиристор остается открытым после отпускания КН1
- Для выключения нажимается кнопка КН2, разрывающая цепь анода
- Ток через тиристор падает ниже тока удержания, он закрывается
Преимущество схемы — высокий коэффициент усиления по току. Недостаток — необходимость мощной кнопки КН2 для разрыва силовой цепи.
Схемы управления тиристором на переменном токе
При работе на переменном токе тиристор открывается только в положительные полупериоды напряжения. Рассмотрим простую схему управления:
«` «`Особенности работы схемы на переменном токе:
- Тиристор открывается только в положительные полупериоды
- Диод D1 защищает управляющий электрод от обратного напряжения
- При замкнутой КН1 тиристор открывается в начале каждого положительного полупериода
- Нагрузка получает только половину мощности источника питания
Для управления полной мощностью используют схемы с двумя встречно-параллельными тиристорами или симисторы.
Расчет параметров схемы управления тиристорным ключом
При проектировании схемы управления тиристорным ключом необходимо рассчитать следующие основные параметры:
- Коэффициент трансформации импульсного трансформатора
- Ток в коллекторной цепи транзистора
- Индуктивность трансформатора
- Число витков обмоток трансформатора
- Емкость и сопротивление элементов формирователя импульсов
- Параметры генератора пилообразного напряжения
Расчет производится исходя из требуемого угла управления, напряжения питания схемы, параметров используемых тиристоров и других компонентов.
Преимущества и недостатки тиристорных схем коммутации
Основные преимущества тиристорных схем коммутации:
- Высокий КПД при коммутации больших мощностей
- Простота схемотехнических решений
- Высокая надежность и долговечность
- Возможность плавного регулирования мощности в нагрузке
Недостатки тиристорных схем:
- Сложность коммутации на высоких частотах
- Необходимость принудительного выключения в цепях постоянного тока
- Искажение формы тока при работе на переменном токе
- Генерация высокочастотных помех
Несмотря на некоторые недостатки, тиристорные схемы широко применяются в силовой электронике благодаря своей эффективности при коммутации больших мощностей.
Области применения тиристорных схем коммутации
Тиристорные схемы коммутации находят широкое применение в различных областях электротехники и электроники:
- Регуляторы мощности в бытовой технике (диммеры, регуляторы оборотов двигателей)
- Источники бесперебойного питания
- Преобразователи частоты для управления электродвигателями
- Зарядные устройства для аккумуляторов
- Сварочные аппараты
- Системы плавного пуска мощных электродвигателей
Особенно эффективно применение тиристоров в устройствах, работающих на промышленных частотах 50-60 Гц и коммутирующих мощности от сотен ватт до мегаватт.
Современные тенденции в развитии тиристорных схем управления
В настоящее время развитие тиристорных схем управления идет по следующим основным направлениям:
- Интеграция схем управления в одну микросхему
- Применение микроконтроллеров для формирования сигналов управления
- Разработка новых типов тиристоров с улучшенными характеристиками
- Создание «умных» силовых модулей, объединяющих силовые ключи и схемы управления
- Оптимизация алгоритмов управления для снижения потерь и помех
Эти тенденции позволяют создавать более компактные, надежные и эффективные устройства на основе тиристорных схем коммутации.
Схемы управления тиристорами на постоянном токе
Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.
Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.
Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.
Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.
Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора [EW 4/01-299].
Схема однокнопочного управления тиристором
На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.
Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.
Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.
Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.
Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.
Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.
Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.
Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.
Простые силовые ключи на тиристорах
На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.
Рис. 3. Вариант схемы управления тиристором одной кнопкой.
Это позволило заметно снизить рабочее напряжение (до 1,5. 3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.
Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.
Тиристорный коммутатор с двумя кнопками
Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.
При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.
Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.
После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.
Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.
Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.
Схема с эквивалентом тиристора на транзисторах
При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).
Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.
Аналог многокнопочного переключателя на тиристорах
Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.
Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.
В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.
В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.
Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.
Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.
Многокнопочный переключатель с транзисторным аналогом тиристоров
Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.
Рис. 8. Схема эквивалентной замены тиристора транзисторами.
В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.
Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.
Устройства, аналогичные представленным на рис. 7 – 9, а также на рис. 10 – 12, можно использовать для систем выбора программ радио- и телеприемников.
Недостатком схемных решений (рис. 7 – 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.
Схемы многопозиционных переключателей
На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.
При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.
Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.
Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.
Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.
Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.
При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.
Схема усовершенствованного электронного переключателя
Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.
В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.
Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.
Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.
Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10. 12 мА. Количество каналов коммутации не ограничено.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.
Главная страница » Тиристоры и схемы коммутации мощной нагрузки
Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.
Тиристор – краткий обзор полупроводника
Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.
Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.
Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.
После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения.
Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала У.
Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры MCT.
Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал
Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.
Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.
Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.
Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.
Тиристор в цепи постоянного напряжения
При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.
Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм
Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.
Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1.
Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.
Стоит только нажать кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.
Преимущества и недостатки использования тиристора
Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.
Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.
Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.
Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».
Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.
В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.
Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм
Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:
- активация КН2 создаёт «КЗ» между электродами А и К,
- уменьшается ток фиксации до минимального значения,
- устройство переходит в состояние «выключено».
Тиристор в цепи переменного тока
При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.
Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».
Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.
Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У.
Во время положительного полупериода синусоидальной формы сигнала, устройство смещено вперед, но при выключенном переключателе КН1, к тиристору подводится нулевой ток затвора и прибор остается «выключенным».
В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.
Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт
Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным».
Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».
Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидно, т.к. здесь ток анода падает ниже текущего значения.
Во время следующего отрицательного полупериода, устройство будет полностью «отключено» до следующего положительного полупериода. Затем процесс вновь повторяется.
Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.
Управление половинной волной
Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока.
Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.
Во время положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы.
Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1. Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено».
Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.
Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости
Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.
В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.
Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.
Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью.
Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.
Полный технический расклад тиристора
Расчёт схемы управления тиристорным ключом
Вариант 28
Задача 1
1. Рассчитать полупроводниковую схему управления тиристорным силовым однофазным ключом регулятора мощности.
2. Выполнить схему регулятора мощности и описать его работу.
3. Построить временные диаграммы работы регулятора мощности для заданного режима.
Схема силового однофазного ключа -Тиристор – тиристор.
Угол управления α, эл. град -150.
Напряжение питания схемы управления, В -9.
Рис. 1.1. Схемы силовых однофазных ключей на тиристорах
Коэффициент трансформации импульсного трансформатора выбираем из неравенства
где — максимально допустимое напряжение управления тиристора; — напряжение спрямления; — напряжение питания схемы управления.
Берём
Рассчитываем ток в коллекторной цепи транзистора
где — максимально допустимый ток управления; – ток спрямления.
Принимаем
Исходя из этого значения и максимального напряжения коллектор-эмиттер, равного напряжению питания, выбираем транзистор КТ361А.
В качестве материала сердечника импульсного трансформатора выбираем феррит 2000НМ.
Определяем величину индуктивноститрансформатора
где — максимально допустимый импульсный коллекторный ток транзистора, мА; — ток управления тиристора; — длительность импульса соответственно управления, переднего и заднегофронтов, мкс.
Длительность открывающего импульса исключая длительность фронтов берём 20 мкс.
Выбираем марку магнитопровода для импульсного трансформатора и рассчитываем егогеометрические размеры
где для данного материала; — сопротивление входной цепи тиристора; — начальная магнитная проницаемость;
Число витков первичной обмотки трансформатора.
где μ — импульсная проницаемость материала.
Число витков вторичной обмотки трансформатора
Проверяем напряженность магнитного поля в сердечнике
Задаваясь числом импульсов, вырабатываемых схемой управления в течение полупериода напряжения питания m = 20…50, определяем действующее значение тока в первичной и вторичной обмотках трансформатора:
где Т — период работы схемы управления.
Входные параметры транзисторного ключа VТ3являются исходными данными длярасчета схемы сравнения на транзисторе VТ2. Определяем величину сопротивления резисторасвязи
где β — степень насыщения транзистора VТ3.
Емкость разделительного конденсатора, мкФ, определяем из условия минимальныхфазовых сдвигов
Отношение числа витков импульсного трансформатора Т1обычно принимается
Величину резистора R6определяем из условия допустимой нестабильности периодаследования импульсов Т
Емкость конденсатора определяем из условия обеспечения заданного периода следования импульсов
Индуктивность намагничивания импульсного трансформатора Т1получаем из уравнения
Величину резистора цепи термокомпенсации R7выбирают из условия R7>>rб и обычнопринимают 1-2 кОм.
Емкость конденсатора С3определяем из условия максимального шунтирования Rэприформировании импульса. При этом С3должен успеть разрядиться за время паузы
Сопротивление резистора R8
Сопротивление резистора R10
Диоды VD1 и VD2 для повышения температурной стабильности схемы необходимовыбирать кремниевые. Выбираем диоды КД203.
Генератор пилообразного напряжения рассчитываем на основании следующих данных:
а) длительности пилообразного импульса ТП;
б) максимальной амплитуды пилообразного импульса Un макс;
в) заданного коэффициента нелинейности пилообразного напряжения ( δзад.= 10 %).
При выключенном тиристоре VS1 конденсатор С1 заряжается до максимальногонапряжения
Ток заряда конденсатора
Максимальная амплитуда пилообразного напряжения при t = ТП
Оптимальное условие работы схемы сравнения
Учитывая это, из уравнения (27) определяем необходимую величину постоянной времени
Далее, из определяем коэффициент нелинейности пилообразного напряжения δ и сравниваем с заданным δзад. При этом должно соблюдаться неравенство
Сопротивление резистора R3выбираем из условия минимального времени разряда конденсатора С1и запирания тиристора после снятия синхронизирующего импульса
Тиристор VS1 выбираем по максимально допустимому импульсному анодному току. Величина тока разряда, протекающего через тиристор,
По указанным характеристикам выбираем тиристор КУ102Б.
Параметры каскада синхронизации рассчитываем из условия формированиянеобходимого по длительности и амплитуде тока управления для тиристора VS1.
1.2. Схема управления тиристорными силовыми ключами переменного тока
Для функционирования силовых транзисторов, тиристоров и других приборов на них необходимо подавать соответствующие сигналы управления. Эти сигналы формируются СУ, которая обрабатывает и выдает информацию, а также формирует импульсы управления электронными ключами силовой части схемы. Поэтому СУ состоит из элементов ифункциональных узлов, связанных с обработкой информационных потоков и формированием импульсов управления. СУ, обеспечивающая подачу отпирающих импульсов на тиристоры преобразователя любого типа, совместно с преобразователем решает комплекс задач, связанных с формированием и регулированием его выходного напряжения. Узлы системы управления выполняются из дискретных и интегральных электронных компонентов, электромагнитных реле и т.п. Для функционирования этих элементов требуются источники электропитания с различными параметрами. Поэтому в составе структуры имеется блок вторичных источников питания для собственных нужд, называемых также источниками оперативного питания (ИОП), или вторичными источниками питания (ВИП). В этих источниках применяются преобразователи и регуляторы различных видов, согласующие параметры входного (иногда и выходного) напряжения силовых цепей с параметрами, требуемыми для питания элементов системы управления. При питании от сети переменного тока основой ИОП обычно служат трансформаторы малой мощности с несколькими вторичными обмотками на разные напряжения. Эти обмотки подключаются к выпрямителям с выходными, обычно емкостными фильтрами. Для стабилизации уровней выходных напряжений выпрямителей малой мощности используют стабилитроны или транзисторные регуляторы непрерывного действия в дискретном или интегральном исполнении. Для улучшения массогабаритных показателей используют структуру ИОП с бестрансформаторным входом. В этой структуре переменное напряжение силовой цепи поступает на выпрямитель, выходное напряжение которого преобразуется инвертором в переменное напряжение повышенной частоты (обычно не менее 20 кГц). Затем это напряжение трансформируется, снова выпрямляется и фильтруется. Трансформация и фильтрация при повышенных частотах позволяют существенно уменьшить массу и габаритные размеры ИОП.
Существует общность в реализации систем управления. Она обусловливается
идентичностью управляющего воздействия СУ на силовую схему, которое проявляется в изменении момента подачи отпирающих импульсов на тиристоры по отношению к синусоидально изменяющейся кривой напряжения сети (т. е. угла управления α ). СУ преобразователей, осуществляющих регулирование фазы управляющих импульсов, называют
системами импульсно-фазового управления (СИФУ). При фазовом методе управления создается искусственный сдвиг фаз между питающим и управляющим напряжениями. Диапазон регулирования фазового угла при этом методе значительно возрастает, хотя в области предельных значений (около 0 и Uмакс ) регулировочная характеристика теряет свою линейность. При фазовом методе управления сказывается разброс параметров тиристоров на момент их включения. Фазоимпульсный метод управления, применяется для повышения надежности включения тиристоров. Сущность его заключается в том, что для изменения угла включения тиристора сдвигается не фаза переменного напряжения, а импульс с крутым фронтом. При этом диапазон регулирования фазового угла 180°.
Синхронный принцип импульсно-фазового управления преобразователями является наиболее распространенным. Его характеризует такая функциональная связь узлов СУ, предназначенных для получения управляющих импульсов, при которой синхронизация управляющих импульсов осуществляется напряжением сети переменного тока.
Синхронные СУ состоят из следующих основных элементов:
1) синхронизирующего устройства (УС), обеспечивающего синхронизацию последовательности импульсов с сетевым питающим напряжением;
2) фазосдвигающего устройства (ФСУ), преобразующего управляющий сигнал в соответствующее фазовое положение последовательности импульсов относительно сетевого питающего напряжения;
3) устройства предварительного формирования, обработки и усиления управляющих импульсов. Это устройство выполняет различные логические операции, связанные с режимом работы силовой схемы преобразователя или самой СУ: прекращение подачи управляющих импульсов в аварийных режимах, удвоение импульсов в случае использования узких управляющих импульсов, распределение импульсов по каналам управления и т. д. Кроме того, оно предназначено для формирования импульсов заданной длительности и их усиления;
4) выходного устройства (ВУ), осуществляющего окончательное формирование и усиление импульсов управления.
Наличие всех указанных устройств или четкое разделение СУ на такие устройства не является обязательным, поскольку некоторые функции СУ могут быть объединены в одном элементе. Способы технической реализации указанных устройств могут быть различны как по типу применяемых элементов, так и по принципу действия схемы.
Поскольку работа ФСУ основана на сравнении двух напряжений (опорного и управляющего), его принцип действия называется вертикальным. Вертикальный метод управления — наиболее распространенный метод построения полупроводниковых устройств управления тиристорами. Сущность его заключается в сравнении переменной (синусоидальной, треугольной или пилообразной) формы напряжения и регулируемого постоянного напряжения Uвх. В момент равенства этих напряжений сравнивающее устройство запускает выходной каскад, которым может быть триггер или мультивибратор с эмиттерной связью, блокинг-генератор или полупроводниковый триод,работающий в ключевом режиме. Полупроводниковые устройства управления тиристорами,построенные по вертикальному методу, имеют ряд достоинств: они безынерционны,выполняются из готовых элементов и деталей, имеют высокий коэффициент передачи,формируют управляющий импульс с большой крутизной переднего фронта (до 0,5 мкс).
Частным случаем вертикального метода является число-импульсный. Особенность его втом, что на управляющий электрод подается пачка коротких импульсов, что позволяетупростить расчет и конструкцию выходного трансформатора и в то же время обеспечитьнадежную работу тиристорного ключа при любом характере нагрузки.
На рис. 2 показана универсальная однофазная схема непрерывного управления
тиристорными силовыми ключами переменного тока, построенная по числоимпульсномуметоду [9]. Она состоит из следующих каскадов:
— узла синхронизации напряжения на транзисторе VТ1, который формирует узкий
импульс (длительностью 10 мкс), синхронный с анодным напряжением силового тиристора;
— генератора пилообразного напряжения на тиристоре VS1, вырабатывающего
напряжение пилы, начало и конец которой ограничивается двумя соседними
синхронизирующими импульсами;
— схемы сравнения на транзисторе VТ2, которая формирует импульс в момент равенстванапряжения пилы и напряжения, подаваемого от цепи обратной связи или задания;
— импульсного усилителя на транзисторе VТ3, формирующего импульс достаточноймощности для отпирания силового тиристора.
Рис. 1.2. Универсальная полупроводниковая схема управления
Схема работает следующим образом. На вход аб узла синхронизации поступает двухполупериодное выпрямленное напряжение Uаб от той же фазы, от которой питается силовой тиристор. Ограничиваясь по амплитуде на стабилитроне VD, синхронизующее напряжение трапецеидальной формы U бVT1 подается на базу VТ1. Пока на базе VТ1 есть положительное напряжение, он заперт. В момент, когда UбVT1 падает почти до нуля, транзистор отпирается и в его коллекторной цепи появляются импульсы, строго синхронные с моментом изменения знака сетевого напряжения. Эти импульсы поступают на управляющий электрод тиристора VS1, включая его. Происходит быстрый разряд конденсатора С1 через резистор R3 и тиристор VS1. Тиристор VS1 выключается (напряжение на его аноде равно нулю), и начинается медленный заряд конденсатора через резисторы R4 и R5. Формируемое таким образом пилообразное напряжение поступает на один из входов схемы сравнения (катод VD2). На второйвход подается сигнал из цепи обратной связи U вх. Пока напряжение на катоде VD2 меньше (по абсолютной величине) напряжения на катоде VD1, диод VD2 заперт, а диод VD1 открыт и коммутирует отрицательную обратную связь блокинг-генератора на VТ2. Последний надежно заперт. С ростом напряжения пилы наступает момент, когда напряжение на катоде VD1 становится меньше (по абсолютной величине) напряжения на катоде VD2. Диод VD1 запирается, VD2 отпирается, включая положительную обратную связь.
Блокинг-генератор генерирует непрерывную последовательность импульсов, начало которой определяется моментом равенства напряжений катодов VD1 и VD2, а конец моментом срыва напряжения пилы.
Рис.1.3 Временные диаграммы работы регулятора мощности
Задание 2
В задаче требуется:
1. Рассчитать рабочие перегрузки полупроводникового прибора с охладителем при заданной температуре охлаждающей среды, скорости охлаждающего воздуха, предназначенного для роботы в схеме силового однофазного ключа регулятора мощности, и построить семейство перегрузочных характеристик для предварительной нагрузки, равной значениям 0; 0,2; 0,4; 0,6; 0,8 максимально допустимого среднего тока полупроводникового прибора и длительности перегрузки, равной значениям 0,1; 1,0; 10; 100; 1000 с.
2. Результаты расчёта представить в виде таблиц и графиков.
Тип полупроводникового прибора -ТБ153-630*.
Температура охлаждающей среды — 10 ºС.
Скорость охлаждающего воздуха — 6 м/с.
Параметры тиристора ТБ153-630:
Пороговое напряжение — UTO = 1,45 В;
Максимально допустимая температура перехода — Tjmax = 125 ºC;
Дифференциальное сопротивление — rT = 2,2∙10–4 Ом.
Тепловое сопротивление переход–корпус — Rthjc = 0,02 ºС/Вт
Параметры системы охлаждения с охладителем О353-150:
Тепловое сопротивление корпус–охладитель — Rthch = 0,03 ºС/Вт
Тепловое сопротивление охладитель–среда — Rthha = 0,08 ºС/Вт
Тепловое сопротивление переход– среда
По характеристике переходного теплового сопротивления находим:
С учётом переходных тепловых сопротивлений «переход-корпус» и «корпус-охладитель»
Максимально допустимый средний ток:
Мощность потерь и температура нагрева при предварительной нагрузке:
Определим допустимые амплитуды тока перегрузки:
:
:
Результаты расчётов помещаем в таблицу:
Таблица 1
Допустимая амплитуда тока перегрузки
Графики зависимости допустимой амплитуды тока перегрузки от длительности перегрузки показаны на рис. 1.
Рис. 2.1. Графики зависимости допустимой амплитуды тока перегрузки от длительности перегрузки
СПИСОК ЛИТЕРАТУРЫ
1. Розанов Ю.К., Рябчицкий М.В., Кваснюк А.А. Силовая электроника: Учебник для вузов. – М.: Издательский дом МЭИ, 2007. – 632 с.
2. Прянишников В.А. Электроника: Полный курс лекций. – 5-е изд. – СПб.: КОРОНА принт; M.: Бином-Пресс, 2006. – 416 с.
3. Серебряков А.С. Электротехническое материаловедение. Проводниковые,
полупроводниковые и магнитные материалы: Учебное пособие для вузов ж.-д. транспорта. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2008. – 372 с.
4. Бурков А.Т. Электроника: физические основы, полупроводниковые приборы и устройства: Учебное пособие. – СПб.: Петербургский гос. ун-т путей сообщения, 1999. – 290 с.
5. Забродин Ю.С. Промышленная электроника: Учебник для вузов. – М: Высшая школа, 1982. – 496 с.
Схема управления симистором через оптрон
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Коммутация сетевого напряжения с помощью симисторовАндрей Шарый, Черниговская обл, с.Кувечичи. E-mail andr (at) chspu.edu.ua |
В радиолюбительской практике довольно часто приходится сталкиваться с проблемой коммутации сетевого переменного напряжения. Ранее для включения и выключения сетевой нагрузки использовались электромагнитные реле, но как показало время — это не самый надежный способ: контакты реле очень подвержены износу, особенно при использовании в цепях переменного тока и особенно с индуктивной нагрузкой. Тем более, для включения мощных потребителей нужны крупногабаритные реле с существенным управляющим током в обмотке.
К счастью, современная элементная база позволяет обойтись только полупроводниковыми приборами, не используя электро-механических. Итак, разнообразные сетевые нагрузки очень удобно коммутировать с помощью симисторов. Эти полупроводниковые приборы позволяют под действием управляющих мощностей порядка 40-50 мВт коммутировать сетевую нагрузку до десятков киловатт (в зависимости от типа прибора). Далее рассмотрим наиболее удобные схемотехнические решения управления симисторами. Общие принципы управления симистором примерно такие же, как и для обычных тиристоров: если через управляющий электрод в катод тиристора протекает постоянный ток величиной единицы-десятки миллиампер, то как только между анодом и катодом тиристора возникнет разность потенциалов около 1.2-1.5В, он открывается и пребывает в открытом состоянии до тех пор, пока ток через него не уменьшиться практически до нуля (точнее до тока удержания).
Симистор открыть чуть сложнее, так как полярность управляющего напряжения относительно «катода» (не соединенного с корпусом вывода) должна быть такой же, как и полярность напряжения на аноде (корпусе) прибора. Следовательно, если симистор используется для коммутации переменного сетевого напряжения, то управляющее устройство должно уметь выдавать переменное управляющее напряжение, что при использовании управляющих устройств на логических ИМС довольно проблематично. Один из вариантов решения этой проблемы — использование оптрона. Ток через светодиод оптрона может быть все время одного и того же направления, а направление тока через фоторезистор будет меняться при каждом полупериоде сетевого напряжения, обеспечивая открывание симистора. Если же оптрон диодный или транзисторный, то их надо использовать два для управления одним симистором.
Рисунок 1. Управление симистором с помощью оптрона.
Не могу не упомянуть также о оптотиристорах. В одном корпусе находится тиристор и светодиод. Но, к сожалению, оптросимисторов почему-то не делают, а ведь это фактически «буржуйское» твердотельное реле — идеальный прибор для коммутации сетевого напряжения. Итак, используя оптотиристоры тоже довольно легко можно коммутировать сетевое напряжение (Рис.2)
Рисунок 2. Коммутация сетевого напряжения с использованием оптотиристоров.
Симистором можно управлять и импульсами: управляющее напряжение присутствует на управляющем электроде только 5-50 мкс, в момент начала роста сетевого напряжения после прохождения через 0. Более того, изменяя временнОе положение управляющего импульса в пределах 0-10 мс относительно начала каждого полупериода можно регулировать мощность, отдаваемую в нагрузку в пределах от 100 до 0 процентов. Импульсное управление позволяет также сделать устройство управления более экономичным, а применение при этом еще и импульсных трансформаторов позволит гальванически развязать сеть и устройство управления. Применение трансформаторов имеет еще одно преимущество: за счет бросков самоиндукции под действием однополярного импульса формируется короткий пакет быстро затухающих разнополярных, естественно, колебаний, легко открывающих любой симистор. Если конструируемое устройство не предназначено для регулирования мощности, а должно только включать/выключать сетевую нагрузку, то управляющие импульсы можно и не синхронизировать с прохождением сетевого напряжения через 0. Достаточно только подавать их на управляющий электрод симистора с достаточно высокой частотой, чтобы при самых неблагоприятных условиях напряжение на закрытом симисторе не успевало вырасти более чем до нескольких вольт до прихода управляющего импульса. При таком способе управления, как ни странно, уровень помех наводимых в сеть, значительно меньше, чем при синхронизированном управлении. Практическая схема ключа сетевого напряжения, где использован описанный выше принцип подана на рисунке 3.
Рисунок 3. Принципиальная схема симисторного выключателя с импульсным управлением.
Трансформатор T1 выполняется на ферритовом кольце 1000-2000 НМ размером К10*6*4 и содержит две одинаковые обмотки примерно по 50 витков каждая. Провод для намотки в эмалевой изоляции диаметром 0.1-0. 2 мм. Взаимная изоляция обмоток очень тщательная! Фазировка обмоток безразлична, так как благодаря диоду VD2 на вторичной обмотке наводятся разнополярные импульсы. Подбирая резистор R2 регулируют длительность управляющего импульса. Чем она меньше, тем меньше ток потребления управляющего устройства, но при очень коротком импульсе не все тиристоры успевают открываться, потому, если нужна повышенная экономичность, R2 придется подбирать на границе четкого открывания симистора. Можно добиться снижения потребляемого системой управления тока менее 10 мА, что очень удобно в случае применения источников питания с емкостным балластом.
Используя показанную на рис.3 схему управления сетевую нагрузку можно включать и с помощью пары обычных тиристоров, надо только трансформатор дополнить еще одной такой же обмоткой, а симистор заменить тиристорами, как на рисунке 4. Можно также применить один тиристор, но включить его в диагональ диодного моста соответствующей мощности.
Рисунок 4. Замена симистора.
Сейчас для радиолюбителей стали доступны многие электронные компоненты зарубежного производства. Есть среди них и симисторы, прекрасно подходящие для включения/выключения сетевых нагрузок. Наиболее доступными и распространенными на сегодня являются симисторы (triacs) производства Philips типов BT134-500 и BT136-500. Эти приборы выполнены в пластмассовых корпусах: BT134 — как у транзисторов КТ815, но без отверстия, а BT136 — как у транзисторов КТ805, с крепежным фланцем. По сведениям продавцов BT134 рассчитан на ток 6А, а BT136 — 12А, но на многих сайтах можно увидеть, что оба симистора рассчитаны на силу тока не более 4А и выдерживают напряжение 500 В в закрытом состоянии. К сожалению, автор не смог просмотреть документацию с сайта Philips, так как там все документы PDF, а просмотрщика для последних версий под ДОС нету. Отличительной особенностью названных симисторов являются не столько их малые размеры (такие же корпуса имеют отечественные ТС106-10-. в пластмассе), сколько способ управления ими: эти симисторы открываются управляющим напряжением отрицательной по отношению к «катоду» полярности при любом направлении тока через симистор. А это позволяет отказаться от применения оптронов и согласующих импульсных трансформаторов. Практическая схема выключателя вместе с конденсаторным блоком питания показана на рисунке 5.
Рисунок 5. Принципиальная схема выключателя с использованием импортных симисторов.
Ток потребления устройства управления в «выключенном» состоянии — 1.2 мА, а во «включенном» — 5 мА, что позволило применить в блоке питания совсем маленький конденсатор 0.2 мкФ 400 В. Устройство (рис.5) — это фактически основа для многих электронных устройств, ведь на трех свободных логических элементах DD1 можно собрать много интересных вещей. На рисунке 6(a) показана схема мигалки, 6(b) — фотореле, 6(с) — автомата для включения/выключения насоса при касании сенсора E1 поверхности воды, 6(d) — реле времени. Довольно несложно реализовать сенсорный выключатель (рис.7).
Рисунок 6. Конструкции на логических элементах ИМС К561ТЛ1.
Рисунок 7. Принципиальная схема сенсорного выключателя.
Правда, при построении на логических элементах генераторов, при использовании световой индикации потребляемый ток может возрасти, и тогда емкость С1 придется увеличивать. Необходимую емкость подобрать довольно просто: во всех рабочих режимах устройства измеряют ток через стабилитрон, он должен быть не менее 1-2 мА и не более 30 мА. Наиболее часто емкость С1 используется 0.47 или 0.68 мкФ*400В. Мощность нагрузки, коммутируемой устройствами, рассмотренными в этой статье, зависит только от типа симистора (тиристоров) и толщины проводов 🙂 см. таблицу 1.
Таблица 1. Допустимая мощность нагрузки для разных типов симисторов и тиристоров.
В таблице также даны ориентировочные размеры теплоотводов. Вообще, учитывая падение напряжения на открытом симисторе, которое равно примерно 1 В, можно полагать, что мощность, рассеиваемая на симисторе численно равна току, проходящему через него. Для рассеивания такой мощности нужен теплоотвод такой же площади, как квадратная пластина, со стороной, численно равной в сантиметрах рассеиваемой мощности. В статье не приводятся данные и схемы касающиеся использования симисторов КУ208Г. Это не случайно, так как эти симисторы показали себя с наихудшей стороны и надежно не работали ни в одном устройстве. Многие образцы КУ208Г разных лет выпусков имели недопустимо большой ток в закрытом состоянии, и после длительного пребывания под напряжением именно в закрытом состоянии сильно разогревались и после наступал пробой. Может их как-то по особому включать надо? Считаю своим долгом также напомнить радиолюбителям о электробезопасности, так как многие из приведенных схем имеют гальваническую связь с сетью! Не испытывайте судьбу и отключайте от сети устройства, прежде чем лезть в них с паяльником.
Применение тиристоров. Управляемый выпрямитель — Студопедия
Схема управления тиристором
Схема управления не запираемого тиристора представлена на рис. 15.3.
Рис. 15.3. Схема управления тиристором
Назначение элементов схемы. Импульсный трансформатор Т служит для гальванической развязки схемы, формирующей импульс управления, от силовой цепи, в которой установлен тиристор VS. Диод VD предназначен для защиты управляющего электрода тиристора от отрицательного выброса напряжения, который образуется на вторичной обмотке импульсного трансформатора Т по срезу импульса управления. Резистор Rогр = 10…100 Ом применяется для выравнивания величины тока управления, так как входное сопротивление управляющего электрода тиристоров сильно различается даже в одной партии. Если этот резистор не установлен, то у тиристоров с низким входным сопротивлением может произойти перегрев и даже выгорание управляющего электрода. Резистор Rш устанавливается для защиты от помех, наводимых на провода схемы управления, которые могут вызвать открывание тиристора без подачи управляющего импульса.
Если в схеме выпрямителя заменить диоды на тиристоры, можно получить схему управляемого выпрямителя, выпрямленное напряжение на выходе которого можно регулировать, изменяя угол управления тиристором. В главе 3 рассмотрены схемы однофазных выпрямителей на диодах. Любую из этих схем можно превратить в управляемый выпрямитель. Чтобы выяснить, как влияет на характеристики выпрямителя применение тиристоров вместо диодов, рассмотрим однофазный однополупериодный выпрямитель на тиристоре (рис. 15.4). Схема управления тиристором СУ применена такая же, как на рис. 15.3. Для анализа физических процессов в регулируемом однофазном однополупериодном выпрямителе рассмотрим его временную диаграмму работы (рис. 15.5).
Рис. 15.4. Регулируемый однофазный однополупериодный выпрямитель
На втором графике временной диаграммы изображены импульсы управления тиристором с различным углом управления a, который отсчитывается от момента перехода синусоиды напряжения U2 через ось времени.
При a = 0 тиристор открывается при минимальном напряжении на аноде (практически как диод), поэтому ток из трансформатора в нагрузку поступает в течение времени, равном длительности положительной полуволны синусоиды.
При a = 450 тиристор открывается с задержкой на ¼ длительности полуволны синусоиды, поэтому ток из трансформатора в нагрузку поступает в течение ¾ длительности полуволны синусоиды.
При a = 900 тиристор открывается с задержкой на ½ длительности полуволны синусоиды, и ток из трансформатора в нагрузку поступает также в течение ½ длительности полуволны синусоиды.
При a = 1800 тиристор закрыт всё время действия положительной полуволны синусоиды, и ток из трансформатора в нагрузку не поступает.
Следовательно, с увеличением a действующее напряжение в нагрузке будет уменьшаться. Зависимость выходного напряжения выпрямителя от угла регулирования Ud = f(a) называется регулировочной характеристикой. Она описывается выражением
, (15.1)
где Ud0(a = 0) – напряжение холостого хода выпрямителя при a = 0 (как если бы в схеме выпрямителя применялись диоды). В данной схеме Ud0(a = 0) = 0,45×U2.
Рис. 15.5. Временная диаграмма управляемого однофазного однополупериодного выпрямителя
На пятом графике временной диаграммы изображено напряжение, действующее на тиристор. При a = 0 к тиристору приложено только обратное напряжение Ub.max, которое достигает амплитудного значения напряжения вторичной обмотки и зависит от схемы выпрямителя (см. лекцию 3). Для рассматриваемого выпрямителя
. (15.2)
При a > 0 к тиристору, кроме обратного напряжения Ub.max, прикладывается прямое напряжение Ua,, которое можно определить по формуле
. (15.3)
Максимальной амплитуды Ua.max = U2m прямое напряжение достигает при a = 900. Для нормальной работы схемы должно выполняться условие Ua.max < Uвкл, чтобы тиристор не смог самопроизвольно (без подачи импульса управления) открыться.
При поступлении на тиристор отрицательной полуволны синусоиды он автоматически закрывается, и остаётся закрытым до поступления очередного импульса управления.
Рассмотрим теперь энергетические характеристики управляемого выпрямителя. Расчетные мощности обмоток S1, S2 и типовую мощность трансформатора ST определяют при a = 0, исходя из параметров неуправляемого режима.
В связи с тем, что при изменении угла регулирования a происходит сдвиг во времени первой гармоники потребляемого из сети тока i1(1) относительно питающего напряжения, управляемый выпрямитель потребляет из сети реактивную мощность даже при чисто активной нагрузке. Угол сдвига первой гармоники тока питающей сети i1(1) относительно питающего напряжения
, (15.4)
где- амплитуда косинусной составляющей первой гармоники разложения в ряд Фурье тока i1;
— амплитуда синусной составляющей первой гармоники разложения в ряд Фурье тока i1.
Действующее значение первой гармоники тока в первичной обмотке трансформатора
. (15.5)
Коэффициент искажения формы тока
. (15.6)
Коэффициент мощности выпрямителя
, (15.7)
то есть с ростом угла регулирования коэффициент мощности снижается.
Управляемые выпрямители можно выполнить и по двухполупериодной, и по мостовой схемам. В этих схемах выходное напряжение в зависимости от a также определяется выражением (15.1), только Ud0(a = 0) = 0,9×U2.
Выпрямитель на тиристорах схема: тиристорный мост
Тиристор как диод
При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.
Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.
К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.
В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.
Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.
Работа тиристорного выпрямителя на емкостную нагрузку
В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.
Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.
Рис. 1.
Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке Uн выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке Uн, а выпрямление производится другими приборами.
Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные Uвыпр. Частота пульсаций fп на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100Hz при питании от сети 50Hz. Схема управления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой tз относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя Uвыпр становится равным нулю.
Рис. 2.
Рисунок 2 выполнен для случая, когда задержка tз превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение Uн на нагрузке. Пульсации напряжения на нагрузке Uн сглаживаются конденсатором фильтра Cф. Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра Cф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Тп.
Теперь представим, что задержка момента включения тиристора tз равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.
Рис. 3.
В этом случае напряжение на нагрузке Uн также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).
Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда Uвыпр проходит через максимум, т. е. tз=Tп/2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра Cф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. tз<Tп/2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения tз, частота сети, а значит, частота и период Tп пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке Uн возникает желание включать тиристор намного раньше половины периода пульсаций.
Предположим, что так мы и поступили, т. е. установили время задержки tз намного меньшее Тп/2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра Cф (см. первый импульс на рис. 4).
Рис. 4.
Оказывается, что при малом времени задержки tз возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке Uн оказывается больше напряжения на выходе выпрямителя Uвыпр. В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.
Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.
Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.
Рис. 5.
Здесь тиристор нагружен на пусковое сопротивление Rп, а конденсатор фильтра Cф и нагрузка Rн подключены через пусковой диод VDп. В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра Cф. После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление Rп и, затем, когда напряжение на Rп превысит напряжение на нагрузке Uн, открывается пусковой диод VDп и анодный ток тиристора подзаряжает конденсатор фильтра Cф. Сопротивление Rп выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса tз. Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.
Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VDп, на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление Rп к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление Rп приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.
Рис. 6.
Низковольтные источники питания с тиристорным регулятором
Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.
Рис. 7.
Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:
1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5mF ставят 1mF, и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1mF.
2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3kW на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15kW, а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.
3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.
4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10kW и 12kW на рис. 7).
5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.
Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.
Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.
Рис. 8.
В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15V. Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R1-R6, транзисторов VT1 и VT2, диода VD3.
Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R2 и постоянное R1. Когда напряжение на конденсаторе C1 превысит напряжение в точке соединения сопротивлений R4 и R5, открывается транзистор VT1. Коллекторный ток транзистора VT1 открывает VT2. В свою очередь, коллекторный ток VT2 открывает VT1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C1 в управляющий электрод тиристора VS1. Так получается запускающий импульс. Изменяя переменным сопротивлением R2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.
Постоянное сопротивление R1, включенное последовательно с переменным R2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R2 выходное напряжение будет скачком исчезать. Поэтому R1 подобрано таким образом чтобы схема устойчиво работала при R2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).
В схеме использовано сопротивление R5 мощностью 1W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R5 мощностью 0.5W.
Сопротивление R3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.
Диод VD3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы и сделать надежно работающее устройство.
Сопротивление R6 в цепи управляющего электрода тиристора VS1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R6 величиной 51W как рекомендовано в справочных данных тиристоров КУ202.
Сопротивление R7 и диод VD4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).
Конденсатор C2 сглаживает пульсации напряжения на выходе схемы.
В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.
Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.
Рис. 9.
Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.
Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.
Рис. 10.
Для сглаживания пульсаций выходного напряжения может быть применен LC-фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.
Рис. 11.
Я применил именно LC-фильтр по следующим соображениям:
1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.
2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.
В фильтре использован серийный дроссель Д255В.
Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.
Рис. 12.
Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1kW поступает во времязадающий конденсатор 1mF и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.
Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.
Рис. 13.
Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4N35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100kW, при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.
Рис. 14.
При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.
Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32V. Номиналы деталей, указанные на схеме, подобраны под это напряжение.
Рис. 15.
Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5V до 40V, что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.
Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.
Заметим также следующее. Часто в схемах тиристорных регуляторов применяют пороговые элементы с неизменным порогом срабатывания. При макетировании схемы автор решил так поступить чтобы обеспечить подачу в управляющий электрод тиристора импульсов постоянной амплитуды. Попытка стабилизировать порог срабатывания транзисторной схемы управления привела к ухудшению стабильности ее работы. Поэтому от стабилизации напряжения на конденсаторе C1, при котором открываются транзисторы было решено отказаться; к точке соединения базы VT1 и коллектора VT2 подключен делитель R4R5, питающийся пульсирующим напряжением с выпрямителя на диодах VD1-VD4. В этом случае схема работает устойчиво и в ней не замечено паразитных колебаний.
Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.
Рис. 16.
Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.
Высоковольтные источники питания с тиристорным регулятором
При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов. Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.
Рис. 17.
Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R1 и R2, выпрямительный мост VD1 и стабилитроны VD2 и VD3. Эти детали предназначены для питания от сети 220V. Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200V, т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT2, после чего транзисторы VT1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.
Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R4), а также минимального сопротивления во времязадающей цепи (при помощи R5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.
С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.
Рис. 18.
В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10W. Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.
На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.
Рис. 19.
Данная схема (рис. 19) может быть использована как лабораторный источник питания для конструкций на электронных лампах, для налаживания импульсных источников питания и пр. Рассмотрим особенности схемы. Оптотиристор ТО125 кроме того, что имеет относительно малый ток удержания, позволяет соединить схему управления с общим проводом, что упрощает ее наладку, дистанционное управление. Поскольку схема управления и переменное сопротивление находятся под низкими напряжениями, прикосновение к ним безопасно. Схема управления и нагрузка питаются от одного выпрямителя на диодах VD1-VD4. Питание подается на схему управления через гасящие сопротивления R1A-R1E. При налаживании выяснилось, что схема работает устойчивее, если стабилитроны VD5 и VD6 зашунтировать сопротивлением R9. Без этого сопротивления при малом выходном напряжении (регулятор в положении наибольшего сопротивления) в схеме возникали паразитные колебания. При установленном сопротивлении R9 напряжение на катоде стабилитрона VD5 имеет вид половин синусоиды, верхушки которой могут быть ограничены стабилитронами VD5 и VD6. Также оказалось, что точка соединения базы транзистора VT2 и коллектора VT1 очень чувствительна к действию наводок. Например, работу регулятора нарушало прикосновение к этой точке пальцем. После установки сопротивления R10 чувствительность схемы управления к действию наводок значительно уменьшилась. Использован силовой трансформатор ТСА-270-1 от цветных ламповых телевизоров. Схема рис. 18 была собрана на печатной плате SCR1M0, см. рис. 19.
Рис. 20.
Печатная плата SCR1M0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP. Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.
Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500V, потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.
Рис. 21.
Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR1M0 имеются дополнительные выводы от общего провода GND1 и GND2, от выпрямителя DC1
Разработка и налаживание выпрямителя с тиристорным регулятором SCR1M0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR1M0 и осциллограмм.
Рис. 22. Вид модуля SCR1M0 со стороны деталей
Рис. 23. Вид модуля SCR1M0 со стороны пайки
Рис. 24. Вид модуля SCR1M0 сбоку
Таблица 1. Осциллограммы при малом напряжении
№ п/п | Минимальное положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 2 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 50 В/дел 2 мс/де |
Таблица 2. Осциллограммы при среднем напряжении
№ п/п | Среднее положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 2 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 100 В/дел 2 мс/дел |
Таблица 3. Осциллограммы при максимальном напряжении
№ п/п | Максимальное положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 1 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 100 В/дел 2 мс/дел |
По ходу налаживания схемы была выявлена ее склонность к паразитным колебаниям “выбросам” при малом (менее 100V) выходном напряжении. Т. е. в течение некоторого времени регулятор работает нормально и дает, скажем, 30V выходного напряжения, потом дает выброс вольт в 400, потом снова работает нормально, потом снова выброс и т. д. Возникло подозрение, что это явление возникает из-за того, что тиристор не успевает закрыться если он был открыт в самом конце полупериода. Тогда он может оставаться некоторое время открытым и пропустить ВЕСЬ следующий полупериод.
Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.
Источник: http://shemu.ru/266-vypryamiteli-s-tiristornym-regulyatorom-napryazheniya
Мостовая схема параллельного тиристорного инвертора. Принцип работы схемы
В цепях постоянного тока выключение тиристора обеспечивается путём включения параллельно тиристору ранее заряженного конденсатора с напряжением, полярность которого обратна по отношению к тиристору (принудительная коммутация). Рис. 2.
Рис. 2 Мостовая схема параллельного тиристорного инвертора
По способу включения конденсатора С с нагрузкой тиристорные инверторы делят на: параллельные, последовательные и последовательно-параллельные.
Принцип действия мостового инвертора (рис. 2):
Тиристоры открываются попарно (VS1 и VS3, VS2 и VS4) на время равное Т / 2 под воздействием положительных импульсов тока, которые подаются от схемы управления в управляющие электроды тиристоров. Выходной ток инвертора распределяется между нагрузкой и конденсатором, заряжая конденсатор полярностью, указанной на рисунке 2 без скобок. При t = T/2 схема управления посылает импульсы и включает тиристоры VS2 и VS4. Конденсатор оказывается закороченным. Ток заряда конденсатора, протекая навстречу анодному току тиристоров VS1 и VS3, уменьшает его до 0 практически мгновенно из-за малости сопротивления в контуре разряда конденсатора через тиристоры.
После падения анодного тока тиристоров VS1 и VS3 до 0 к ним прикладывается обратное напряжение, равное напряжению на конденсаторе. VS1 и VS3 запираются. Конденсатор перезаряжается через VS2 и VS4, приобретая противоположную. Полярность, необходимую для осуществления коммутации на следующем полупериоде, когда включаются VS1 и VS3. Перезаряд конденсатора должен быть медленным.
Контрольные вопросы:
1. Что такое тиристорный инвертор?
2. Какие элементы в качестве коммутационных использует в тиристорных инверторах?
3. Где применяют тиристорные инверторы?
4. Принцип работы инвертора тока и инвертора напряжения?
5. Какое назначение дросселя на входе схемы инвертора тока?
6. Зачем необходим конденсатор, подключенный параллельно к источнику питания, в схеме инвертора напряжения?
7. В чем заключается главная проблема при проектировании инверторов?
8. Что такое принудительная коммутация, т.е. как осуществляется выключение тиристора в цепях постоянного тока?
ИНВЕРТОРЫ, ВЕДОМЫЕ СЕТЬЮ
Как уже отмечалось, инвертированием называется процесс преобразования энергии постоянного тока в энергию переменного тока. Если при этом приемная часть такого преобразователя (нагрузка) не имеет других источников питания, то инвертор называется автономным. Если же инвертор преобразует энергию постоянного тока и отдает ее в сеть, где есть другие источники, то он называется инвертором, ведомым сетью (ИВС), или просто ведомым.
ИВС выполняют практически по таким же схемам, что и управляемые выпрямители. На рис. 1, а показана простейшая схема однофазного двухполупериодного ИВС. В качестве источника энергии используется обычная машина постоянного тока (МПТ), которая может работать в режиме как двигателя, так и генератора.
Рис. 1. Однофазный ведомый инвертор (а) и диаграммы его работы (б-д)
Выходным звеном инвертора, работающего на сеть переменного тока, является трансформатор, параметры которого (количество обмоток и число витков) определяют значение и число фаз получаемого переменного напряжения.
Для получения такого напряжения необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.
Чтобы изменить направление потока энергии, следует изменить знак мощности , развиваемой выпрямителем.
Так как направление тока изменить нельзя вследствие односторонней проводимости тиристоров, то изменить знак Pd можно только изменением знака , что достигается в управляемом выпрямителе увеличением угла управления
При выпрямлении источником энергии является сеть, поэтому при кривая тока , потребляемого от сети, совпадает по фазе с напряжением питания (рис. 1,б). Если , то форма тока близка к прямоугольной, тиристор VD1 работает в первом полупериоде, VD2 — во втором и машина работает в двигательном режиме (рис. 1, в, полярность на клеммах указана на рис. 1, а).
При работе схемы в качестве инвертора источником питания служит машина постоянного тока, причем полярность на ее клеммах — обратная (на рис. 1, а в скобках).
Изменение полярности источника постоянного тока одно из обязательных условий перехода схемы в режим инвертирования. При этом фазовый сдвиг между составит (рис. 1,г), а тиристоры будут работать в обратной последовательности: в первом полупериоде — VD2, во втором — VD1 (рис. 1, д).
Таким образом, тиристоры находятся в открытом состоянии при отрицательной полярности напряжений вторичных обмоток трансформатора, при этом осуществляются поочередное подключение обмоток трансформатора через дроссель к источнику постоянного тока и передача энергии в сеть.
Ранее проводивший тиристор запирается под действием обратного напряжения сети со стороны вторичных обмоток, отсюда и название инвертора — ведомый.
К ранее проводившему тиристору при отпирании очередного прикладывается обратное напряжение, равное сумме напряжений двух вторичных обмоток только в том случае, если очередной тиристор отпирается в момент, когда на подключенной к нему обмотке имеет место напряжение положительной полярности. Т. е. реальное значение угла а должно быть меньше п на некоторый угол , иначе говоря , или
, или (рис. 2).
Рис. 2. Диаграмма работы тиристора в ИВС
Если же очередной тиристор будет отпираться при , то условие запирания ранее проводившего тиристора не будет выполнено, он останется открытым, будет создана цепь короткого замыкания источника постоянного тока через вторичные обмотки трансформатора и ИВС выйдет из строя. Такое явление называется опрокидыванием инвертора.
Таким образом, второе условие перехода схемы в режим инвертирования — протекание тока через тиристоры при отрицательном напряжении на обмотках.
Трехфазные инверторы применяются значительно чаще чем однофазные. Схема трехфазного ИВС подобна данной схеме, только вместо нагрузки последовательно с дросселем включается источник постоянного тока, а выходной частью схемы служит первичная обмотка трансформатора, включенная на ведомую сеть. Характеристики и параметры трехфазного ИВС аналогичны однофазному..34эм.03.12.14г.
Лекция № 6
«Силовые схемы полупроводниковых преобразователей»(ПП)
В основе всех силовых ПП лежат трехфазные мостовые или, реже, лучевые (нулевые) вентильные группы (рис. 9.7).
Силовая схема трехфазного мостового управляемого выпрямителя и трехфазного ведомого сетью инвертора состоят из одной мостовой вентильной группы. При этом силовые схемы выпрямителя и инвертора не отличаются между собой (рис. 9.7, б),
Рис. 9.7. Вентильные группы: а – лучевые; б – мостовые
Преобразователь частоты со звеном постоянного тока состоит из двух мостовых вентильных групп, включенных последовательно, одна из которых работает в режиме выпрямителя, а другая – инвертора.
В качестве выпрямителя применяют неуправляемый или управляемый выпрямитель, в качестве инвертора – автономный или ведомый инвертор.
Силовая схема двухзвенного преобразователя частоты на базе ведомого инвертора представлена на рис. 9.8.
Рис. 9.8, ППЧ со звеном постоянного тока на базе ВИ; 1 – управляемый выпрямитель; 2 – ведомый инвертор; 3 – дроссель
Данный преобразователь является обратимым, т.е. может проводить электроэнергию в обоих направлениях.
Двухзвенные преобразователи на базе Автономного Инвертора сложнее и дороже, однако могут работать на сеть с любой нагрузкой и не требуют источника ЭДС в питающей сети.
Принципиальная схема силовой части двухзвенного ПП на базе АИ представлена на рис. 9.9.
Рис. 9.9. ППЧ со звеном постоянного тока на базе АИ: 1 – неуправляемый выпрямитель;2 – автономный инвертор напряжения
Силовая схема автономного инвертора состоит из трех вентильных мостов.
Два диодных моста работают в режиме неуправляемых выпрямителей, а мост на транзисторах – в режиме автономного инвертора.
Второй неуправляемый мостовой выпрямитель на диодах, включенный встречно параллельно инвертору, необходим для исключения электрического пробоя транзисторов при их коммутации.
Конденсатор в звене постоянного тока является для преобразователя источником напряжения.
Непосредственные полупроводниковые преобразователи частоты (ППЧ) могут проводить электрическую энергию в обоих направлениях, т.е. являются обратимыми.
КПД у данных преобразователей несколько выше, чем у двухзвенных.
Недостатком является ограничение величины выходной частоты, как правило, на уровне 30 — 40 % от входной.
Кроме того, общее количество вентилей у данных преобразователей выше, что повышает их стоимость, усложняет систему управления, повышает массу и габариты.
По схеме соединения силовой цепи непосредственные ППЧ могут выполняться с нулевыми (лучевыми) или мостовыми вентильными группами.
Принципиальная схема преобразователя с лучевыми вентильными группами приведена на рис. 9.10.
Рис. 9.10. Непосредственный ППЧ с нулевыми вентильными группами
Силовая схема непосредственного ППЧ с нулевыми вентильными группами содержит 18 тиристоров, объединенных в шесть вентильных групп, включенных попарно встречно-параллельно.
Достоинства непосредственных ППЧ, выполненных по схеме с нулевыми вентильными группами, заключаются в :
-относительно малом числе тиристоров,
-простоте силовой схемы и системы управления,
-возможности включения нагрузки в трехфазную группу без применения многообмоточного трансформатора.
На рис. 9.11 представлена силовая схема непосредственного ППЧ, выполненного на базе шести мостовых вентильных групп.
Рис. 9.11. Непосредственный ППЧ с мостовыми вентильными группами
К достоинствам непосредственных ППЧ, выполненных с использованием трехфазных мостовых вентильных групп, следует отнести то, что амплитуда пульсаций в кривой выходного напряжения, по сравнению с трехфазной нулевой схемой, уменьшается примерно в два раза при одновременном увеличении вдвое частоты пульсаций.
Это существенно повышает качество выходного напряжения, позволяя на выходе преобразователя получить более высокое значение частоты.
Однако, из-за образования короткозамкнутых контуров, в преобразователе данного типа недопустима гальваническая связь между цепями нагрузки отдельных фаз. Поэтому в схемах непосредственных ППЧ с мостовыми вентильными группами для исключения контуров короткого замыкания, возникающих при коммутации вентилей, необходимо обеспечивать потенциальное разделение фаз за счет применения силовых трансформаторов на входе или выходе преобразователей.31эм.01.12.14г.32.эм.05.12.14г.
Лекция № 7
Управление асинхронными двигателями(АД) с использованием тиристорных преобразователей частоты(ТПЧ)
В электроприводе ТПЧ в основном служат для регулирования частоты тока, поступающего на статор АД.
Изменяющийся по частоте ток приводит к изменению угловой скорости поля статора, в результате пропорционально изменяется угловая скорость ротора. Плавное изменение частоты тока статора и широкий диапазон ее изменения позволяют плавно изменять угловую скорость АД в широких пределах.
Источник: https://studopedia.ru/5_105484_mostovaya-shema-parallelnogo-tiristornogo-invertora-printsip-raboti-shemi.html
Способы и схемы управления тиристором или симистором
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Интересно:
Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Алексей Бартош
Источник: http://electrik.info/main/praktika/1490-sposoby-i-shemy-upravleniya-tiristorom-ili-simistorom.html
9zip.ru Радиотехника, электроника и схемы своими руками Тиристорные регулируемые выпрямители
Простейшее мощное зарядное устройство можно собрать с применением силовых тиристоров. В подобных схемах они выполняют функцию выпрямителей, к которым подведено фазовое регулирование.
Как известно, тиристор открывается при протекании тока через управляющий электрод. Величины напряжения и тока можно найти в справочниках и даташитах. Силовым тиристорам для открытия требуется импульс, что делает управление экономичным, но усложняет схему. Закрывается тиристор, как и симистор, сам, на нуле синусоиды.
Так как мы рассматриваем простейшие схемы, то рассмотрим вариант обычного фазового регулирования, который подойдёт для проверки. Первый вариант — с трансформатором, имеющим две вторичных силовых обмотки (или одну со средней точкой). В этом случае требуется всего два выпрямительных элемента, роль которых и выполняют тиристоры. Силовая часть отмечена на схеме красным цветом.
Так как мощные зарядные устройства требуются, как правило, для высоковольтных аккумуляторных батарей, то получать низкое напряжение управления с силовой вторичной обмотки не выгодно по причине рассеивания большой мощности на гасящем резисторе, который также выполняет функции регулировочного. Поэтому для питания цепей управления, помеченных на схеме зелёным цветом, имеется дополнительная обмотка, которую легко можно намотать монтажным проводом на любой части трансформатора. Количество витков следует подобрать таким, чтобы напряжение соответствовало паспортному на конкретный тиристор.
Фазовое регулирование работает очень просто. Через регулировочный резистор R1 заряжаются конденсаторы С1 и C2. Время их заряда зависит от ёмкости и сопротивления резистора. Это время и определяет момент открытия тиристора. Чем меньше сопротивление, тем быстрее зарядится конденсатор и тем раньше на данном полупериоде откроется тиристор, и тем больший ток получит нагрузка. Для тиристоров Т161 понадобились конденсаторы на 100 мкФ и резистор на 33 Ом. Обрати внимание, что ток диодов моста DB1, мощность резистора R1, ток диодов D1 и D2 должны быть соответствующими токам управления тиристоров.
Схема мощного регулируемого зарядного устройства для трансформатора с одной силовой обмоткой будет отличаться лишь тем, что здесь требуется полноценный мост из четырёх выпрямительных элементов. В качестве двух из них используем силовые диоды VD1 и VD2. Управляющая часть схемы остаётся прежней.
В случае же, если напряжение силовой обмотки невысокое, то напряжение для управления тиристорами регулятора можно брать с неё же.
Как уже было сказано, эти схемы годятся лишь для проверки работы тиристорных регуляторов; такое управление допустимо лишь на сравнительно малых токах. Для управления мощными силовыми тиристорами, работающими на больших токах, управление следует делать импульсным. Возможная схема такого управления представлена ниже:
Однопереходный транзистор здесь может быть заменён аналогом из двух биполярных. Он открывается, когда напряжение на конденсаторе C1 достигнет определённого значения, а это время определяется, как и в предыдущей схеме, ёмкостью и сопротивлением. Для того, чтобы импульс управления получился токовым, добавлен транзистор VT2. Трансформатор должен иметь соотношение обмоток 1:1 и быть импульсным, желательно — на пермаллое. Фазировка обмоток — такая, какая была на оригинальной схеме из интернета, и, возможно, здесь есть ошибка. Для управления двумя тиристорами следует добавить на этот трансформатор ещё одну обмотку.
Источник: https://9zip.ru/home/tiristornye_reguliruemye_vypryamiteli.htm
Схемы управления люстрой по двум проводам с использованием полупроводников
Главным недостатком схем управления люстрой по двум проводам с помощью релейных элементов является небольшой срок службы самого реле. По своей коммутационной износостойкости реле выдерживает всего несколько сотен срабатываний. В первую очередь это обусловлено большим количеством механических звеньев в конструкции реле. Для устранения этого недостатка обычное реле часто заменяют на транзисторы, способные переключаться с частотой более 1кГц.Схема управления люстрой по двум проводам на базе счетчика К561ТМ2
В приведенной схеме подключение новой группы ламп происходит при кратковременном переводе выключателя SA1 из положения ВКЛ в положение ВЫКЛ и обратно.
Схема строится на базе двоичного двухразрядного счетчика на микросхеме К561ТМ2. Алгоритм работы счетчика представляет собой последовательности импульсов на его выходах: 00b, 01b, 10b и 11b. При появлении на выходе логической «1» (переключении выключателя SA1) подключается одна из групп ламп. Лампа EL1 зажигается при включении выключателя SA1. Дальнейшее подключение ламп осуществляется по следующему алгоритму: EL1 & EL2; EL1 & EL3 & EL4; EL1 & EL2 & EL3 & EL4.
Управление счетчиком осуществляется счетным импульсом, поступающем на вход С при каждом переключении выключателя. Сброс счетчика осуществляется подачей импульса на вход сброса R. Сброс счетчика происходит при включении выключателя, при условии что временной интервал от предыдущего выключения превысил 15 секунд.
Формирование счетных импульсов осуществляется логическим элементом DD1.3. При первом включении схемы на выходе элемента DD1.3 формируется сигнал низкого уровня, поддерживаемый конденсатором С2. При непродолжительном размыкании выключателя SA1 конденсатор С2 разряжается и на выходе элемента DD1.3 формируется сигнал высокого уровня. Переключение элемента DD2.1 происходит по переднему фронту сигнала на счетном входе. Формирование счетного импульса происходит при каждом размыкании выключателя SA1.
Схема управления люстрой по двум проводам на базе сдвигового регистра К561ИР2
Алгоритм работы сдвигового регистра: при поступлении импульса на счетный вход С происходит передача сигнала на входе D на выход 1 и сдвиг информации к последующим триггерам. В представленной схеме на вход всегда поступает логическая «1», поэтому на выходе микросхемы будет формироваться число в двоичном коде: 0000, 0001, 0011, 0000. Алгоритм подключения ламп аналогичен предыдущей схеме. Сброс микросхемы происходит при четвертом переключении выключателя S1.
Схема управления люстрой по двум проводам на базе тиристоров
Лампа EL3 загорается при первом включении выключателя SA1. Питание схемы осуществляется через выпрямитель VD6-VD9. Выпрямленное напряжение поступает на стабилизатор (стабилитрон VD1 и конденсатор С1). Через резистор R2 происходит заряд конденсатора С2, поддерживающий высокий уровень сигнала на выходе DD1.1. При этом происходит заряд конденсатора С3. При заряде конденсатора С3 до необходимого уровня напряжения на выходе DD1.1 появится низкий уровень сигнала, а на выходах элементов DD1.2 и DD1.3 – высокий. Таким образом элемент DD1 удерживает транзистор VT1 и тиристор VS1 в закрытом состоянии.
При переключении выключателя SA1 происходит перезаряд конденсатора С3. При этом на выходе DD1.1 – высокий уровень, на выходах DD1.2 и DD1.3 – низкий уровень сигналов. Выходные сигналы логического элемента DD1 формируют импульс открытия транзистора VT1. В результате на управляющем электроде тиристора появляется напряжение, переводя его в открытое состояние, зажигая лампы EL1 и EL2.
Схема управления люстрой по двум проводам на базе микроконтроллера
Применение микропроцессорной техники позволяет существенно упростить схемотехнику, а также расширить функциональные возможности системы. Побочным же эффектом можно считать необходимость разработки программного обеспечения для самого контроллера.
Алгоритм работы схемы подобен предыдущим вариантам реализации схем управления люстрой по двум проводам. Однако разработчик программного обеспечения можете заложить расширенные функциональные возможности в эту схему, такие как плавное включение и отключение ламп, регулировка яркости свечения, включать и отключать освещение в определенное время.
Способы подключения нагрузки к блоку управления на микросхемах — Меандр — занимательная электроника
Все современное оборудование, как промышленное, так и бытовое приводится в действие электричеством. При этом всю его электрическую схему можно разделить на две большие части: устройства управления (контроллеры от английского слова CONTROL – управлять) и исполнительные механизмы.
Лет двадцать назад блоки управления выполнялись на микросхемах малой и средней степени интеграции. Это были серии микросхем К155, К561, К133, К176 и им подобные. Они называются логическими цифровыми микросхемами, так как выполняют логические операции над сигналами, а сами сигналы являются цифровыми (дискретными).
В точности также, как обычные контакты: «замкнут – разомкнут». Только в этом случае эти состояния называются соответственно «логическая единица» и «логический ноль». Напряжение логической единицы на выходе микросхем находится в пределах от половины напряжения питания до его полной величины, а напряжение логического нуля у таких микросхем, как правило, 0…0,4В.
Алгоритм работы таких блоков управления осуществлялся за счет соответствующего соединения микросхем, и количество их было достаточно велико.
В настоящее время все блоки управления разрабатываются на основе микроконтроллеров разных типов. В этом случае алгоритм работы закладывается не схемным соединением отдельных элементов, а «прошитой» в микроконтроллере программой.
В связи с этим вместо нескольких десятков, а то и сотен микросхем блок управления содержит микроконтроллер и некоторое количество микросхем для взаимодействия с «внешним миром». Но, несмотря на такое усовершенствование, сигналы микроконтроллерного блока управления все те же цифровые, что и у старых микросхем.
Понятно, что мощности таких сигналов недостаточно, чтобы включить мощную лампу, двигатель, да и просто реле. В этой статье мы рассмотрим, какими способами можно подключить к микросхемам мощные нагрузки.
Самые простые способы это включение нагрузки через реле. На рисунке 1 реле включается при помощи транзистора VT1, для этого на его базу через резистор R1 от микросхемы подается логическая единица, транзистор открывается и включает реле, которое своими контактами (на рисунке не показаны) включает нагрузку.
Каскад, показанный на рисунке, 2 работает по-другому: чтобы включить реле на выходе микросхемы должен появиться логический 0, который закроет транзистор VT3. при этом транзистор VT4 откроется и включит реле. Кнопкой SB3 можно включить реле вручную.
На обоих рисунках можно заметить, что параллельно обмоткам реле включены диоды, причем по отношению к напряжению питания в обратном (непроводящем) направлении. Их назначение погасить ЭДС самоиндукции (может в десять и более раз превышать напряжение питания) при выключении реле и защитить элементы схемы.
Если же в схеме не одно, два реле, а намного больше, то для их подключения выпускается специализированная микросхема ULN2003A, допускающая подключение до семи реле. Такая схема включения показана на рисунке 3, а на рисунке 4 внешний вид современного малогабаритного реле.
На рисунке 5 показана схема подключения нагрузки с помощью оптронных тиристоров ТО125-12,5-6 (вместо которых ничего не меняя в схеме, можно подключить реле). На этой схеме следует обратить внимание на транзисторный ключ, выполненный на двух транзисторах VT3, VT4. Подобное усложнение вызвано тем, что некоторые микроконтроллеры, например AT89C51, AT89C2051 на время сброса при включении в течение нескольких миллисекунд удерживают на всех выводах уровень логической 1. Если нагрузку подключить по схеме приведенной на рисунке 1, то срабатывание нагрузки произойдет сразу же при включении питания, что может быть очень нежелательным явлением.
Для того, чтобы включить нагрузку (в данном случае светодиоды оптронных тиристоров V1,V2) на базу транзистора VT3 через резистор R12 следует подать логический 0, что приведет к открытию VT3 и VT4. Последний зажжет светодиоды оптотиристоров, которые откроются и включат сетевую нагрузку. Оптронные тиристоры обеспечивают гальваническую развязку от сети собственно схемы управления, что повышает электробезопасность и надежность схемы.
Несколько слов о тиристорах.
Не вдаваясь в технические подробности и вольтамперные характеристики можно сказать, что тиристор — это простой диод, у них даже обозначения похожи. Вот только у тиристора имеется еще управляющий электрод. Если на него подать положительный относительно катода импульс, даже кратковременный, то тиристор откроется.
В открытом состоянии тиристор будет находиться до тех пор, пока через него течет ток в прямом направлении. Этот ток должен быть не менее некоторой величины, называемой током удержания. Иначе тиристор просто не включится. Выключить тиристор можно лишь разорвав цепь или подав напряжение обратной полярности. Поэтому, чтобы пропустить обе полуволны переменного напряжения используется встречно – параллельное включение двух тиристоров (см. рис. 5).
Чтобы не делать такого включения выпускаются симисторы или на буржуйском языке триаки. В них уже в одном корпусе изготовлены два тиристора, включенные встречно – параллельно. Управляющий электрод у них общий.
На рисунке 6 показаны внешний вид и цоколевка тиристоров, а на рисунке 7 то же для триаков.
На рисунке 8 показана схема подключения триака к микроконтроллеру (выходу микросхемы) при помощи специального маломощного оптотриака типа MOC3041.
Этот драйвер внутри себя содержит светодиод, подключенный к выводам 1 и 2 (на рисунке показан вид на микросхему сверху) и собственно оптотриак, который, будучи засвечен светодиодом, открывается (выводы 6 и 4) и, через резистор R1, соединяет управляющий электрод с анодом, за счет чего открывается мощный триак.
Резистор R2 предназначен для того, чтобы не произошло открытия триака в отсутствии управляющего сигнала в момент включения питания, а цепочка C1, R3 предназначена для подавления помех в момент переключений. Правда, MOC3041 особых помех не создает, поскольку имеет схему CROSS ZERO (переход напряжения через 0), и включения происходят в тот момент, когда сетевое напряжение только перешло через 0.Все рассмотренные схемы имеют гальваническую развязку от питающей сети, что обеспечивает надежность работы и электробезопасность при значительной коммутируемой мощности.
Если же мощность незначительна и не требуется гальваническая развязка контроллера от сети, то возможно подключение тиристоров непосредственно к микроконтроллеру. Подобная схема приведена на рисунке 9.
Это схема елочной гирлянды произведенной, конечно, в Китае. Управляющие электроды тиристоров MCR 100-6 через резисторы подключены непосредственно к микроконтроллеру (находится на плате под каплей черного компаунда). Мощность управляющих сигналов настолько мала, что потребление тока на все четыре сразу, менее 1 миллиампера. При этом обратное напряжение до 800В и ток до 0,8А. Габаритные же размеры как у транзисторов КТ209.Конечно, в одной короткой статье невозможно описать сразу все схемы, но, основные принципы их работы, кажется рассказать удалось. Сложностей особых тут нет, схемы все проверены на практике и, как правило, при ремонте или самостоятельном изготовлении огорчений не приносят.
Автор: Борис Аладышкин
SCR Цепи управления
90 ° Фазовое управление SCR. Фазовое управление SCRВ цепях переменного тока SCR может быть включен затвором под любым углом a по отношению к приложенному напряжению. Этот угол α называется углом открытия. Регулировка мощности достигается изменением угла зажигания, и это известно как регулирование фазы. В схеме фазового регулирования, представленной на рис. 1, напряжение срабатывания затвора получается от источника переменного тока через резисторы R 1 , R 2 и R 3 .Переменное сопротивление R 2 ограничивает ток затвора во время положительных полупериодов питания. Если подвижный контакт установлен в верхнюю часть резистора R 2 , сопротивление в цепи будет самым низким, и тиристор может сработать почти сразу в начале положительного полупериода входа. Если, с другой стороны, подвижный контакт установлен на нижнюю часть резистора R 2 , сопротивление в цепи максимальное, тиристор может не включиться до пика положительного полупериода.Регулируя R 2 между этими двумя крайними значениями, можно включить SCR где-то между началом и пиком положительного полупериода, то есть между 0 ° и 90 °. Если напряжение срабатывания V T недостаточно велико для срабатывания тринистора при 90 °, устройство вообще не сработает, потому что V T имеет максимальное значение на пике входа и уменьшается с падением напряжения. . Эту операцию иногда называют полуволновым регулированием фазы с переменным сопротивлением . Это эффективный метод управления мощностью нагрузки.
Диод D предназначен для защиты затвора SCR от отрицательного напряжения, которое в противном случае могло бы быть приложено во время отрицательного полупериода входа. Из принципиальной схемы, представленной на рис.а, видно, что в момент включения тринистора ток затвора протекает через R , L и диод. Итак,
V T = V D + V G + I G справа слева
Фазовое управление на 180 градусов. Контроль фазы-SCRСхема, показанная на рисунке, может запускать SCR от 0 ° до 180 ° формы входного сигнала. В показанной здесь схеме резистор R и конденсатор C определяют точку во входном цикле, в которой срабатывает тиристор. Во время отрицательного полупериода входа конденсатор C заряжается отрицательно (с полярностью, показанной на рисунке) через диод D 2 до пика входного напряжения, поскольку диод D 2 смещен в прямом направлении.Когда пик входного отрицательного полупериода пройден, диод D 2 смещается в обратном направлении, и конденсатор C начинает разряжаться через резистор R. В зависимости от постоянной времени, то есть CR, конденсатор C может быть почти полностью разряжается в начале положительного полупериода входа, или он может сохранять частично отрицательный заряд, пока не пройдет почти 180 ° положительного полупериода. Пока конденсатор C остается заряженным отрицательно, диод D 1 имеет обратное смещение, и затвор не может перейти в положительное положение, чтобы запустить SCR в проводимость.Таким образом, R и / или C могут быть отрегулированы, чтобы влиять на запуск SCR в любом месте от 0 ° до 180 ° входного цикла переменного тока.
Импульсное управление SCR. Цепь импульсного управленияСамая простая схема управления тиристором показана на рисунке. Если бы тиристор был обычным выпрямителем, он бы вырабатывал полуволновое выпрямленное переменное напряжение на нагрузке R L . То же самое было бы верно, если бы затвор SCR имел постоянное напряжение смещения, чтобы удерживать его включенным, когда напряжение анод-катод V AK становится положительным.Триггерный импульс, приложенный к вентилю, может переключить устройство в любое время в течение положительного полупериода входа. Результирующая форма волны нагрузки представляет собой часть положительного полупериода, начинающегося в момент срабатывания SCR. Резистор R G удерживает напряжение затвор-катод V G равным нулю, когда триггерный вход отсутствует. Мгновенный уровень тока нагрузки может быть определен из следующего соотношения
Изучены простые схемы управления фазой симистора
В схеме управления фазой симистора симистор включается только для определенных частей полупериодов переменного тока, заставляя нагрузку работать только в течение этого периода формы сигнала переменного тока.Это приводит к контролируемой подаче мощности на нагрузку.
Симисторы широко используются в качестве твердотельной замены реле для переключения мощных нагрузок переменного тока. Однако есть еще одна очень полезная функция симисторов, которая позволяет использовать их в качестве контроллеров мощности для управления данной нагрузкой на желаемых конкретных уровнях мощности.
Это в основном реализуется двумя способами: управление фазой и переключение при нулевом напряжении.
Приложение управления фазой обычно подходит для таких нагрузок, как регуляторы освещенности, электродвигатели, а также методы регулирования напряжения и тока.
Переключение при нулевом напряжении больше подходит для резистивных нагрузок, таких как лампы накаливания, нагреватели, паяльники, гейзеры и т. Д. Хотя ими также можно управлять с помощью метода фазового регулирования.
Как работает управление фазой симистора
Симистор может быть активирован в любой части приложенного полупериода переменного тока, и он будет продолжать находиться в проводящем режиме только до тех пор, пока полупериод переменного тока не достигнет линии пересечения нуля.
Это означает, что когда симистор срабатывает в начале каждого полупериода переменного тока, симистор по существу включается так же, как переключатель ВКЛ / ВЫКЛ, включенный.
Однако предположим, что если этот сигнал запуска используется где-то на полпути формы сигнала цикла переменного тока, симистору будет разрешено проводить просто в течение оставшегося периода этого полупериода.
И поскольку симистор активируется только на половину периода, он пропорционально снижает мощность, подаваемую на нагрузку, примерно на 50% (рис. 1).
Таким образом, количество мощности нагрузки можно контролировать на любом желаемом уровне, просто изменяя точку срабатывания симистора на форме сигнала фазы переменного тока.Так работает фазовый контроль с помощью симистора.
Применение светорегулятора
Стандартная схема светорегулятора представлена на рис. 2 ниже. В течение каждого полупериода переменного тока конденсатор 0,1 мкФ заряжается (через сопротивление управляющего потенциометра) до тех пор, пока на его выводах не будет достигнут уровень напряжения 30-32.
Примерно на этом уровне триггерный диод (диак) вынужден срабатывать, заставляя напряжение проходить через триггер через затвор симистора.
Неоновая лампа также может быть использована вместо диака для того же отклика.Время, затрачиваемое конденсатором 0,1 мкФ на зарядку до порога срабатывания диака, зависит от настройки сопротивления регулирующего потенциометра.
Теперь предположим, что если потенциометр настроен на нулевое сопротивление, конденсатор будет мгновенно заряжаться до уровня срабатывания диака, что, в свою очередь, приведет к тому, что конденсатор перейдет в проводимость на протяжении почти всего полупериода переменного тока.
С другой стороны, когда потенциометр настроен на максимальное значение сопротивления, конденсатор может заряжаться до уровня зажигания только до тех пор, пока полупериод почти не достигнет своей конечной точки.Это позволит симистору
проводить только очень короткое время, пока сигнал переменного тока проходит через конец полупериода.
Несмотря на то, что схема диммера, показанная выше, действительно проста и недорога в сборке, имеет одно существенное ограничение — она не позволяет плавно регулировать мощность нагрузки от нуля до максимума.
Когда мы вращаем потенциометр, мы можем обнаружить, что ток нагрузки довольно резко возрастает от нуля до некоторых более высоких уровней, из которых только тогда можно было бы плавно управлять на более высоких или низких уровнях.
В случае, если подача переменного тока кратковременно отключается и яркость лампы опускается ниже этого «скачка» (гистерезиса) уровня, лампа остается выключенной даже после окончательного восстановления питания.
Как уменьшить гистерезис
Этот эффект гистерезиса можно было бы существенно снизить, реализовав конструкцию, показанную в схеме на рис. 3 ниже.
Поправка: замените 100 мкФ на 100 мкГ для катушки ВЧ-помех.Эта схема отлично работает в качестве диммера для домашнего освещения.Все части могут быть установлены в задней части настенного распределительного щита, и в случае, если нагрузка окажется ниже 200 Вт, симистор может работать независимо от радиатора.
Практически 100% отсутствие гистерезиса необходимо для диммеров, используемых в оркестровых представлениях и театрах, чтобы обеспечить постоянное управление освещением ламп. Эта функция может быть реализована при работе со схемой, показанной на рис. 4 ниже.
Поправка: замените 100 мкФ на 100 мкГн для катушки ВЧ-помех.Выбор мощности симистора
Лампы накаливания потребляют невероятно большой ток в течение периода, когда нить накала достигает своих рабочих температур.Этот импульсный ток при включении может превышать номинальный ток симистора примерно в 10–12 раз.
К счастью, бытовые лампочки могут достичь своей рабочей температуры всего за пару циклов переменного тока, и этот короткий период высокого тока легко поглощается симистором без каких-либо проблем.
Однако ситуация может быть иной для сценариев театрального освещения, в которых лампам большей мощности требуется гораздо больше времени для достижения своей рабочей температуры. Для такого типа приложений симистор должен иметь номинальную нагрузку как минимум в 5 раз превышающую типичную максимальную нагрузку.
Колебания напряжения в схемах управления фазой симистора
Каждая из схем управления фазой симистора, показанных до сих пор, зависит от напряжения, то есть их выходное напряжение изменяется в ответ на изменения входного напряжения питания. Эта зависимость от напряжения может быть устранена с помощью стабилитрона, который может стабилизировать и поддерживать постоянным напряжение на синхронизирующем конденсаторе (рис. 4).
Эта установка помогает поддерживать практически постоянный выходной сигнал независимо от любых значительных колебаний входного напряжения сети переменного тока.Его регулярно используют в фотографических и других сферах, где очень важен стабильный и фиксированный уровень света.
Управление люминесцентными лампами
Что касается всех схем управления фазой, описанных до сих пор, лампами накаливания можно было управлять без каких-либо дополнительных изменений в существующей системе домашнего освещения.
Регулировка яркости люминесцентных ламп также возможна благодаря такому типу управления фазой симистора. Когда внешняя температура галогенной лампы опускается ниже 2500 градусов C, цикл регенерации галогена перестает работать.
Это может привести к осаждению вольфрамовой нити накала на стенке лампы, сокращению срока службы нити и ограничению прохождения света через стекло. Регулировка, которая часто используется вместе с некоторыми схемами, рассмотренными выше, продемонстрирована на рис. 5
Эта установка включает лампы, когда наступает темнота, и выключает их снова на рассвете. Фотоэлемент должен видеть окружающий свет, но быть защищенным от регулируемой лампы.
Управление скоростью двигателя
Управление фазой симистора также позволяет регулировать скорость электродвигателей. Обычным типом двигателя с последовательной обмоткой можно управлять с помощью схем, очень похожих на те, что используются для регулировки яркости света.
Однако, чтобы гарантировать надежную коммутацию, конденсатор и последовательное сопротивление необходимо подключить параллельно через симистор (рис. 6).
Благодаря этой настройке скорость двигателя может изменяться в ответ на изменения нагрузки и напряжения питания,
Однако для приложений, которые не являются критическими (например, управление скоростью вентилятора), в которых нагрузка фиксирована на любой заданной скорости , схема не потребует никаких изменений.
Скорость двигателя, которая обычно, когда она предварительно запрограммирована, остается постоянной даже при изменении условий нагрузки, оказывается полезной характеристикой для электроинструментов, лабораторных мешалок, гончарных кругов часовых мастеров и т. Д. ‘SCR обычно включается в полуволновую схему (рис. 7).
Схема работает довольно хорошо в ограниченном диапазоне скоростей двигателя, хотя может быть уязвима для «икоты» на низкой скорости, а правило полуволновой работы препятствует стабильной работе намного выше диапазона скоростей 50%.Схема управления фазой с измерением нагрузки, в которой симистор обеспечивает управление от нуля до максимума, показана на рис. 8.
Управление скоростью асинхронного двигателя
Скорость асинхронного двигателя также можно контролировать с помощью симистора, хотя вы можете столкнуться с некоторыми трудностями, в частности если задействованы двигатели с двухфазным или конденсаторным пуском. Обычно асинхронные двигатели могут управляться от полной до половинной скорости, при условии, что они не загружены на 100%.
Температура двигателя может использоваться как довольно надежный эталон.Температура никогда не должна выходить за рамки спецификаций производителя при любой скорости.
И снова, может быть применена улучшенная схема регулятора яркости света, показанная на рис. 6 выше, однако нагрузка должна быть подключена в другом месте, как показано пунктирными линиями.
Изменение напряжения трансформатора посредством управления фазой
Схема установлена объясненное выше, может также использоваться для регулирования напряжения внутри обмотки первичной стороны трансформатора, тем самым получая вторичный выходной сигнал с переменной скоростью.
Эта конструкция применялась в различных контроллерах ламп микроскопов. Переменная установка нуля была обеспечена заменой резистора 47 кОм на потенциометр 100 кОм.
Управление нагревательными нагрузками
Различные схемы управления фазой симистора, обсуждавшиеся до сих пор, могут применяться для управления нагрузкой типа нагревателя, хотя контролируемая температура нагрузки может изменяться с изменениями входного переменного напряжения и окружающей температуры. Схема, компенсирующая такие изменяющиеся параметры, показана на рис.10.
Гипотетически эта схема могла бы поддерживать температуру стабилизированной в пределах 1% от заданной точки независимо от изменений напряжения сети переменного тока на +/- 10%. Точная общая производительность может определяться структурой и дизайном системы, в которой применяется контроллер.
Эта схема обеспечивает относительное управление, что означает, что общая мощность подается на нагревательную нагрузку, когда нагрузка начинает нагреваться, затем в какой-то промежуточной точке мощность снижается с помощью меры, которая пропорциональна разнице между фактическими значениями. температура груза и предполагаемая температура груза.
Пропорциональный диапазон регулируется с помощью регулятора «усиления». Схема проста, но эффективна, однако имеет один существенный недостаток, который ограничивает ее использование в основном более легкими нагрузками. Эта проблема касается излучения сильных радиопомех из-за прерывания фазы симистора.
Радиочастотные помехи в системах контроля фазы
Все устройства контроля фазы симистора вырабатывают огромное количество радиочастотных помех (радиочастотные помехи или радиопомехи).В основном это происходит на низких и средних частотах.
Радиочастотное излучение сильно улавливается всеми ближайшими средневолновыми радиоприемниками и даже звуковым оборудованием и усилителями, создавая раздражающий громкий звенящий звук.
Этот RFI может также повлиять на оборудование исследовательских лабораторий, особенно на pH-метры, что приведет к непредсказуемой работе компьютеров и других подобных чувствительных электронных устройств.
Возможное средство для уменьшения радиопомех — это добавление радиочастотного индуктора последовательно с линией питания (обозначенной в схемах как L1).Дроссель подходящего размера можно построить, намотав от 40 до 50 витков суперэмалированной медной проволоки на небольшой ферритовый стержень или любой ферритовый сердечник.
Это может привести к индуктивности прибл. 100 мкГн, подавляющие колебания радиопомех в значительной степени. Для повышенного подавления может быть важно максимально увеличить количество витков до максимально возможного значения или индуктивности до 5 Гн.
Недостаток ВЧ-дросселя
Недостаток схемы управления фазой симистора на основе ВЧ-катушки заключается в том, что мощность нагрузки следует учитывать в зависимости от толщины провода дросселя.Поскольку нагрузка должна быть в киловаттном диапазоне, тогда провод ВЧ дросселя должен быть достаточно толстым, что приведет к значительному увеличению размера катушки и ее громоздкости.
Радиочастотный шум пропорционален мощности нагрузки, поэтому более высокие нагрузки могут вызвать более высокое радиочастотное излучение, требующее более совершенной схемы подавления.
Эта проблема может быть не такой серьезной для индуктивных нагрузок, таких как электродвигатели, поскольку в таких случаях обмотка нагрузки сама ослабляет радиопомехи. Управление фазой симистора также связано с дополнительной проблемой — это коэффициент мощности нагрузки.
Коэффициент мощности нагрузки может иметь отрицательное влияние, и это проблема, к которой регуляторы источника питания относятся очень серьезно.
Схема управления двухпозиционным тиристором с ИС логического элемента
Это схема управления тиристором двухпозиционного действия с ИС логического элемента. Поведение схемы. SCR включится, когда на вход A будет подан ток смещения. Но SCR выключится, если на его вход B будет подан ток смещения .
Для управления обоими входами требуется логический сигнал «1», и они будут работать попеременно в разное время.
Как SCR проводит токКогда вход A получает логическую «1». IC1a превратит логику в «0». Это заставляет C1 заряжать положительное напряжение через R3.
Для IC1b выдает на выходе логическую «1».
Он работает как моностабильная схема для обеспечения импульсной логики «1».
Который контролируется значением C1, R3 через диод D1. Он имеет только положительное напряжение, которое может вызвать срабатывание затвора SCR. Использование R5 ограничивает ток затвора не слишком большим.
Рекомендуется: Как работает SCR и основные схемы
Когда срабатывает SCR. Он будет продолжать находиться в состоянии ВКЛ. Хотя, напряжение срабатывания изменится. Положительное напряжение будет проходить через анод и катод SCR. Также должно быть напряжение на R7.
У которого напряжение больше, чем падение напряжения на R6. Потому что сопротивление R7 больше, чем R6. Это делает Q1 смещенным вперед , чтобы загорелся светодиод.
Когда мы хотим, чтобы SCR перестал проводить или отключился. Нам нужно ввести логическую «1» для входа B.
C2, R4 и IC1d подключаются как моностабильный мультивибратор . Они будут генерировать импульсную логику «1» из 1 цикла. Эта логика поступает на контролируемую ногу IC2. Какой этот IC2 (представляет собой электронный переключатель IC.
См .: CD4066 Datasheet (IC2)
) Электронный переключатель соединит анод SCR с землей. Напряжение между анодом и землей составляет 0 В.В этом состоянии SCR немедленно прекратит выполнение. Q1 будет выключен, а затем LED1 погаснет.
Напряжение на катоде может управлять другими цепями контроллера. Который он включается и выключается с помощью SCR, как светодиод транзистора Q1, включающий-выключенный.
Вы тоже можете прочитать эти схемы.
Списки деталей
Резисторы 0,25 Вт, допуск: 5%
R1, R2: 10K
R3, R4: 1M
R5: 22K
R6: 6.8K
R7: 470K
R8, R9: 1K
Электролитические конденсаторы
C1: 1 мкФ 50 В
Полупроводники:
Q1: 2N3904, 40 В 0,1A, транзистор NPN TO-92 LED1 3 мм
D1: 1N4148, 75 В, 150 мА, диоды
IC: CD40106 CMOS, шестнадцатеричные триггеры Шмитта
IC2: CD4066 Аналоговый четырехпозиционный переключатель SPST / мультиплексор / демультиплексор
Продолжайте читать:
ПОЛУЧИТЬ ОБНОВЛЕНИЕ
12 VIA всегда EMAIL 900 попробуйте сделать Electronics Learning Easy .% PDF-1.3 % 1 0 объект > поток конечный поток эндобдж 2 0 obj > / Родительский 3 0 R / Тип / Страница / Содержание 4 0 R / Ресурсы> / ProcSet [/ PDF / Text / ImageC] / Font >>> / MediaBox [0 0 595.fcq * d = SRSm} s & k + 7G / ujfchXo ~ n Շ; t
Тиристорное управление трехфазными асинхронными двигателями
В этой статье мы обсудим следующее: — 1. Тиристорное управление регуляторами переменного тока 2. Управление переменным напряжением и переменной частотой 3. Управление переменным током и переменной частотой 4. Тиристорное управление циклоконвертерами 5. Пуск с пониженным напряжением (плавный пуск) 6. Ротор Контроль сопротивления 7. Схема восстановления силы скольжения.
Тиристорное управление регуляторами переменного тока
:Регулятор переменного тока преобразует постоянное переменное напряжение в переменное переменное напряжение той же частоты.Несомненно, уровень переменного напряжения может быть изменен автотрансформатором, переключающим трансформатором, насыщаемыми реакторами и т. Д. Эти устройства использовались долгое время и до сих пор используются. Но регуляторы переменного тока, использующие тиристоры и симисторы, становятся все более популярными из-за их высокой эффективности, быстрого управления и компактных размеров. Однако регуляторы переменного тока, использующие тиристоры и симисторы, вносят в цепи нежелательные гармоники. Регуляторы переменного тока подразделяются на однофазные и трехфазные. Каждый из них может быть полуволновым (т.е., однонаправленный) или двухполупериодный (т.е. двунаправленный).
Поскольку на входе регулятора переменного тока используется переменный ток, он всегда коммутируется по линии. Следовательно, принудительная коммутация не требуется. Таким образом, схемы регуляторов переменного тока довольно просты. В регуляторах переменного тока используются два типа управления. Они известны как интегральное управление циклом и фазовое управление.
В интегральном управлении циклом, также известном как двухпозиционное управление, тиристоры используются в качестве переключателей для подключения двигателя к источнику питания на определенное количество циклов напряжения источника, а затем для его отключения еще на определенное количество циклов. .Каждое время включения и выключения состоит из целого числа циклов. Тиристоры включаются импульсами затвора при переходе через нулевое напряжение входного напряжения.
При фазовом управлении тиристоры используются в качестве переключателей для подключения двигателя к источнику питания в течение определенной части каждого цикла напряжения питания. Большинство регуляторов переменного тока используют фазовый контроль. Конфигурации силовых цепей для управления интегральным циклом и управления фазой ничем не отличаются.
Плавное изменение трехфазного переменного напряжения может быть реализовано за счет различных конфигураций силовой цепи.
Трехфазные регуляторы могут быть полуволновыми или двухполупериодными. Схема трехфазного полуволнового регулятора для двигателей, соединенных треугольником или двигателей, соединенных звездой, у которых нет доступа к нейтральной точке, показана на рис. 3.34. В этой схеме используются три тиристора и три диода. Хотя полуволновой регулятор переменного тока, показанный на рис. 3.34, влияет на экономию на стоимости полупроводниковых устройств и не создает компонентов постоянного тока в какой-либо части системы, но он вносит больше гармоник в линейный ток, чем двухполупериодный регулятор. .Полуволновая схема на практике не используется.
На рисунке 3.35 показан трехфазный двухполупериодный стабилизатор. В нем используется 6 тиристоров, по 2 на каждую фазу. Входной трансформатор может использоваться или не использоваться. Что касается нагрева обмоток двигателя, то двигатель, подключенный звездой, питаемый через двухполупериодный регулятор переменного тока, предпочтительнее двигателя, подключенного по схеме треугольника, с питанием через двухполупериодный регулятор переменного тока. Это так, потому что любая третья гармоника напряжения, генерируемая обратной ЭДС двигателя, может вызвать циркулирующие токи в случае двигателя, соединенного треугольником.
Для цепей нагрузки, соединенных треугольником, в которых доступен каждый конец каждой фазы, используется схема, показанная на рис. 3.36. Такое расположение имеет то преимущество, что снижает ток устройства, поскольку теперь оно должно нести 1 / √3 тока, если они были подключены к линии обмотки треугольником. Как только волна фазового тока известна, волна линейного тока может быть построена путем наложения.
Для цепей нагрузки, соединенных звездой, в которых нейтральная точка доступна и может быть отключена, схема, показанная на рис.3.37. В такой схеме количество требуемых тиристоров сокращается до трех, а схема управления значительно упрощается. Потребляемая мощность двигателя может быть на 100% больше, чем при управлении синусоидальным напряжением, особенно на пониженных скоростях.
Регулирование переменного напряжения и частоты : Если изменяется только частота, а напряжение статора остается постоянным, магнитный поток статора не будет на своем номинальном значении.Работа с потоком ниже или выше номинального значения нежелательна. Для работы с постоянным магнитным потоком необходимо, чтобы наведенная ЭДС линейно увеличивалась или уменьшалась с приложенной частотой. При более высоких напряжениях и при работе с высокой частотой падения напряжения в статоре очень малы, и, таким образом, работа с постоянным магнитным потоком достигается за счет поддержания постоянного отношения V / f.
Переменные напряжение и частота статора могут быть получены из систем, показанных на рис. 3.38 или на рис. 3.41, известных как прямоугольный инвертор и инвертор с широтно-импульсной модуляцией (ШИМ) соответственно.
Схема питания прямоугольного инвертора показана на рис. 3.38. Трехфазный переменный ток преобразуется в постоянный с помощью управляемого выпрямителя. Выход выпрямителя подается на схему фильтра для удаления гармоник. Выходной сигнал постоянного тока из фильтра подается на управляемый инвертор, который обеспечивает выход переменного напряжения и частоты. Это питание подается на статор трехфазного асинхронного двигателя, скорость которого необходимо регулировать.
Рисунок 3.39 показаны формы сигналов фазного напряжения V AN , V BN , V CN и формы сигналов линейного напряжения V AB , V BC и V CA . Каждая форма волны линейного напряжения смещена по фазе на 120 электрических градусов друг от друга и представляет собой квазиквадратную волну шириной 120 °. Следует отметить, что тиристоры инвертора коммутируются принудительно, потому что асинхронный двигатель представляет собой нагрузку с отстающим коэффициентом мощности. Диоды обратной связи помогают в циркуляции реактивной мощности нагрузки через конденсатор фильтра и поддерживают волны выходного напряжения, фиксированные на уровне напряжения звена постоянного тока.
Требуемое соотношение напряжения и частоты асинхронного двигателя показано на рис. 3.40. Когда частота меньше нормальной частоты, напряжение уменьшается в той же пропорции, чтобы поддерживать постоянное значение V / f. На очень низких частотах, когда падение реактивного сопротивления становится меньше по сравнению с падением сопротивления статора (ω L При работе с пониженным напряжением напряжение преобразователя уменьшается и, следовательно, коммутирующая способность конденсатора также снижается. Таким образом, инвертор обычно снабжен вспомогательным источником постоянного напряжения постоянного напряжения для целей коммутации. Вышеупомянутый инвертор не может возвращать мощность обратно в линии питания переменного тока, если не добавлен другой выпрямитель с фазовым управлением, чтобы сформировать реверсивную систему.Этот метод управления скоростью используется в трехфазных асинхронных двигателях малого и среднего размера, где передаточное число обычно ограничено 10: 1. Следует отметить, что электрическая машина спроектирована в соответствии с точкой, близкой к насыщению, на кривой намагничивания (или кривой B-H). Это сделано с точки зрения полной загрузки ядра. Если частота статора уменьшается, сохраняя постоянное напряжение статора, двигатель будет работать в области насыщения и, следовательно, двигатель будет потреблять большой ток намагничивания, вызывая увеличение потерь в сердечнике и статоре в меди и, следовательно, снижение КПД двигателя.Однако, если увеличивать только частоту питания, сохраняя постоянное напряжение статора, двигатель будет работать с низкой плотностью магнитного потока, и, таким образом, мощность двигателя будет недоиспользована. Схема управления широтно-импульсной модуляцией (ШИМ) с регулируемым напряжением и частотой для асинхронного двигателя показана на рис. 3.41. Это недавний метод, который заменяет схему прямоугольного инвертора, описанную выше. В инверторах с широтно-импульсной модуляцией (PWM) используется метод прерывания или импульса для управления выходным переменным напряжением статического инвертора.Напряжение звена постоянного тока не контролируется диодным выпрямителем. Выходное напряжение прямоугольной или ступенчатой формы быстро включается и выключается несколько раз в течение каждого полупериода, так что формируется ряд импульсов одинаковой амплитуды. Каждый импульс инвертора имеет амплитуду входного напряжения V dc . Величина основного выходного напряжения контролируется изменением общего времени включения в течение полупериода. Коммутируя одну сторону моста несколько раз в течение полупериода, выходное напряжение формы волны, показанной на рис.3.42 (а) можно получить. Простые инверторы PWM можно легко заставить генерировать сигнал только с двумя импульсами за полупериод в пределах шестиэтапной огибающей, как показано на рис. 3.42 (b). В такой форме волны присутствуют значительные пятая и седьмая гармоники, которые вызывают заметное ухудшение низкоскоростных характеристик двигателя переменного тока. Для устранения гармоник низкого порядка используются более совершенные методы ШИМ, в которых высокочастотные импульсы возникают на протяжении всего полупериода. В сложных системах ШИМ ширина импульса изменяется в течение полупериода синусоидальным образом, как показано на рис. 3.43. Фактически, импульсы должны быть равномерно распределены, а ширина импульса в определенном месте должна быть пропорциональна площади под синусоидальной волной в этом положении. В форме волны ШИМ самая низкая частота гармоники приходится на частоту повторения импульсов, и, если она намного выше основной частоты, адекватная фильтрация обеспечивается индуктивностью машины. Такие сигналы обычно создаются с помощью схемы управления, в которой высокочастотный треугольный сигнал смешивается с синусоидальным сигналом желаемой частоты. Управление напряжением достигается изменением ширины всех импульсов без изменения синусоидального соотношения. На рисунке 3.44 показан метод синусоидальной ШИМ, в котором равнобедренная треугольная волна сравнивается с синусоидальным волновым сигналом, а точки коммутации определяются точками кроссовера.Если индекс модуляции оказывается меньше единицы, на выходе появляются только гармоники несущей частоты с боковыми полосами, относящимися к основной частоте. Такая форма волны генерирует меньше гармонического нагрева и пульсации крутящего момента по сравнению с прямоугольной волной. Когда индекс модуляции превышает единицу, максимальное напряжение получается в прямоугольном режиме. Таким образом, режим PWM применим в области постоянного крутящего момента, в то время как в области постоянной мощности работа аналогична работе в режиме прямоугольной волны. Транзисторный ШИМ-регулятор, показанный на рис. 3.45, используется для управления двигателями малых и средних размеров. Без сомнения, силовые транзисторы стоят намного дороже, чем тиристоры той же мощности, но экономия за счет исключения схемы коммутации и соответствующих коммутационных потерь, схема оказывается более экономичной и эффективной. Также транзисторы работают быстрее ШИМ, возможно на более высокой частоте. Это еще больше снижает потери оборудования. Схема управления переменной силой тока и частотой для асинхронного двигателя показана на рис.3.46. Переменное постоянное напряжение, создаваемое фазоуправляемым выпрямителем, преобразуется в источник тока путем последовательного подключения большой катушки индуктивности. Большая индуктивность поддерживает постоянный ток. Напряжение на выводах статора трехфазного асинхронного двигателя почти синусоидально с наложенными скачками напряжения из-за коммутации. Используемый преобразователь — это линия с коммутацией, в то время как инвертор коммутируется принудительно, потому что асинхронный двигатель работает с запаздывающим коэффициентом мощности. Преобразователь с фазовым управлением может быть заменен диодным выпрямителем, за которым следует прерыватель постоянного тока. Схема имеет следующие преимущества: (i) Поскольку входной ток постоянный, пропуски зажигания в устройствах и короткие замыкания не представляют никаких проблем. (ii) Меньшее количество компонентов в цепи инвертора и меньшие потери при коммутации. (iii) Прочная и надежная силовая цепь. (iv) Более простая и надежная схема управления. Это потому, что нужно управлять только 6 тиристорами. (v) Пиковый ток устройств ограничен. (vi) Он может работать с реактивными или рекуперативными нагрузками без инерционных диодов. Недостатки: (i) Несколько вялый отклик привода. (ii) Довольно громоздкий и дорогой инвертор. Это связано с большими размерами индуктивности и коммутационных конденсаторов. (iii) Низкочастотный диапазон инвертора. (iv) Он не может работать без нагрузки. Это связано с тем, что для удовлетворительной коммутации инвертора необходим некоторый минимальный ток нагрузки. Циклоконвертер преобразует переменный ток одной частоты в переменный ток другой частоты. Циклоконверторы можно разделить на однофазные на однофазные, трехфазные на однофазные и трехфазные на трехфазные устройства. Также их можно разделить на повышающие и понижающие циклоконвертеры. Повышающий циклоконвертер обеспечивает выходной сигнал с частотой выше, чем входной, тогда как понижающий циклоконвертер обеспечивает выходной сигнал с частотой ниже, чем входной. Понижающий циклоконвертер использует линейную или естественную коммутацию. Циклоконверторы изначально были разработаны для систем электрической тяги, работающих на частотах 25 Гц и 16 2/3 Гц. На ранних этапах использования в циклоконверторах использовались ртутно-дуговые выпрямители. С развитием тиристоров применение циклоконвертеров расширилось. Принципиальная схема силовой цепи трехфазного циклоконвертора представлена на рис. 3.47. Независимое управление выходной частотой и напряжением достигается с помощью только одного изменения параметра, т.е.е., а именно, варьированием точек сгорания управляемых выпрямителей. Частота выходного напряжения регулируется скоростью, с которой точки зажигания изменяются относительно точки покоя, а выходное напряжение регулируется максимальным отклонением точек зажигания от точки покоя. Циклоконвертер со связанной с ним пусковой схемой вырабатывает выходное напряжение, которое является копией опорного напряжения. Работа циклоконвертора отличается несколькими особенностями.Обычно они используются в качестве понижающих преобразователей частоты. Не существует фиксированного минимального отношения входной частоты к выходной частоте; однако выходная частота обычно ограничивается одной третью или половиной входной или линейной частоты. Ниже этих соотношений КПД как циклоконвертеров, так и двигателей, поставляемых от них, начинает значительно падать. Реверсивность — еще одна особенность приводных систем циклоконвертера. Электропривод переменного тока с питанием от циклоконвертера будет реагировать на изменение полярности входных сигналов изменением направления вращения двигателя без использования контакторов для изменения чередования фаз. Способность циклоконвертера обрабатывать поток энергии в любом направлении — еще одна важная особенность. Это, вместе с вышеупомянутой функцией обратимости, обеспечивает привод асинхронного двигателя, способный работать в любом из четырех квадрантов кривой скорости-момента двигателя. Хотя циклоконвертер имеет много привлекательных функций с теоретической точки зрения, существует несколько ограничений, из-за которых они не получили популярности. Ему нужно больше силовых полупроводников, чем инвертор.Например, для трехфазного циклоконвертора требуется 18 тиристоров, а для комбинации выпрямитель-инвертор (рис. 3.38) — всего 12 тиристоров. могут выдавать только субчастотный выходной сигнал. Загрязнение линии гармониками и низкий коэффициент мощности также могут быть проблемами с циклоконвертерами большой мощности. Однако недавние достижения в области устройств быстрой коммутации привели к появлению устройств, известных как устройства прямого переключения частоты с принудительной коммутацией (FCDFC), которые работают с высокой эффективностью и имеют низкое содержание гармоник. обычно используются для двигателей большого размера, поскольку стоимость и сложность цепей питания и управления не позволяют использовать их для общих приложений. Циклоконверторы использовались в дизельных электровозах, где высокочастотный генератор переменного тока, соединенный с валом двигателя, обеспечивает мощность на входе. Они также использовались в безредукторных приводах цементных мельниц или шаровых мельниц. Пусковой ток линии при полном напряжении асинхронного двигателя может примерно в 6 раз превышать номинальный ток полной нагрузки.Такой высокий ток может вызвать резкое падение напряжения в сети, питающей асинхронный двигатель. Схема, показанная на рис. 3.48, может использоваться для подачи пониженного напряжения в начале. Как видно, это трехфазный регулятор переменного тока. Путем правильного управления углом зажигания регулятор обеспечивает низкое выходное напряжение, которое подается на асинхронный двигатель. Когда двигатель достигает полной или номинальной скорости, регулятор может быть замкнут накоротко с помощью механического контактора, так что двигатель будет нормально работать при номинальном напряжении.Более того, если двигатель используется для привода с постоянной скоростью, можно эксплуатировать двигатель при пониженном напряжении, когда механическая нагрузка мала. Работа при пониженном напряжении приводит к снижению потерь мощности в двигателе и, таким образом, к экономии энергии. Обычный метод подключения сопротивлений через контактные кольца асинхронного двигателя с фазным ротором является формой управления напряжением ротора. Основным недостатком этого метода управления скоростью является его низкая эффективность из-за потерь мощности на внешних резисторах. На рис. 3.49 (a) показаны трехфазный диодный выпрямитель и тиристор с запиранием затвора (GTO), подключенные в цепь ротора асинхронного двигателя с фазным ротором. GTO, работающий как прерыватель, изменяет сопротивление R в соответствии с рабочим циклом α. Эффективное сопротивление R e равно — R e = R (1 — α)… (3.59) Таким образом, скорость асинхронного двигателя с фазным ротором регулируется путем изменения отношения времени включения к времени выключения. Рисунок 3.49 (b) показана схема, известная как восстановление мощности скольжения (рис. 3.48). Выводы ротора подключаются к трехфазной сети переменного тока через два полностью управляемых тиристорных моста. Мост 1 действует как выпрямитель (или преобразователь), а мост 2 действует как инвертор. Выходная мощность от ротора может быть возвращена к источнику питания. Поскольку частота токов ротора является частотой скольжения, этот метод известен как схема восстановления мощности скольжения. Регулируя углы включения двух мостов, можно изменять выходную мощность ротора. Таким образом, скольжение двигателя и скорость (при том же крутящем моменте) также изменятся. Однако недостатком этой схемы является то, что оба моста потребляют реактивную мощность от питающей сети. Следовательно, общий коэффициент мощности двигателя оставляет желать лучшего. Если желательны скорости только ниже синхронной, мост 1 может быть неуправляемым и, таким образом, может состоять из диодов. Если оба моста управляются, работа двух мостов может быть реверсирована, чтобы получить скорости выше синхронной. Фактически, мощность скольжения либо возвращается в сеть питания, как в схеме Шербиуса, либо используется для привода вспомогательного двигателя, который механически соединен с валом асинхронного двигателя, как в схеме Крамера. 1. Статический привод Шербиуса: В статическом приводе Шербиуса также используется принцип восстановления силы скольжения. Принципиальная схема представлена на рис. 3.50. Для обеспечения как подсинхронного, так и суперсинхронного управления скоростью преобразователи 1 и 2 должны быть полностью управляемыми тиристорными мостами, один из которых работает на частоте скольжения как выпрямитель или инвертор, а другой — на частоте сети как инвертор или выпрямитель. Стоимость преобразователей весьма значительна, также требуется стробирующая схема со скользящей частотой. Более того, на скоростях, близких к синхронным, когда ЭДС частоты скольжения довольно малы для естественной коммутации, требуются специальные соединения для методов принудительной коммутации. Если взять преобразователь 1 неуправляемым (диодный мост), то каскад преобразователя и блок управления станут экономичными и простыми, но тогда будет доступно только подсинхронное управление скоростью. Трехфазный трансформатор между источником питания и инвертором 2 предназначен для доведения напряжения цепи ротора до значения, соответствующего напряжению источника питания.Основным недостатком подсинхронного каскадного привода является его низкий коэффициент мощности, особенно на пониженных скоростях. Этот привод используется в приводах вентиляторов и насосов большой мощности, для которых требуется регулирование скорости только в узком диапазоне. Номинальные значения мощности диодного моста инвертора и трансформатора равны максимальному скольжению, умноженному на номинальную мощность двигателя, что обеспечивает низкую стоимость привода. Этот привод обеспечивает постоянный контроль крутящего момента. Постоянное регулирование мощности может быть получено с помощью привода Крамера, описанного ниже. 2.Статический привод Крамера: На рисунке 3.51 показана принципиальная схема каскада Крамера со статическим преобразователем. Схема ротора асинхронного двигателя с контактным кольцом передает мощность скольжения, выпрямленную диодным мостом, на якорь отдельно возбужденного двигателя постоянного тока, механически связанного с асинхронным двигателем. Регулировка скорости достигается путем изменения тока возбуждения двигателя постоянного тока. Можно считать, что ЭДС, пропорциональная обратной ЭДС двигателя постоянного тока, вводится в цепь ротора асинхронного двигателя, чтобы вызвать изменение скорости системы. Для достижения большего диапазона скоростей потребуется замена диодного моста на тиристорный. С помощью тиристорных мостов можно регулировать скорость до остановки. не имеет инвертора с линейной коммутацией, он потребляет меньше реактивной мощности и вносит меньшие гармонические составляющие в токи, чем статический привод Шербиуса. Однако у него есть проблемы с обслуживанием, которые возникают из-за коммутатора и щеток вспомогательного двигателя постоянного тока. Еще он имеет недостаток в виде большого момента инерции. Статические приводные системы Kramer используются в больших силовых насосах и нагрузках компрессорного типа, где управление скоростью находится в узком диапазоне и ниже синхронной скорости. Управление фазой SCR означает контроль фазового соотношения между началом тока через SCR и напряжением источника. Когда мы говорим о фазовом угле, мы обычно имеем в виду угол синусоидальной величины в любой момент времени. Фазовое управление SCR означает фазовый угол (относительно напряжения источника), при котором он включается подачей стробирующего сигнала. Давайте разберемся в концепции с помощью простой принципиальной схемы, показанной ниже. В приведенной выше схеме тиристор (или SCR) T подключен к нагрузке R и источнику напряжения v s .Этот SCR не будет проводить до тех пор, пока он не будет смещен в прямом направлении и не будет применен сигнал затвора. Применение стробирующего сигнала называется поджигом. Просим вас прочитать «Угол открытия SCR», чтобы иметь четкое представление. Во время положительного полупериода напряжения питания v с , тиристор смещен в прямом направлении. Если тиристор Т сработает (скажем, при некотором фазовом угле α относительно напряжения источника), он перейдет в состояние ВКЛ. Поскольку теперь SCR включен, он начнет проводить. Он будет вести от ωt = α к π.Поскольку нагрузка является резистивной по своей природе, напряжение нагрузки v 0 и ток нагрузки i 0 будут соответствовать форме волны напряжения питания. На рисунке ниже показаны осциллограммы напряжения нагрузки, тока нагрузки и напряжения питания. Сравните форму сигнала напряжения источника v s и тока нагрузки i 0 . Вы увидите, что SCR включается при фазовом угле α. Таким образом, фазовый угол, при котором тиристор Т начинает проводить, зависит от угла зажигания.Если угол зажигания α равен 0 градусов, тогда ток нагрузки и напряжение источника будут в фазе, тогда как если α равен 90 градусам, ток нагрузки начнется, когда напряжение источника будет максимальным. Таким образом, начальный фазовый угол нагрузки контролируется углом зажигания. Это не следует путать с разностью фаз между напряжением источника и током нагрузки. При ωt = π тиристор T будет коммутироваться, когда ток нагрузки станет равным нулю, и тиристор будет смещен в обратном направлении с ωt = π на 2π. Это известно как естественная коммутация.Нам снова нужно активировать SCR на (2π + α), (4π + α), (6π + α) и так далее. Имея управление фазой SCR, мы можем контролировать выходное напряжение или напряжение нагрузки. Тиристорное управление циклоконвертерами
: SCR, 50RIA120 50A Тиристорный выпрямитель с болтовым соединением 1200 В, для цепи преобразователя Управление двигателем с регулируемым питанием от батареи (2 шт.): Amazon.com: Industrial & Scientific
В настоящее время недоступен.
Мы не знаем, когда и появится ли этот товар в наличии.
]]> Характеристики
Тип основы дефолт Фирменное наименование Thincol Ean 3458519954814 Вес изделия 1.41 унция Номер детали Thincolrczytsgwup Код UNSPSC 32000000 Phase Control of SCR — Определение, объяснение и преимущества
Определение: