Схема включения светодиода. Схема подключения светодиода: особенности, типы и рекомендации

Как правильно подключить светодиод к источнику питания. Какие существуют схемы подключения светодиодов. Что нужно учитывать при расчете токоограничивающего резистора. Каковы особенности подключения светодиодов к различным напряжениям.

Содержание

Основные принципы работы светодиодов

Светодиод (СД) — это полупроводниковый прибор, излучающий свет при прохождении через него электрического тока. В отличие от обычных ламп накаливания, светодиоды имеют ряд важных особенностей:

  • Работают только при прямом включении (соблюдении полярности)
  • Требуют ограничения тока для стабильной работы
  • Имеют нелинейную вольт-амперную характеристику
  • Обладают высокой эффективностью преобразования электроэнергии в свет

Для правильной работы светодиода необходимо обеспечить протекание через него номинального тока. Это достигается путем включения токоограничивающего резистора последовательно со светодиодом.

Схемы подключения светодиодов

Существует несколько основных схем подключения светодиодов:


1. Последовательное соединение

При последовательном соединении светодиоды включаются один за другим. Ток через все диоды одинаковый, что обеспечивает их равномерное свечение. Однако при выходе из строя одного светодиода перестает работать вся цепочка.

2. Параллельное соединение

Параллельное подключение позволяет независимо управлять каждым светодиодом. При этом необходимо использовать отдельный токоограничивающий резистор для каждой параллельной ветви. Выход из строя одного диода не влияет на работу остальных.

3. Смешанное соединение

Комбинирует преимущества последовательного и параллельного подключения. Светодиоды группируются в последовательные цепочки, которые затем соединяются параллельно. Это позволяет оптимизировать схему под конкретное напряжение питания.

Расчет токоограничивающего резистора

Правильный выбор сопротивления токоограничивающего резистора критически важен для стабильной и долговечной работы светодиода. Для расчета используется следующая формула:

R = (U — Uд) / I


Где:

  • R — сопротивление резистора (Ом)
  • U — напряжение источника питания (В)
  • Uд — падение напряжения на светодиоде (В)
  • I — номинальный ток светодиода (А)

Падение напряжения на светодиоде зависит от его цвета и типа:

  • Красные, желтые, оранжевые — 1.8-2.4 В
  • Зеленые, синие, белые — 3.0-3.6 В
  • Мощные светодиоды — 2.8-4.0 В

Номинальный ток для маломощных светодиодов обычно составляет 10-20 мА, для мощных — 350-1000 мА.

Особенности подключения к различным напряжениям

Подключение светодиода к батарейке 3В

При питании от батарейки 3В (например, CR2032) можно подключать напрямую красные, желтые и зеленые светодиоды с небольшим токоограничивающим резистором 30-100 Ом. Для белых и синих светодиодов потребуется повышающий преобразователь.

Подключение светодиода к 5В

Напряжение 5В позволяет подключать практически любые светодиоды через токоограничивающий резистор. Для маломощных светодиодов типичное значение резистора — 150-330 Ом.

Подключение светодиода к 12В

При питании от 12В оптимально использовать последовательное соединение 3-4 светодиодов. Также можно применять стабилизатор тока или ШИМ-контроллер для эффективного управления яркостью.


Драйверы для светодиодов

Для питания мощных светодиодов и светодиодных лент применяются специальные драйверы. Они обеспечивают:

  • Стабилизацию тока
  • Защиту от перегрузки и короткого замыкания
  • Плавное включение/выключение
  • Регулировку яркости
  • Высокий КПД преобразования

Драйверы бывают линейные и импульсные. Линейные проще, но менее эффективны. Импульсные имеют высокий КПД, но могут создавать помехи.

Регулировка яркости светодиодов

Существует несколько способов управления яркостью светодиодов:

  1. Изменение тока через светодиод (аналоговая регулировка)
  2. Широтно-импульсная модуляция (ШИМ)
  3. Частотно-импульсная модуляция (ЧИМ)

ШИМ-регулировка наиболее эффективна и широко применяется в современных светодиодных драйверах и контроллерах.

Типичные ошибки при подключении светодиодов

При работе со светодиодами следует избегать следующих ошибок:

  • Подключение без токоограничивающего резистора
  • Неправильный расчет сопротивления резистора
  • Несоблюдение полярности включения
  • Превышение максимально допустимого тока
  • Использование нестабилизированных источников питания

Соблюдение правил подключения обеспечит длительную и надежную работу светодиодов в вашем устройстве.


Практические рекомендации по монтажу

При монтаже светодиодов следует учитывать несколько важных моментов:

  1. Используйте качественные паяльные материалы и инструменты
  2. Соблюдайте температурный режим пайки (не более 260°C в течение 5 секунд)
  3. Обеспечьте хороший теплоотвод для мощных светодиодов
  4. Применяйте изоляцию и защиту от влаги при наружном монтаже
  5. Проверяйте полярность перед подключением к источнику питания

Правильный монтаж значительно повысит надежность и долговечность светодиодного устройства.


Схема Подключения Светодиода — tokzamer.ru

СД — диод, излучатель света.


Это глубокое заблуждение!!!

Падение напряжения — это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию свечение.
Как подключить светодиод к 220 В

Более продвинутый вариант — RGB диод, изменяющий цвет по заранее заложенной в чип программе. При таком раскладе светодиод будет работать на определенных полуволнах — мигать с частотой 50 Гц.


Большинство светильников оснащаются специальными драйверами, преобразующими переменное электричество в постоянное 12, 24, 36 или 48 В.

Конструкции пультов бывают сенсорными или кнопочными, со всеми стандартными действиями.

Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами. Другие виды LED Мигающий Особенность конструкции мигающего светодиода — каждый контакт является одновременно катодом и анодом.

Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже так как они включены последовательно.

КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДА

Подключение, ошибки

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. Как подключить светодиод или светодиодную ленту.

Потом цепная реакция и вся линейка выходит из строя. Монтаж цветной ленты, усилителя и контроллера RGB-контроллер предназначен для регулировки света.

Но в одной статье всего не написать, поэтому придется эту тему продолжить. Подборка диодов и расчёт БП СД ленту подключают к блоку питания напряжением 24, 12 или 6 вольт.

Обозначение светодиодов на схеме Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света.

А вот так светодиоды прослужат очень долго. Причина сего поведения кроется в следующем.

Диммер — это устройство для расширения функциональных возможностей светодиодных источников.

Всего в схеме 3 светодиода.
Как подключить МОЩНЫЙ СВЕТОДИОД!!!

См. также: Песчаная подушка под кабель в траншее

Основы подключения к 220 В

Такой результат получается если из таблицы взять максимальное значение падения напряжения.

При этом избегают попадания горячего воздуха на полупроводник. Самые применяемые два: SMD и такой же

Визуальное определение полярности Несмотря на множество существующих в настоящее время видов конструкций светодиодного оборудования , наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора.

Есть варианты для цепей с переменным током напряжения, подойдут от В и выше. Этапы сборки При самостоятельной сборке и последующем тестировании излучающих свет диодов в рабочем режиме, целесообразно воспользоваться данной последовательностью: определиться с техническими характеристиками, отраженными в сопроводительной документации; составить схему подключения с учетом уровня напряжения; вычислить показатели потребляемой мощности электроцепи; подобрать драйвер или блок питания с оптимальной мощностью; рассчитать резистор при стабилизированном напряжении; определить полярность LЕD-источника; припаять провода к светодиодным выходам; подсоединить источник питания; зафиксировать диод на радиаторе.


При смене полярности напряжение станет падать на сопротивление, поэтому светодиод будет полностью защищен от потенциального пробоя. Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже В. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока.

Простейшая схема подключения светодиода


Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Рис 3. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули. Выпрямительный диод служит для защиты led-диода от обратного напряжения.

К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии. Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Особых пояснений программа не требует.
Расчет резистора для светодиода

Понятия, сокращения, глоссарий.

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом. Параллельное соединение светодиодов В данной ситуации все происходит наоборот.

Разноцветный Разноцветный светодиод — два или больше диода, объединенных в один корпус. Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя. Возможна установка эффекта затухания или мерцания излучения.

Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне. Место монтажа ленты очищают, обезжиривают.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Другим вариантом будет включение всех светодиодов параллельным подключением, устанавливая 1 резистор, что рассчитан на тройной ток. Падение напряжения на светодиодах разных цветов.

По долговечности, надежности, безопасности они тоже их превзошли. Как включить светодиод в сеть переменного тока Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется. Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. К 1,5 В Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,,4 В. Тогда входное напряжение придется уменьшить при этом выходной ток не изменится, так и останется мА как был отрегулирован , зачем на 3 светодиода, пусть даже мощных, подавать 50В?

Последовательное подключение

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры. Светодиод припаян к плоскости ленты.

При таком раскладе светодиод будет работать на определенных полуволнах — мигать с частотой 50 Гц. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению деградации. Если же ограничить ток на уровне 10мА, то ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет. Чтобы не произошел случайный удар током, следует провести установку разрядного резистора большего номинала, расположив его параллельно конденсатору.
Как подключить светодиод к сети 220 Вольт

Элементная база и способы её применения для решения задач управления питанием светодиодов — Компоненты и технологии

Сегодня светодиоды и их сборки нашли широкое применение в самой различной технике. Подсветка дисплеев в портативных устройствах, передача информации или световая сигнализация осуществляется за счет светодиодов различной мощности. При разработке устройств на базе светодиодов важным фактором является то, что для достижения стабильности параметров излучения светодиодов необходим источник с высокой стабильностью выходного тока. Например, для обеспечения стабильного питания элементов подсветки сотового телефона необходимо повышать напряжение аккумуляторной батареи, что отрицательным образом сказывается на времени работы от заряженных батарей. Один из выходов в этой ситуации — применение повышающего DC/DC преобразователя, обеспечивающего высокую эффективность, но, к сожалению, приводящего к повышению стоимости разработки и увеличению ее массо%габаритных характеристик, что допустимо далеко не в каждом приложении. Целью данной статьи является обзор современных решений для управления питанием светодиодов на базе элементной базы мировых лидеров по производству микросхем управления питанием.

Основные сведения

Светодиод — токовый прибор, параметры свечения которого определяются стабильностью силы тока в цепи. Это является общим правилом для всех светодиодов, вне зависимости от их типа, размера и мощности. Производители светодиодов предоставляют множество различных параметров своей продукции (световой поток, диаграмма излучения, координаты цветности, номинальный прямой ток и пр.), но с точки зрения питания светодиода особое внимание разработчику следует уделять значению постоянного тока (If) при определенном прямом напряжении (Vf). Как правило, светодиоды, используемые в портативных электронных устройствах, работают при токе до 30 мА и напряжении питания около 4 В (наиболее распространенное «стандартное» напряжение аккумуляторной батареи составляет 3,7 В). Очевидно, что если используется несколько светодиодов (что чаще всего имеет место в реальных устройствах), то необходима организация схемы питания, обеспечивающая их одинаковым значением тока при параллельном включении. Все стабилизаторы напряжения гарантируют постоянное значение выходного напряжения независимо от тока нагрузки (в определенных пределах) (рис. 1), что не подходит для качественного питания светодиодов.

Рис. 1. Регуляторы напряжения с постоянным значением напряжения и тока на выходе

Как было указано, условия достижения определенных параметров светового излучения зачастую требуют уровня напряжения питания, меньшего, чем поступает от автономного источника питания устройства. Итак, повышение напряжения необходимо вследствие следующих причин:

  1. Для батарейных приборов напряжение источника недостаточно для поддержания постоянства тока через светодиод при разряде батареи.
  2. Для схем с последовательным включением светодиодов, очевидно, требуется напряжение большего номинала, чем напряжение батареи.

При рассмотрении микросхем, управляющих работой светодиодов высокой яркости, следует учесть, что напряжение питания может принимать три значения относительно указанной в технической документации характеристики светодиода:

  • напряжение питания выше необходимого номинального значения;
  • напряжение питания ниже требуемого предела;
  • характеристики питающего элемента частично перекрывают диапазон необходимых напряжений.

Соответственно необходимо повышать или понижать напряжение для его максимально близкого совпадения со значением, обеспечивающим требуемые характеристики излучения. Наиболее простой способ понижения напряжения — применение линейного стабилизатора, параметры стабилизации которого задаются при помощи пары резисторов обратной связи. Один из резисторов помещается в цепи питания светодиодов и выполняет функции датчика тока. За счет такого решения создается обратная связь, что позволяет обеспечить стабильный ток через светодиоды. Схемы на линейных стабилизаторах достаточно просты, не требуют большого числа внешних компонентов и не генерируют электромагнитных помех. Однако не стоит забывать, что у них есть и недостатки, такие как небольшой КПД и довольно большая рассеиваемая мощность. Потери линейного регулятора напряжения могут быть оценены из следующего соотношения:

где n — количество светодиодов в линейке.

При токе питания светодиодов 350 мА и выше на линейный стабилизатор напряжения необходимо устанавливать радиатор, чтобы обеспечить допустимые режимы работы, однако это приводит к увеличению стоимости, габаритов и массы конечного изделия.

Альтернативное решение применения линейного стабилизатора напряжения — использование понижающего регулятора (в зарубежной литературе step-down или buck regulator). Отличительными особенностями микросхем, выполняющих функцию понижения напряжения, является высокая эффективность при относительно небольшой стоимости, многие регуляторы работают на частоте более 1 MГц, что позволяет применять миниатюрные внешние компоненты и при этом обеспечивать ток нагрузки вплоть до 1 А.

Применение повышающего преобразователя напряжения (bust converter) необходимо при невозможности источника питания, например, аккумуляторной батареи, сохранить требуемый уровень напряжения для последовательной цепочки светодиодов. Данный тип микросхем способен обеспечивать ток нагрузки от 350 мА в широком диапазоне входных напряжений, кроме того, некоторые микросхемы имеют в своем составе встроенный ключ, что дополнительно экономит место на плате. Также из-за управления большими выходными токами микросхемы снабжают схемами защиты от перегрузок по току и напряжению.

Сегодня светодиоды высокой яркости все чаще применяются в устройствах, обеспечивающих функции освещения, постепенно вытесняя лампы накаливания (настольные светильники, дежурное и аварийное освещение, художественная подсветка). При частичном перекрытии выходного напряжения микросхемы питающего диапазона для сохранения стабильности световых характеристик необходима способность как повышения, так и понижения напряжения. Решить данную задачу можно, применяя так называемые SEPIC, CUK-регуляторы или стандартные обратно-ходовые преобразователи.

Традиционно в зависимости от типа и схемы включения светодиодов различают два типа микросхем, осуществляющих питание: индуктивные повышающие преобразователи и конверторы на переключаемых конденсаторах. Рассмотрим каждый из них подробнее.

Индуктивные повышающие конверторы

Конверторы с индуктивностью в схеме обычно используют в устройствах, где необходим высокий КПД преобразования. Отличительной особенностью данных микросхем является возможность работы с большими токами, поэтому они применяются в устройствах с большим количеством светодиодов или в фотоаппаратах в схеме питания мощного светодиода вспышки. Кроме этого, с помощью ШИМ (широтно-импульсной модуляции) или ЧИМ (частотно-импульсной модуляции) можно управлять яркостью свечения светодиодов: это интересное решение для регулирования подсветки в зависимости от степени освещенности помещения.

Как видно из таблицы 1, где представлены современные микросхемы для питания светодиодов, индуктивные преобразователи способны питать до 20 светодиодов одновременно, и при этом выходной ток может составлять до 1000 мА. Отдельно стоит отметить преобразователи LT1932 и FAN4855, отличительной особенностью которых является входной диапазон напряжений от 1 и 1,6 В соответственно. В связи с бурным развитием в последнее время различных портативных устройств, питаемых от ячеек типа АА или ААА, эти приборы весьма актуальны. Микросхема FAN4855 представляет собой маломощный импульсный регулятор напряжения, спроектированный для преобразования небольших постоянных напряжений в приборах с батарейным питанием. Данный конвертер начинает свою работу при напряжении 1,3 В и только после понижения входного напряжения ниже 1 В микросхема заканчивает преобразование. Ток нагрузки составляет до 500 мА, а выходной диапазон задается внешним резистором от 3,3 до 5 В. Ток покоя менее 10 мкА значительно продлевает работоспособность устройства без вынужденной замены элементов его питания. На рис. 2 приведена типичная схема включения микросхемы FAN4855 для осуществления питания 4-х параллельно включенных светодиодов. Можно заметить, что в диапазоне от 1 до 4 В значение тока на выходе практически не меняется и составляет 19,4 мА.

Рис. 2. Схема включения и график зависимости тока от напряжения FAN4855

Таблица 1. Виды индуктивных регуляторов напряжения

Компания Linear Technology предлагает аналогичную микросхему LT1932, но имеющую более широкий диапазон рабочих напряжений от 1 до 10 В. В зависимости от типа светодиода инженер имеет возможность задавать внешний ток за счет варьирования сопротивления резистора, которое можно определить из следующего выражения:

На рис. 3 приведены графики зависимости выходного тока LT1932 согласно уровням входного напряжения и температуры. Следует отметить, что значение тока остается постоянным в большем диапазоне напряжений, чем у FAN4855, и достигает 10 В. Ту же стабильность можно наблюдать и на температурном графике, причем для всех значений выходных токов.

Рис. 3. Графики зависимости выходного тока

Приведем в качестве примера микросхему LM3501 от National Semiconductor (рис. 4). Данный повышающий DC/DC преобразователь работает на постоянной частоте 1 МГц и является оптимальным решением для подсветки дисплеев с помощью светодиодов. Благодаря высокой частоте преобразования разработчики получают возможность применять малогабаритные конденсаторы с высоким значением эквивалентного последовательного сопротивления (ESR), что положительно отражается на стоимости конечного устройства. Микросхема может питать до четырех светодиодов одновременно от аккумуляторной батареи типа Li-Ion или NiNH. С помощью внешнего резистора пользователь получает возможность задавать значение тока через светодиодную линейку, а если необходимо плавное изменение яркости подсветки, в преобразователе предусмотрен выход для подключения внешнего ЦАП или микроконтроллера.

Рис. 4. Схема включения микросхемы LM3501

В качестве еще одного решения рассмотрим микросхему LM3224, отличительной особенностью которой является наличие встроенного ключа с сопротивлением открытого канала 0,15 Ом и возможностью коммутировать токи до 2,45 А (типовое значение). Частота коммутации может быть задана с помощью специального вывода (FSLCT). Конвертop преобразовывает входное напряжение 3,3 В в выходное 8 В и 23 В. Наличие в микросхеме мощного коммутирующего элемента позволяет использовать данный тип преобразователя для управления мощным светодиодом во вспышках фотоаппаратов (рис. 5).

Рис. 5. Схема включения микросхемы LM3224

Повышающие преобразователи на переключаемых конденсаторах

Остановимся чуть подробнее на схеме управления светодиодами, построенной на конверторе с переключаемыми конденсаторами (switched capacitor convertor).

В этом разделе нам придется иметь дело с так называемыми переключаемыми конденсаторами (switched capacitor), поэтому немного вспомним теорию пассивных элементов электрических цепей. Известно, что конденсатор — это элемент, способный запасать и мгновенно отдавать заряд (рис. 6а, б), равный:

где С — емкость конденсатора, Ф; Vg — напряжение, В.

Рис. 6. Отличия реального конденсатора от идеального

Ксожалению, конденсаторы не являются идеальными элементами и, в отличие от приведенного нами примера, имеют эквивалентное последовательное сопротивление (ESR) и эквивалентную последовательную индуктивность (ESL), обусловленные внутренней конструкцией компонента. Эти паразитные характеристики не влияют на возможность конденсатора хранить запасенную им энергию, но могут существенным образом сказаться на эффективности источника питания, в состав которого войдет данный компонент. Думаем, что большинство разработчиков источников питания знакомы с этой проблемой. На рис. 6в, г проиллюстрирован процесс заряда и разряда неидеального конденсатора, где Rsw — сопротивление ключевого элемента преобразователя на переключаемых конденсаторах. Как можно увидеть из графика, паразитные элементы отрицательно сказываются на пиковом значении тока, уменьшая его, и также приводят к увеличению времени нарастания сигнала.

Из всего этого делаем вывод, что заряд конденсатора не может мгновенно измениться. Эта особенность нашла применение в схемах с накачкой заряда, пример которой приведен на рис. 7а. Процесс изменения напряжения в конденсаторе состоит из двух фаз. Во время первой фазы ключи S1 и S2 закрыты, а S3 и S4 открыты, и процесс заряда можно описать следующим выражением:

Рис. 7. Принцип действия схемы зарядовой помпы

В течение второй фазы ключи S3 и S4 закрыты, а S1 и S2 открыты. Так как напряжение на емкости не может измениться мгновенно, выходное напряжение повышается до двойного значения его входной величины:

Как правило, рабочий цикл импульсного источника составляет 50%, применение данной техники позволяет повышать эффективность переноса заряда. Чтобы узнать больше об особенностях источников на переключающихся конденсаторах, необходимо более детально рассмотреть работу данной схемы. Не стоит забывать и о паразитных явлениях, которые могут существенным образом сказаться в целом на качестве работы схемы.

Значение установившегося тока и форма удвоенного напряжения для переключаемого конденсатора представлена на рис. 7б. В течение первой фазы процесса ток заряжает емкость C1, и его начальное значение зависит от напряжения на конденсаторе, значения ESR и сопротивления коммутирующих его ключей. Значение заряжающего тока уменьшается по экспоненциальному закону, в процессе заряда конденсатора. Время заряда емкости является постоянным значением, в течение этого времени внешняя емкость (Сhold) питает нагрузку, разряжаясь пропорционально следующему соотношению:

где Iout — ток нагрузки; f — частота коммутации; Chold — емкость конденсатора Chold.

В течение второй фазы процесса С1+ подключена к выходу, разряжающий ток протекает через емкость С1 в нагрузку. В этот период ступенчатое изменение выходного тока стремится к значению 2Iout. Несмотря на то, что ступенчатое изменение тока может привести к изменению напряжения на значение, эквивалентное 2Iout ESRChold, применение керамических конденсаторов с малым значением ESR делает это изменение незначительным. В этот момент емкость Сhold заряжается в соответствии с выражением (6). Таким образом, значение выходных пульсаций напряжения (Vripple) можно оценить следующим выражением:

Высокая частота работы схемы, кроме возможности применения малогабаритных емкостей, позволяет уменьшить нежелательные шумы на выходе. Паразитные явления в схеме на переключаемых конденсаторах обусловлены уменьшением выходного напряжения при увеличении тока нагрузки. В действительности это можно объяснить рассеянием энергии при протекании тока через коммутирующие элементы и последовательные эквивалентные сопротивления:

где PSW — потери на коммутирующем элементе; RSW — сопротивление ключа; ESRC1 — эквивалентное сопротивление емкости С1.

В дополнение к этим потерям необходимо также прибавить потери при протекании тока через конденсатор С1 и Chold:

где PC1 — потери на конденсаторе С1; RC1 — сопротивление конденсатора С1; C1 — емкость конденсатора С1.

где PESR _HOLD — потери на емкости Chold; ESRC_HOLD — эквивалентное сопротивление емкости Chold.

Учитывая все элементы схемы, можно рассчитать выходное значение напряжения переключаемого конденсатора, которое определяется следующим соотношением:

где ROUT = 8RSW + 4ESRC1 + 1/2f C1 + ESRC_HOLD.

Пример структуры микросхемы питания светодиодов на переключаемых конденсаторах компании National Semiconductor, использующей модуляцию ЧИМ, показан на рис. 8. Ключевым элементом схемы является компаратор, отслеживающий выходное значение напряжения и использующий источник опорного напряжения 1,2 В. Кроме этого, с помощью компаратора реализована схема мягкого запуска микросхемы. При значении выходного напряжения выше, чем определенный предел, преобразователь находится в режиме ожидания, потребляя при этом минимальный ток. В этот период питание нагрузки обеспечивается за счет внешней емкости. Как только внешняя емкость разряжается, понижается значение выходного напряжения, которое фиксируется компаратором, запускающим схему, пока значение выходного напряжения не превысит определенной величины, достаточной для нормальной работы устройства.

Рис. 8. Блок-диаграмма конвертора на переключаемых конденсаторах

Следует отметить основную особенность ЧИМ схемы: большую часть времени питание нагрузки обеспечивает внешняя емкость, требующая периодической перезарядки, в то время как сама микросхема потребляет минимальное значение тока. Применительно к портативным устройствам это весьма значительная особенность, благодаря которой возможно обеспечение более долгой работы устройства от полного заряда батарей.

В таблице 2 представлены микросхемы на переключаемых конденсаторах для питания светодиодов. В зависимости от требуемых характеристик разработчик получает возможность выбирать решение с выходным током от 80 до 500 мА и количеством питаемых светодиодов до 16-ти.

Таблица 2. Спектр микросхем на переключаемых конденсаторах

Рассмотрим несколько примеров и особенностей микросхем для управления светодиодами на переключаемых конденсаторах. На рис. 9 представлена схема включения микросхемы на LM2751, работающей на постоянной частоте с регулируемым выходным напряжением 4,5 В и 5 В. Микросхема обеспечивает ток нагрузки до 150 мА в диапазоне входных напряжений от 2,5 до 5,5 В при использовании всего четырех недорогих керамических конденсаторов в качестве внешней «обвязки». Применение данного решения дает разработчикам возможность отказаться от внешней индуктивности. Частота работы микросхемы может принимать значения: 725 кГц, 300 кГц, 37 кГц или 9,5 кГц при коэффициенте усиления 1,5 или 2.

Рис. 9. Схема включения микросхемы LM2751

В качестве решения для подсветки дисплея или клавиатуры портативного устройства может выступать микросхема LM27964 (рис. 10), с помощью которой можно питать током 20 мА до 8-ми параллельно подключенных светодиодов. Регулируемый источник тока обеспечивает стабильные световые характеристики питаемых индикаторов. Светодиоды разделены на две независимые от источника тока группы, кроме этого, микросхема имеет совместимость с I2C интерфейсом.

Рис. 10 Схема включения микросхемы LM27964

На рис. 11 представлен контроллер подсветки дисплея с высокой степенью интеграции — LTC3206 компании Linear Techology. Микросхема содержит повышающий преобразователь, позволяющий осуществлять питание основного дисплея, подсветки клавиатуры, и цветной дисплей. Максимальный ток питания для каждого типа дисплеев задается независимо и контролируется внутренними схемами. Контроллер совместим для управления с шиной I2C со скоростью обмена данными до 400 кГц и содержит встроенный входной фильтр для предотвращения возможных шумовых всплесков. Яркость подсветки дисплея может регулироваться в пределах 16-ти уровней, начиная от «0» (дисплей выключен). Превышение температуры кристалла выше 160 °С при больших значениях выходных напряжений и токов вызывает автоматическое отключение контроллером выходной цепи.

Рис. 11. Схема включения микросхемы LTC3206

Микросхемы для управления светодиодами высокой яркости

В последние годы такие виды современной портативной электронной техники, как цифровые фотоаппараты и видеокамеры, мобильные телефоны и другая потребительская электроника, продолжают свое бурное развитие, берущее свое начало с середины 1990-х годов. Многие из этих устройств адаптированы для использования в полной темноте, фотоаппараты имеют светодиодную вспышку, и эти их особенности требуют организации питания светодиодов достаточно большими токами. В таблице 3 приведены некоторые серии микросхем от компаний National Semiconductor, Linear Technology и Texas Instruments, специально разработанные для решения этих задач.

Таблица 3. Микросхемы управления питанием светодиодов высокой яркости

В качестве примера можно рассмотреть высоковольтный повышающий регулятор LM5000 (рис. 12). Микросхема способна обеспечивать питание со стабильным током до 20-ти последовательно соединенных светодиодов. Разработчик может самостоятельно задавать рабочую частоту микросхемы (300 кГц/700 кГц для LM5000-3 или 600 кГц/1,3 МГц для LM5000-6). Также в состав регулятора входит силовой ключ, схема «мягкого старта» и термозащиты. Микросхема предлагается в стандартном (TSSOP-16) и миниатюрном (LLP-16) корпусных исполнениях.

Рис. 12. Схема включения микросхемы LM5000

Интересным примером осуществления управления матрицей светодиодов может служить микросхема LM2698. На рис. 13 можно увидеть включение рассматриваемого повышающего регулятора в схеме с токовым зеркалом. Цепочка светодиодов, подключенных к выводу FB, обеспечивает токовую обратную связь, с помощью которой контролируются остальные цепочки и выдерживаются необходимые световые характеристики устройства.

Рис. 13. Схема включения микросхемы LM2698

Аналогичное решение для управления набором светодиодов предлагает компания Linear Technology. Микросхема LTC3783 работает на фиксированной частоте в диапазоне от 20 кГц до 1 МГц, которая задается единственным внешним резистором. Регулятор может применяться в повышающих, обратноходовых или SEPIC топологиях и управлять одновременно двумя n-канальными MOSFET-транзисторами.

Не секрет, что не только в портативной технике следует особое внимание уделять массогабаритным характеристикам применяемых компонентов. Результатом работы инженеров National Semiconductor по уменьшению размеров микросхем стал представленный в 2006 году корпус LLP. На рис. 14 можно оценить его размеры в сравнении с монетой, а в левой части рисунка приведено увеличенное изображение корпуса с целью более детального рассмотрения его конструктивных особенностей. В свое время появление корпусов BGA стало настоящим прорывом в развитии электроники. Единственная проблема их применения — дорогостоящий метод монтажа и тестирования пропайки всех выводов под телом корпуса, так как визуально его контролировать невозможно, приходится использовать рентгенографическое оборудование для просвета шариковых выводов и определения качества электрического контакта. Инженеры, применяющие этот тип корпуса, заметят сходство между BGA и LLP-корпусом. Их отличительная особенность — это наличие специальных боковых контактов у корпуса LLP для возможности тестирования микросхемы после установки на плату. Кстати, это позволяет проводить не только визуальный (все выводы микросхемы расположены по периметру корпуса), но и электрический контроль, что снижает затраты на тестирование и при этом повышает конкурентную способность проектируемого устройства за счет его компактности. Как известно, с 1 июля 2006 г. в связи с переходом большинства производителей микросхем на выпуск своей продукции в соответствии с директивами RoHS по бессвинцовому исполнению у потребителей микросхем в BGA-корпусах могут возникнуть дополнительные сложности. Производители не гарантируют выполнения принципа обратной совместимости, что ведет за собой дополнительные затраты на переоснащение производства или необходимость обращения к контрактному производителю.

Рис. 14. LLP-корпус

Выводы

Перед началом работы над статьей была поставлена задача сделать обзор микросхем различных производителей для питания светодиодов. Естественно, что для получения четкого ответа на этот вопрос сравнение с продукцией конкурентов можно проводить только по конкретному изделию (например повышающему преобразователю LM5000), а не по всей линейке в целом. Несложно заметить, что наиболее полным портфолио решений для питания светодиодов обладает компания National Semiconductor, традиционно продолжая занимать лидирующие позиции на рынке импульсных и линейных регуляторов напряжения.

Предложение по индуктивным преобразователям и микросхемам на переключаемых конденсаторах сегодня вызывает большой интерес, особенно если учитывать тот фактор, что все решения являются высокоуниверсальными и ориентированы не только на рынок управления светодиодами и их сборками, но и подходят для питания стандартных узлов электронной аппаратуры.

Кроме этого, не случайно большая часть материала посвящена микросхемам для управления светодиодами на базе переключающихся конденсаторов. Благодаря своим особенностям данное решение не нуждается во внешней индуктивности, что освобождает от связанных с ней проблем электромагнитной совместимости. Микросхемы имеют низкий уровень шума и электромагнитных помех, причем в качестве обвязки выступают всего несколько малогабаритных недорогих керамических конденсаторов. В результате разработчик получает недорогое и компактное решение управления светодиодами, которое может находить применение не только в портативной технике, но и многих других устройствах.

Литература

  1. Power Designer № 113. Optimizing Efficiency in White LED Backlight Applications. National Semiconductor (www.national.com)
  2. Готтлиб И. М. Источники питания. Инверторы, конверторы, линейные и импульсные стабилизаторы. М.: Постмаркет. 2002.
  3. Информационный портал компании National Semiconductor по силовой электронике http://www.national.com/appinfo/power
  4. Материалы семинара компании National Semiconductor, Санкт-Петербург, март 2006 г.
  5. Описание микросхемы LM3224 http://www.national.com/search/search.cgi/main?keywords=LM3224
  6. Описание микросхемы LM5000 http://www.national.com/pf/LM/LM5000.html
  7. Описание микросхемы LM2698 http://www.national.com/search/search.cgi/main?keywords=LM2698

Правильное включение светодиода — НТЦ «ОРБИТА»

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

            Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R — сопротивление резистора в омах.
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

         Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

Где:

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно ! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    • Малые размеры
    • Компактное устройство световой сигнализации
    • Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    • Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.

Скачать:
1. Програма для автоматического подбора резистора при подключении светодиодов — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
2. Программа автоматического расчета токоограничивающего резистора светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
3. Интернет-ресурс для автоматического расчета и подбора резисторов светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

Подключение большого количества светодиодов. Включение светодиода

Введение

Использование светодиодов для освещения и индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД , надежны, экономичны , безопасны , долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.

Что такое светодиод и как он работает

Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс ) и катод (минус ). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное , а на катод — отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Какие бывают светодиоды

Во-первых, светодиоды можно разделить по цветам : красный , желтый, зеленый , голубой , фиолетовый , белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Во-вторых, светодиоды можно разделить по номинальному току потребления . Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора .

Светодиод(ы) можно подключить к компьютеру разными способами.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Подключение светодиодов к блоку питания

Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.

Рассмотрим схему подключения одного светодиода.

Рассмотрим схему подключения двух светодиодов.

Рассмотрим схему подключения трех и четырех светодиодов.

Методика расчета питания светодиода ».

Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).

Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.

Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.

Подключение светодиодов к LPT порту

Универсальный принцип расчета ограничительного резистора описан в статье «

Немного физики. Напряжение «U» измеряется в вольтах (В), ток «I»- в амперах (А), сопротивление «R» в омах (Ом). Закон Ома: U = R * I .

Итак, мы решили включить светодиод. Рассмотрим наиболее популярные напряжения — 9, 12 В. Рассмотрим вариант, когда в распоряжении имеется постоянное напряжение, без помех (например батарейки, вынутые потихоньку из пультов от телевизора), а потом рассмотрим вопрос подключения к менее идеальным источникам (помехи, нестабильное напряжение и др.).

Все светодиоды имеют один главный электрический параметр , при котором обеспечивается его нормальная работа. Это ток (I) протекающий через светодиод. Светодиод нельзя назвать двух или трехвольтовым. У тех, кто все-таки посещал уроки физики в школе, сразу возникает логичный вопрос: если два светодиода абсолютно одинаковые и через оба протекает один и тот же ток, значит, и напряжение надо приложить одно и тоже к обоим. А вот и нет! Технология изготовления кристаллов не позволяет сделать два светодиода с одинаковым, назовем его, «внутренним сопротивлением » и по закону Ома можно сделать соответствующие выводы. Через светодиод надо пропустить ток (согласно заводским параметрам) и измерить напряжение на его выводах. Это напряжение и будет обеспечивать протекание требующегося тока через кристалл светодиода!

Рассмотрим наиболее распространенные светодиоды , рассчитанные на ток 20мА (т.е. 0,02 А).

Идеальный вариант подключения светодиодов — использование стабилизатора тока . К сожалению, готовые стабилизаторы стоят на порядок выше самого светодиода , изготовление относительно дешевого самодельного рассмотрим чуть ниже.

Обычно среднее напряжение (при I=0,02 А) красного и желтого светодиода — 2,0 В (обычно эта величина 1,8 — 2,4 В), а белого, синего и зеленого — 3,0 В (3,0 — 3,5 В).

Итак, продавец Вам торжественно объявил, что Вы купили, например «красный светодиод на 2,0 В, такой-то яркости» -поверим продавцу пока на слово, проверим и если это не так — вернемся и очень вежливо.

Рассмотрим простой вариант. У Вас нашлось дома, например, 8 штук батареек по 1,5 В, итого 8,0 *1,5 = 12,0 В (берем большое напряжение, чтобы было понятнее), и подключаем один светодиод, который купили. Подключили? Теперь выбросьте свой светодиод, потому, что он сгорел, Вам же продавец сказал — 2,0 В, а Вы его в 12,0 В воткнули! Купили новый, а лучше сразу небольшую кучку (фото). Смотрим (не только смотрим, но и еще очень энергично пользуемся измерительным прибором): есть 12,0 В, надо 2,0 В, надо куда-то деть лишних 10 В (12,0 — 2,0 = 10,0). Самый простой способ — использование резистора (он же — сопротивление). Выясняем какое надо сопротивление. Закон Ома гласит:

U = R * I
R = U / I

Ток, протекающий в цепи I = 0,02 А. Сопротивление нужно подобрать , чтобы на нем потерялось 10 В, а нужные 2,0 В дошли до светодиода. Отсюда находим требуемое R:

R = 10,0 / 0,02 = 500 Ом

Напряжение на сопротивлении превращается в тепло . Для того, что-бы сопротивление выдержало нагрузку и выделяемое тепло не привело к его выходу из строя, надо вычислить рассеиваемую мощность сопротивления. Как известно (опять возвращаемся к посещаемости уроков физики) мощность:

На сопротивлении у нас 10,0 В при токе 0,02А. Считаем:

P = 10,0 * 0,02 А = 0,2 Вт.

При покупке сопротивления просим у продавца 500 Ом, мощностью не менее 0,2 Вт (лучше больше, с запасом, чтобы на душе было спокойнее, 0,5 Вт например, но следует учесть — чем больше мощность, тем больше размеры). Подключаем светодиод (не забыв про полярность) через сопротивление и ощущаем волну радости — светится!

Теперь разрываем цепь межу сопротивлением и светодиодом, включаем измерительный прибор и измеряем протекающий в цепи ток. Если ток менее 20 мА, надо немного уменьшить сопротивление, если больше 20 мА — увеличить. Вот и все! Получив ток в 20 мА, мы достигли оптимальной работы светодиода, а при таком режиме производитель гарантирует 10 лет непрерывной работы. Садимся и ждем 10 лет, если что не так пишем претензию на завод. По мере того, как батарейки будут «садиться», яркость светодиода будет уменьшаться. После того как батарейки «сядут» совсем, их надо поставить обратно в пульты, сделать вид, что так и было или, например, объявить всем, что на быструю смерть батареек повлияла магнитная буря или чрезмерная активность солнца.

Это мы поступили правильно, но обычно производитель указывает среднее напряжение для партии светодиодов при оптимальном токе. И ни кто не утруждает себя точным подбором тока. Поэтому остальные примеры будут рассмотрены на данных о среднем напряжении, а не токе (и мы ни кому не скажем, что это не совсем правильно!).

Теперь определимся с подключением нескольких светодиодов. Подключаем 2 красных последовательно. 2 шт * 2,0 = 4,0 В. Питающее напряжение — 12 В, следовательно лишних — 8,0 В. R = 8,0 / 0,02 = 400 Ом. P= 8,0 * 0,2 = 0,16 Вт.

Если 6 штук — 6шт. * 2,0В = 12 В. Сопротивление не требуется.

Аналогично, например, с синими (3,0в) : 3шт x 3,0 В = 9,0В. 12,0 В — 9,0 В = 3,0 В. R = 3,0 / 0,02 = 150 Ом. P = 3,0 * 0,02 = 0,06 Вт.

Если у нас 3 батарейки по 1,5 вольта и, например, один синий светодиод на который надо подать 3,5 В, чтобы получить требуемый ток в 20мА (0,02А): 3 шт * 1,5 в = 4,5в (напряжение питания). Лишних: 4,5 В — 3,5 В = 1,0 В. R = U / I = 1,0 В / 0,02 А = 50 Ом. P = U * I = 1,0 В * 0,02 А = 0,02 Вт

Теперь рассмотрим более сложный вариант. Надо подключить к 12В 30 штук красных по 2,0В. На 12В можем подключить только 6 штук без сопротивлений, соединяем 6 штук последовательно и подключаем — светится. Соединяем еще 6 штук и присоединяем параллельно к первым. При этом через каждые 6 шт будет течь ток в 0,02А. У нас получится 5 цепочек с общим током 5 * 0,02А = 0,1А (уже батареек хватит не на долго).

Надо подключить к 12В 30 штук зеленых по 3,5В. На 12В мы можем подключить: 12В / 3,5В = 3,43 штуки. Мы не будем отрезать от четвертого светодиода 0,43 части, а подключим 3 штуки + сопротивление: 3штуки * 3,5В = 10,5 В. Лишнее напряжение: 12,0 В — 10,5 В = 1,5 В. Сопротивление R = 1,5В / 0,02А = 75 Ом при мощности P = 1,5 * 0,02 = 0,03 Вт. Если вдруг одному светодиоду в процессе монтажа были случайно выдраны ноги и их осталось всего 29 штук, то соединяем 9 цепочек по 3 штуки, и одну цепочку из 2-х штук + сопротивление R = 250 Ом, P = 0,1Вт.

Чудненько. Вот мы и вспомнили слегка основы физики. Теперь рассмотрим более стабилизированную схему включения светодиодов. Возложим техническую проблему подключения на мировые умы, разрабатывающие интегральные микросхемы. Коснёмся изготовления стабилизатора тока. Это достаточно просто, главное нащупать немного лишних финансов в кармане. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА! При 20 вольтах получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно!!! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.

Тоже важно!!! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Просто соединять светодиоды и подключать их к батарейкам от пульта — не интересно. Их обязательно надо спаять вместе и подсоединить к какому-нибудь устройству (пылесосу например, чтобы было видно всасывание каждой пылинки. Тут сразу надо учесть, что в пылесосе 220 опасных вольт, да еще и напряжение переменное, что ни как не годится к подключению светодиодов. Для этого надо изготовить специальный блок питания, но эту тему мы не будем сейчас обсуждать).

Надо найти устройство с постоянным напряжением и обильно украсить его светодиодами. Вот тут-то вперед выступают счастливые обладатели личных механических коней (авто-мото-вело-самокато). Ведь можно увешать свой любимый транспорт светодиодами так, что прохожие не усомнятся, что мимо проехала новогодняя елка, а ни как не средство передвижения. Надо сразу предупредить, что злоупотребление количеством, яркостью и цветом пресекается некоторыми сотрудниками дорожной инспекции. Также не следует, например, делать стоп-сигналы с яркостью превышающей яркость фар с включенным дальним светом — это немного раздражает едущих сзади, что тоже может в конце концов неблагоприятно сказаться на Вашем организме (особенно на лице), но не будем расстраиваться, ведь есть еще пространство внутри!!! Там уж можно приложить всю свою фантазию (например подсветить снизу лицо водителя синим цветом, что отобъет охоту у сотрудников инспекции проверять документы).

Сразу надо иметь ввиду, что напряжение в сети исправного авто не 12В, а 14,5 В. Желательно проверить это прибором при запущенном двигателе (если конечно есть двигатель). Так же в бортовой сети железного коня наблюдается множество помех, которые не желательны, да и напряжение иногда не очень постоянное. Для подавления помех на входе вашего светящегося устройства можно собрать простую схему из двух деталей — диода и электролитического конденсатора (рисунок). Конденсатор и диод, как и светодиод имеет полярность, значения рабочего напряжения и тока (диод). После установки диода и конденсатора надо замерить напряжение Uвых (оно не будет совпадать с Uвх) и после этого рассчитывать схему подключение светодиодов.

Если Вы не уверены в постоянстве напряжения бортовой сети, можно использовать специальные интегральные стабилизаторы напряжения. Они обеспечивают постоянное напряжение на выходе при изменяющемся (в разумных пределах) или скачущем (как лошадка) входном напряжении.

Наиболее простые представители — К142ЕН8А или КРЕН8А (9 вольт) и К142ЕН8Б или КРЕН8Б (12 вольт). Ориентировочная цена такой штуки составляет 5-15 руб (зависит от жадности продавца). Т.е. у продавца надо спросить с гордым видом «КРЕНКУ, например, на 9В», он сразу все поймет и узрев в Вас крупного специалиста не посмеет обмануть (продаются также иностранные аналоги). Микросхемы имеют всего три ноги и если Вы ни разу в жизни не заблудились в трех соснах, то разобраться в них не составит ни какого труда. Берем левой рукой стабилизатор ногами вниз и надписью к себе, указательным пальцем правой руки слева на право тычем в ноги. Первая — вход (+), средняя — корпус (-), правая выход (+). (фото). Подключить ее надо как на рисунке. На выходе получим постоянное напряжение в 9 или 12 вольт. Исходя из этого, рассчитываем, как было в начале статьи, схему включения светодиодов. Почему 9В или 12 В? На 9В хорошо подсоединяются 3штуки синих, зеленых или белых светодиода (из расчета — 3,0В./шт), на 12В — 6 штук красных или желтых (2,0В./шт) или 4 штуки синих, зеленых или белых, т.е. не требуется дополнительных сопротивлений. Микросхему (при большом количестве светодиодов) надо установить на радиатор. КРЕН8Б рассчитана на максимальную нагрузку в 1,5А (при таком токе очень сильно будет греться). На вход не следует подавать напряжение более 35 вольт. Входное напряжение должно быть не менее чем на 3В больше выходного, иначе стабилизатор не будет работать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.

Не следует паять светодиоды старым дедушкиным паяльником, который нагревали в печке и использовали для запайки дырок в кастрюлях. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.

Ноги светодиода следует гнуть с небольшим радиусом (чтобы они не ломались, нам калеки не нужны!). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Собирать светодиоды в одно большое светящееся чудо лучше всего на каком-нибудь плоском листовом материале (пластмасса, оргстекло др.), предварительно насверлив в нем отверстий нужного размера по диаметру корпуса (придется овладеть еще измерительным инструментом и дрелью).

Помните, что светодиод — нежный прибор и обращаться с ним надо соответственно (при пайке можно спеть песню, чтобы работал долго).

Чтобы Ваше устройство защитить от автомобиля и автомобиль от устройства (ведь теперь не известно, что надежнее) следует ставить предохранители.


В этой статье я постараюсь как можно проще объяснить основные принципы запитывания светодиодов. Приведу примеры схем включения светодиодов, а также постараюсь рассмотреть частые ошибки которые совершают новички в электронике, при выборе схемы подключения светодиода. Если читатель знает закон Ома, умеет применить его на практике, то в этой статье он найдет мало полезной информации для себя.

Актуальность подобных тем растет с тех пор, как появились так называемые мощные светодиоды, которые стали применят практически везде где только можно (освещение дома, участка, рабочего места, различные светодиодные фонари, осветительные приборы авто и не только). Есть большая вероятность того что человеку, никогда не увлекавшемуся электроникой придется столкнутся с такой задачей как подключение светодиода.

У светодиода в отличие от обычной лампы накаливания в технической характеристики гораздо больше различных параметров. Все они нам не к чему, для того чтобы выбрать оптимальный режим светодиоду при запитывании и не сжечь его при первом включении. Достаточно обратить внимание на такие характеристики как:

1. Постоянный прямой ток
2. Постоянное прямое напряжение
3. Сила света
4. Цвет свечения

Постоянный прямой ток (в справочной литературе обозначается как Iпр или зарубежное обозначение Io) определяет какой ток в длительном режиме можно пропускать через светодиод в прямом направлении. Прямое направление тока — это когда на аноде потенциал выше чем на катоде светодиода.


В данном случае нас интересует именно прямое направление, так как в обратном направлении светодиоды не светятся.

Постоянное прямое напряжение (в литературе обозначается как Uпр или зарубежное обозначение VFM) определяет какое напряжение упадёт на светодиоде при протекании через него определенного тока в прямом направлении.

Сила света определяет интенсивность светового потока, излучаемого светодиодом. Тут все просто чем больше, тем ярче светодиод.

Цвет свечения (красный, зелёный синий и т. д.) имеет числовое представление обозначается как длина волны.

В идеале для питания светодиода применяют стабилизированный источник тока, то есть напряжение стабилизировать не обязательно, на светодиоде упадет столько напряжения сколько указано в параметре Uпр. Итак, классическая и самая простая схема включения светодиода.


Из достоинств на ум приходит только простота и надежность, как правило такую схему применяют для питания маломощных светодиодов которые выполняют роль индикаторов в различных устройствах. Такую схему можно встретить в самых простых фонариках. Недостаток этой схемы низкий кпд, чем больше мощность светодиода, тем больше потери на сопротивлении, по этой причине такую схему не используют в экономичных устройствах. Сопротивление резистора рассчитывают по формуле:

R=(Uист-Uпр)/I

R – Сопротивление резистора единицы измерения Ом (ом)

I – Ток который вы хотите пропустить через светодиод единицы измерения А (Ампер)

После того как рассчитали сопротивление резистора, нужно рассчитать его мощность.

P=(Uист-Uпр)*I

P – Мощность выделяемая на сопротивлении единицы измерения Вт (Ватт)
Uист – Напряжение источника единицы измерения В (Вольт)
Uпр – Постоянное прямое напряжение светодиода единицы измерения В (Вольт)
I – Ток через резистор в данном случае совпадает с током через светодиод единицы измерения А (Ампер)

Пример расчета:


То есть при питании 10 ватного светодиода таким способом на резисторе тепловые потери составят 4,86 Вт. Кроме того данная схема включения светодиода не стабилизирует ток через светодиод, то есть если изменится питающее напряжение, то изменится и ток через светодиод. Следующая схема лишена этого недостатка.


Здесь роль стабилизатора тока выполняет широко распространённый интегральный стабилизатор LM317. К сожалению КПД данной схемы, также очень низкое. Всех вышеописанных недостатков лишена схема в основе которой лежит ШИМ стабилизатор.


Подобные схемы часто называют драйвер светодиода, готовые устройства можно приобрести в радиомагазинах, выглядят они следующим образом.


В основе лежит ШИМ стабилизатор. КПД таких стабилизаторов лежит в пределах 90%, то есть включая через него 10 ватный светодиод на нём (драйвере) выделится 1Вт.

И в конце немного о последовательном и параллельном включении светодиодов.


На рисунке слева приведена схема последовательного включения трёх светодиодов, справа параллельного включения трёх светодиодов. В интернете можно встретить схемы параллельного включения светодиодов без индивидуальных тока ограничительных резисторов.

Не рекомендую использовать такое включение, прямое падение напряжения (даже на светодиодах одной партии) разное в итоге через светодиоды потекут существенно разные токи, что приведет к выходу из строя сначала самого прожорливого светодиода, а затем и всех остальных. На этом все.

Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня.

Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них важна полярность подключения, или расположения плюса и минуса. При неправильном подключении. светодиод работать не будет.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

N.B. Хотя на практике последний способ иногда не подтверждается.

Как бы там ни было, следует заметить, что если кратковременно (1-2 секунды) не правильно подключить светодиод, то ничего не перегорит и плохого не произойдет. Так как диод сам по себе в одну сторону работает, а в обратную нет. Перегореть он может только из-за повышенного напряжения.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Как подключить светодиод к 12 вольтам

Подключать светодиод напрямую к 12 вольт — запрещено, он сгорит в долю секунды. Необходимо использовать ограничительный резистор (сопротивление). Размерность резистора высчитывается по формуле:

R= (Uпит-Uпад)/0,75I,

где R –величина сопротивления резистора;

Uпит и Uпад – напряжение питания и падающее;

I – проходящий ток.

0.75 — коэффициент надёжности для светодиода (величина постоянная)

Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

В данном случае:

  • Uпит — 12 вольт (напряжение в авто аккумуляторе)
  • Uпад — 2,2 вольта (напряжение питания светодиода)
  • I — 10 мА или 0,01 А (ток одного светодиода)

По вышеуказанной формуле, получим R=(12-2.2)/0.75*0.01 = 1306 Ом или 1,306 кОм

Ближайшее стандартное значение резистора — 1,3 килоОм

Это еще не всё. Требуется вычислить требуемую минимальную мощность резистора.

Но для начала определим фактический ток I (он может отличаться от указанного выше)

Формула: I = U / (Rрез.+ Rсвет)

  • Rсвет — Сопротивление светодиода:

Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

из этого следует, что ток в цепи

I = 12 / (1300 + 220) = 0,007 А

Фактическое падение напряжения светодиода будет равно:

И наконец, мощность равна:

P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Следует взять чуть больше мощности стандартной величины. В данном случае лучше подойдет 0,125 Вт.

Итак, чтобы правильно подключить один светодиод к 12 вольтам, (авто аккумулятор) потребуется в цепь вставить резистор, сопротивлением 1,3 кОм и мощностью 0,125 Вт.

Резистор можно присоединять к любой ноге светодиода.

У кого в школе, по математике была твердая двойка — есть вариант попроще. При покупке светодиодов в радиомагазине, спросите у продавца какой резистор Вам нужно будет вставить в цепь. Не забудьте указать напряжение в цепи.

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт .

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду. Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении. Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Или светоизлучающий диод (англ . LED Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Иными словами, светится, когда через него течет ток. Похоже на простую лампу накаливания, но устроен светодиод сложнее. В статье рассказывается об особенностях светодиода, о том как правильно подключать светодиод и о способе расчёта резистора для светодиода.

Особенности светодиода

Что-бы понимать, как правильно подключать светодиоды нужно разбираться в некоторых особенностях:

  • светодиод питается током . Напряжение, подаваемое на светодиод не имеет значения. Это может быть и 3В, и 1000В. Главное — выдержать необходимый ток. При нехватке тока, светодиод светится тусклее, чем может. При превышении тока светодиод светит ярче, но сильно греется. Светодиод, через который пропускают ток больше, чем он ожидает, перегреется и проработает совсем недолго. В данном случае всегда лучше «недолить».
  • падение напряжения . Важная характеристика светодиода — падение напряжения. Это значение показывает, на сколько вольт уменьшится напряжение при прохождении через светодиод при последовательном соединении. Например, если падение напряжения на светодиоде 3,4 вольта, то при напряжении питания 12 вольт, после первого светодиода остается 12-3,4= 8,6 вольт. На втором потеряется еще 3,4 вольта. Останется 8,6-3,4=5,2В. А после третьего останется 5,2-3,4=1,8 вольта. Это меньше, чем падение напряжения светодиода. Значит, больше светодиодов запитать мы не сможем.
  • температурный режим. Светодиод нагревается во время свечения. Чем мощнее светодиод, тем сильнее он нагревается. В случае с маломощными светодиодами в пластиковом корпусе, их нагревом можно пренебречь. Если вы имеете дело со сверхмощными яркими светодиодами, нужно думать об охлаждении.
  • полярность . При подключении светодиода нужно соблюдать полярность. Если перепутать плюс и минус, то ничего особенно страшного не случится, но светодиод не будет светить, и ток через него не пройдёт. У светодиода 2 вывода: анод и катод. Анод — положительный вывод. Он подключается к положительному полюсу источника питания. Катод — отрицательный. Его подключают к минусу (земле). Держа светодиод в руке выводы можно отличить по длине: анод делают длиннее катода. Внутри колбы светодиода выводы можно тоже отличить по размеру. Катод более массивен и по форме напоминает чашу.


Светодиод. Видна разница в длине катода и анода.

Светодиод. На крупном плане различим катод, напоминающий по форме чашу.

Необходимый ток и падение напряжения можно узнать из спецификации светодиода. В нашем магазине такая информация обязательно указывается на странице товара. Если у вас уже есть светодиод, но вы не знаете его характеристик, можно считать, что нужен ток 25мА, а падение напряжения считать равным 3В. Казалось бы, эти параметры идеально подходят для того, что-бы светодиод подключить напрямую к выводу Arduino. Но всё не так просто. Как отмечалось выше, светодиод токовый прибор. Если обычная лампочка сама себе выберет ток, то светодиод выбирает себе напряжение. То есть, если светодиод требует для себя 3В, а мы подадим на него 5В, то ток вырастет настолько, что светодиод сгорит. Это происходит потому, что он пытается удержать своё напряжение в 3V, а источник пытается выдать свои 5В. Начинается смертельная схватка. Если источник питания слабый, и светодиод сумеет просадить на нём напряжение до нужного — он уцелеет, а нет — источник питания выиграет битву, и светодиод сгорит. Для того, чтобы избежать проблем, нужно стабилизировать ток для светодиода. Простейший стабилизатор тока — резистор. Включаем последовательно со светодиодом резистор, резистор ослабляет источник питания, стабилизируя ток. При подключении больших и мощных светодиодов используют уже специальные тока, вместо резисторов. Резистор нужно уметь расчитывать.

Ничего сложного в расчёте резистора нет. Из формул нам понадобится разве что закон Ома : сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Для расчёта сопротивления резистора для светодиода (R ) нужно знать: напряжение питания (Uпит ), падение напряжения на светодиоде (Uсв ) и необходимый светодиоду ток(I ).

Формула очень простая: R = (Uпит — Uсв) / I

Для простоты расчёта принимается ряд «стандартных» параметров:

Uпит=5 В, Uсв=3 В, I=25 мА=0,025 А

R = 5 — 3 / 0.025 = 80 Ом

Ближайшее стандартное сопротивление резистора — 100 Ом.

Однако, поскольку часто приходится иметь дело со светодиодами, точные параметры которых неизвестны, лично моя рекомендация: исключить падение напряжения из формулы. Так мы получим универсальную формулу для расчёта резистора для любого светодиода, при этом ограничим ток с запасом и не сильно потеряем в яркости. Однако, если вы собираете осветительный прибор и вам важно добиться максимальной светимости светодиода, используйте полную формулу, описанную выше. Итак, по моей упрощённой формуле расчёт будет таким:

R = 5 / 0.025 = 200 Ом

Ближайшее стандартное сопротивление резистора — 220 Ом. С помощью него и будем подключать. Резистор следует включать в цепь между положительным полюсом источника и анодом светодиода.


Теперь вы знаете, как правильно подключить один светодиод. Но что делать. когда вам нужно подключить несколько светодиодов к одному источнику питания?

При подключении одного светодиода ничего сложного нет. Мы только что обсудили это чуть выше. Но как правильно поступить, если одного светодиода недостаточно? Например, мы хотим подключить 15 светодиодов от источника питания 12В. Параметры светодиода для расчётов возьмём стандартные. Для дальнейших рассуждений придётся опять потормошить старика Ома и вспомнить, что при последовательном соединении напряжение складывается (в данном случае речь о падении напряжения на каждом светодиоде), а сила тока остаётся неизменной. При параллельном — наоборот. Теперь рассмотрим различные варианты подключения светодиодов.

Наиболее простой способ. Все светодиоды подключаем гирляндой друг за другом. Катод первого к аноду второго и т.д. Необходимый светодиодам при параллельном соединении ток не зависит от количества светодиодов и составляет 25мА. Ещё потребуется учесть падение напряжения на каждом светодиоде. Пытливый читатель, дружащий с математикой, сейчас должен был запнуться. Падение напряжения рассчитывается как сумма падения напряжения для всех светодиодов. Да ещё и нужно оставить запас. Запас стоит оставлять из-за того, что светодиоды не идеальны. Падение напряжения сильно колеблется даже у светодиодов одного производителя и в одной партии. Падение зависит от температуры, да ещё и растёт по мере старения светодиода. У нас падение составит 15*3 = 45В. А источник всего на 12 вольт. Этот вариант отпадает. Последовательно мы можем позволить себе подключить только 12/4 = 4 светодиода. С запасом всего 3 светодиода в параллели. Теперь можно подключить перед цепочкой из трёх светодиодов токоограничительный резистор на 480 Ом (R = 12/0.025 = 480) и радоваться. Все три светодиода теперь получают ток в 25мА. Но неидеальность светодиодов означает, что нам может попасться экземпляр, который рассчитан на ток всего лишь в 20мА. Или чуть меньше. Или чуть больше. Неважно. Важно то, что наши рассчитанные 25mA окажутся избыточными. Такой светодиод начнёт греться и перегорит раньше других. Он перестанет пропускать через себя ток. Тогда все остальные светодиоды тоже погаснут. Последовательное подключение — недостаточно надёжная схема. Один перегоревший светодиод нарушает работу всей цепочки.

Достоинства : простая и дешёвая схема, низкое потребление тока.
Недостатки : необходимость в источнике питания с большим вольтажом, крайне низкая надёжность схемы.


Итак, последовательно нам удалось соединить только 3 светодиода. Но что если требуется подключить все 15?

Параллельное подключение светодиодов

Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.

Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» — ответим ему мы. Но не торопитесь с выводами, это ещё не конец .

Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В * 0,35 А = 4,2 Ом. Подключим его между источником питания и анодами светодиодов:


Вот, казалось бы, и всё. Но есть проблема:

Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному, как мы и рассчитывали 25мА, другому — 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 — почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА — 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.

Достоинства : высочайшая надёжность.
Недостатки : высокое потребление тока, высокая стоимость схемы.


Параллельное подключение светодиодов — идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором. Если вы используете светодиодные драйверы (), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка — 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства : низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.
Недостатки : внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.


Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.

Аналоговая схема для включения светодиода на 10 секунд сразу после подачи питания?

Есть ли способ сделать это с помощью комбинации конденсатор / резистор вместо IC?

A: Конденсатор от + 5В к резистору, светодиод к земле.
Обратный диод поперек светодиода.

Когда шаги 5 В o -> +5 загорится.

I_LED начальный для красного светодиода ~ = (Vcc-Vled) / R = (5-2) / R = 3 / R для красного светодиода
Или R = 3 / I

Светодиод будет уменьшаться по экспоненте.

Постоянная времени ~~~ = RC.
Итак, C = ~ T / R

Например, 20 МА, начальный R = 3 / I = 3 / 0,020 = 150 Ом.
C = t / R = 10/150 = ~ 0,06 Фарад = 60000 мкФ.
Это выполнимо с нормальными заглавными буквами, но большими.
Надлежащим образом оцененный суперкап будет легче сделать.

Делать это с одним супер дешевым транзистором и несколькими Rs и CS так легко и так превосходно, что решение cap и R не имеет смысла практически в любом контексте.


Supercap против стандартного электролита Al — не такая большая разница, как многие полагают:

Призрачный безмолвный даунотер вернулся.
Если это для утверждения, что

  • «это выполнимо с нормальными заглавными буквами, но большими»

тогда это показывает отсутствие понимания того, что было сказано
И отсутствие оценки того, что доступно.

Суперкап, вероятно, был бы лучшим выбором, но суть была (как говорят слова), что вы МОЖЕТЕ сделать это с обычными заглавными буквами, НО это находится на очень высоком конце диапазона, где вы бы это сделали.

Вы можете купить, например, суперкап в 47 мФ 5V5 здесь за $ 1,58 / 1.
и вы можете купить стандартный алюминиевый электролитический колпачок 47 мФ 10 В здесь за 3,75 долл. США / л. В этом случае суперкап составляет около 42% от цены алюминиевого колпачка, НО алюминиевый колпачок рассчитан на 10 В, поэтому может иметь = 3,3 раза больше энергии при полной зарядке, так что с точки зрения накопления энергии на 1 долл., Колпачок дешевле. т. е. если немного осмотреться, то, вероятно, найдет более низкое напряжение Al стандартного колпачка, который дешевле для суперкапа с той же требуемой спецификацией. НО различия достаточно близки, что в большинстве случаев не очень важно. Другие атрибуты будут иметь значение.
например, крышка стандартного отклонения гораздо менее подвержена повреждению от перенапряжения,
НО это намного больше — во многих случаях суперкап будет предпочтительным выбором. Но не все.

«Лошади на курсы», и будьте осторожны при формировании мнений о том, на что способна «старая технология» только потому, что «новая технология», кажется, намного лучше. Часто это может быть. Иногда это не так.

Схема подключения светодиодов на 5 и 12 вольт

Светодиоды широко используются для устройства освещения и индикации из-за своей надежности и экономичности. Имеют достаточно высокий коэффициент полезного действия, безопасны и долговечны по сравнению с обычными лампами накаливания.

Чтобы светодиод светился

Через него необходимо пропустить электрический ток в направлении одной стороны – от анода к катоду. При этом его невозможно подключить напрямую к источнику питания, поскольку он немедленно сгорит. Чтобы обеспечить нормальную работу, необходим ограничитель, которым служит резистор, устанавливаемый в цепь последовательно со светодиодом.

По цветам светодиоды разделяются на красный, желтый, зеленый, голубой, фиолетовый, белый. Цвет можно определить, лишь включив его, поскольку почти все они изготовлены из прозрачного бесцветного пластика.

Кроме того их также различают по номинальному току потребления. В основном, широкое распространение получили изделия с потребляемым током 10 и 20 миллиампер.

Идеальный источник питания для светодиодов – блок питания компьютера. При использовании в качестве обычного освещения применяются разъемы, на выходе у которых 5 или 12 вольт. Когда они используются в качестве светомузыки, то они подключаются через LPT-порт компьютера.

Рассмотрим различные варианты схем подключения светодиодов

При питании номинальным током 5 вольт в цепь включается резистор с сопротивлением 100-200 Ом.

Светодиоды на 12 вольт при подключении питания в цепь, последовательно с ними включается ограничительный резистор с сопротивлением 400-900 Ом.

При подключении на 5 вольт для двух светодиодов, в цепь последовательно включают ограничительный резистор сопротивлением до 100 Ом. В отдельных случаях наблюдается тусклое их свечение даже без использования резистора.

При подключении питания током на 12 вольт для двух светодиодов подключенных в цепь последовательно включается резистор сопротивлением 250-600 Ом.

При использовании источника питания номинальным током 12 вольт для трех светодиодов в цепи применяется резистор 100-250 Ом.

При такой схеме подключения отдельные модели будут тускло светиться даже без использования резистора.

Кроме последовательного подключения в отдельных случаях применяется параллельное их подключение. В этом случае аноды и катоды у них сходятся в две отдельные точки или в два пучка. Такие схемы отличаются низкой экономичностью и небезопасны в эксплуатации.

Параллельное подключение должно осуществляться с применением светодиодов с одинаковыми параметрами, при этом разброс характеристик должен быть минимальным. Расчет сопротивления ограничительного резистора должен быть произведен с достаточно высокой точностью. При перегорании даже одного светодиода – другие сгорают поочередно в течение нескольких минут.

Чаще всего для параллельного подключения используется следующая схема:

При такой схеме используются выпрямительные диоды различных марок, что исключает возможность их выгорания. На диодах происходит падение напряжения и до светодиодов доходит напряжение менее 5 вольт. Такая схема обычно используется для круглосуточного освещения помещения.

При подключении к LPT-порту в цепь последовательно включается резистор сопротивлением до 100 Ом. При приведении порта LPT в режим ЕРР резистор может и не устанавливаться.

Типовые схемы включения мигающих светодиодов типа МСД.

Продолжая знакомить с устройством мигающих светодиодов типа МСД необходимо дополнить данный материал тем, чтобы показать правильность включения и практическое применение данного типа светодиодов в радиолюбительских конструкциях. После тщательного ознакомления со множеством различной документации было выявлено следующее, что ни одна из фирм-разработчиков МСД не потрудилась привести в файлах Datasheet рекомендуемые схемы включения.

Расчет не публиковать полные справочные данные, видимо простой, зачем публиковать и так очевидную информацию, как знать, может быть, эта “очевидность” усыпила бдительность разработчиков и не дала повода исследовать нестандартные области их применения.

Рис.1.

Максимум приводимых сведений — это наличие встроенного ограничительного резистора (built-in resistor) и возможность подключения МСД напрямую к выходам ТТЛ и КМОП-микросхем (easily be driven by TTL & CMOS circuit).

Если перевести язык текста в язык графики, то получится три варианта типовых схем включения — рис.1,2,3. Условное графическое обозначение МСД выполнено по аналогии с обычным светодиодом, но с заменой сплошных стрелок излучения пунктирными.

Итак, пои подаче на анод положительного, а на катод отрицательного напряжения — рис.1, светодиод HL1 начинает постоянно мигать с частотой, определяемой техническими характеристиками согласно таблица 1. Длительности светящегося и несветящегося состояний примерно одинаковы.

Рис.2. Рис.3.

Инвертор DD1 на рис.6 может быть как стандартной ТТЛ, так и буферизированной КМОП-микросхемой, например, К561ЛН2. Инвертор DD1 — рис.3 должен иметь выход с открытым коллектором или открытым стоком, при этом напряжение, питающее светодиод HL1, может быть значительно больше, чем необходимо для микросхемы DD1.

Автогенераторная схема

Кроме типовых, известен целый класс нестандартных схем включения МСД. К примеру, он может служить не только генератором световых “вспышек”, но и автогенератором электрических импульсов [1, 3, 4]. На рис.4, 5 приведены две основные схемы, использующие при работе область микротоков на ВАХ светодиодов.

Рис.4. Рис.5.

Схема на рис.4 более практична, поскольку допускает широкое варьирование номинала резистора R1 (0,1…300 кОм) и применение в качестве DD1 ТТЛ- или КМОП-микросхемы. В схеме на рис.5 можно применять только КМОП-логику (резистор R1 от единиц до сотен килоом).

На выходе инвертора DD1 образуются импульсы, имеющие в первом приближении частоту следования “вспышек” МСД. Скважность импульсов отличается от меандра и в небольших пределах может регулироваться резистором R1. Вместе со скважностью меняется и частота “вспышек”. Небольшой нюанс.

Рис.6. Рис.7.

При внимательном прочтении статьи вы вправе задать вопрос: “Почему форма выходного сигнала не меандр, хотя согласно эквивалентной схеме на электронный ключ МСД подаются импульсы со скважностью 2?” Все дело в разном напряжении, которое прикладывается к МСД в светящемся и несветящемся состоянии.

Виной тому нагрузочный резистор R1 — рис.4, 5, на котором в первом случае падает напряжение значительно большее, чем во втором. Это, в свою очередь, приводит к частотной модуляции сигнала задающего ВЧ-генератора и, как следствие, к изменению отношения длительностей сигналов после счетчиков.

Рис.8. Рис.9.

МСД в качестве ждущего мультивибратора

Если МСД устойчиво генерирует электрические импульсы, то логично предположить возможность его работы в схемах одновибраторов и управляемых мультивибраторов (“заторможенных” генераторов). Однако прежде чем приступить к синтезу подобных схем, необходимо детально исследовать четыре возможных варианта управления МСД от внешнего логического элемента.

Таблица 1.

Серия м/сх DD1

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

К155

0,06-1,5

1,8-1,66

0,25-1,9

1,7-1,56

К555

0,05-3,7

1,8-1,52

0.26-3.5

1,7-1,5

КР1533

0,07-2,4

1,8-1,38

1,2-65

1,6-1,3

КР

1531

0,08-3,6

1,8-1.56

0,7-5

1,66-1.47

КР1554

0,6-180

1,7-1.27

0,6-180

1,7-1,27

0.6-170

1,7-1.25

0.6-170

1,7-1,25

К561ЛН2

0,15-110

1,75-1,35

1,9-360

1,6-1,16

0,6-110

1,72-1.3

1.2-330

1.6-1.13

К561ЛА7

0,05-160

1,8-1,28

1,1-220

1,66-1,2

1,2-130

1,6-1.28

0,05-150

1.72-1.28

В таблице 1 приведены сводные результаты опытов по варьированию номинала резистора R1 в схемах рис.6, 7, 8, 9 для разных серий ТТЛ и КМОП-микросхем. В целях объективности во всех случаях применялись одни и те же экземпляры микросхем и МСД.

Если приглядеться повнимательнее, то конфигурация включения цепочек R1-HL1 очень напоминает известные схемы дифференцирования и интегрирования импульсов, следует только поставить вместо светодиода конденсатор. Дальнейшее направление экспериментов очевидно — попытаться заменить времязадающие конденсаторы в схемах одновибраторов и мультивибраторов “мигающими” светодиодами и посмотреть, что из этого получится.

Рис.10. Рис.11. Рис.12.

На рис.10, 11, 12, 13, 14 приведены схемы ждущих мультивибраторов на логических элементах с МСД. По выполняемым функциям это расширители импульсов с дополнительной возможностью генерации одиночной серии импульсов.

Сказанное поясняет временная диаграмма — рис.15, относящаяся к схеме на рис.11. При длительности входного импульса менее 250-300 мс на выходе формируется одиночный импульс длительностью 80 мс. Это стандартный режим работы одновибратора.

При длительности входного импульса более 300 мс начинается постоянная генерация импульсов с частотой, определяемой параметрами МСД и сопротивлением резистора R1. Итого, получается уникальное устройство, формирующее укороченный первый импульс длительностью 80 мс, а все последующие — расширенные до 200-300 мс.

Рис.13. Рис.14. Рис.15.

Аналогичные процессы происходят и в схемах рис. 10-14. Здесь и далее номиналы резисторов R1 выбираются в зависимости от серии микросхем и варианта включения согласно таблице 1. Если заменить логические элементы D-триггером, то получится триггерный одновибратор — рис.16. Номинал резистора R1 влияет на частоту генерации серии расширенных импульсов и может меняться в широких пределах.

Рис.16.

Преимущества схем с МСД.

  • Во-первых, при низких номиналах нагрузочных резисторов R1 50…600 Ом одновременно с генерацией импульсов будут наблюдаться достаточно яркие световые “вспышки”.
  • Во-вторых, малые габариты по сравнению с электролитическими конденсаторами. Для сравнения, чтобы получить импульсы с частотой 1,5-2,5 Гц в RC-генераторах на ИМС, требуются конденсаторы емкостью от 5-10 мкФ (серия микросхем К561) до 500-1000 мкФ (серия микросхем К155) или применение дополнительных транзисторов, микросхем.
  • В-третьих, крутые фронты выходных сигналов, что недостижимо при замене МСД конденсаторами большой емкости.

Экзотические схемы включения

Рис.17.

МСД могут применяться в устройствах, функционально весьма далеких друг от друга. Например, амплитудный и частотный модулятор [4], стереобипер [3], индикатор полярности напряжения [4], переключатель елочных гирлянд [5]. В последнем примере МСД используется как своеобразный “паровоз”, за которым следуют “вагоны” из обычных светодиодов рис.17.

В итоге вся последовательно соединенная цепочка излучателей мигает в едином ритме. Собрав три такие гирлянды с тремя разноцветными МСД, можно получить устройство, иллюминация которого подчиняется закону псевдослучайных чисел с большим периодом повторения.

МСД выгодно применять для подавления “дребезга” контактов механической кнопки — рис.18. При коротком нажатии на кнопку SB1 на выходе образуется четкий одиночный импульс отрицательной полярности длительностью около 80 мс.

При длительном удержании кнопки будут генерироваться импульсы с частотой “вспышек” светодиода HL1. Такую схему удобно использовать при тестировании сложных микропроцессорных систем, подавая сигнал от МСД на вход сброса. Удерживая кнопку SB1, можно будет проанализировать, как ведет себя система при периодическом обнулении ее параметров.

Схему на рис.10 допускается использовать не только в качестве одновибратора, но и делителя частоты следования входных импульсов. Коэффициент деления равен отношению частоты входных импульсов к частоте «мигания» МСД.

Рис.18.

В отличие от ее прототипа, в котором вместо не применен электролитический конденсатор, значительно повышается стабильность коэффициента деления и увеличивается крутизна фронтов выходного сигнала.

На рис.19 МСД работает совместно с триггером Шмитта, выполненном на инверторе DD1. В результате такого “сотрудничества” на выходе схемы генерируются пачки высокочастотных импульсов. Частота заполнения зависит от номинала резистора R1: 120 кГц при 100 кОм, 1 МГц при 15 кОм. Побочный эффект — небольшая широтно-импульсная модуляция.

Схема управляемого генератора пачек импульсов изображена на рис.20. Функционирование устройства начинается после подачи на вход ВЧ сигнала тактовой частоты, при этом выходной сигнал оказывается промодулированным с частотой “вспышек” HL1.

Если на вход будет подан логический “0”, то генерация импульсов прекращается, а если логическая “1”, то генерация “вспышек” возобновляется, но без ВЧ тактового заполнения.

Рис19.

На рис.21 изображена схема, предназначенная для организации импульсного питания различных устройств. Ток нагрузки зависит от типа МСД и приложенного напряжения.

Для светодиодов фирмы Kingbright этот ток составляет от 3-5 мА при напряжении 5-8В до 40 мА при напряжении 15 В. МСД работает как электронный ключ. Частота включения определяется в первом приближении частотой его “вспышек”.

Если установить в схему электролитический конденсатор С1, то получится режим пилообразного питания устройства, который можно использовать для игрушек типа “сирена”. Еще один вариант на эту тему приведен на рис.22.

Амплитуда выходного пилообразного сигнала регулируется резистором R1 и составляет 2-3 В. На рис.23 приведена схема, иллюстрирующая работу МСД в качестве частотного детектора. На элементах DD1.1-DD1.4 собран генератор с изменяемой частотой следования импульсов.

Если их частота не превышает 5 Гц, то МСД “мигает” в своем родном ритме. При повышении частоты до 20 Гц происходит полная засветка МСД! В дальнейшем, начиная со значения 300-400 Гц, светодиод опять становится “мигающим”.

Рис.20. Рис.21. Рис.22.

Интересное наблюдение. При подаче на МСД импульсов частотой около 100 Гц он начинает реагировать на уровень внешней засветки от обычных ламп накаливания и ламп дневного света. В этом режиме МСД превращается в фотодиод. Достаточно заслонить рукой свет от лампы и МСД вместо полной засветки будет “мигать”.

Итоги

Появление МСД стало заметной вехой в преодолении очередного технологического барьера в электронной технике. Союз оптики и микроэлектроники доказал свою прочность на деле. Для фирм-изготовителей освоение производства МСД явилось хорошей рекламой потенциальных возможностей.

Пока что МСД не стали широко распространенными приборами такими, как стали простые светодиоды, и их до сих пор можно отнести к разряду экзотических. Причина кроется в их относительно высокой цене. По сравнению с обычными светодиодами МСД стоят в 5-10 раз дороже.

Рис.23.

Сфера их применения — миниатюрные устройства охранной сигнализации, индикаторы аварийных ситуаций. Нестандартные схемы включения могут быть рекомендованы в случае доработок аппаратуры, когда требуются малые габариты устройства и повышенная крутизна фронтов выходных сигналов.

С. Рюмик

Литература:

  1. Рюмик С. Генераторы импульсов на мигающем” светодиоде. — Радио, 2000, №2, с. 45.
  2. Рюмик С. Мигающие светодиоды (справочный материал). — РА, 1999, №12, с. 26.
  3. Рюмик С. Бипер без конденсаторов. — Радиолюбитель, 1999, №8, с. 24.
  4. Рюмик С. Необычные применения мигающих светодиодов. — РА, 1998, Null-12, с. 23.
  5. Рюмик С. Что мигает на елке? — Моделист-конструктор, 1999, N912, с. 20,21.
Источник питания

— Схема переключения для управления светодиодами при разных значениях тока

Светодиоды

имеют типичный ток 23,5 В и 2,1 А.

Typical в этом случае недостаточно. Взгляд на кривую ВАХ показывает, что \ $ V_f \ $ изменяется при 2,1 А от примерно 20,8 В до> 26 В.

Рис. 1. \ $ V_f \ $ для ламп серии 5300.

Приведены четыре кривые, от MAX Vf до «типичного» до MIN Vf, все при 25 ° C. Затем идет красная линия при 70 ° C.

Зеленая линия нагрузки представляет ваш резистор 1 Ом. Он упадет на 1 В / А, поэтому при 4 А напряжение упадет до 20 В. Напряжение и ток для каждой кривой светодиода можно оценить по пересечению кривой с линией нагрузки.

  1. При максимальном напряжении Vf в худшем случае можно ожидать 0,4 А.
  2. Типичный случай потребляет 1,3 А.
  3. Минимальный Vf при 25 ° C составляет 2,1 А.
  4. По мере того, как светодиоды нагреваются до 70 ° C, ток увеличивается до 2,6 A. Это, конечно, нагревает светодиоды, Vf будет падать, а ток увеличиваться до тех пор, пока что-то не откажется — блок питания, резистор или светодиоды.

Проблема в том, что у вас недостаточно места для простого резистивного ограничителя тока. Если бы у вас было еще несколько вольт, линия нагрузки не была бы такой крутой, а ток не так сильно менялся бы.

Обратите внимание, что вы предполагаете, что ваши батареи будут давать постоянное напряжение. Они не будут!

Вам нужны регулируемые источники питания постоянного тока.

Рис. 2. Типовой источник постоянного тока с питанием от сети.

Рисунок 3.Схема управления источником постоянного тока с регулируемой яркостью. Источник: Диммируемое управление блоком питания от сети | LEDnique.com.

Многие источники питания для светодиодов, например, компании Mean Well и т. Д., Предлагают три режима управления: уровень постоянного выходного тока можно регулировать через управляющий вход

  • путем подключения переменного или фиксированного сопротивления к клеммам управления,
  • с использованием управляющего сигнала 0 ~ 10 В постоянного тока,
  • с использованием сигнала ШИМ 10 В между.

В вашем случае вы должны приобрести модель блока питания, которая будет обеспечивать необходимый пиковый ток и нормально работать в режиме диммирования (пониженный ток).

Я не проверил для вас все детали, так что вам нужно кое-что сделать. В частности, убедитесь, что ток можно контролировать в интересующем вас диапазоне напряжений Vf.

Подробнее об этом я писал в статье, приведенной выше. Графический инструмент сопротивления линии нагрузки также может быть интересен для более подробного объяснения того, как использовать линию нагрузки, хотя в статье речь идет о цепях с более низким напряжением.


смоделировать эту схему — Схема создана с помощью CircuitLab

Рисунок 4.Управление операционным усилителем.

Попробуйте что-то вроде рисунка 4. Вход 2,1 А может быть постоянно подключен к 3,3 В. Вход 4,0 А можно подключить к GPIO. Выберите резисторы так, чтобы они давали около 300 мВ на неинвертирующем входе на ампер тока светодиода.

Управляющие светодиоды на повышенном напряжении

По разным причинам часто необходимо управлять светодиодами, питаемыми напряжением выше, чем может подавать или выдерживать микроконтроллер. В этих случаях наиболее распространенным решением является использование NPN-транзистора в качестве переключателя или драйвера для буферизации между двумя частями схемы — низковольтной схемой управления и высоковольтной схемой нагрузки.

Транзистор NPN может использоваться в качестве переключателя, управляемого микроконтроллером низкого напряжения, переключающим высоковольтную или сильноточную нагрузку.

Когда ток не течет в базу (b) Q1, транзистор выключен, и ток не течет от коллектора (c) к эмиттеру (e). Когда мы увеличиваем ток в базе транзистора, транзистор начинает включаться, и его сопротивление падает, позволяя току течь от Vss через R2, D1 и Q1 на землю.

Малосигнальные транзисторы имеют «усиление по току» от 50 до 300.Это означает, что для 0,1 мА в базе мы должны иметь возможность получить от 5 до 30 мА, протекающих через коллектор. Связь задается уравнением \ (I_C = h_ {FE} I_B \), где \ (I_C \) — ток коллектора, \ (h_ {FE} \) — коэффициент усиления по току, а \ (I_B \) — ток базы. .

На первый взгляд кажется, что мы можем управлять током светодиода до любого желаемого значения, управляя базовым током. К сожалению, между транзисторами существует достаточно различий, и тот факт, что этот параметр зависит от температуры, не может быть хорошей надежной и воспроизводимой конструкцией.(Это может быть нормально для разового проекта, если вы уверены, что вам никогда не придется заменять транзистор.)

Вместо этого мы вводим в базу более чем достаточный ток, чтобы превратить транзистор в «жесткий» режим насыщения: напряжение коллектора падает настолько низко, насколько возможно — обычно ниже 0,2 В.

Пример 1 (драйвер NPN)

  • Выход нашего микроконтроллера — это сигнал 5 В.
  • Vss составляет 12 В.
  • Светодиод D1 требует 100 мА и имеет прямое напряжение 2.8 В при таком токе.
  • Q1 имеет \ (h_ {FE} \) где-то около 100.

R1

Мы хотим убедиться, что транзистор насыщается, чтобы обеспечить минимальное падение напряжения между коллектором и эмиттером. При насыщении мы предполагаем, что вероятно усиление по току от 10 до 20. Чтобы гарантировать насыщение, мы должны рассчитать базовый ток от 5 до 10 мА. Это подходит для большинства микроконтроллеров (но всегда проверяйте спецификацию). При прямом смещении базовое напряжение возрастет примерно до 0,6 В, поэтому напряжение на R1 будет 5-0.6 = 4,4 В. Мы можем вычислить (из закона Ома) \ (R_1 = \ frac {V} {I} = \ frac {4.4} {0.005} = 880 \, \ Omega \), и это будет вдвое меньше, чем при 10 мА. Мы можем пойти где-то посередине с резистором 560 Ом или 680 Ом.

R2

\ (\ Begin {align} V_ {R2} & = V_ {SS} — V_ {LED} — V_ {Q1} \\ & = 12 — 2,8 — 0,2 \\ & = 9 \, V \ end {align} \ )

\ (\ begin {align} R2 & = \ frac {V} {I} \\ & = \ frac {9} {0.1} \\ & = 90 \, \ Omega \ end {align} \)

Схема драйвера светодиода с низким энергопотреблением

с режимом переключения энергосбережения

Это схема драйвера светодиода с переключателем.При нанесении на аккумулятор. Как сделать так, чтобы он светился надолго?
Аккумулятор можно использовать дольше обычного. Это вопрос, который нам нужен.
Когда он экономит, Если применить к другой расход , то экономия будет гарантирована.

Схема светодиодного дисплея с простым переключением

На рисунке 1 в качестве схемы приложения от источника используется напряжение 9 вольт, которое мы должны обеспечить высокой мощностью. К эффективности и долгому сроку службы. Транзисторы T1-действует как переключатель, замененный на S на рисунке 1, с другими компонентами D1 и L1 в качестве рабочих устройств исходной теории.


Рисунок 1 Преобразователи постоянного тока для привода LED

Начало работы. От протекания тока через R3 к базе вывода транзистора T2 ( BC550 ). (Теперь светодиод D2 не горит. Хотя ток уже протекает через R3. Потому что светодиод загорается. Напряжение выше 0,7 вольт.) При запуске это было такое сопротивление смещения транзистора T2 уменьшилось . Применены условия доступа.

Это приводит к тому, что Т2 соединяет базу Т1 и переходит на отрицательное напряжение через проводимость штыря коллектор-эмиттер Т2.Результирующий ток протекания источника питания + 9В вольт через R1 в контактный эмиттер вне контактной базы T1 ( BC560 ) перейти к T2 завершено

Теперь T1 имеет смещение, поэтому обеспечил ток на выходе на контактный коллектор, ток от источник +9 В для подачи тока на катушку L1. В результате этого метода, в соответствии с понижающим преобразователем, падение напряжения на катушке, которое будет накапливаться в виде задержки, будет проходить еще больше.

Ток катушки протекает только через R1.Когда протекает намного больше тока, напряжение на R1 составляет 0,7 вольт. (ток около 70 мА) Транзистор T3 переходит в состояние проводимости. потому что напряжение на R1 приложено к смещению вывода T3 (BC560).

(Периферийное смещение между эмиттером вывода и базой вывода, если напряжение эмиттер-база имеет значение 0,6-0,7 В, транзистор будет проводить такое же состояние. Или в состояние проводимости.) T3 (BC560). Поэтому провод от вывода эмиттера к выводу коллектора.

Результаты проводят плюс от источника питания +9 вольт влияет на базу вывода смещения T1.В результате транзистор PNP T1 перестает проводить ток.

Или другой способ сказать, что, когда проводимость T3 равна двустороннему току, один путь проходит через R1, другой — через T3. Таким образом, напряжение на базе вывода T1 имеет положительное значение больше, смещение цепи T1 в низкое положение T1 stop проводит ток .

Если вы посмотрите на темп работы в начале. Транзистор T2 является проводящим устройством по умолчанию. Производительность такого транзистора заставляет Т1 проводить слежение.Результаты проводят ток T1, затем в добавляют к L1, а также большое смещение к основанию вывода T2, текущие результаты добавляют к текущему увеличению T1.

Ток в катушке соответственно увеличился. Называется добавлением того, что. увеличить пропорцию Или Линейный При большом токе, пока не сработает Т3. T1 проведет магнитное поле в L1 и соберет коллапс. К току через светодиод-D2 через диод D1.

Теперь на транзистор Т2 поступает обратное смещение.При измерении на базе вывода T2 относительно отрицательного напряжения потенциала земли. Или называется падение напряжения на L1 отрицательным (потому что это указывает на то же основание вывода T2). Если вы вернетесь к базовой схеме, показанной на

Рисунок 1. Запись указывает, что P — это то же основание вывода смещения, что и T2. . Или мы измеряем напряжение катушки L1 при этом напряжении, точка P должна быть уменьшена.

L1 подает ток на светодиод до тех пор, пока не истощится (до нулевого значения). Таким образом, транзистор Т2 снова начнет проводить ток.Потому что, если L1 все еще работает, также имеет обратное смещение к T2. Эту работу будут лелеять на протяжении всего времени. Продолжаем питать светодиод, устройство D2 в цепи.

Транзисторы Т1, Т2 подключаются так же, как тиристорный тетрод. Положительная обратная связь на частоте генератора, генератора , транзистор Т3 заставляет эту систему работать наверняка больше. Или как убедиться, что установлен ток отключения транзистора T1.


Рисунок 2. Схема прототипа для управления током светодиода

В реализации.Из-за таких схем. Есть несколько частей. Схема может быть собрана в универсальную печатную плату, как показано на рисунке 2, или дизайн печатной платы, в зависимости от удобства.

На основе схемы драйвера светодиода , когда нагрузка больше тока. Одна проблема в том, что этот контур не может колебаться. Поскольку нагрузка используется с высоким током . Точно так же резистор с малым сопротивлением. Выходное напряжение тоже такое низкое. T2 не может работать постоянно.

Мы можем решить проблему, увеличив емкость конденсатора до 0.1 мкФ. К точке P первичного контура. В статье выше. Или конденсатор, который падает на вывод база-эмиттер T2, решит эту проблему.

Для оптимизации тока питания цепи. Следует поставить емкость 10 мкФ (электролитический тип), пересекающую выходное напряжение. Из-за схемы типа выпрямителя без напряжения сглаживающие фильтры .

Вы будете использовать эти принципы схемы в других приложениях.Лучше, чем схема драйвера светодиода только .

Не только это Если ваша потребность используется для более длинных светодиодных дисплеев, чтобы показать состояние батареи.

Попробуй!

Схема контроля состояния батареи с использованием IC-7555

Простая схема контроля состояния батареи с использованием IC-7555 или светодиодный мигающий индикатор с низким энергопотреблением от ICM7555
Обычно, когда вам нужно использовать светодиодный индикатор состояния батареи 6В-12В. Просто добавляйте резистор последовательно. Это просто и экономно.
Но не круто и потребляет больше энергии.
— Впечатление яркое, непрерывное. Думаю, что не заметил этого.
— Когда светодиодный свет тоже так потребляет слишком много энергии. Хотя для светодиода требуется только напряжение 1,8 В, но он использует слишком большой ток — 15-20 мА.
Мудрый выбор
— Светодиод мигает очень отчетливо.
— Узнайте, как использовать ток менее 1 мА . Когда несколько десяти лет назад. Я использовал LM3909 из светодиодной микросхемы мигалок / осциллятора.(Просмотрите схемы, в которых используется этот номер ИС.) Он создан для определенного мигающего огня или слаботочного светодиодного мигающего индикатора , поэтому его легко изготовить, и он включает в себя очень небольшое количество. Но, к сожалению. Теперь производители микросхем перестали ее выпускать.
Но у нас тоже есть интересующий вариант, может получше. Если вы знакомы с IC, 555 является родственником семейства ICM7555 (или 7555IPA) с такими же функциями. Однако очень низкое энергопотребление. Поскольку внутренняя структура CMOS, так что отлично работает.
Вы посмотрите, простая схема, как я сказал, или нет. Как показано ниже. Вы не ошиблись, он использует всего три штуки, он может заставить светодиод мигать. По вытяжке ток от блока питания составляет всего 0,15 мА. Он выполнен в виде типовой схемы Стабильного мультивибратора . (Если вы не понимаете, посмотрите эту сеть. У нас есть несколько схем)

Special! В нормальной цепи конденсатор разряжается прямо на землю. Однако в этой схеме конденсатор разряжается через LED1, так что LED1 периодически мигает.
Просто у вас есть простая схема монитора батареи IPM7555 Некоторые люди скажут, что это того не стоит. Эта схема дороже старого метода. Однако он может продлить срок службы батареи в несколько раз или адаптирован для слаботочных источников питания, таких как солнечные или другие альтернативные источники энергии. Результат у них одинаковый.

Эта схема сработала, вы можете легко ее построить, как показано на видео ниже:

Продолжайте читать: «Схема светодиодного фонарика высокой мощности»

Схема быстрого переключения светодиодного освещения с использованием всего 4 компонентов!

Цепи светодиодного освещения — забавный компонент, который можно добавить в любую сборку.Я добавляю один к клону Sega Genesis, на который недавно смотрел! В этом видео я рассмотрю электронные компоненты, которые я обычно использую для изготовления дешевых светодиодных ламп своими руками.

Ваша базовая схема светодиодного освещения состоит из:

  • соответствующего резистора светодиода
  • (здесь есть математическая информация, чтобы выяснить это)
  • переключатель (опционально)
  • источник питания

и это оно. Компоненты можно обжимать, паять, сращивать или даже скручивать.Хотя тот последний мог не очень хорошо удерживать контакт.

Включение и снижение напряжения в цепи светодиодного освещения

Для видео я использую блок питания номинально 3 В, состоящий из двух батареек AA. Вы можете использовать любой источник энергии, какой захотите; просто убедитесь, что используете резисторы подходящего номинала (по мощности) для нагрузки, которую вы на них возложите. Чем ближе напряжение питания к прямому напряжению светодиода и чем ниже номинальное сопротивление резистора, тем меньше мощности он рассеивает в виде тепла.

Но хороший калькулятор также учитывает мощность резистора (как минимум), который вы должны использовать. Рассчитано по закону Ома. И можно использовать резистор, который может потреблять больше (долей) ватт, чем минимальный.

Например, мы хотим, чтобы 10 мА проходило через нашу цепь светодиодного освещения в видео, а напряжение светодиода составляет 2,4 В. И мы используем источник питания 3,3 В. Минимальная мощность нашего резистора составляет 0,009 Вт. Наш резистор на 1/4 Вт легко справится с некоторыми из наших светодиодов с такими параметрами, так что с одним вполне подойдет.

Где взять компоненты

Сами детали были закуплены оптом с AliExpress или EBay. Это те же компоненты, которые вы найдете в электронных устройствах, и они отлично подходят для низковольтных домашних устройств.

Ищите переключатель SPDT, светодиод в сквозном отверстии (или соломенную шляпу) и резистор 1/4 Вт любого номинала. Для держателя батареи вы можете распечатать на 3D-принтере или получить стандартный пружинный держатель для двух батарей, как я использовал в видео.

Еще одна особенность, которая может вас заинтересовать, — это диффузор.Для этого я разработал несколько, которые вы можете создать с помощью 3D-печати FDM. И я расскажу об этом в следующем видео из серии Created at PCBurn.

Спасибо пользователю Reddit за вопрос о компонентах для этой схемы. Легко забыть, что вы знаете, что это за части, только если вы их использовали. И это дало мне стимул быстро все это записывать и снимать видео в перерывах между более длинными проектами.

Основы светодиодного драйвера

и его схемотехника

Теплые подсказки: слово в этой статье составляет около 3800 слов, а время чтения составляет около 23 минут.

Введение

Светодиод признан четвертым поколением источников зеленого света. Это твердый источник холодного света. Он имеет множество преимуществ, таких как высокая эффективность, длительный срок службы, безопасность и защита окружающей среды, небольшой размер, высокая надежность, быстрая скорость отклика и так далее. В настоящее время достигается такой же световой эффект. Потребляемая мощность светодиодов составляет примерно 1/10 ламп накаливания и 1/2 люминесцентных ламп. Многие страны и регионы ввели различные политики для поддержки развития светодиодной индустрии, так что отрасль стала важной частью важных отраслей страны, открыв огромные возможности для бизнеса.Схема драйвера светодиода очень важна для светодиодов, и управление затемнением светодиода может сэкономить энергию. В последние годы горячими темами стали управление и регулировка яркости белых светодиодов высокой яркости.

Каталог

I Основные сведения о драйвере светодиода

1. 1 Что такое светодиодный драйвер

Светодиодный драйвер изменяет источник питания на определенный ток напряжения для управления преобразователем напряжения светодиода. В общем, вход драйвера светодиода включает в себя переменный ток высоковольтной сети (т.е.е., городское электричество), низкого напряжения постоянного тока, высокого напряжения постоянного тока, низкого напряжения и высокочастотного переменного тока (например, на выходе электронного трансформатора). Выходная мощность драйвера светодиода в основном представляет собой источник постоянного тока, который может изменять напряжение с изменением прямого падения напряжения светодиода. Основные компоненты источника питания светодиодов включают контроллер переключателя, катушку индуктивности, компонент переключателя (MOSFET), резистор обратной связи, устройство входного фильтра, выходной фильтр и так далее. В соответствии с требованиями в разных случаях должна быть схема защиты от перенапряжения на входе, схема защиты от пониженного напряжения на входе, защита от разомкнутой цепи светодиода, схема защиты от перегрузки по току и так далее.

1.2 Характеристики источника питания светодиодного драйвера

В частности, мощность привода светодиодного уличного фонаря установлена ​​на большой высоте, поэтому обслуживание неудобно, а стоимость обслуживания также велика.

LED является энергосберегающим продуктом, а эффективность привода высока. Очень важно, чтобы в светильник была установлена ​​мощность. Эффективность источника питания высока, но потребление энергии невелико, а тепло в светильнике невелико, поэтому повышение температуры лампы также снижается.В результате задержка затухания светодиода является преимуществом.

Коэффициент мощности — это потребность энергосистемы в нагрузке. Как правило, обязательных показателей для электроприборов мощностью менее 70 Вт нет. Хотя коэффициент мощности отдельного электроприбора невелик, он мало влияет на электросеть; однако вечером электросеть будет серьезно загрязнена из-за большого количества освещения и концентрации однотипной нагрузки. В ближайшем будущем могут появиться некоторые требования к индексам для коэффициентов мощности для драйвера светодиода мощностью 30-40 Вт.

Теперь существует два вида трафика: один — это источник постоянного напряжения для нескольких источников постоянного тока, и каждый источник постоянного тока подается на каждый светодиод индивидуально. Таким образом, комбинация получается гибкой, и все сбои светодиодов не влияют на работу других светодиодов, но стоимость будет немного выше. Другой — источник постоянного постоянного тока, то есть режим привода «Кеке Хуэй Бао», который управляется светодиодами в последовательной или параллельной работе. Его преимущество заключается в низкой стоимости, но плохой гибкости, а также он не влияет на другие проблемы, связанные с работой светодиода, при устранении неисправности светодиода.Две формы сосуществуют в определенный период времени. Способ многонаправленной выходной мощности постоянного тока будет лучше с точки зрения стоимости и производительности. Может быть, это главное направление в будущем.

Способность светодиода противостоять скачкам напряжения относительно низкая, особенно способность противостоять обратному напряжению. Также важно усилить защиту в этой области. Некоторые светодиодные фонари устанавливаются на открытом воздухе, например, светодиодные уличные фонари. Из-за сброса нагрузки и индукции молнии в электросети будут происходить всевозможные скачки, а некоторые скачки вызовут повреждение светодиода.Таким образом, анализ приводной мощности «Чжункэ Хуэй Бао» должен быть недостаточным для защиты от перенапряжения. Что касается частой замены источника питания и ламп, драйвер светодиода должен иметь возможность подавлять скачки напряжения и защищать светодиод от повреждения.

Для соответствия требованиям безопасности и электромагнитной совместимости лучше всего увеличить отрицательную обратную связь по температуре светодиода на выходе постоянного тока в дополнение к обычной защите.

II Типы светодиодных драйверов

2.1 Постоянный ток драйвера светодиода

В зависимости от режима управления распространенный на рынке драйвер лампы делится на два типа. Один из них — это привод постоянного тока. Особенностью привода постоянного тока является постоянство выходного тока. Выходное напряжение изменяется в одном диапазоне. Поэтому мы часто видим, что приводная оболочка выделена (выход: DC ** V — ** V * * * mA + -5%) на рынке. Это означает, что выходное напряжение находится в одном из выходных напряжений. Сколько мА диапазон, ток.

  • A. Выходной ток схемы управления постоянным током постоянный, но выходное постоянное напряжение изменяется в определенном диапазоне с различными размерами нагрузки. Сопротивление нагрузки небольшое, выходное напряжение низкое, чем больше сопротивление нагрузки, тем выше выходное напряжение.

  • B. Цепь постоянного тока не боится коротких замыканий нагрузки, но категорически запрещается нагружать полностью разомкнутую.

  • С.Схема управления постоянным током идеальна для управления светодиодами, но, условно говоря, цена выше.

  • D. Следует обратить внимание на максимальный выдерживаемый ток и напряжение, которые ограничивают количество используемых светодиодов.

2.2 Драйвер светодиода с постоянным напряжением

Другой — это привод постоянного напряжения. Характеристика управления постоянным напряжением заключается в том, что выходное напряжение фиксировано, а ток ограничен максимальным значением при смене ламп и фонарей.В этом случае оболочка обычно указывает (выход: DC ** V ** A) фиксированное выходное напряжение и количество доступных максимальных выходных токов. Наиболее распространенные выходные напряжения на рынке светодиодов — 5 В, 12 В, 24 В и т. Д.

  • A. Когда параметры в цепи стабилизации напряжения определены, выходное напряжение фиксируется, тогда как выходной ток изменяется с увеличением или уменьшением нагрузки.

  • B. Схема стабилизации напряжения не боится размыкания нагрузки, а вот короткие замыкания нагрузки категорически запрещены.

  • C. Регулируемая схема возбуждения питает светодиод. Для каждой цепочки требуется соответствующий резистор для усреднения яркости каждого светодиода в цепочке.

  • D. Изменения выпрямленного напряжения повлияют на яркость.

III Применение драйвера светодиодов

Применение драйверов светодиодов определяется параметрами светодиодов, которые мы хотим управлять. Входное напряжение и ток — два наиболее важных параметра.К лампе распространения прилагается отдельное объяснение того, как рассчитать входное напряжение и ток светодиодной лампы. Это только описание входа светодиодной лампы. Люди смогут увидеть исходные параметры движения (обязательно определите несколько ложных целей !!!).

Выбираем соответствующий драйвер светодиода в зависимости от входного напряжения и тока платы лампы. Например, если входное напряжение платы лампы составляет 37-40 В, а входной ток составляет 300 мА, можно выбрать выходное напряжение драйвера светодиода, чтобы включить его, и ток будет почти таким же.Поверхность формулы, а также напряжение больше или меньше, чем все, должны быть включены. В противном случае будет мерцание. Допускается низкий ток.

Наконец, нам нужно только нажать на положительный и отрицательный полюсы, отмеченные пластиной лампы, чтобы сварить привод или соединительную линию. Необходимо отметить, что у обычной выходной линии, управляемой светодиодами, красный цвет — положительный полюс. Черный — отрицательный полюс … Если это серая линия, то серый — положительный полюс, белый — отрицательный… Сине-коричневая линия, синяя линия — отрицательный полюс, синяя линия — отрицательный полюс и т.д.

Рис. 1. Пример продукта общего использования светодиодного драйвера Схема

Давайте посмотрим видео о том, как сделать драйвер светодиода:

Как сделать светодиодный драйвер

Основы схемы светодиодного драйвера V

5.1 Что такое схема светодиодного драйвера

Светодиодный драйвер — это электрическое устройство, которое регулирует мощность светодиода или цепочки (или цепочек) Светодиоды.Драйвер светодиода реагирует на изменяющиеся потребности светодиода или схемы светодиода, обеспечивая постоянное количество энергии для светодиода, поскольку его электрические свойства изменяются с температурой.

5.2 Типы схем управления светодиодами и их классификация

Схема накачки заряда также является схемой преобразователя постоянного тока в постоянный. Схема накачки заряда использует эффект накопления конденсатора на заряде для хранения электрической энергии. Он использует конденсатор в качестве элемента связи энергии и управляет силовым электронным устройством для выполнения высокочастотного переключения, позволяя конденсатору накапливать энергию в течение части периода, а конденсатор выделяет энергию в течение оставшегося времени.Этот вид схемы получает разные выходные напряжения через разные режимы подключения, когда конденсатор заряжается и разряжается, и вся схема не требует индуктивности.

Схема подкачки заряда относительно небольшая, с меньшим количеством компонентов и более низкой стоимостью. Однако в нем используется относительно много переключающих элементов. При определенном входном напряжении диапазон изменения выходного напряжения относительно невелик. Выходное напряжение в основном в 1/3 ~ 3 раза больше входного напряжения, мощность схемы мала, а эффективность будет зависеть от выходной мощности.Соотношение между напряжением и входным напряжением меняется. Когда светодиодов несколько, их нужно включать параллельно. Чтобы предотвратить неравномерное распределение тока в ответвлении, необходимо использовать балластный резистор, что значительно снизит КПД системы.

Схема импульсного источника питания представляет собой схему преобразования постоянного / постоянного тока, которая изменяет выходное напряжение, изменяя соотношение времени между переключением и выключением. С точки зрения схемы, по сравнению со схемой накачки заряда, она содержит магнитные компоненты, то есть индуктор или высокочастотный трансформатор.Импульсный источник питания делится на два типа преобразователей постоянного тока в постоянный, а именно, входной и выходной без изоляции, а именно «прямое соединение» и «вход и выход».

Типичные схемы «сквозного» преобразователя постоянного тока в постоянный включают понижающий, повышающий, понижающий-повышающий и Cuk.

Типичные схемы изолированных преобразователей постоянного тока в постоянный с входом и выходом: несимметричный прямой, обратный несимметричный, двухтактный, полумостовой и полный мост. Схема импульсного источника питания может обеспечивать широкий диапазон выходного напряжения, а выходное напряжение регулируется непрерывно, выходная мощность большая, поэтому диапазон применения шире, особенно в ситуациях средней и большой мощности.

Линейная схема управления рассматривает полупроводниковое силовое устройство, работающее в линейной области, как динамический резистор и реализует управление постоянным током посредством управления уровнем управления. Недостатком линейной схемы управления является низкий КПД, но она имеет быструю реакцию на входное напряжение и изменение нагрузки. Схема относительно проста. Легко контролировать ток светодиода напрямую, и легко контролировать высокую точность тока.

VI Новая конструкция схемы драйвера

Фактическим управлением с обратной связью импульсного источника питания является выходное напряжение, а управление выходным током нелегко быть точным, а светодиодная лампа легко повреждается при управлении переключением блок питания смещен; КПД линейной схемы невысокий.

На основании вышеуказанных причин разработана новая схема управления светодиодами. В схеме используется односторонний импульсный импульсный источник питания с обратным ходом в качестве регулятора передней ступени, а источник постоянного тока с линейным регулированием давления используется в качестве пост-регулятора. После преобразования несимметричного обратноходового источника питания может быть получено выходное напряжение постоянного тока, которое используется в качестве входа посткаскадного источника постоянного тока, управляемого напряжением. Поскольку входное напряжение источника постоянного тока управляется высокоэффективным импульсным источником постоянного тока с одним обратным ходом, источник постоянного тока с контролем давления может точно управлять светодиодом и изменять входное напряжение источника постоянного тока в большом диапазоне, поэтому эффективность и точность гарантированы, а электроснабжение может быть поставлено по городу.В то же время двухуровневой регулировкой непросто повредить светодиодную лампу.

Рисунок 2. Новая конструкция схемы драйвера

Схема системы показана на рисунке 2. Трансформатор T1, переключающая трубка Q1, диод D1 и конденсатор C1 составляют односторонний импульсный импульсный источник питания с обратным ходом, а операционные усилители U1, U2 и силовой транзистор Q2 составляют устройство с регулируемым давлением. источник постоянного тока, а микроконтроллер STC89C51 является основным устройством управления.

Когда значение серого изменяется, микроконтроллер генерирует соответствующее напряжение управления яркостью на основе полученного значения серого. Напряжение управления яркостью добавляется к тому же фазному входу U1. Обратная входная клемма U1 — это сигнал тока светодиода, полученный U2, а R12 — резистор обнаружения тока. Выходное напряжение U1 является управляющим напряжением МОП-лампы Q2, что известно из концепции недостатка операционного усилителя.Обратное входное напряжение U1 равно напряжению на его прямом входе, то есть ток на R12 контролируется напряжением управления яркостью и не изменяется при изменении нагрузки.

Однокристальный выдает соответствующее напряжение управления яркостью в соответствии со значением серого, которое он получает, а также выдает сигнал ШИМ. Сигнал ШИМ соответствует сигналу TL431 для управления переключателем Q1. Затем MCU изменяет коэффициент заполнения сигнала PWM в соответствии с полученным сигналом тока светодиода и изменяет выходное напряжение импульсного источника питания , то есть для изменения константы.Входное напряжение источника потока снижает напряжение на силовой трубке Q2, так что она работает в зоне регулируемого сопротивления или рядом с зоной регулируемого сопротивления в случае постоянного выходного тока, чтобы повысить эффективность. TL431 — это трехконтактный регулируемый шунтирующий источник опорного напряжения, в котором наличие TL431 и соответствующей ему электрической фазы ограничивает максимальное выходное напряжение импульсного источника питания и дополнительно повышает безопасность системы.

Когда свет относительно хороший, MCU управляет выводом напряжения управления яркостью в соответствии с полученным значением серого, так что выходной ток источника постоянного тока относительно невелик, и может быть достигнут эффект энергосбережения.На рисунке 2 выходное напряжение микроконтроллера контролируется цифро-аналоговым преобразователем для питания источника постоянного тока. На рисунке 2 не показана цифро-аналоговая часть.

VII Базовое предложение по проектированию драйвера светодиода

Конструкция драйвера светодиода не сложна, но у нас должна быть хорошая идея. Поскольку мы выполняем отладку перед расчетом, отладку и устаревание после отладки, мы считаем, что любой может преуспеть в светодиодах.

7.1 Размер тока светодиода

Всем известно, что слишком большая пульсация светодиода повлияет на срок службы светодиода.Что касается воздействия, то конкретного показателя пока нет.

7.2 Chip Fever

Это в основном предназначено для микросхемы драйвера высокого напряжения со встроенным модулятором мощности, который не только снижает энергопотребление микросхемы, но и не приводит к дополнительному потреблению энергии для рассеивания тепла.

7.3 Power Tube Fever

Энергопотребление силовой трубки делится на две части: потери при переключении и потери проводимости. Светодиод — это приложение для электропривода, и повреждение переключателя намного больше, чем потеря проводимости.Потери при переключении связаны с CGD и CGS силовой трубы, а также с управляемой способностью и рабочей частотой микросхемы. Таким образом, решение тепловой проблемы силовой трубы может быть решено из следующих аспектов:

A. Силовая трубка MOS не может быть выбрана в зависимости от величины сопротивления проводимости. Чем меньше внутреннее сопротивление, тем больше емкость CGS и CGD.

B. Остальное — это частота и возможности привода микросхемы. Здесь мы говорим только о влиянии частоты.Частота прямо пропорциональна потерям проводимости. Поэтому, когда электрическая трубка нагревается, мы должны сначала подумать, не слишком ли высока частота выбора. Когда частота снижается, чтобы получить ту же нагрузочную способность, пиковый ток должен быть больше или индуктивность становится больше, что может привести к тому, что катушка индуктивности попадет в область насыщения. Если ток насыщения индуктивности достаточно велик, CCM (режим непрерывного тока) может быть изменен на DCM (режим прерывистого тока), что требует увеличения емкости нагрузки.

7.4 Снижение частоты рабочей частоты

Снижение частоты в основном вызвано двумя причинами. Отношение входного напряжения к напряжению нагрузки невелико, а системные помехи велики. В первом случае будьте осторожны, чтобы не установить слишком высокое напряжение нагрузки, хотя напряжение нагрузки высокое, эффективность будет высокой.

Для последнего мы можем попробовать следующие аспекты: A, наименьший ток устанавливает наименьшую точку; B, чистая точка проводки, особенно ключевой путь смысла; C — выбор индуктора или индуктивности замкнутой магнитной цепи; D, RC фильтр нижних частот, этот эффект маловат.C не очень хорошая консистенция, отклонение немного велико, но этого должно хватить для освещения.

7.5 Выбор индукторов или трансформаторов

Поскольку рабочее напряжение мощного светодиода составляет всего 3 В, полномостовой выпрямитель преобразует 220 В переменного тока в постоянный, падение напряжения на полном мосту составляет около 1,8 В. . А эффективность использования энергии всего одного светодиода составляет всего 60%. Мы должны соединить вместе более 3 светодиодов, чтобы общая эффективность использования электроэнергии была более 80%.

В соответствии с принципом синтеза трех основных цветов белого света, мощные светодиоды мощностью 31 Вт с красным, зеленым и синим соединены последовательно, и можно получить яркость светодиода, эквивалентную белому свету 3 Вт. В то же время можно комбинировать 6 видов цветного света, чтобы удовлетворить предпочтения людей в преобразовании цвета.

VIII Заключение

Схема возбуждения светодиода использует импульсный источник питания в качестве первого уровня управления и источник постоянного тока управления давлением в качестве второго уровня управления.Сочетание двух преимуществ может обеспечить эффективность и точность управления. К тому же он напрямую обеспечен городом электричеством, двухслойный привод, высокая безопасность, а вывести из строя дорогостоящие светодиодные фонари непросто. Эксперименты показывают, что КПД системы может достигать более 83%, а мощность такая же, как у несимметричного импульсного источника питания с обратным ходом, что заслуживает поощрения.

Часто задаваемые вопросы по основам работы с драйверами светодиодов

1.Для чего нужен светодиодный драйвер?

Драйверы светодиодов

— это устройства, которые регулируют и подают питание, используемое для «запуска» светодиодных лент. Подобно традиционным трансформаторам, они преобразуют переменный ток сетевого напряжения (240 В переменного тока) в более низкое напряжение.

2. Нужен ли мне драйвер для светодиодных фонарей?

Для каждого светодиодного источника света требуется драйвер. … Некоторые светодиоды уже имеют встроенный драйвер внутри лампы. Светодиоды, предназначенные для домашнего использования (лампы с цоколем E26 / E27 или GU24 / GU10 и работающие от 120 В), обычно уже включают драйвер.Однако низковольтные светодиодные источники света, такие как некоторые MR-лампы (MR GU5.

3. В чем разница между трансформатором и драйвером светодиода?

В чем разница между светодиодным драйвером и светодиодным трансформатором? Трансформатор — это условно устройство с двойной обмоткой, просто вход переменного тока и выход переменного тока. Драйверы более сложные, чем это, и обычно выдают выход постоянного тока с использованием импульсной системы, а также в них есть схемы регулирования и контроля тока.

4.Можно ли использовать драйвер светодиода в качестве источника питания?

Светодиодный драйвер постоянного напряжения s. Драйверы постоянного тока и постоянного напряжения являются жизнеспособными вариантами источника питания для светодиодных источников света, но отличается способ подачи питания.

5. Сколько светодиодов может запитать драйвер?

Если у вас есть драйвер с выходной мощностью 60 Вт, он должен работать только со светодиодами, которые в сумме потребляют 48 Вт (60 Вт x 80% = 48 Вт).Сколько огней может запитать один водитель? Водители не ограничены количеством светодиодов, которые они питают. Они ограничены общей мощностью светодиодных ламп, которые они питают.

6. Как долго прослужит светодиодный драйвер?

А именно, срок службы схемы управления истекает до того момента, когда светодиод перестанет излучать свет или его яркость упадет. Типичный номинальный срок службы этих элементов часто составляет менее 25 000 часов, в то время как срок службы самого светодиода может достигать 50 000–100 000 часов.

7. Нагреваются ли драйверы светодиодов?

Тепло — враг электроники, и это относится и к драйверам светодиодов. Это не означает, что драйверы светодиодов не могут работать в жарких условиях, они могут. … Выходная мощность импульсного источника питания, включая драйверы светодиодов, уменьшается при повышении температуры.

8. Как выбрать драйвер светодиода?

Используйте драйвер светодиода, по крайней мере, с таким же значением, как у ваших светодиодов.Выходная мощность драйвера должна быть выше, чем требуется для светодиодов для дополнительной безопасности. Если выходной сигнал соответствует требованиям к питанию светодиода, он работает на полную мощность. Работа на полной мощности может привести к сокращению срока службы драйвера.

9. Как узнать, неисправны ли драйверы светодиодов?

Драйверы светодиодов

преобразуют переменный ток высокого напряжения в низкое. Если у вас есть хороший светодиод и плохо работающий светодиодный драйвер, ваши светодиодные фонари для высоких отсеков не будут работать долго.Большинство отказов светодиодов происходит не из-за светодиода, а из-за драйвера. Обычно цепи перегорают и выходят из строя.

10. Как работает схема драйвера светодиода?

В электронике схема светодиода или драйвер светодиода — это электрическая схема, используемая для питания светодиода (СИД). … Падение напряжения на светодиоде примерно постоянное в широком диапазоне рабочего тока; поэтому небольшое увеличение приложенного напряжения значительно увеличивает ток.


Рекомендация книги

— Ассоциация производителей электрического оборудования и медицинских изображений (Автор)

—ЧЖОУ ЧЖИ МИН ДЭНГ (Автор)

Совершенно очевидно, что экономический рост тесно связан с доступностью энергии.К доступности энергии можно подойти двумя способами; Первый способ — построить больше электростанций, чтобы удовлетворить возросший спрос. Второй способ — снизить энергопотребление. Светодиодное освещение имеет множество преимуществ, таких как высокая надежность, низкие затраты на обслуживание, регулировка яркости, в дополнение к основному преимуществу энергосбережения и значительного ожидаемого повышения производительности. С другой стороны, недостатки в основном связаны с начальными затратами на замену систем освещения, а также с необходимостью специальной схемы силовой электроники для управления ими для регулируемой интенсивности и яркости.Цель проекта — заменить галогенные лампы (50 Вт) на встроенные светодиодные (10 Вт). Светодиоды имеют много преимуществ по сравнению с другими источниками света, такими как лампы накаливания или люминесцентные лампы. Наиболее важные преимущества — быстрое включение, меньшее тепловыделение, меньшее энергопотребление и более длительный срок службы. Светодиоды необходимо правильно управлять, чтобы обеспечить оптимальную производительность и долгий срок службы. Драйвер должен быть рентабельным, что обычно не достигается с помощью отдельных компонентов, но может быть реализовано с помощью интегрированных решений.

— Айя Гебриль Ахмед (автор), Махмуд Насари Абд аль-Фаттах (автор), Айя Бакр Абд аль-Вахаб (автор)


Соответствующая информация об «Основах светодиодного драйвера и его схемотехнике»

О статье «Основы светодиодного драйвера и его схемотехника». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев. Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

Альтернативные модели

Деталь Сравнить Производителей Категория Описание
Производитель.Номер детали: LCMXO2280C-3TN100I Сравнить: LCMXO2280C-3FTN256I VS LCMXO2280C-3TN100I Производители: Lattice Semiconductor Категория: CPLD Описание: Макроячейки семейства CPLD MachXO 1140 1.8 В / 2,5 В / 3,3 В 100-контактный лоток TQFP
Производитель № детали: LCMXO2280C-4FTN256C Сравнить: Текущая часть Производители: Lattice Semiconductor Категория: CPLD Описание: Макроячейки семейства CPLD MachXO 1140 1.8 В / 2,5 В / 3,3 В 256-контактный лоток FTBGA
Производитель Номер детали: LCMXO2280C-4FT256C Сравнить: LCMXO2280C-4FTN256C VS LCMXO2280C-4FT256C Производители: Lattice Semiconductor Категория: CPLD Описание: Макроячейки семейства CPLD MachXO 1140 1.8 В / 2,5 В / 3,3 В 256-контактный лоток FTBGA
Производитель № детали: LCMXO2280C-4FTN256I Сравнить: LCMXO2280C-4FTN256C VS LCMXO2280C-4FTN256I Производители: Lattice Semiconductor Категория: CPLD Описание: Макроячейки семейства CPLD MachXO 1140 1.8 В / 2,5 В / 3,3 В 256-контактный лоток FTBGA
Схема переключения светодиодов

по цене 175 рупий / штука | Драйвер светоизлучающих диодов DC-DC,-डीसी एलईडी ड्राइवर — MicroHub, Схема переключения светодиодов Vadodara

по цене 175 рупий / штука | Драйвер светоизлучающего диода DC-DC,-एलईडी — MicroHub, Vadodara | ID: 16483915955

Спецификация продукта

Характеристики Защита от обратной мощности
Источник питания Электрический

Описание продукта

Благодаря многолетнему промышленному опыту мы смогли предоставить нашим уважаемым клиентам широкий ассортимент переключающих цепей для светодиодов .

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2009

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников от 11 до 25 человек

Годовой оборот50 лакх — 1 крор

Участник IndiaMART с ноября 2013 г.

GST24AOMPC4147E1ZA

Создано в году 2009, мы «MicroHub» занимаемся производством широкого ассортимента светодиодных контроллеров , светодиодных таймеров, светодиодных переключателей, светодиодных мигалок, светодиодных диммеров, и т.д. Индия), , мы — компания Sole Proprietorship и производим эти продукты в соответствии с установленными отраслевыми стандартами.Под руководством «г-н Маянк Чавда» (владелец), мы достигли значительного положения в этом секторе. Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Бестрансформаторная схема драйвера светодиода

для надежных недорогих конструкций светодиодных ламп

Светодиодные лампы считаются на 80% более эффективными, чем другие традиционные варианты освещения, такие как люминесцентные лампы и лампы накаливания.Быстрая адаптация светодиодных ламп уже заметна вокруг нас, и глобальная рыночная стоимость светодиодных ламп достигла примерно 5,4 миллиарда долларов в 2018 году. Проблема при разработке этих светодиодных ламп заключается в том, что светодиодный свет, как мы знаем, работает от постоянного напряжения и сети источник питания переменного тока, поэтому нам нужно разработать схему драйвера светодиода , которая могла бы преобразовывать сетевое напряжение переменного тока в подходящий уровень постоянного напряжения, необходимого для светодиодной лампы. В этой статье мы спроектируем такую ​​практичную недорогую схему драйвера светодиода с использованием переключающей микросхемы LNK302 для питания четырех светодиодов (последовательно), которые могут обеспечить световой поток 200 люмен, работающий при 13.6 В и потребляет около 100-150 мА.

Предупреждение: Прежде чем мы двинемся дальше, очень важно убедиться, что вы очень осторожно работаете с сетью переменного тока. Схема и детали, представленные здесь, были протестированы и обработаны экспертами. Любая неудача может привести к серьезным повреждениям и даже к летальному исходу. Работайте на свой страх и риск. Вы были предупреждены.

Бестрансформаторная схема питания

Очень грубая схема драйвера светодиода может быть построена с использованием метода конденсаторной капельницы, точно так же, как мы это делали в нашем предыдущем проекте бестрансформаторного источника питания.Хотя эти схемы все еще используются в некоторых очень дешевых электронных продуктах, они страдают множеством недостатков, которые мы обсудим позже. Следовательно, в этом руководстве мы не будем использовать метод Capacitor Dropper, вместо этого создадим надежную схему драйвера светодиода с использованием переключающей ИС.

Недостаток цепи бестрансферного источника питания с конденсаторным падением

Бестрансформаторный источник питания этого типа на дешевле стандартного импульсного источника питания из-за малого количества компонентов и отсутствия магнитных полей (трансформатора).Он использует схему капельницы конденсатора , которая использует реактивное сопротивление конденсатора для падения входного напряжения.

Хотя этот тип бестрансформаторной конструкции оказывается очень полезным в определенных случаях, когда стоимость производства конкретного продукта должна быть ниже, конструкция не обеспечивает гальванической развязки от сети переменного тока и, следовательно, должна использоваться только в изделиях, которые не поставляются. в прямом контакте с людьми. Например, его можно использовать в мощных светодиодных лампах , корпус которых сделан из твердого пластика, и никакая часть схемы не открыта для взаимодействия с пользователем после установки.Проблема с этими типами цепей заключается в том, что в случае отказа блока питания он может отражать высокое входное напряжение переменного тока на выходе, что может стать смертельной ловушкой.

Еще одним недостатком является то, что эти схемы ограничены низким номинальным током . Это связано с тем, что выходной ток зависит от емкости используемого конденсатора, для более высокого номинального тока необходимо использовать конденсатор очень большой емкости. Это проблема, потому что громоздкие конденсаторы также увеличивают пространство на плате и увеличивают стоимость производства.Кроме того, схема не имеет схемы защиты , такой как защита от короткого замыкания на выходе, защита от перегрузки по току, тепловая защита и т. Д. Если их нужно добавить, это также увеличивает стоимость и сложность. Даже если все сделано хорошо, они ненадежны .

Итак, вопрос в том, есть ли какое-либо решение, которое может быть более дешевым, эффективным, простым и меньшим по размеру вместе со всеми схемами защиты для создания неизолированной схемы драйвера светодиодов высокой мощности переменного тока в постоянный? Ответ — да, и это именно то, что мы собираемся построить в этом уроке.

Выбор светодиода для светодиодной лампы

Первым шагом в разработке схемы драйвера светодиодной лампы является выбор нагрузки, то есть светодиода, который мы собираемся использовать в наших лампах. Те, которые мы используем в этом проекте, показаны ниже.

Светодиоды в указанной выше полосе представляют собой 5730 корпусов, 0,5 Вт, светодиодов холодного белого цвета со световым потоком 57 лм. Прямое напряжение составляет минимум 3,2 В до 3.Максимум 6 В при прямом токе от 120 до 150 мА . Таким образом, для получения 200 люменов света можно использовать 4 светодиода последовательно. Требуемое напряжение этой полосы будет 3,4 x 4 = 13,6 В, , и ток 100–120 мА будет течь через каждый светодиода.

Вот схема светодиодов последовательно —

LNK304 — ИС драйвера светодиода

Для этого приложения выбрана микросхема драйвера LNK304 .Он может успешно обеспечить требуемую нагрузку для этого приложения вместе с автоматическим перезапуском, коротким замыканием и тепловой защитой. Характеристики можно увидеть на изображении ниже —

Выбор других компонентов

Выбор других компонентов зависит от выбранной микросхемы драйвера. В нашем случае в таблице данных в эталонной конструкции используется однополупериодный выпрямитель с двумя стандартными восстанавливающими диодами. Но в этом приложении мы использовали диодный мост для двухполупериодного выпрямления.Это может увеличить стоимость производства, но, в конце концов, компромиссы в конструкции также имеют значение для обеспечения надлежащей передачи мощности по нагрузке. Принципиальную диаграмму без значений можно увидеть на изображении ниже, теперь давайте обсудим, как выбрать значения

Итак, для этого приложения выбран диодный мост BR1 DB107 . Однако для этого приложения также можно выбрать диодный мост 500 мА. После диодного моста используется фильтр pi , где требуются два электролитических конденсатора вместе с катушкой индуктивности.Это исправит постоянный ток, а также снизит электромагнитные помехи. Емкость конденсаторов, выбранных для этого приложения, — электролитические конденсаторы 10 мкФ, 400 В. Значения должны быть выше 2,2 мкФ 400 В. В целях оптимизации затрат лучшим выбором может быть 4,7–6,8 мкФ.

Для индуктора рекомендуется более 560 мкГн при номинальном токе 1,5 А. Следовательно, C1 и C2 выбраны равными 10 мкФ, 400 В, а L1 — 680 мкГн, а диодный мост DB107 1,5 А для DB1.

Выпрямленный постоянный ток подается на драйвер IC LNK304 .Контакт байпаса должен быть подключен к источнику с помощью конденсатора 0,1 мкФ 50 В. Следовательно, C3 — керамический конденсатор 0,1 мкФ 50 В. D1 должен быть сверхбыстрым диодом с временем обратного восстановления 75 нс. Он выбран как UF4007.

FB — это вывод обратной связи, а резисторы R1 и R2 используются для определения выходного напряжения. Опорное напряжение на выводе FB составляет 1,635 В, ИС переключает выходное напряжение, пока не получит это опорное напряжение на своем выводе обратной связи. Следовательно, с помощью простого калькулятора делителя напряжения можно выбрать номинал резисторов.Итак, для , получающего 13,6 В на выходе , номинал резистора выбирается на основе приведенной ниже формулы

.
  Vout = (Напряжение источника x R2) / (R1 + R2)  

В нашем случае Vout составляет 1,635 В, напряжение источника — 13,6 В. Мы выбрали значение R2 как 2,05k. Итак, R1 составляет 15к. В качестве альтернативы вы можете использовать эту формулу для расчета напряжения источника. Конденсатор С4 выбран на 10 мкФ 50 В. D2 — стандартный выпрямительный диод 1N4007. L2 такой же, как L1, но ток может быть меньше.L2 также составляет 680 мкГн с номиналом 1,5 А.

Конденсатор C5 выходного фильтра выбран как 100 мкФ 25 В. R3 — это минимальная нагрузка, которая используется в целях регулирования. Для регулирования нулевой нагрузки выбрано значение 2,4k. Обновленная схема со всеми значениями показана ниже.

Работа бестрансформаторной схемы драйвера светодиода

Полная схема работает в режиме MDCM (в основном с прерывистой проводимостью) Топология переключения индуктивности .Преобразование переменного тока в постоянное осуществляется диодным мостом и фильтром pi . После получения выпрямленного постоянного тока этап обработки мощности выполняется LNK304 и D1, L2 и C5. Падение напряжения на D1 и D2 почти одинаково, конденсатор C3 проверяет выходное напряжение и в зависимости от напряжения на конденсаторе C3 воспринимается LNK304 с помощью делителя напряжения и регулирования коммутируемого выхода на выводах истока.

Создание схемы драйвера светодиода

Все компоненты, необходимые для построения схемы, кроме индукторов.Следовательно, мы должны намотать наш собственный индуктор , используя эмалированный медный провод. Теперь существует математический подход для расчета типа сердечника, толщины провода, количества витков и т. Д. Но для простоты мы просто сделаем несколько витков с имеющейся катушкой и медным проводом и воспользуемся измерителем LCR , чтобы проверить, если мы достигли необходимого значения. Поскольку наш проект не очень чувствителен к величине индуктивности и номинальный ток низкий, этот грубый способ будет работать нормально. Если у вас нет измерителя LCR, вы также можете использовать осциллограф для измерения значения индуктивности с использованием метода резонансной частоты.

На изображении выше показано, что катушки индуктивности проверены и их значение превышает 800 мкГн. Он используется для L1 и L2. Для светодиодов также изготавливается простая плата, плакированная медью. Схема построена на макете.

Тестирование цепи драйвера светодиода

Схема сначала тестируется с использованием VARIAC (переменного трансформатора), а затем проверяется при универсальном входном напряжении, равном 110/220 В переменного тока. Мультиметр слева подключается к входу переменного тока, а другой мультиметр справа подключается к одному светодиоду для проверки выходного напряжения постоянного тока.

Показание снимается при трех различных входных напряжениях. Первый слева показывает входное напряжение 85 В переменного тока, а на одном светодиоде он показывает 3,51 В, тогда как напряжение светодиода на разных входных напряжениях немного меняется. Подробное рабочее видео можно найти ниже.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *