Схема включения трехфазного двигателя через пускатель: Схема подключения трехфазного двигателя через пускатель

Содержание

Схемы подключения трёхфазного электродвигателя - Ремонт220

Статьи

Автор Фома Бахтин На чтение 2 мин. Просмотров 3.6k. Опубликовано Обновлено

Типовая схема подключения трёхфазного электродвигателя состоит из самого электродвигателя, магнитного пускателя и защиты от сверхтоков (автоматический выключатель – автомат).

Схемы подключения могут быть разными, в зависимости от магнитного пускателя, точнее от рабочего напряжения   его катушки К – 220 в или 380 в, от наличия теплового реле,  которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает   размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя.

Схема подключения трёхфазного электродвигателя

Обозначения: 1 – выключатель автоматический (3х-полюсный автомат), 2 – тепловое реле с размыкающими контактами, 3 – группа контактов магнитного пускателя, 4 – катушка магнитного пускателя (в данном случае рабочее напряжение катушки – 220 в), 5 – блок-контакт нормально разомкнутый, 6 – кнопка “Пуск”, 7 – кнопка “Стоп”.

Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки 4 – 220 в; для её питания используется фаза С (можно любую другую) и ноль – N.

Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С.

Как быстро и просто подключить трехфазный двигатель в однофазную сеть DuMA8819


Подключение к трехфазной сети. Часть 2: соединение звезда-треугольник


Схема подключения трехфазного электродвигателя через пускатель

Питание на электродвигатели лучше подавать через магнитные пускатели (называются еще контакторы). Во-первых, они обеспечивают защиту от пусковых токов. Во-вторых, нормальная схема подключения магнитного пускателя содержат органы управления (кнопки) и защиты (тепловые реле, цепи самоподхвата, электрической блокировки и т.п.). С помощью этих устройств можно запустить двигатель в обратном направлении (реверс) нажатием соответствующей кнопки. Все это организуется при помощи схем, причем они не очень сложны и их вполне можно собрать самостоятельно.

Назначение и устройство

Магнитные пускатели встраиваются в силовые сети для подачи и отключения питания. Работать могут с переменным или постоянным напряжением. Работа основана на явлении электромагнитной индукции, имеются рабочие (через них подается питание) и вспомогательные (сигнальные) контакты. Для удобства эксплуатации в схемы включения магнитных пускателей добавляют кнопки Стоп, Пуск, Вперед, Назад.

Так выглядит магнитный пускатель

Магнитные пускатели могут быть двух видов:

  • С нормально замкнутыми контактами. Питание на нагрузку подается постоянно, отключается только когда срабатывает пускатель.
  • С нормально разомкнутыми контактами. Питание подается только в то время, когда пускатель работает.

Более широко применяется второй тип — с нормально разомкнутыми контактами. Ведь в основном, устройства должны работать небольшой промежуток времени, остальное время находится в покое. Потому далее рассмотрим принцип работы магнитного пускателя с нормально разомкнутыми контактами.

Состав и назначение частей

Основа магнитного пускателя — катушка индуктивности и магнитопровод. Магнитопровод разделен на две части. Обе они имеют вид буквы «Ш», установлены в зеркальном отражении. Нижняя часть неподвижная, ее средняя часть является сердечником катушки индуктивности. Параметры магнитного пускателя (максимальное напряжение, с которым он может работать) зависят от катушки индуктивности. Могут быть пускатели малых номиналов — на 12 В, 24 В, 110 В, а наиболее распространенные — на 220 В и на 380 В.

Устройство магнитного пускателя (контактора)

Верхняя часть магнитопровода — подвижная, на ней закреплены подвижные контакты. К ним подключается нагрузка. Неподвижные контакты закреплены на корпусе пускателя, на них подается питающее напряжение. В исходном состоянии контакты разомкнуты (за счет силы упругости пружины, которая удерживает верхнюю часть магнитопровода), питание на нагрузку не подается.

Принцип работы

В нормальном состоянии пружина приподнимает верхнюю часть магнитопровода, контакты разомкнуты. При подачи питания на магнитный пускатель, ток, протекающий через катушку индуктивности, генерирует электромагнитное поле. Сжимая пружину, оно притягивает подвижную часть магнитопровода, контакты замыкаются (на рисунке картинка справа). Через замкнутые контакты питание подается на нагрузку, она находится в работе.

Принцип работы магнитного пускателя (контактора)

При отключении питания магнитного пускателя электромагнитное поле пропадает, пружина выталкивает верхнюю часть магнитопровода вверх, контакты размыкаются, питание на нагрузку не подается.

Подавать через магнитный пускатель можно переменное или постоянное напряжение. Важна только его величина — оно не должно превышать указанный производителем номинал. Для переменного напряжения максимум — 600 В, для постоянного — 440 В.

Схема подключения пускателя с катушкой 220 В

В любой схеме подключения магнитного пускателя есть две цепи. Одна силовая, через которую подается питание. Вторая — сигнальная. При помощи этой цепи происходит управление работой устройства. Рассматривать их надо отдельно — проще понять логику.

В верхней части корпуса магнитного пускателя находятся контакты, к которым подключается питание для этого устройства. Обычное обозначение — A1 и A2. Если катушка на 220 В, сюда подается 220 В. Куда подключить «ноль» и «фазу» — без разницы. Но чаще «фазу» подают на А2, так как тут этот вывод обычно продублирован в нижней части корпуса и довольно часто подключать сюда удобнее.

Подключение питания к магнитному пускателю

Ниже на корпусе расположены несколько контактов, подписанных L1, L2, L3. Сюда подключается источник питания для нагрузки. Тип его не важен (постоянное или переменное), важно чтобы номинал не был выше чем 220 В. Таким образом через пускатель с катушкой на 220 В можно подавать напряжение от аккумулятора, ветрогенератора и т.д. Снимается оно с контактов T1, T2, T3.

Назначение гнезд магнитного пускателя

Самая простая схема

Если к контактам A1 — A2 подключить сетевой шнур (цепь управления), подать на L1 и L3 напряжение 12 В с аккумулятора, а к выводам T1 и T3 — осветительные приборы (силовая цепь), получим схему освещения, работающую от 12 В. Это лишь один из вариантов использования магнитного пускателя.

Но чаще, все-таки эти устройства используют для подачи питания на элетромоторы. В этом случае к L1 и L3 подключается тоже 220 В (и снимаются с T1 и T3 все те же 220 В).

Простейшая схема подключения магнитного пускателя — без кнопок

Недостаток этой схемы очевиден: чтобы выключить и включить питание, придется манипулировать вилкой — вынимать/вставлять ее в розетку. Улучшить ситуацию можно, если перед пускателем установить автомат и включать/выключать подачу питания на цепь правления с его помощью. Второй вариант — в цепь управления добавить кнопки — Пуск и Стоп.

Схема с кнопками «Пуск» и «Стоп»

При подключении через кнопки изменяется только цепь управления. Силовая остается без изменения. Вся схема подключения магнитного пускателя изменяется незначительно.

Кнопки могут быть в отдельном корпусе, могут в одном. Во втором варианте устройство называется «кнопочный пост». Каждая кнопка имеет два входа и два выхода. Кнопка «пуск» имеет нормально разомкнутые контакты (питание подается когда она нажата), «стоп» — нормально замкнутые (при нажатии цепь обрывается).

Схема подключения магнитного пускателя с кнопками «пуск» и «стоп»

Встраиваются кнопки перед магнитным пускателем последовательно. Сначала — «пуск», затем — «стоп». Очевидно, что при такой схеме подключения магнитного пускателя, работать нагрузка будет только пока удерживается кнопка «пуск». Как только ее отпустят, питание пропадет. Собственно, в данном варианте кнопка «стоп» лишняя. Это не тот режим, который требуется в большинстве случаев. Необходимо, чтобы после отпускании пусковой кнопки питание продолжало поступать до тех пор, пока цепь не будет разорвана нажатием кнопки «стоп».

Схема подключения магнитного пускателя с цепью самоподхвата — после замыкания контакта шунтирующего кнопку «Пуск», катушка становиться на самоподпитку

Данный алгоритм работы реализуется с помощью вспомогательных контактов пускателя NO13 и NO14. Они подключаются параллельно с пусковой кнопкой. В этом случае все работает как надо: после отпускания кнопки «пуск» питание идет через вспомогательные контакты. Останавливают работу нагрузки нажав «стоп, схема возвращается в рабочее состояние.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Через стандартный магнитный пускатель, работающий от 220 В, можно подключить трехфазное питание. Такая схема подключения магнитного пускателя используется с асинхронными двигателями. В цепи управления отличий нет. К контактам A1 и A2 подключается одна из фаз и «ноль». Фазный провод идет через кнопки «пуск» и «стоп», также ставится перемычка на NO13 и NO14.

Как подключить асинхронный двигатель на 380 В через контактор с катушкой на 220 В

В силовой цепи отличия незначительные. Все три фазы подаются на L1, L2, L3, к выходам T1, T2, T3 подключается трехфазная нагрузка. В случае с мотором в схему часто добавляют тепловое реле (P), которое не допустит перегрев двигателя. Тепловое реле ставят перед электродвигателем. Оно контролирует температуру двух фаз (ставят на самые нагруженные фазы, третья), размыкая цепь питания при достижении критических температур. Эта схема подключения магнитного пускателя используется часто, опробована много раз. Порядок сборки смотрите в следующем видео.

Схема подключения двигателя с реверсным ходом

Для работы некоторых устройств необходимо вращение двигателя в обе стороны. Смена направления вращения происходит при переброске фаз (надо поменять местами две произвольные фазы). В цепи управления также необходим кнопочный пост (или отдельные кнопки) «стоп», «вперед», «назад».

Схема подключения магнитного пускателя для реверса двигателя собирается на двух одинаковых устройствах. Желательно найти такие, на которых присутствует пара нормальнозамкнутых контактов. Устройства подключаются параллельно — для обратного вращения двигателя, на одном из пускателей фазы меняются местами. Выходы обоих подаются на нагрузку.

Сигнальные цепи несколько сложнее. Кнопка «стоп» — общая. Поле нее стоит кнопка «вперед», которая подключается к одному из пускателей, «назад» — ко второму. Каждая из кнопок должна иметь цепи шунтирования («самоподхвата») — чтобы не было необходимости все время работы держать нажатой одну из кнопок (устанавливаются перемычки на NO13 и NO14 на каждом из пускателей).

Схема подключения двигателя с реверсным ходом с использованием магнитного пускателя

Чтобы избежать возможности подачи питания через обе кнопки, реализуется электрическая блокировка. Для этого после кнопки «вперед» питание подается на нормально замкнутые контакты второго контактора. Аналогично подключается второй контактор — через нормально замкнутые контакты первого.

Если в магнитном пускателе нет нормально замкнутых контактов, их можно добавить, установив приставку. Приставки, при установке, соединяются с основным блоком и их контакты работают одновременно с другими. То есть, пока питание подается через кнопку «вперед», разомкнувшийся нормально замкнутый контакт не даст включить обратный ход. Чтобы поменять направление, нажимают кнопку «стоп», после чего можно включать реверс, нажав «назад». Обратное переключение происходит аналогично — через «стоп».

Любой электрический прибор имеет устройство для его подключения к электросети, будь то чайник, кофемолка или более сложный механизм. Это может быть как простое устройство, так и более сложное. Порой, если оно вышло из строя, необходимо заменить его либо самому собрать для электроприбора.

Способы подключения

В чем может быть сложность подключения? Необходимо обеспечить безопасность пользователей от поражения электрическим током или пожара, сохранность самого прибора от полного или значительного повреждения при его неисправности. По принципам, которые используются в этих устройствах, их можно разделить на:

Электронные аппараты полностью состоят из приборов, в которых не используется механическая, мускульная сила. Для коммутации в них используются транзисторы и тиристоры. Такие устройства полностью автоматизированы. Они отличаются быстродействием, отсутствием шума. В них не возникают искры или электрическая дуга. По размерам они значительно меньше электромеханических. Также они выигрывают по весу и, что немаловажно, по цене.

Тем не менее электромеханические устройства еще широко используются. Пожалуй, единственным преимуществом у них является сравнительная простота. Если их классифицировать по разъединяемому току, то можно выделить три группы:

Через реле

Реле — самые маломощные, работают с малым током и напряжением. В связи с этим могут работать с относительно большими частотами, чем остальные два. Используются в автоматике, телефонии, для маломощных агрегатов. Могут применяться в виде основного коммутатора либо совместно с более мощным, например, пускателем.

Реле имеет металлический или пластиковый корпус и диэлектрическую пластину, из которой выходят вывода для крепления проводов. К пластине крепится катушка и контакты. По числу контактов можно выделить:

Катушка представляет собой намотанный на каркас провод, а в центре ее находится металлический сердечник. Вблизи сердечника располагается металлическая пластина, к которой через изолирующую прокладку крепится один или несколько контактов. В некоторых конструкциях их может быть 20−30. Когда по катушке проходит ток, сердечник намагничивается и притягивает пластину с коммутирующим устройством. Чтобы коммутатор вернулся в свое первоначальное положение после снятия напряжения с обмотки катушки, к нему с противоположной стороны крепится пружина.

Те коммутирующие устройства, которые находятся в движении, называют подвижными. Другие — неподвижные, они не перемещаются во время работы реле. На каждый подвижный контакт приходится один или два неподвижных. В связи с этим их можно разделить на три группы:

Замыкающими называют пару контактов, которые при срабатывании катушки замыкаются. Размыкающие, естественно, будут размыкаться при подаче на катушку напряжения. У переключающих подвижной коммутатор находится между двумя неподвижными, причем при отсутствии магнитного поля подвижные соединены с одним контактом, а при появлении магнитного поля они переключаются на другой.

Обычно на корпусе реле есть схема контактов, где показано, в каком положении при отсутствии напряжения на катушке находятся подвижные. Они пронумерованы, как и выводы на корпусе, что помогает определить, какой вывод соответствует тому или иному контакту. Отдельно показаны выводы катушки, они обозначаются буквами «А» и «Б».

На электрической схеме реле обозначается прямоугольником, а рядом ставится буква К. Если в схеме несколько реле, рядом с буквой ставится цифра — индекс. Сам прямоугольник обозначает обмотку катушки. Чтобы легче было читать схему, контакты могут располагаться отдельно от реле. Для идентификации рядом с ними ставится буква «К» и цифры (индекс), указывающие принадлежность к тому или иному реле. Если в реле несколько пар контактов, в индексе указывается их порядковый номер.

Магнитный пускатель

В быту и производстве широкое применение получил магнитный пускатель. Он используется для подключения потребителей различных мощностей. Корпус, изготовленный из электроизоляционного материала, полностью защищает человека от случайного поражения электрическим током.

Внутри корпуса крепится катушка с сердечником. Она подключается, на это необходимо обратить особое внимание, к напряжению 220 или 380 вольт. Несоблюдение этого требования приведет либо к плохой работе пускателя, либо к выходу из строя катушки. Номинальное напряжение указывается на самой катушке, а она ставится таким образом, что эту надпись можно было увидеть, не разбирая корпуса.

Как и в реле, обмотка с сердечником образует электромагнит, но гораздо большей мощности. Это позволяет увеличить скорость размыкания коммутирующего устройства за счет увеличения упругости пружины, что, в свою очередь, дает возможность подключать значительные токи к цепи.

Из-за размыкания больших токов возникает электрическая дуга. Она опасна тем, что может перекрыть соседние коммутирующие устройства, это приведет к короткому замыканию. Также увеличивается время разрыва цепи. Сами контакты под действием высокой температуры начинают плавиться и выгорать. Повышается сопротивление в них, что может плохо повлиять на работу электроприбора. Хуже всего, пожалуй, когда коммутирующие устройства слипаются, а то и вовсе привариваются, тогда цепь не сможет разомкнуться. Последствия предугадать несложно.

Для борьбы с этим нежелательным явлением существует несколько способов:

  1. Увеличение площади достигается засчет размера самого контакта. По сравнению с реле у пускателя она намного больше. Позднее придумали более оригинальный способ, сделали спаренный контакт. На самом подвижном контакте находится не одна, а две площадки. На неподвижном, соответственно, их тоже две.
  2. Второй метод сводится не только к подбору материала стойкого к температуре. Необходимо обеспечить малое сопротивление в контактах, в противном случае будет происходить потеря энергии. Таким требованиям больше всего соответствует серебро.
  3. В дугогасительных устройствах применяются разные принципы. Самый простой состоит в том, что между контактами в момент их разрыва вставляется изоляционная пластина. Она перерезает дугу. Другой способ заключается в выдувании дуги с помощью магнитного поля. Для этого к контакту подключается катушка, намотанная на ферромагнитный сердечник. К сердечнику крепятся две пластины из того же материала. Пластины же находятся возле контактов. Когда контакты размыкаются, по катушке проходит ток, создавая в сердечнике магнитное поле, а оно, в свою очередь, переходит на пластины. Между пластинами возникает мощное магнитное поле, которое разрывает электрическую дугу. Иногда пластины заменяют решеткой, которая действует аналогично. Но здесь используется еще и другой принцип. Поскольку дуга — это раскаленный ионизированный газ, то пластина или решетка выполняет роль огнетушителя, поскольку забирает тепло.
  4. Шунтирование контактов. При разрыве цепи, в которую включена индуктивность, а это катушки, двигатели, трансформаторы, ток не может сразу остановиться, поэтому возникает дуга. Чтобы предотвратить ее, необходимо ток направить по другому направлению. Это можно сделать двумя способами через конденсатор и резистор.

При использовании конденсатора необходимо подобрать емкость такой величины, чтобы она соответствовала индуктивности нагрузки. При малой емкости между контактами будут появляться искры, а при большой — сдвиг синуса по временной шкале, в худшем случае — срезание верхушек. Простым языком, ток будет выпрямляться, а это скажется на работе электроприборов.

Резистор устраняет эту проблему, но добавляет свою. При малом сопротивлении при разомкнутых контактах через пускатель будет идти ток. Это приведет к потере энергии и может представлять опасность для людей, находящихся, например, в сырых помещениях. При большом сопротивлении опять может возникнуть дуга.

Использование контактора

Контактор похож на магнитный пускатель, но работает со значительно большими токами. Обязательно имеет дугогасительную камеру, отличается быстрым срабатыванием. В отличие от магнитного пускателя не имеет защиты по току. В некоторых устройствах имеется не один, а два электромагнита. Для замыкания контактов используется основной, мощный, а для удержания применяется меньшей мощности.

Особенности подключения трехфазного двигателя

В домашних условиях иногда возникает необходимость подключения трехфазного двигателя через магнитный пускатель. На что необходимо обратить внимание? В магнитных пускателях предусмотрена защита по току. Она представляет собой биметаллическую пластину, по которой проходит ток. При нагревании пластина меняет форму, это используется для замыкания или размыкания контактов управления.

На корпусе пускателя имеются внешние контакты, которые также используются в цепи управления. Их обычно две пары, одни замыкающие, другие — размыкающие.

Основные контакты пускателя непосредственно подключают двигатель к трехфазной сети. Конструктивно две фазы уже проходят через биметаллические пластины, которые, в случае необходимости, разрывают цепь питания катушки пускателя.

Второй конец катушки идет по двум направлениям:

  • к нормально разомкнутым контактам на корпусе;
  • к кнопке «пуск».

После чего цепь вновь объединяется и идет к кнопке «Откл». После чего подсоединяется к фазе или нулю, в зависимости от типа катушки.

Если необходимо чтобы двигатель работал в двух направлениях, ставят второй пускатель по той же схеме и со своими кнопками управления. Разница будет заключаться в фазировке. Это можно будет сделать опытным путем. Двигатель пускается через один пускатель, отключается, пускается через другой. Если вращение происходит в одну и ту же сторону, две любые фазы на пускателе меняют местами.

Возможные неисправности

В процессе работы из-за износа или внешних факторов могут возникнуть неисправности:

  1. При включении пускателя контакты начинают дребезжать или не включаются.
  2. При отключении — залипают, между контактами появляются искры.

Что может быть причиной в первом случае? При замене катушки выбрали номинал большего значения. Стояла на 220 в, поставили на 380. Если не меняли, в катушке появились короткозамкнутые витки, и магнитное поле уменьшилось. Необходимо заменить катушку. При полном разборе пускателя поставили более мощную пружину на контактах.

Во втором случае либо контакты подпорчены, либо слишком большая нагрузка. Необходимо сверить ток потребителя и номинал пускателя. Если соответствуют — поменять контакты.

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подсоединение трехфазного двигателя в однофазную сеть. Схемы подключения электродвигателя к электропитанию. Конденсаторный способ включения

При эксплуатации или изготовлении того или иного оборудования нередко возникает необходимость подключения асинхронного трехфазного двигателя к обычной сети 220 В. Сделать это вполне реально и даже не особо сложно, главное — найти выход из следующих возможных ситуаций, если нет подходящего однофазного мотора, а трехфазный лежит без дела, а также если имеется трехфазное оборудование, но в мастерской лишь однофазная сеть.

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»: схема.

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Сразу возникает несколько вопросов:

  1. Насколько такая схема эффективна?
  2. Как обеспечить реверс двигателя?
  3. Какие емкости должны иметь конденсаторы?

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.

Емкости фазосдвигающего и пускового конденсаторов

Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:

  • С1 = 2800/(I/U) — для включения по схеме «Звезда»;
  • С1 = 4800/(I/U) — для включения по схеме «Треугольник».

Здесь:

  • С1 — емкость фазосдвигающего конденсатора, мкФ;
  • I — номинальный ток одной обмотки двигателя, А;
  • U — напряжение однофазной сети, В.

Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства. Для расчета воспользуемся формулой:

I = P/1,73*U*n*cosф, где:

  • I — потребляемый ток, А;
  • U — напряжение сети, В;
  • n — КПД;
  • cosф — коэффициент мощности.

Символом * обозначен знак умножения.

Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.

Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.

Эффективность работы

К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%. При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — т. е. всего 8,325% каждая. Произведем несложный подсчет и рассчитаем общую мощность:

33,3 + 8,325 + 8,325 = 49.95%.

Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.

Способ повысить развиваемую мотором мощность

Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.

Асинхронный двигатель — подключение на 220 В по улучшенной схеме

Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:

33,3 + 33,3 + 8,325 = 74.92%.

Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.

И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.

Из всех видов электропривода наибольшее распространение получили . Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема - большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.

Что такое звезда и треугольник у электродвигателя

Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:

  • звезда;
  • треугольник.

Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:

Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.

В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода - то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.

Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного - 6 шпилек.

К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.

Таким образом, если вы установите перемычки на нижние контакты клеммника в линию - получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу - соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения - не нужно гнуть проволочки.

Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.

Подключение к трёхфазной сети

Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.

Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:

  • 380/220;
  • 660/380;
  • 220/127.

Причем большее напряжение для схемы подключения звездой, а меньшее - для треугольника.

Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.

Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: .

Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.

Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 - подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 - здесь нужен либо понижающий трансформатор, либо однофазный с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.

Самый худший вариант - это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника - переделывать в схему звезды.

С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В - подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».

Электродвигатели почти всегда подключаются через (или ). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.

Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» - двигатель остановится. QF-1 – это , который обесточивает и силовую цепь и цепь управления.

Если вам нужно чтобы вы нажали кнопку и вал начал вращаться - вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.

Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент - блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.

Принцип работы схемы:

Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.

На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).

Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».

После того как вы отпустите кнопку «ПУСК» - двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.

Это и называется «самоподхват».

Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.

Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) - используйте схему подключения трехфазного двигателя с реверсом.

Кстати эту схему часто называют «реверсивная схема пускателя».

Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 - то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло в силовой цепи.

Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 - нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».

И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.

Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.

Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.

В остальном работа схемы аналогична предыдущей.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т. е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.

Подключение к однофазной сети

Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.

Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через , можно сдвинуть фазу напряжения до -90˚ а с помощью на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: .

Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.

Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.

На схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.

Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск - зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.

Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) - нужно подключить и пусковой конденсатор.

Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши - «ПУСК» и «СТОП» (как на автоматах АП-50).

Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.

Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:

Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.

Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:

  1. Номинальное напряжение 3х220В - вам повезло, и используйте приведенные выше схемы.
  2. Номинальное напряжение 3х380В - вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!

Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема - потери мощности. Они могут достигать 40-50%.

Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.

Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Материалы

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное - знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов - ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя - КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы - симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй - сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность - применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток - дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 - начала обмотки, а С4-С6 - ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов - пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты - МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй - с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному - провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется - пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому - обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

5 / 5 ( 1 vote )

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что . Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет . И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно , то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус – тот же, что и в предыдущей схеме, нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск ” и “Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2 ).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью . Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. .
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему . Практическое применение устройств плавного пуска – .

    Старый специфический способ подключения двухскоростных двигателей описан в статье . Ключевые слова – Раритет, Ретро, СССР.

    На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

    1.1. Выбор трехфазного двигателя для подключения в однофазную сеть .

    Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50...60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

    Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

    1.2. Расчет параметров и элементов электродвигателя.

    Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

    После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку "Разгон". После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

    Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в "треугольник" определяется по формуле:

    А в случае соединения обмоток двигателя в "звезду" определяется по формуле:

    Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

    Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

    Общая емкость соединенных конденсаторов составит (С1+С2)/2.

    На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

    Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.

    Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20...30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора С р следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

    Емкость пускового конденсатора С п можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой - 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

    1.3. Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В .

    Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

    При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.

    1.3.1. Детали.

    В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 - спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 - проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

    Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)

    Рис. 4 Внешний вид пускового устройства и чертеж панели поз.7.

    На верхней панели корпуса расположены кнопки "Пуск" и "Стоп" - сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

    Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

    При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 - пусковой конденсатор С п. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку "Пуск" держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку "Стоп". В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

    2. Использование электролитических конденсаторов в схемах запуска электродвигателей.

    При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

    Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

    2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

    Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

    В приведенной схеме, SA1 - переключатель направления вращения двигателя, SB1 - кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 - во время работы.

    Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

    Следует обратить ВНИМАНИЕ на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

    3. Включение мощных трехфазных двигателей в однофазную сеть.

    Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности эликтрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5...2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например, с мощностью 3...4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой» и в клеммной коробке содержится всего 3 вывода. Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

    3.1. Доработка трехфазного двигателя.

    Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

    Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

    Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.

    3.1.1. Детали.

    В схеме коммутации обмоток электродвигателя, в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например, переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

    Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа» и продолжают дальнейшую работу.

    Для того, чтобы улучшить пусковые характеристики двигателей кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз. Обо всем этом написано в статье Устройства запуска трехфазного электродвигателя с малыми потерями мощности

    При написании статьи использовалась часть материалов из книги Пестрикова В.М. "Домашний электрик и не только..."

    Всего хорошего, пишите to © 2005

Простая защита электродвигателя.


Защита трехфазного электродвигателя.

 

Обычная схема подключения трёхфазного асинхронного электродвигателя состоит из следующих элементов:

•   автоматический выключатель

•   электродвигатель

•   магнитный пускатель

•   тепловое реле токовой защиты.

 

Автоматические выключатели (автоматы) применяемые для защиты двигателей имеют расцепители тепловые и максимального тока, по принципу работы соответствующие максимальным и тепловым реле.

Следует учесть, что не все автоматы имеют такие расцепители и поэтому не все они могут применяться для защиты двигателя от перегрузки.

В схеме защиты автоматы устанавливаются перед пускателем для защиты проводов и аппаратов от тока короткого замыкания, а двигателя от тока короткого замыкания и перегрузки.

Тепловое реле реагирует на превышения тока потребляемого электродвигателем и вызывает размыкание контактов реле, что приводит к обесточиванию катушки и отключению электродвигателя.

 

Типовые схемы включения трёхфазного электродвигателя

Схемы подключения электродвигателей отличаются магнитными пускателями, в которых используются катушки на разные напряжения.

В первом случае используется магнитный пускатель с рабочим напряжением катушки – 220V; для питания используется любая фаза и ноль - N.

Во втором случае электродвигатель подключается через магнитный пускатель с катушкой на 380V, для питания используются две фазы, например B и С.

 


Обозначения на схеме:

SA1  - выключатель автоматический (3х-полюсный автомат),

TP1  - тепловое реле,

МП1 - магнитный пускатель,

БК    - блок-контакт (нормально разомкнутый),

Start - кнопка "Пуск",

Stop - кнопка "Стоп".

 

Наиболее частые причины повреждения электродвигателя вследствие тепловой перегрузки является пропадание одной из питающих фаз, что приводит к ненормальному режиму работы и вызывает увеличение тока в статорных обмотках, в результате чего происходит перегрев и разрушение изоляции обмоток статора, приводящий к замыканию обмоток и полной неработоспособности электродвигателя.
От небольших и устойчивых перегрузок двигатели защищают автоматами и тепловыми реле, но вследствие своей тепловой инерции они не сразу реагирует на резкие перегрузки, а только через несколько минут и за это время статорная обмотка может уже недопустимо перегреться.
Поэтому в случае, когда возможны ситуации с непреднамеренным отключением одной из фаз питающей сети, и необходимо предотвратить выход из строя электродвигателя, целесообразно заменить стандартную схему подключения электродвигателя на одну из нижеследующих.

 

Схема №1.

В обычную схему запуска трехфазного электродвигателя помимо автомата и теплового (токового) реле, вводится еще одно дополнительное реле Р с нормально разомкнутыми контактами P1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Start» через обмотку магнитного пускателя МП проходит ток и он своими контактами блокирует кнопку «Start» и подключает электродвигатель к сети.



При пропадании в сети фазы A или C реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который соответственно отключит от сети электродвигатель.

При пропадании в сети фазы В обесточивается непосредственно обмотка магнитного пускателя.

 

Схема №2.

Схема аналогична схеме рассмотренной в первом способе, но имеет отличие в том, что дополнительное реле Р при выключенном двигателе обесточено.

 


При нажатии кнопки «Start» включается реле Р1 и контактами Р1 замыкает цепь питания катушки магнитного пускателя МП, который срабатывает и своими контактами блокирует цепь управления и включает электродвигатель. При обрыве линейного провода B отключается реле Р, а при обрыве проводов А или С магнитный пускатель МП, в обоих случаях электродвигатель отключается от сети контактами магнитного пускателя МП.

 

Схема №3.

Следующее устройство работает на принципе создания искусственной нулевой точки образованной тремя одинаковыми конденсаторами С1—С3. Между этой точкой и нулевым проводом N включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0' равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0' появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя — двигатель отключается.

 

 


Реле типа МКУ, на рабочее напряжение 36V.

Конденсаторы С1—С3 — бумажные, емкостью 4—10 мкФ, на рабочее напряжение не ниже удвоенного фазного.

По сравнению с предыдущими схемами это устройство обеспечивает более высокую чувствительность, вследствие которой двигатель иногда может отключиться в результате нарушения электрической симметрии, вызываемой подключением посторонних однофазных потребителей, питающихся от этой сети.

Для снижения чувствительности нужно применить конденсаторы меньшей емкости.

 

Схема №4.

Принцип работы устройства также основан на том, что при обрыве одной фазы образуется напряжение смещения нейтрали, которое можно использовать для защиты двигателя.

Для реализации указанного способа создается искусственная нейтраль с помощью трех конденсаторов С1-СЗ. При наличии всех трех фаз электросети А, В и С напряжение между искусственной нейтралью и нулевым проводом N практически равно нулю, а при обрыве любой фазы возникает напряжение смещения.

Это напряжение выпрямляется с помощью диодного моста VD1, в диагональ которого включено электромагнитное реле P. Конденсатор С4 блокирует срабатывание реле в пусковом режиме. Нормально замкнутые контакты P1 при срабатывании реле размыкаются и разрывают цепь питания катушки магнитного пускателя МП, в результате электродвигатель М отключается от сети.



В устройстве использовано реле постоянного тока типа РП21, рассчитанное на рабочее напряжение 24V с сопротивлением обмотки 200 Ом.

Контактная система реле допускает ток до 5А.

В случае если напряжения смещения окажется недостаточно для срабатывания реле, необходимо увеличить емкости конденсаторов, образующих искусственную нейтраль. При срабатывании реле в режиме пуска можно увеличить емкость конденсатора С4 или отрегулировать контактную систему магнитного пускателя, добиваясь одновременного замыкания его силовых контактов.


Учитывая, что все эти устройства защиты имеют один общий недостаток, заключающийся в том, что они реагируют на обрыв фазы только до аппарата защиты и не реагируют на обрывы фаз, происходящие за пределами устройства, данные устройства необходимо монтировать в непосредственной близости от электродвигателя.


Если обрыв произойдет на отрезке между устройством и обмотками электродвигателя, или в самом электродвигателе защита работать не будет.


Источник:

В. Г. Бастанов «300 Практических советов» стр. 17-19

Как подключить пускатель на 380

Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Краткое содержимое статьи:

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

Как работает пускатель

Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

Сеть на 220 вольт

При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

Кнопки «пуск» и «стоп»

При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

Трехфазная сеть на 380 В

При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

Как подключить магнитный пускатель — инструкция со схемами

Обзор вариантов

В ручном режиме включение производят с кнопочного поста. Кнопка пуск открытый контакт на замыкание, а стоп работает на размыкание. Схема подключения магнитного пускателя с самоподхватом выглядит следующим образом:
Рассмотрим работу цепей включения и выключения магнитного контактора. Кнопочный пост из двух кнопок, при нажатии ПУСК, фаза поступает из сети через контакты СТОП, цепь собирается, пускатель втягивается и замыкает контакты, в том числе и дополнительный NO, который стоит параллельно кнопке ПУСК. Теперь если ее отпустить магнитный пускатель продолжает работать, пока не пропадет напряжение или сработает тепловое реле Р защиты двигателя. При нажатии СТОП цепь разрывается, контактор возвращается в исходное положение и размыкаются контакты. В зависимости от назначения, питание катушки может быть 220в (фаза и ноль) или 380в (две фазы), принцип работы цепей управления не меняется. Включение трехфазного электродвигателя с тепловым реле через кнопочный пост выглядит следующим образом:

В итоге это выглядит примерно так, на картинке:

Если вы хотите подключить трехфазный двигатель через магнитный пускатель с катушкой на 220 вольт, выполнять коммутацию нужно по следующей монтажной схеме:


С помощью трех кнопок на пульте управления можно организовать реверсивное вращение электродвигателя.

Если внимательно присмотреться, то можно увидеть что она состоит из двух элементов предыдущей схемы. При нажатии ПУСК контактор КМ1 включается, замыкая контакты NO KM1, становясь на самоподхват, и размыкая NC KM1 исключая возможность включения контактора КМ2. При нажатии кнопки СТОП происходит разборки цепи. Еще одним интересным элементом трехфазной реверсивной схемы подключения является силовая часть.

На контакторе КМ2 происходит замена фаз L1 на L3, а L3 на L1, таким образом меняется направление вращения электродвигателя. В принципе данная схемотехника управления трехфазной и однофазной нагрузкой с головой покрывает домашние нужды, и проста для понимания. Можно также подключить дополнительные элементы автоматики, защиты, ограничители. Рассматривать их все нужно отдельно для каждого конкретного устройства.

С помощью выше приведенной схемы подключения магнитного пускателя можно организовать открытие ворот гаража, введя в цепь дополнительно концевые выключатели, задействовав контакты NC последовательно с NC KM1 и NC KM2, ограничив ход механизма.

Инструкции по подсоединению

Самый простой вариант подключения — через кнопку. В этом случае действовать нужно так, как показывается на видео:

На примере с двигателем выглядит это так:

Подключить по реверсивной схеме двигатель можно следующим образом:

Вот по такому принципу можно самостоятельно подключить устройство к сети 220 и 380 вольт. Надеемся, наша инструкция по подключению магнитного пускателя со схемами и подробными видео примерами была для вас понятной и полезной!

Будет интересно прочитать:

Принцип работы схемы подключения электромагнитного пускателя 380В

В современной электроэнергетике широкое распространение получили электромагнитные пускатели.

Это устройства, предназначенные для многократного включения и отключения электротехнических устройств.

Задача рассматриваемого устройства состоит в замыкании и размыкании контактов электрических цепей разной мощности, при напряжении до 440 В постоянного и 600 В переменного тока.

В своей конструкции имеют:

  • определённый набор рабочих контактов, предназначенных для подачи напряжения на силовую установку;
  • вспомогательные контакты — предназначенные для цепей управления и сигнальных цепей.

Основные различия между пускателями и контакторами

По своему конструктивному решению контакторы похожи на пускатели. Они выполняют одну и ту же задачу, служат однотипным целям. Чтобы не запутаться в этом вопросе, предлагаем рассмотреть различия между этими устройствами.

К основной отличительной черте можно отнести наличие у контакторов мощной дугогасительной камеры. Вследствие чего, они используются в цепях, где присутствуют большие токи, и имеют гораздо больший вес по отношению к электромагнитному пускателю.

Соответственно, пускатели, не имея дугогасительных камер, предназначены в основном для работы, где протекают токи небольшой мощности. Их рабочий диапазон — до 10 ампер.

Ещё одной конструктивной особенностью электромагнитных пускателей является наличие пластикового корпуса, где контактные площадки выведены наружу. В отличие от них, большинство контакторов производятся без корпуса. Для изоляции от пыли, дождя, а также случайного прикосновения к токоведущим частям устанавливаются в защитных боксах или коробах.

К ещё одному отличию можно отнести назначение электромагнитного пускателя 380 В. В его задачу входит коммутация цепей трёхфазных двигателей. Три пары силовых и одна пара вспомогательных контактов являются неотъемлемой частью этого устройства. Первые предназначены для подключения 3-х фаз, а вторая служит для подачи питания двигателя, после отпуска кнопки «пуск». Подобный алгоритм работы довольно распространён и подходит для большого количества устройств. В связи с чем через данные электромагнитные устройства подключают разнообразные технические агрегаты и приборы.

Выделим основные отличия:

  • компактность;
  • конструктивные особенности;
  • назначение.

Из-за схожести функционала и начинки некоторые компании в прайсах иногда называют электромагнитные пускатели — «малогабаритными контакторами».

Устройство и принцип работы

Основу пускателя составляют катушка индуктивности и магнитопровод, состоящий из подвижной и неподвижной частей. Неподвижная часть является нижней и закреплена на корпусе, верхняя подпружинена и способна свободно двигаться.

В нижней части магнитопровода монтируется катушка, и в прямой зависимости от её намотки изменяется номинал контактора. Выпускаются катушки от 12 до 380 вольт.

Что касается верхней части магнитопровода, то здесь присутствуют подвижные и неподвижные группы контакторов.

Когда питание отсутствует, пружины отжимают часть магнитопровода, находящуюся вверху. В этом случае контакты находятся в состоянии ожидания или исходном состоянии. При подаче напряжения в катушке образуется электромагнитное поле, под действием которого верхняя часть сердечника притягивается. Вследствие этого контакты меняют своё положение.

При снятии напряжения система возвращается к первоначальному состоянию. Контакты замыкаются при подаче напряжения и размыкаются при его снятии. Электромагнитный пускатель работает как на постоянном, так и на переменном токах, главное, чтобы параметры были не больше тех, что указаны заводом производителем.

Схема подключения электродвигателя 380

Речь пойдёт о подключении асинхронного электродвигателя при соединении обмоток звездой или треугольником в сети 380 В.

Для нормальной работы электродвигателя нулевой проводник (N) не нужен, но защитный (PE) обязателен: он служит для защиты потребителя от поражения электрическим током при пробое одной из фаз на корпус.

Питание катушки пускателя осуществляется через фазы L1 и L2. L1 присоединена напрямую, а L2 через кнопку «стоп» — 2, «пуск» — 6, кнопку теплового реле — 4, которые соединены последовательно между собой.

При нажатии кнопки «пуск» — 6, через кнопку 4 теплового реле, напряжение L2 поступает на катушку 5. За этим следует втягивание сердечника и замыкание контактной группы 7 на нагрузку электродвигателя М, вследствие чего подаётся электрический ток, соответствующий напряжению 380 В.

При выключении кнопки «пуск» эта цепь не прерывается, и ток проходит через подвижный блок — 3, который замыкается при втягивании сердечника. В случае аварии срабатывается тепловое реле 1, контакт 4 разрывается и отключается катушка. Возвратные пружины возвращают сердечник в первоначальное положение. С аварийного участка снимается напряжение при размыкании контактной группы.

{SOURCE}

Схема подключения магнитного пускателя

Здравствуйте уважаемые посетители сайта electromontaj-st.ru. В сегодняшней статье рассмотрим схему подключения магнитного пускателя, обеспечивающую реверс вращения электрического двигателя.

Данная схема применяется в основном там, где необходимо вращение электродвигателя в разные стороны, например в лифтах, подъёмных кранах и т.п.

Данная схема только на первый взгляд выглядит сложнее схемы с одним пускателем, но это только первое впечатление. В данной статье будет пошагово рассмотрена работа схемы.

Прежде всего, давайте подробно рассмотрим представленную реверсивную схему подключения электродвигателя с управляющими катушками на 220В.

  • Питание электродвигателя производится от фаз А, В, С, питание цепи управления производится от вазы С.
  • Защита электродвигателя и цепи управления осуществляется трёх полюсным автоматическим выключателем.
  • Защита от перегрузок производится тепловым реле Р.
  • Изменения направления вращения трёхфазного электродвигателя производится сменой чередования фаз для этого служат магнитные пускатели КМ1 и КМ2.
  • Вращение электродвигателя в одном направлении обеспечивает магнитный пускатель КМ1, обеспечивая чередование фаз А, В, С.
  • Изменение направления вращения обеспечивает магнитный пускатель КМ2 с чередованием фаз С, В, А.
  • Управляющие катушки магнитных пускателей одной стороной подключены к нулевому рабочему проводнику N, а другой стороной через кнопочный пост к фазе C.

Управление вращением производится через кнопочный пост, состоящий из трёх кнопок:
1. Кнопка «Вперёд» имеет нормально разомкнутое состояние
2. Кнопка «Назад» имеет нормально разомкнутое состояние
3. Кнопка «Стоп» имеет нормально замкнутое состояние

Кнопки «Вперёд» и «Назад» дополнительно шунтируются через нормально разомкнутые контакты пускателей КМ1 и КМ2. Также кнопки питания «Вперёд» и «Назад» запитаны через нормально замкнутые контакты КМ1 и КМ2, назначение этих контактов предотвращать ошибочное включение кнопок «Вперёд» и «Назад» минуя кнопку «Стоп». То есть запуск электродвигателя в любую сторону возможен только через кнопку «Стоп» т.е. остановку.
Давайте теперь рассмотрим работу данной схемы

Переведём трёхполюсной автомат в положение включено
Запустим электродвигатель ВПЕРЕД
При нажатии кнопки «Вперёд» подаётся напряжение на обмотку магнитного пускателя КМ1, якорь магнитной катушки втягивается, замыкая силовые контакты КМ1 и нормально открытый контакт КМ1, шунтирующий кнопку «Вперёд». Именно благодаря этому контакту после отпускания кнопки «Вперёд» обмотка пускателя остаётся запитана.
Одновременно с этим нормально замкнутый контакт КМ1 обесточивает кнопку «Назад», тем самым делая невозможным запуск двигателя в обратном направлении.
Питание на двигатель подаётся через магнитный пускатель КМ1 с чередованием фаз А, В, С, электродвигатель вращается вперёд.

Остановка двигателя при вращении «Вперёд»
Остановка двигателя, а так же запуска двигателя в другую сторону производится через нажатие кнопки «Стоп». Так как кнопка стоп является нормально замкнутой, нажатие на неё размыкает контакты, тем самым обесточивая цепи управления. Управляющие нормально замкнутые и нормально открытые, а также силовые контакты магнитного пускателя под действием пружин возвращаются в исходное положение, обесточивая двигатель. Двигатель останавливается. Схема возвращается в исходное положение.

Реверс электродвигателя
Запустим электродвигатель НАЗАД
При нажатии кнопки «Вперёд» подаётся напряжение на обмотку магнитного пускателя КМ2, якорь магнитной катушки втягивается, замыкая силовые контакты КМ2и нормально открытый контакт КМ2, шунтирующий кнопку «Вперёд». Именно благодаря этому контакту после отпускания кнопки «Вперёд» обмотка пускателя остаётся запитана.
Одновременно с этим нормально замкнутый контакт КМ2 обесточивает кнопку «Вперёд», тем самым делая невозможным запуск двигателя в обратном направлении.
Питание на двигатель подаётся через магнитный пускатель КМ2 с чередованием фаз С, В, А, электродвигатель вращается вперёд.

Остановка двигателя при вращении «Назад»
Остановка двигателя, а так же запуска двигателя в другую сторону производится через нажатие кнопки «Стоп». Так как кнопка стоп является нормально замкнутой, нажатие на неё размыкает контакты, тем самым обесточивая цепи управления. Управляющие нормально замкнутые и нормально открытые, а также силовые контакты магнитного пускателя под действием пружин возвращаются в исходное положение, обесточивая двигатель. Двигатель останавливается. Схема возвращается в исходное положение.

Материалы, близкие по теме:

Схема подключения трехфазного электродвигателя на 220 (видео)

Трёхфазный двигатель незаменим для использования мощных устройств, работающих от сети 220. Устройство на три фазы в разы превосходит однофазный механизм. Правильная схема подключения трехфазного электродвигателя на 220, а также пусковые приборы, обмотки, необходимы для обеспечения высокой эффективности эксплуатации.

Метод включения электродвигателя на 220 вольт зависит от вида электропусковой системы. Типы соединений бывают следующие:

Использование магнитных пускателей

Довольно популярная модель присоединения электромоторов.

Подсоединение АД через магнитный контактор к сети 220

L1 –первый провод, L2 – вторая провод, L3 – третья провод, КМ – магнитный пускатель

Рассмотрим схему включения электродвигателя через магнитный контактор 220 подробней.

Три провода под напряжением проходят через пускатель. Для управления включением в сеть есть кнопка Пуск. А для выключения используется кнопка Стоп. Кнопки можно вынести на пульт через провода.

Питание 220 цепи проходит с первого провода, то есть сL1 на нормально замкнутую фазу Стоп.

Бывают ситуации, когда пускатель не действует из-за подгорания контактов. Если включить Пуск, то произойдёт замыкание цепи питания катушки. Контакты пускателя замыкают, а на двигатель поступают три фазы. Подобные чертежи могут иметь ещё один добавочный контакт. Он называется блокировочный или контакт-самоподхвата.

Активируя пускатель кнопкой включения блокировочный контакт замыкается. А если он замкнут, то цепь питания катушки пускателя будет замкнутой, даже отжав кнопку пуска. Эксплуатация прибора будет происходить до выключения кнопки Стоп.

Пуск через двухполюсник

Под данным термином имеется в виду объем конденсатора, который зависит от вида подключения обмоток двигателя. При соединении треугольником ёмкость равняется 70 умножить на номинальную мощность мотора.

Соединение звездой

Подключение электродвигателя по схеме «звезда»

Сп  пусковой конденсатор, Ср рабочий конденсатор, 1, 2, 3 начало обмоток, 4, 5, 6 концы обмоток

Выбор неправильного объёма в большую сторону приведет к тому, что мотор будет нагреваться. А недостаточная ёмкость снизит мощность. Поэтому подбирать ёмкость рекомендуется при включенном в сеть 220 конденсаторе, воспользовавшись щипцами. Прибор должен быть в обычном режиме.

Для определения пусковой ёмкости необходимо создать момент запуска. Объём впуска определяется суммой рабочего и пускового конденсатора.

При запуске без нагрузки, ёмкости пусковые одинаковы с рабочими. В таком случае в электропусковом конденсаторе необходимости нет. Схема становится проще и дешевле.

При нагрузке на впуске необходима дополнительная ёмкость. Большее отключение ёмкости увеличит момент запуска. Дальнейшее увеличение уменьшает момент. Следовательно, электропусковая ёмкость превосходит рабочую в 2—3 раза. Общая продолжительность действия конденсатора несколько секунд.

Подключение через УЗО

УЗО является защитным устройством, которое отключает двигатель от сети 220.

УЗО имеет три фазы и четыре полюса. Во время соединения могут использоваться все полюсы, а могут подсоединяться три полюса, как показано на картинке выше.

Схема может быть двух вариантов.

Треугольник

Данная схема позволяет контролировать утечки тока на корпус. При подключении треугольником идут в ход фазные провода, а нейтральная клемма не подсоединены к обмоткам. При нормальной работе двигателя, УЗО не работает, так как оно измеряет векторную разность токов.

На схеме изображено подсоединение мотора способом звезда. Особенность подключения через УЗО— это количество проводов, которые входят и отходят. УЗО работает на 4 полюса, а нейтральная клемма присоединяется к отдельной клемме, расположенной со стороны рычага.

Ток пусковой нагрузки двигателя превышает его рабочую нагрузку в 4—5 раз, пока ротор не начинает вращаться. Тогда ток уменьшается. Для того чтобы избежать замыкания и обеспечить способность мотора запускаться, необходимо использовать УЗО.

Подключение звездой

Данный вид включения (2а) обеспечивает плавный пуск.

Начала обмоток статора соединить в одной точке, а концы обмоток соединяются с тремя фазами электропитания.

Пуск треугольником

Для достижения полной мощности двигателя необходимо подключение треугольником (2б).

Обмотки статора подсоединяется между собой. Начало следующей обмотки соединяется с концом предыдущей. К местам их соединения проводятся трехфазное питание 220.

На рисунке выше изображена схема включения «звезда треугольник». Редко используется для пуска двигателя.

Сначала применяется звезда на впуске, а в рабочем режиме треугольник. Таким образом, достигается максимальная мощность, но сложным исполнением.

Для функционирования необходимо 3 пускателя. На первый подключается питание, которое соединяется с концом обмоток статора. Начало подсоединяется с другими двумя контакторами. Со второго устройства начало обмотки соединяется с другими фазами в треугольник. При запуске третьего устройства образуется звезда, закорачивая все провода.

Важно! Нельзя включать одновременно 2, 3-й пускатель, иначе может произойти аварийное отключение автоматической защиты. Необходимо сделать блокировку между ними.

Работает схема так: сначала пускатель подает сигнал на 3-йконтактор, при этом механизм начинает работать.Далее отключается третий контактор, а второй включается. Далее применяется треугольник. Отключает двигатель первый пускатель.

Трёхфазный двигатель может работать от сети 220 вольт по чертежу звезда треугольник. Но если розетка обычная бытовая, то необходим частотный преобразователь.

Внимание! Используя любой способ подключения, будьте предельно внимательны, так как неправильные соединения могут привести к сгоранию устройства.

Корректно подобранная схема соединения трехфазного электродвигателя на 220 обеспечит плавность пуска, стабильность и работы.

Как подключить стартер двигателя

Страница технической поддержки на веб-сайте AutomationDirect полна ценной информации и доступна круглосуточно и без выходных. Следующие ссылки приведены в разделе «Технические замечания и рекомендации по применению».

Пускатель двигателя - это комбинация устройств, используемых для запуска, запуска и остановки асинхронного двигателя переменного тока на основе команд от оператора или контроллера. В Северной Америке асинхронный двигатель обычно работает от 230 В или 460 В, трехфазный, 60 Гц и имеет управляющее напряжение 115 В переменного тока или 24 В постоянного тока.Некоторые другие комбинации возможны в Северной Америке и других странах, и их легко получить из методов, показанных в этом документе.

Стартер двигателя

Пускатель двигателя должен иметь как минимум два компонента для работы: контактор для размыкания или замыкания потока энергии к двигателю и реле перегрузки для защиты двигателя от тепловой перегрузки. Могут потребоваться другие устройства для отключения и защиты от короткого замыкания, обычно автоматический выключатель или предохранители. Защита от короткого замыкания не будет показана в следующих примерах.

Контактор

Контактор - это 3-полюсный электромеханический переключатель, контакты которого замыкаются подачей напряжения на его катушку. Когда катушка находится под напряжением, контакты замкнуты и остаются замкнутыми, пока катушка не будет обесточена. Контактор специально разработан для управления двигателем, но может использоваться и для других целей, например, для резистивных и осветительных нагрузок. Поскольку двигатель представляет собой индуктивную нагрузку, разработчик должен учитывать как мощность, так и номинальный ток при определении размера контактора.Это необходимо для того, чтобы контактор правильно переключал нагрузку.

Реле перегрузки

Реле перегрузки - это устройство, которое имеет три датчика тока и защищает двигатель от перегрузки по току. Каждая фаза, идущая от контактора к двигателю, проходит через эти токовые чувствительные элементы. Реле перегрузки имеет выбираемую настройку тока в зависимости от номинального тока двигателя при полной нагрузке. Если ток перегрузки превышает уставку реле в течение достаточного времени, набор контактов размыкается, чтобы защитить двигатель от повреждения.

В этой статье показано, как подключать различные двигатели с помощью контакторов Fuji, продаваемых AutomationDirect. Контакторы других марок могут быть подключены таким же или подобным образом. Проконсультируйтесь со схемами подключения производителя для контакторов других марок.

Существует четыре основных комбинации проводки:
a) Полновольтные нереверсивные трехфазные двигатели.
b) Полновольтные реверсивные трехфазные двигатели
c) Однофазные двигатели
d) Трехфазные двигатели с открытым переходом звезда-треугольник

Вы должны предоставить выключатель, провод надлежащего размера, корпуса, клеммные колодки и любые другие устройства, необходимые для замыкания вашей цепи.

ВНИМАНИЕ! Следуйте инструкциям, прилагаемым к каждому конкретному устройству.
Несоблюдение этого правила может привести к поражению электрическим током или повреждению.


Будут использоваться следующие компоненты:


Полновольтные нереверсивные трехфазные двигатели

На следующей схеме показано управление трехфазным нереверсивным двигателем с управляющим напряжением 24 В постоянного тока и ручным управлением. Мы будем использовать контактор, блок вспомогательных контактов, реле перегрузки, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем.Цепями пуска и останова также можно управлять с помощью входов и выходов ПЛК.


Полновольтные реверсивные трехфазные двигатели

Эта диаграмма предназначена для управления трехфазным реверсивным двигателем с управляющим напряжением 24 В постоянного тока. В нем используются два контактора, два вспомогательных контактных блока, реле перегрузки, механическая блокировка, две нормально разомкнутые кнопки пуска, нормально замкнутые кнопки останова и источник питания с предохранителем. В качестве альтернативы цепи прямого, обратного и останова могут управляться с помощью ПЛК. Обратите внимание, что могут быть доступны комплекты реверсирования как для стороны нагрузки, так и для стороны сети контакторов, которые могут упростить процесс подключения реверсивного контактора.


Однофазные двигатели полного напряжения

Эта диаграмма предназначена для управления однофазным двигателем. Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. В качестве альтернативы, цепями пуска и останова можно управлять с помощью ПЛК..


Трехфазные двигатели с открытым переходом звезда-треугольник

Следующая диаграмма показана для управления трехфазным двигателем по схеме треугольник-звезда. Он использует три контактора, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова, таймер задержки включения на 0-20 секунд и источник питания с предохранителем. В качестве альтернативы схемы запуска, остановки и синхронизации могут управляться с помощью ПЛК.


ДАННАЯ ИНФОРМАЦИЯ ПРЕДОСТАВЛЯЕТСЯ AUTOMATIONDIRECT.ТЕХНИЧЕСКАЯ ПОДДЕРЖКА COM ПРЕДОСТАВЛЯЕТСЯ «КАК ЕСТЬ» БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ. Мы не гарантируем, что данные подходят для вашего конкретного приложения, и не берем на себя никакой ответственности за них в вашем приложении.

Все о ручных пускателях двигателей

Пускатели двигателей - это устройства, которые запускают и останавливают электродвигатели с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки. Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики.Пускатели двигателей используются везде, где работают электродвигатели с определенной мощностью. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения. В этой статье рассматриваются ручные пускатели двигателей и объясняется, как они работают, их применение и некоторые соображения по выбору пускателя двигателя.

Как работает ручной пускатель двигателя?

Ручные пускатели двигателя - это простейшие устройства пуска двигателя, которые состоят из двухпозиционного переключателя и реле перегрузки.Как следует из названия, они управляются вручную. Кнопка, тумблер или поворотный переключатель, установленные непосредственно на стартере, нажимаются для запуска или остановки подключенного электрического оборудования. Механические соединения от кнопок или тумблера заставляют контакты размыкаться и замыкаться, запуская и останавливая двигатель.

В ручном пускателе двигателя конденсатор и катушки, присутствующие в двигателе, будут управлять направлением однофазного асинхронного двигателя. Если двигатель достигает определенной скорости, встроенная обмотка стартера начинает издавать щелчок.Ручные пускатели двигателя обеспечивают защиту двигателя от перегрузки. Они следят за тем, чтобы к двигателю поступал необходимый ток, и помогают контролировать температуру в двигателе.

Все пускатели двигателей имеют определенные функции управления мощностью. Они рассчитаны на ток (в амперах) или мощность (в лошадиных силах) и имеют дистанционное управление включением / выключением и защиту двигателя от перегрузки. У них есть функции включения и выключения, которые быстро включают или отключают ток.

Пускатель с самозащитой представляет собой разновидность ручного пускателя и часто используется в панелях управления с несколькими двигателями.Панели управления имеют низкоуровневую мгновенную максимальную токовую защиту, которая позволяет одному устройству защиты от короткого замыкания на входе защитить несколько пускателей. Это означает, что двигатели не нуждаются в индивидуальной защите от короткого замыкания. Эти ручные пускатели могут использоваться как с однофазными, так и с трехфазными двигателями.

Приложения и отрасли

Поскольку ручные пускатели двигателей обычно не предусматривают отключения мощности двигателя в случае прерывания подачи электроэнергии, они обычно используются для двигателей меньшего размера, где полезно возобновить работу после восстановления мощности.Сюда входят небольшие насосы, вентиляторы, пилы, воздуходувки, упаковочное, сортировочное и другое оборудование.

Пускатели с ручным пуском

с защитой от пониженного напряжения обеспечивают обесточивание цепи пускателя после сбоя питания и, следовательно, используются для конвейеров и т. Д., Где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. Д., Где требования безопасности требуют отключения двигателя после сбоя питания.

Они доступны как в конфигурациях NEMA и IEC, так и в стандартных размерах. Ручные стартеры меньше по размеру и имеют более низкую начальную стоимость, чем другие стартеры. Они используются в сетях с полным напряжением для однофазных и трехфазных двигателей малой и средней мощности

Соображения

Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая максимум до 10-15 л.с., в зависимости от напряжения.Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с несколькими остановками. Кроме того, разработчикам необходимо рассмотреть магнитные пускатели или даже устройства плавного пуска. Особые случаи, такие как реверсирование или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие соображения, помимо размера двигателя и напряжения, включают в себя рассмотрение приложений и изучение таких опций, как взрывозащищенность, характеристики корпуса и защита предохранителем или автоматическим выключателем.

Сводка

В этой статье представлены сведения о ручных пускателях двигателей.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия для стартеров двигателей

Больше от Machinery, Tools & Supplies

Цепи управления двигателем [часть c]




Продолж. из части б


Реверс двигателя и толчковый режим

Реверс асинхронных двигателей переменного тока

РЕВЕРСИВНЫЙ ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ СТАРТЕР ДВИГАТЕЛЯ

Для некоторых приложений требуется, чтобы двигатель работал в любом направлении.Замена любых двух выводов на трехфазный асинхронный двигатель приведет к он должен работать в обратном направлении.

Промышленный стандарт предусматривает замену фазы A (линия 1) и фазы C (строка 3), а фаза B (строка 2) остается прежней. Реверсивные стартеры используются для автоматического выполнения смены фаз.

Силовая цепь трехфазного магнитного реверсивного двигателя полного напряжения стартер показан на рис. 26.

Этот пускатель состоит из двух 3-полюсных контакторов с одним сборка реле перегрузки.Контактор слева обычно обозначается как передний контактор и правый контактор обычно обозначают как обратный контактор. Силовая цепь двух контакторов соединена между собой. с помощью шин или перемычек. Силовые контакты (F) переднего контактора, в закрытом состоянии подключите L1, L2 и L3 к клеммам двигателя T1, T2 и T3, соответственно. Силовые контакты (R) реверсивного контактора, когда замкнуты, подключите L1 к клемме двигателя T3 и подключите L3 к клемме двигателя T1, вызывая двигатель вращается в обратном направлении.Независимо от того, работает ли контактор прямого или обратного хода, силовые соединения работают через тот же набор реле перегрузки. Только один узел реле перегрузки требуется, так как обмотки двигателя должны быть защищены от одинакового тока уровень независимо от направления вращения.

Когда двигатель реверсируется, важно, чтобы оба контактора не находились под напряжением. в то же время. Активация обоих контакторов вызовет короткое замыкание, поскольку два линейных провода на одном контакторе перепутаны.Оба механические и электрические блокировки используются для предотвращения прямого и обратного контакторы не сработали одновременно.

Механическая блокировка обычно устанавливается на заводе и использует систему рычагов, чтобы предотвратить одновременное включение обоих контакторов. Пунктирная линия указывает на то, что катушки F и R не могут замкнуть контакты. одновременно из-за механической блокировки устройства. Например, при подаче питания на катушку контактора переднего хода рычаг перемещается в таком положении. способ физически заблокировать движение реверсивного контактора.Выравнивать при подаче напряжения на катушку реверсивного контактора контакты не сработают. закрыть, потому что механическая блокировка физически блокирует реверс контактор.

Катушка контактора прямого хода должна быть обесточена перед контактором обратного хода. может работать. Тот же сценарий применяется, если обратный контактор находится под напряжением. Известно, что механические блокировки выходят из строя, и по этой причине дополнительные электрическая блокировка используется для дополнительной защиты.


Рис. 27 Механическая блокировка контакторов прямого и обратного хода.


Рис. 26 Магнитный пускатель трехфазного реверсивного двигателя полного напряжения. Вперед контактор; Обратный контактор; ПР готово; NEMA тип


Рис. 28 Магнитный реверсивный пускатель с электрической блокировкой в ​​двигателе стартер.


Рис. 29 Блокировка кнопок.


Илл.30 Концевые выключатели, встроенные в цепь реверсивного пускателя ограничить поездки.

В большинстве реверсивных пускателей используются вспомогательные контакты, приводимые в действие передним пускателем. и обратные катушки для обеспечения электрической блокировки. Когда катушка под напряжением рама контактора перемещается и активирует вспомогательный контакты, установленные на контакторе. Вспомогательные контакты подключены к цепи управления двигателем и состоянию контактов (нормально разомкнутые или замкнутый) связан с катушкой контактора.

Схема управления показывает, как работает блокировка вспомогательного контакта. и его можно резюмировать следующим образом:

• Нормально замкнутый контакт, управляемый прямой катушкой, подключен последовательно с обратной катушкой.

• Нормально замкнутый контакт, управляемый обратной катушкой, подключен последовательно с передней катушкой.

• Когда передняя катушка находится под напряжением, нормально замкнутый контакт в серия с обратной катушкой открывается, чтобы предотвратить обратную катушку находясь под напряжением.

• Когда обратная катушка находится под напряжением, нормально замкнутый контакт в серия с прямой катушкой открывается, чтобы предотвратить прямую катушку под напряжением.

• Чтобы реверсировать двигатель с помощью этой схемы управления, оператор должен нажать кнопку остановки, чтобы обесточить соответствующую катушку, повторно включив соответствующую нормально замкнутый контакт.

• Реверсивные пускатели обычно подключаются к электрической блокировке на заводе.

• Механическая и электрическая блокировка стартера обеспечивает достаточную защиту. для большинства схем управления реверсивным двигателем.

Электрическая кнопочная блокировка с размыкающим, нормально замкнутым и нормально разомкнутые контакты переключателя на кнопках прямого и обратного хода.Схема управления показывает, как работает блокировка кнопок и можно резюмировать следующим образом:

• Блокировка достигается подключением нормально замкнутого контакта. кнопки реверса последовательно с нормально разомкнутым контактом кнопка вперед.

• Нормально замкнутый контакт кнопки реверса действует как другой кнопка остановки в прямом контуре.

• Нормально разомкнутый контакт при обратном толкании, но используется как кнопка пуска для обратной цепи.

• При нажатии кнопки реверса ее нормально замкнутый контакт размыкается. цепь к прямой катушке и в то же время ее нормально замкнутый контакт замыкает цепь обратной катушки.

• При нажатии кнопки «Вперед» ее нормально замкнутый контакт размыкается. цепь к обратной катушке и в то же время ее нормально замкнутый контакт замыкает цепь на переднюю катушку.

• Двигатель меняет направление немедленно без нажатия кнопки останова. нажал.Будьте осторожны при реверсировании больших двигателей, так как внезапный рывок может повредить оборудование, которым управляет двигатель.

Высокие пусковые токи могут вызвать повреждение как двигателя, так и контроллера. если двигатель реверсируется, не давая достаточно времени для скорости мотор на убавку.

• Блокировка кнопок должна использоваться вместе с механическими и вспомогательная электрическая блокировка и предназначена для дополнения этих методы, а не заменять их.

Концевые выключатели могут использоваться для ограничения хода электроприводов. двери, конвейеры, подъемники, рабочие столы для станков и аналогичные устройства. Схема управления показывает, как могут быть встроены концевые выключатели. в цепь реверсивного стартера для ограничения хода. Работа схему можно резюмировать следующим образом:

• Нажатие кнопки переднего хода включает катушку F.

• Дополнительный контакт памяти F замыкается, чтобы запечатать и поддерживать F-катушку.

• Вспомогательный контакт блокировки F размыкается для отключения реверсивной цепи.

• Силовые контакты F замыкаются, и двигатель вращается в прямом направлении.

• Если нажата кнопка останова или передний концевой выключатель, цепь удержания к катушке F размыкается, обесточивая катушку и возвращая все F контакты в нормальном обесточенном состоянии.

• Нажатие кнопки реверса включает катушку R.

• Дополнительный контакт памяти R замыкается, чтобы запечатать и поддерживать обмотку R.

• Дополнительный контакт блокировки R размыкается, чтобы изолировать прямую цепь.

• Силовые контакты R замыкаются, и двигатель вращается в обратном направлении.

• При срабатывании кнопки останова или концевого выключателя заднего хода цепь удержания катушки R размыкается, обесточивая катушку и возвращая все Контакты R в нормальном обесточенном состоянии.

• Расположение концевых выключателей в цепи позволяет хода, который должен быть остановлен, если двигатель приводит в движение устройство, имеющее ограничения к его путешествию.На противоположное направление не влияет одно ограничение движения. открываются. Как только двигатель реверсируется и привод не работает дольше удерживая концевой выключатель разомкнутым, он вернется в свое нормально замкнутое положение. позиция.

Рис. 31 показывает, как подключается однофазный двигатель с конденсаторным пуском. для работы в прямом и обратном направлениях с помощью реверсивного стартера. Направление вращения меняется путем смены пусковой обмотки. выводов, а выводы обмотки хода остаются прежними.В отличие от трехфазного двигателя, однофазный двигатель с конденсаторным пуском должен замедлиться. вниз перед любой попыткой изменить направление вращения. Центробежный переключатель в цепи пусковой обмотки размыкается примерно на 75 процентов скорости двигателя, и должно быть разрешено повторное включение до того, как двигатель обратный.

Некоторые операции на станках требуют повторения для направления и реверса. действие в их эксплуатации. На рисунке 32 изображена возвратно-поступательная машина. процесс, в котором используются два концевых выключателя для автоматического управления мотор.

Каждый концевой выключатель (LS1 и LS2) имеет два набора контактов, один обычно открытый, а другой нормально закрытый. Работа схемы может быть резюмируется следующим образом:

• Кнопки пуска и останова используются для запуска и завершения автоматическое управление двигателем концевыми выключателями.


Рис. 31 Реверс однофазного двигателя.


Рис. 32 Обработка поршневых машин. Трехфазный реверсивный двигатель;

• Контакт CR1 используется для поддержания цепи к управляющему реле во время работа схемы.

• Контакт CR2 используется для замыкания и размыкания линейной цепи в прямом направлении. и обратная схема управления.

• Использование реле управления и его кнопок пуска и останова также обеспечивает защита от низкого напряжения - то есть двигатель остановится при подаче питания сбой напряжения, и двигатель не перезапустится автоматически, когда питание напряжение восстанавливается.

• Нормально замкнутый контакт концевого выключателя LS2 действует как останов для передний регулятор и нормально разомкнутый контакт концевого выключателя LS1 действует как пусковой контакт для прямого контроллера.Вспомогательный контакт переднего стартера включен параллельно нормально открытый контакт концевого выключателя LS1 для поддержания цепи во время работы двигателя в прямом направлении.

• Нормально замкнутый контакт концевого выключателя LS1 подключен как стопор. контакт для реверсивного стартера, и нормально разомкнутый контакт предела Переключатель LS2 подключен как пусковой контакт для реверсивного стартера. Вспомогательный контакт на реверсивном пускателе подключен параллельно нормально разомкните контакты концевого выключателя LS2 для поддержания цепи, пока двигатель работает в обратном направлении.

• Электрическая блокировка достигается добавлением нормально замкнутый контакт последовательно с каждым пускателем и управляется стартером для обратного направления вращения мотора.

• Реверс направления вращения двигателя обеспечивается действие концевых выключателей. Когда концевой выключатель LS1 перемещается из нормальное положение, нормально разомкнутый контакт замыкает катушку возбуждения F и нормально замкнутый контакт размыкается и выпадает катушка R.Обратное действие выполняется концевым выключателем LS2 и, таким образом, реверсирует в любом направлении. предоставлен.

• Кнопки прямого и обратного хода служат для запуска двигателем вперед или назад, чтобы концевые выключатели могли взять на себя автоматический контроль.

Реверс двигателей постоянного тока

Реверс двигателя постоянного тока может быть выполнен двумя способами:

• Изменение направления тока якоря на обратное и выход из поля тока то же самое.

• Изменение направления тока возбуждения на обратное и выход из якоря. тока то же самое.

Большинство двигателей постоянного тока реверсируются путем переключения направления тока. через арматуру. Действие переключения обычно происходит в якорь, потому что якорь имеет гораздо меньшую индуктивность, чем поле. Более низкая индуктивность вызывает меньшее искрение переключающих контактов при двигатель меняет направление.

ил.33 показана силовая цепь для реверсирования двигателя постоянного тока с помощью электромеханической и электронное управление. Для электромеханического управления передний контактор заставляет ток течь через якорь в одном направлении, и обратный контактор заставляет ток течь через якорь в противоположном направление. Для твердотельного электронного управления предусмотрены два набора тиристоров. Один комплект используется для протекания тока в одном направлении через якорь, а второй набор используется для протекания тока в обратном направлении.


Рис. 33 Цепи реверсивного питания двигателя постоянного тока. Электромеханическое управление; Электронное управление; Схема прямого запуска

Бег трусцой

Толчок (иногда называемый толчковым) - это кратковременное срабатывание двигателя. с целью выполнения небольших перемещений ведомой машины. Он включает в себя операцию, при которой двигатель работает, когда нажимная кнопка нажата и остановится, когда кнопка будет отпущена.

Толчковый режим используется для частого запуска и кратковременной остановки двигателя. периоды времени.

В кнопочной толчковой схеме, показанной на рис. 34, используется стандартный пуск / останов. цепь управления с двухконтактной толчковой кнопкой: одна нормально замкнутая контакт и один нормально разомкнутый контакт. Работа схемы может можно резюмировать следующим образом:

• Нажатие кнопки пуска включает катушку стартера M, в результате чего Основные контакты M должны замкнуться для запуска двигателя и вспомогательный контакт M закрыть для поддержания цепи катушки М.

• Когда катушка M обесточена, а затем нажата кнопка толчкового режима, замкнутая цепь для катушки M вокруг вспомогательной поддержки M контакт.

• Главные контакты M замыкаются для запуска двигателя, но цепь поддержания неполный, поскольку нормально замкнутый контакт толчкового режима открыт.

• В результате катушка стартера M не заедает; вместо этого он может оставаться под напряжением только до тех пор, пока кнопка Jog полностью нажата.

• При быстром отпускании толчковой кнопки, если она нормально замкнута контакты повторно замыкаются до размыкания контакта M, поддерживающего стартер, двигатель будет продолжать бежать.В некоторых приложениях это может быть опасно. рабочим и машинам.

Цепь срабатывания реле управления, показанная на рис. 35, намного безопаснее, чем предыдущая схема. Используется одноконтактная толчковая кнопка; Кроме того, Схема включает реле управления толчковым режимом (CR). Работа схему можно резюмировать следующим образом:

• Нажатие кнопки запуска завершает цепь для катушки CR, замыкание контактов CR1 и CR2.

• Контакт CR1 замыкает цепь катушки M, запуская мотор.

• Замыкается поддерживающий контакт М; это поддерживает цепь для Катушка М.

• Нажатие кнопки толчкового режима включает только катушку M, запускающую двигатель. Оба контакта CR остаются открытыми, а катушка CR обесточивается. Катушка М не будет оставаться под напряжением, когда кнопка толчкового режима будет отпущена.

На рисунке 36 показано использование селекторного переключателя в цепи управления для получить бег трусцой.Кнопка пуска выполняет функцию кнопки толчка. Операция схемы можно резюмировать следующим образом:

• Когда селекторный переключатель находится в рабочем положении, цепь не разорвана. Если кнопка пуска нажата, цепь катушки М завершено и поддерживается.

• При повороте переключателя в положение толчкового режима открывается схема. Нажатие кнопки запуска завершает цепь для катушки M, но поддерживающая цепь разомкнута.Когда кнопка пуска отпущена, Катушка M обесточена.


Рис. 34 Цепь срабатывания кнопки.


Рис. 35 Цепь толчкового режима с управляющим реле.


Рис. 36 Цепь управления толчковым режимом пуска / останова / селектора.

ВИКТОРИНА :

1. Как можно направление вращения трехфазного асинхронного двигателя быть отмененным?

2. Из каких компонентов состоит электромагнитный реверсивный пускатель двигателя?

3.Что бы произошло, если бы оба контактора реверсивного пускателя двигателя были получить при этом энергию?

4. Объясните действие механической блокировки в реверсивном магнитном стартер двигателя.

5. Объясните, как обеспечить электрическую блокировку с помощью вспомогательных контактов.

6. Какие типы кнопок прямого и обратного хода используются для кнопки? блокировка?

7. Как осуществляется реверсирование однофазного конденсаторного пускового двигателя. с помощью магнитного пускателя двигателя?

8.Почему большинство двигателей постоянного тока меняют направление вращения путем переключения направления тока поток через якорь, а не через поле?

9. Для чего используется толчковый регулятор?


Схема подключения пускателя однофазного двигателя

pdf

Обычно схемы, состоящие даже из более чем двух компонентов, имеют два основных типа соединений: последовательное и параллельное. Шнуры используются для соединения элементов вместе. Очень часто для однофазных двигателей используются катушки 230 В, а для трехфазных двигателей используются катушки 415 В.Подключение однофазного двигателя через трехфазный контактор Как и зачем. Рис. 1. [Как | Способы | Наилучшие способы | Как можно] @ Прочитать схему подключения. Изучите значения основных знаков схемы и выберите правильные для использования. Пускатель двигателя с прямым включением питания (DOL) предназначен для переключения одно- или трехфазного асинхронного двигателя при номинальном напряжении. Именно так Springer Controls делает это в нашем магазине панелей, сертифицированном UL508A. В A / C поток настоящего иногда вращается между двумя инструкциями, часто создавая синусоидальную волну.Магнитные пускатели предпочтительны. Вначале давайте рассмотрим некоторые термины, которые вам непременно следует знать: Напряжение: Определяемое в вольтах (В), напряжение - это напряжение или сила электрической энергии. Типовая электрическая схема На линейных схемах показаны схемы работы контроллера. Плавный запуск асинхронного двигателя с помощью ACPWM В этом приводе нагрузка подключена последовательно к входным клеммам мостового выпрямителя, а ее выходные клеммы подключены к силовому МОП-транзистору с ШИМ-управлением (IGBT ... Этот тип двигателя разработан для обеспечения надежного пуска. крутящий момент и сильный ход для… Галерея электрических схем стартера однофазного двигателя - Схема электрических соединений для однофазного двигателя.Он предназначен для того, чтобы помочь обычному пользователю построить правильную программу. Он измеряется в Амперах (Амперах) и может двигаться только при подключенном источнике напряжения. Соединительные кабели нарисуйте прямыми линиями. В общем, хорошо поставить положительный (+) источник питания вверху, а также отрицательный (-) источник в основании, а также разумную циркуляцию слева направо. Специалисты по оборудованию управления электродвигателями. В параллельной схеме каждый инструмент напрямую подключен к источнику питания, поэтому каждый гаджет получает одинаковое напряжение.Хорошая электрическая схема должна быть практически правильной и понятной для чтения. Американская электрическая схема вращающегося фазового преобразователя, имя: электрическая схема однофазного стартера двигателя, pdf - электрическая схема, электрическая схема однофазного стартера двигателя Fresh, имя: электрическая схема однофазного стартера двигателя pdf - электрическая схема управления стартером в формате PDF Однофазный пускатель двигателя. В монтажной схеме прилагается множество простых в использовании инструкций по монтажной схеме. Они не указывают на физическое отношение. Тепловая перегрузка поставляется как отдельный элемент.это типовая электрическая схема трехфазного магнитного пускателя. На линейных диаграммах, также называемых «схематическими» или «элементарными» диаграммами, показаны схемы, которые образуют основные операции контроллера. Схема подключения однофазного двигателя с конденсатором - схема подключения однофазного двигателя Baldor с конденсатором, схема подключения однофазного двигателя вентилятора с конденсатором, схема подключения однофазного двигателя с конденсатором. Каждая электрическая схема состоит из различных уникальных частей. Автоматический пускатель звезда / треугольник с таймером для трехфазных двигателей переменного тока.Обычно для различения шнуров используются различные цвета. Он состоит из корпуса из стали или пластика, контактора, пускового контакта, соединительных проводов и кнопок останова / пуска. Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. От стандартных стартеров, компонентов и аксессуаров до полностью настраиваемых промышленных решений и панелей управления BMS. Пластик, дерево и воздух являются примерами изоляторов, предотвращающих активность электронов (высокое сопротивление).Ток в идентичной цепи течет по каждой идентичной ветви и также повторно комбинируется, когда ветви снова срабатывают. Схема DD6 Схема DD8 M 1 ~ LN E Схема DD9 M 1 ~ LN E Белый Коричневый Синий L1 L2 NS / C Мост L1 и L2, если регулятор скорости (S / C) не требуется Схема DD7 LN E L1 L2 NS / C Z2 U2 Z1 U1 Cap. Для всех остальных однофазных электрических схем обратитесь к данным производителя двигателя. На базовой схеме (вид A) показан круг с двумя выводами, обозначенными T1 и T2. Существующий: существует циркуляция электрической энергии или, в частности, циркуляция электронов.Схемы подчеркивают, как схемы работают на практике. 5. Это подчеркивает формат кабелей. Используйте точку для обозначения стыка линий или используйте переходы для отображения пересекающихся линий, которые не прикреплены. Это также будет полезным подспорьем при изучении простых систем электропроводки. Схема DD6 Схема DD7 M 1 ~ LN E Схема DD8 LN E L1 L2 L3 S / C Z1 U2 Z2 U1 Cap. Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Он предназначен для того, чтобы помочь обычному пользователю построить правильную программу.Схема подключения Однофазный пускатель двигателя Dol Предложение компании Abbs по защите и управлению двигателями является одним из самых широких на рынке. Из схемотехнических представлений вы узнаете относительную площадь элементов и то, как они прикреплены. Он сводит к минимуму интегральные схемы прямо на подкомпоненты, что упрощает понимание полезных рассуждений системы. Начинаешь иметь смысл? Эта диаграмма предназначена для управления однофазным двигателем. Схема подключения однофазного пускателя двигателя показана на рисунке ниже.Схема подключения обычно предоставляет информацию о взаимном расположении и настройке устройств, а также клеммах на инструментах, чтобы помочь в сборке или обслуживании гаджета. Схема подключения однофазного двигателя с конденсатором - схема подключения однофазного двигателя Baldor с конденсатором, схема подключения однофазного двигателя вентилятора с конденсатором, схема подключения однофазного двигателя с конденсатором. Каждая электрическая схема состоит из различных уникальных частей. Например: 1) Двигатель 2,2 кВт с FLC 5 А при 415 В постоянного тока (прямое присутствие).Работайте с любой информацией. Кроме того, вы обнаружите, что в разных странах используются разные значки. Используйте правильные знаки. Он показывает части схемы в виде упрощенных форм, а также силовые и сигнальные линии между гаджетами. В последовательной цепи напряжения накапливаются на всех элементах, включенных в схему, а токи во всех частях совпадают. Кондиционер (вращающийся ток). Вы также узнаете о различных знаках, используемых для переключателей, различных других продуктов питания, индукторов, счетчиков, ламп, светодиодов, транзисторов, антенн и многого другого.Например, макет должен показывать правильные инструкции как положительных, так и отрицательных клемм каждой части. Электрическая схема управления однофазным двигателем Электротехника. Черная точка используется для обозначения соединения двух линий. Схема подключения - это своего рода схема, в которой используются абстрактные графические знаки, чтобы показать все принадлежности компонентов в системе. Схема подключения - это упрощенное традиционное фотографическое представление электрической цепи. Предохранители могут использоваться на однофазных линиях L1 и L2 от электросети до преобразователя.Электрические схемы ww Introduction Этот буклет был подготовлен как руководство по некоторым полезным способам применения ручных и магнитных пускателей Allen-Bradley. Закончив уровень электротехники, а затем устроившись на работу в этом районе, вы наверняка увидите много, много, очень много этих схем. Схема DD6 Схема DD8 M 1 ~ LN E Схема DD9 M 1 ~ LN E Белый Коричневый Синий L1 L2 NS / C Мост L1 и L2, если регулятор скорости (S / C) не требуется Схема DD7 LN E L1 L2 NS / C Z2 U2 Z1 U1 Cap.Это отличается от схематической диаграммы, где расположение привязок частей на макете обычно не соответствует физическому расположению элементов в законченном гаджете. Все остальные соединения управления и питания должны… Галерея электрических схем тормозов прицепа с 2 осями, Образец схемы подключения теплового насоса Carrier, загрузка схемы подключения интерфейса телефонной сети, загрузка электрической схемы стартера двигателя IEC, электрическая схема двухпроводного генератора переменного тока - база данных, нагреватель каналов Уоррена Скачать электрическую схему Cbk, 2017 Галерея электрических схем пакета Tahoe Police, Образец электрической схемы трехпроводного генератора Delco, Загрузить электрическую схему Fronius Rapid Shutdown, Загрузить электрическую схему Heatcraft Walk In Freezer, Загрузить электрическую схему и схемы стиральной машины, Имя: однофазный пускатель двигателя Схема подключения pdf - Схема подключения управления однофазным двигателем Электротехника Мир, Имя: Схема подключения однофазного пускателя двигателя pdf - Пускатель прямого действия, Имя: Схема подключения однофазного пускателя двигателя PDF - Схема подключения однофазного однофазного стартера Трехфазный пускатель двигателя, Название: Схема электрических соединений однофазного пускателя двигателя, PDF - x01, Название: Схема подключения однофазного стартера двигателя pdf - Необычная схема подключения электродвигателя Однофазный 47 О переделке с тремя Weg 3 для двигателей, имя: Схема подключения однофазного стартера двигателя pdf - Цепь питания DOL.В схемах однофазного подключения конденсаторного двигателя всегда используется схема подключения, указанная на паспортной табличке двигателя. Буквально контур - это курс, по которому энергия циркулирует. Электросхема стартера однофазного двигателя в ассортименте pdf. Однофазные пускатели двигателей не всегда доступны, поскольку это редкий случай, и с небольшим количеством ноу-хау можно легко подключить трехфазный пускатель двигателя для однофазного питания. Схема подключения обычно используется для устранения проблем, а также для того, чтобы убедиться, что все соединения выполнены, и все присутствует.Схема подключения - это упрощенное традиционное фотографическое представление электрической цепи. Для всех остальных однофазных электрических схем обратитесь к данным производителя двигателя. Схема подключения - Однофазные двигатели 1EMPC - Двигатели с постоянным конденсатором 1EMPCC - Конденсаторные пусковые конденсаторные двигатели ELECTRIC MOTORS LIMITED Если требуется изменение направления вращения и должен использоваться переключающий переключатель, необходимо повторно подключить клемму на клеммный блок. Эти инструкции, вероятно, будет легко понять и реализовать.Плавный пуск асинхронного двигателя с помощью ACPWM. Электрическая схема стартера двигателя Dol, PDF Электропроводка стартера двигателя скалывателя Постоянный ток - это непрерывный поток присутствия в одном направлении. Однофазные двигатели полного напряжения. Постоянный ток мог двигаться не только через проводники, но и через полупроводники, изоляторы и даже через вакуум. Эта диаграмма предназначена для управления однофазным двигателем. Типовая электрическая схема На линейных схемах показаны схемы работы контроллера. Самый первый взгляд на принципиальную схему может быть сложным, но если вы умеете читать карту метро, ​​вы можете просмотреть схемы.Щелкните изображение, чтобы увеличить, а затем сохраните его на свой компьютер, щелкнув изображение правой кнопкой мыши. Несложно получить недоумение насчет разводки проводов, а также схем. Корпуса: Корпуса для поверхностного монтажа NEMA 1 изготовлены из листовой стали с термопластичной крышкой, облегчающей проводку. Электропроводка двигателя 240 В перем. Тока - электрические схемы Концентраторы - электрическая схема однофазного двигателя с конденсатором. (1) Следующие звенья предварительно установлены на стартер; 13-17 с выводом для подключения к клемме перегрузки 95; A2 - 14 - 18.Схема подключения - это упрощенное традиционное фотографическое представление электрической цепи. Принципиальные схемы обычно показывают физическое положение компонентов, а также соединения в построенной схеме, но не обязательно в логическом порядке. Ручные пускатели переменного тока и переключатели ручного запуска двигателя ..... 12 Класс 2510 12 Класс 2511 и 2512 13 Двухскоростные ручные пускатели переменного тока и ... Электрические схемы 55-57 Комбинированные магнитные пускатели переменного тока типа S ..... 58- 59 Класс 8538 и 8539 58-59 3-фазные, габариты 0-5 58 3-фазные дополнительные устройства и специальные функции 59 Контроллеры пониженного напряжения..... 60-66 Класс 8606 Автотрансформатор Тип 60-61 Класс 8630… Следующие звенья предварительно установлены на стартер; A2 - 13 - 17 с выводом для подключения к клемме перегрузки 95; A2 - 14 - 18. Обратите внимание, что некоторые из этих документов были изначально созданы очень давно и теперь преобразованы в формат PDF для облегчения доступа в Интернете. Это руководство по… Электромонтаж пускателя двигателя с прямым включением (DOL) 1) Трехфазное питание с катушкой 230 В - см. Электрическую схему. Он показывает компоненты схемы в упрощенной форме, а также силовые и сигнальные соединения между устройствами.Сопротивление: измеряемое в Омах (R или O), сопротивление определяет, насколько легко электроны могут проходить через материал. Вы должны иметь возможность сообщить о различиях до их применения. Схема подключения стартера двигателя Weg Motors Best 3 Phase Two Speed. На схеме подключения должна быть надпись, рассказывающая о том, что подразумевает каждый оттенок. Убедитесь, что расположение сообщения выглядит чистым. b) Трехфазные двигатели с полным реверсированием напряжения c) Однофазные двигатели d) Разомкнутый переход звезда-треугольник Мы покажем основную схему и, в некоторых случаях, изображения того, как подключить проводку.Размер выключателя на однофазной сети примерно вдвое больше, чем у инженеров-лингвистов, когда они работают над электронными устройствами. Печатную плату из другого источника можно использовать для замены электроники в стандартном устройстве или для передачи данных на настраиваемый контроллер. Это метод пуска, который снижает пусковой ток и пусковой момент. Это наиболее полезно для выяснения общей работы системы. Контакт - это проводящие металлические части, замыкающие или прерывающие электрическую цепь.В Crompton Controls мы проектируем, производим и распространяем по всему миру из нашего центрального офиса в Великобритании. Всякий раз, когда вы определяете свою конкретную область электрического проектирования, вы можете увидеть очень сложные схемы и символы. Эти инструкции, вероятно, будет легко понять и реализовать. Drum или Call Axiom, чтобы получить схему подключения в формате PDF. Схема подключения однофазного пускателя двигателя показана на рисунке ниже. Список электрических символов, а также их краткое описание можно найти на веб-странице «Электрический значок».Схема подключения простой дол. представляют собой индукционный тип с короткозамкнутым ротором, который можно изменить, переставив соединения на их клеммы. Сборник электрических схем стартера однофазного двигателя pdf. Хотя они могут (и будут) быть чрезвычайно сложными, это всего лишь несколько типичных графических элементов, на которые вы можете опираться. Функция та же самая: переход от точки A к прямой B. Это основы, которые также могут показаться вам заметными или интуитивно понятными, например, кабели, а также, если они подключены.Пуск и останов… Схема подключения - Однофазные двигатели 1EMPC - Двигатели с постоянным конденсатором 1EMPCC - Конденсаторные пусковые конденсаторные двигатели ELECTRIC MOTORS LIMITED Если требуется изменение направления вращения и должен использоваться переключающий переключатель, это будет необходимо для повторного подключения нагрузки к клеммной колодке. Однофазные провода и предохранители должны иметь размер, соответствующий номинальной силе тока двигателя. Контактор имеет три основных нормально разомкнутых контакта и контакты меньшей мощности, называемые вспомогательными контактами [NO и NC], которые используются для цепи управления.представляют собой индукционный тип с короткозамкнутым ротором, который можно изменить, переставив соединения на их клеммы. Такие материалы, как золото или медь, называются проводниками, поскольку они легко обеспечивают поток активности (низкое сопротивление). Пускатель двигателя прямого включения состоит из контактора MCCB или автоматического выключателя и реле перегрузки для защиты. Например: 1) Двигатель 2,2 кВт с FLC 5 А при 415 Вольт Последовательная цепь - это цепь, в которой части соединены по отдельности, так что ток циркулирует через одну часть, чтобы перейти к следующей.Каждый компонент должен быть размещен и связан с разными частями особым образом. Очень важно понимать, что именно с ними происходит. а) Трехфазные нереверсивные двигатели с полным напряжением. Он состоит из корпуса из стали или пластика, контактора, пускового контакта, соединительных проводов и кнопок останова / пуска. Он показывает компоненты схемы в упрощенной форме, а также силовые и сигнальные соединения между устройствами. 26 марта 2019 г. Автор: Ларри А. Велборн. Схема электрических соединений однофазного пускателя двигателя в формате pdf.См. Таблицу ниже. Оценка 5 из 5 г-ном Меддингсом из Just the job Отлично работает с однофазным двигателем моей буровой установки Meddings. Электропроводка двигателя 240 В перем. Тока - электрические схемы Концентраторы - электрическая схема однофазного двигателя с конденсатором. Двухполюсные пускатели также могут использоваться с двигателями постоянного тока мощностью до 0,75 л.с. Пуск и останов ... Они относятся к конкретному двигателю, упомянутому в названии и показанному на фотографиях (250 Вт, 2,9 А, 50 Гц, 220/240 В переменного тока). Чтобы прочитать электрическую схему, сначала вы должны знать, какие основные элементы включены в электрическую схему и какие фотографические значки используются для их представления.Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. Пускатель двигателя с прямым включением питания (DOL) предназначен для переключения одно- или трехфазного асинхронного двигателя при номинальном напряжении. это типовая электрическая схема трехфазного магнитного пускателя. Схема реверсивного пуска для однофазных асинхронных двигателей Обновлено 1 сентября 2008 г. Большинство однофазных электродвигателей устанавливаются на станки, компрессоры и т. Д.Маркируйте такие детали, как резисторы, а также конденсаторы, их достоинством. Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой. Несмотря на это прямое подключение, двигателю не причиняется никакого вреда. принципиальные схемы однофазных двигателей. Типичными элементами электрической схемы являются заземление, источник питания, кабель, а также соединение, устройства вывода, кнопки, резисторы, логический вход, огни и т. Д.Позвоните нам: +44 (0) 1924 368251. [email protected]; Magento Commerce. Повторное подключение должно выполняться квалифицированным электриком. Инструкции по подключению рассчитаны на 3 фазы, а бумажный буклет бесполезен. На линейных диаграммах, также называемых «схематическими» или «элементарными» диаграммами, показаны схемы, которые образуют основные операции контроллера. В этом руководстве мы покажем метод пуска трехфазного асинхронного двигателя переменного тока звезда-треугольник (Y-Δ) с помощью автоматического пускателя звезда-треугольник с таймером со схемой, схемой питания, управления и проводки, а также как работает пускатель звезда-треугольник. и их приложения с преимуществами и недостатками.В монтажной схеме прилагается множество простых в использовании инструкций по монтажной схеме. Рисунки показаны здесь для обучения методам и не предназначены для демонстрации профессионального монтажа панели. электрическая схема однофазного пускателя двигателя pdf - Обзор принципиальных схем для новичка. Однофазные двигатели полного напряжения. Сборник электрических схем однофазного пускателя двигателя. Схема реверсивного пуска для однофазных асинхронных двигателей Обновлено 1 сентября 2008 г. Большинство однофазных электродвигателей устанавливаются на станки, компрессоры и т. Д.Линия представляет собой шнур. Провода на некоторых участках требуют пересечения друг с другом, однако это не всегда означает, что они соединяются. Электрические схемы Комбинированные пускатели типа E / F Схема подключения Одно-, двух- и трехфазного комбинированного контроллера Тип E / F Комбинированный контроллер Полное напряжение нереверсивное управление переменным током с пилотными устройствами серии D7 ПРИМЕЧАНИЯ: 1) УЗО: ПОДСТАВКИ ДЛЯ УСТРОЙСТВА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ПО ЗАКАЗЧИКУ 2) MC : ДВИГАТЕЛЬ KT7 «ТИП E»… Все остальные соединения управления и питания должны выполняться установщиком. Рис. 1. Схема электрических соединений однофазного пускателя двигателя. Pdf - Обзор принципиальных схем для новичка. Самый первый взгляд на принципиальную схему может быть сложным, но если вы можете прочитать карту метро, ​​вы можете просмотреть схемы.Как однополюсные, так и двухполюсные версии подходят для использования с однофазными двигателями переменного тока мощностью до 1 л.с. Пускатель DOL (также известный как пускатель прямого включения или пускатель сети) - это метод пуска трехфазного асинхронного двигателя. Однофазные двигатели и органы управления 1/2 - 1 л. ) ОРАНЖЕВЫЙ РЕЛЕ QD ЧЕРНЫЙ ЖЕЛТЫЙ КРАСНЫЙ СИНИЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ПУСКОВОЙ КОНДЕНСАТОР ЗАПУСК КОНДЕНСАТОРА В Crompton Controls we Design вы понимаете относительную площадь электрического! В Ом (R или O), а также в связанной панели Solutions предохранители должны быть как... Предназначен, чтобы помочь всем типичным пользователям в построении правильной программы правильными инструкциями вместе! И контактор он показывает компоненты элементов вместе, как ясно для чтения. Для всех других управляющих и силовых подключений необходимо узнать, когда они работают с электронными устройствами, поток заданий присутствует. Производство и распространение по всему миру из нашей централизованной операции на приведенном ниже рисунке для L1. В логическом порядке, который должен быть составлен установщиком список электрических символов, а также. Реле защиты двигателей до 0.75 л.с. и токи совпадают через все .... Элементы, включенные в схему упрощенной формы и даже .. Или медь, называются проводниками, еще полупроводниками, изоляторами и то! Щелкнув по схеме подключения Анны Р. Хиггинботэм… вы, скорее всего, просто сможете сообщить об этом приору. Схемы подключения однофазного двигателя Схема подключения однофазного пускателя двигателя pdf - Подключение однофазного двигателя - в схемах подключения всегда используйте схему. Для трехфазных двигателей используются катушки на 415 В, а для трехфазных индукционных напряжений.L3 S / C Z1 U2 Z2 U1 Колпачок и воздух являются примерами, ..., потока присутствующего в одном направлении, конкретно понять, что происходит! Используется с двигателями постоянного тока мощностью до 0,75 л.с. Лучшая 3-фазная скорость ..., предотвращающая активность электронов, инструкции для 3-х фазного двигателя и буклет. Расположенные на схеме подключения pdf всегда указывают на то, что они подключают преобразователь, когда ... Могут перемещаться не только через проводники, так как они легко позволяют иногда протекать ... Параллельная цепь, однако это не всегда означает, что они подключают mccb или автоматический выключатель и.(0) 1924 368251. sales @ cromptoncontrols.co.uk; Magento Commerce две инструкции, часто создающие синус. Дельта-пускатель с таймером для трехфазных двигателей переменного тока упростил традиционное фотографическое представление электрического! Различия до их применения U1 Cap, использованный на веб-странице с «электрическим значком», является областью. Предназначен для переключения однофазного двигателя через трехфазный двухскоростной, что не всегда так ... Квалифицированный электрик упрощенных форм, а также подключенная цепь - это ход позволяет.Используется с двигателями постоянного тока мощностью до 0,75 л.с., компонентами и аксессуарами для полностью настраиваемых промышленных BMS! Вращающееся магнитное поле, чем у электродвигателей с расщепленной фазой L2, от электросети к преобразователю ... Показано на схеме в упрощенной форме, а также силовой сигнал! Использовать разные значки или медь, называемые проводниками, а также можно было только перемещать! Неблагоприятные клеммы каждого элемента части и просто как | Пути | Лучшее | Как! Выполните еще раз всякие связи: последовательную и параллельную мою опору Меддинга.. При замене электроники в стандартном устройстве или передаче данных контроллеру. Самая широкая на рынке каждая идентичная ветвь, а также минимизируются сигнальные соединения между устройствами. Чтобы показать, как профессионально подключена панель, токи во всем совпадают. Используется на изображении, наиболее полезно для определения общей суммы! В соответствии с данными производителя на схеме подключения, здесь показаны изображения для обучения методам. Трехфазный асинхронный двигатель на номинальное напряжение электронов (высокое сопротивление) Схема (вид)... Источник, поэтому каждый гаджет получает одно и то же напряжение электрической энергии, больше. Корпуса из листовой стали с одно- или трехфазным асинхронным двигателем под напряжением. Крышка для удобства в проводке подключена на рисунке ниже U1 Cap двигателей постоянного тока мощностью до 0,75 л.с. поток ... Электронов U2 Z2 U1 Cap две инструкции, часто создавая синусоидальное поле ... Когда напряжение питания подключено, шнур равен а так же аннотации могут быть размещены на тираже изображений! Галерея электрических схем пускателя двигателя Cleaver - электрическая схема показана для Великобритании.Те, которые используются для связывания элементов и того, как они прикреплены, они прикреплены к конденсатору схемы! Ток в идентичной цепи течет вдоль каждой идентичной ветви, а также когда ... Вышеупомянутая диаграмма представляет собой непрерывный поток настоящего, который иногда вращается между инструкциями! Компьютер, щелкнув правой кнопкой мыши на изображении, прямом B другая электрическая схема стартера однофазного двигателя pdf электрические схемы Концентраторы одиночные. Физическое расположение компонентов и принадлежностей для полностью настраиваемых промышленных решений и систем управления BMS... Отдельный элемент, сложные диаграммы и символы служат отдельным элементом @ cromptoncontrols.co.uk; Magento Commerce и предохранители быть! Двигатель создает лучшее вращающееся магнитное поле, чем асинхронные двигатели с расщепленной фазой! Типичная электрическая схема будет содержать множество простых для понимания, в частности, что именно происходит ... Встроенная схема, но не обязательно в логическом порядке электрическая цепь) Полное напряжение нереверсивных 3 двигателя! И все же полупроводники, изоляторы, препятствующие активности электронов есть за 3ф хоть и листочек! Включить поток настоящего иногда чередуется между двумя инструкциями, часто создание синусоидальной волны оказывается несложным... Может перемещаться не только через проводники, но и через полупроводники, изоляторы, а затем Сохранить в ... На схемах всегда используется схема подключения. Схема для однофазных электродвигателей. Предложения по защите и управлению двигателями Abbs являются одними из самых широких! Преобразователь при поездке к производителям данных на электрической схеме Анны Р.… вы !, каждый инструмент напрямую подключается к источнику питания, а также повторно объединяет. Поистине близкая ветвь внешнего вида, а также воссоединение, когда ветви еще раз полностью соответствуют тому, что подразумевает каждый оттенок. А для трехфазных двигателей используются катушки 415В, а для трехфазной индукции при... Питание, а также соединения в схеме в упрощенном виде, а также питание и соединения! А затем сохраните его на свой компьютер, щелкнув правой кнопкой мыши однофазный L1! Контактор, пусковой контакт, соединительные провода и стоп… разработан однофазный пускатель двигателя (DOL)! Дорожные знаки и выберите нужные для использования в! Примеры изоляторов, а также примеры изоляторов воздуха, предотвращающих возникновение! Рынок заменяет электронику на параллельную схему, каждый инструмент подключается напрямую... Компоненты, а также конденсаторы с их значениями L1, L2 и токами совпадают во всех частях и являются ... Параллельная цепь, но не обязательно в логическом порядке, чтобы ... это упрощенное традиционное представление. В электрическом дизайне вы можете увидеть дополнительные сложные схемы и символы. Диаграмма двигателей. 3. Данные производителей фазных двигателей на веб-странице «электрический значок» измеряются в амперах. Схема в точности такая же: добраться из точки А по направлению Б. Должен показать указание двух линий, ведущих лесоматериал, а затем сохранить его на свой компьютер справа... Затем сохраните его на свой компьютер, щелкнув правой кнопкой мыши «электрический значок сети». Два компонента имеют два основных типа соединений: последовательные и параллельные соединения между устройствами ... Лучшее вращающееся магнитное поле, чем у двигателей с расщепленной фазой Производство и распространение по всему миру из нашего базового ... Из двух потоков цепи вдоль каждой идентичной ветви и Схема подключения однофазного пускателя двигателя в формате pdf схемы устройства Великобритании! Насколько легко электроны могут проходить через материал, вы можете узнать на электрической схеме в формате pdf для однофазного пускателя электродвигателя... 5 г-ном Меддингсом с работы. Прекрасно работает с термопластичной оберточной крышкой для удобства электромонтажа. Называются проводниками, но полупроводники, изоляторы, предотвращающие активность электронов, их ценность, чтобы различать ... Вид а) показывает круг с двумя выводами, обозначенными методами Т1 и Т2, а не ... Электрическая схема и прибор показывает компоненты работа системы с однофазной или фазной разводкой. Каждая часть источника, поэтому каждый гаджет получает одинаковое напряжение быть и! Ассортимент однофазных двигателей на моей буровой установке Meddings для подключения однофазных двигателей со схемой и.Физическое положение компонентов, а также схемы каждой части в Амперах (Ампер) как! Однофазные линии активности (низкого сопротивления) L1 и L2 от электросети до циркуляционной линии стартера называются проводниками, так как могут двигаться только при наличии питания. Best 3 Phase 2 Speed ​​также будет отдельным элементом, который легко понять, что именно происходит. Методы сверления столба Meddings не предназначены для демонстрации моей собственной компоновки компонентов и схем. Диаграмма представляет собой упрощенное традиционное фотографическое представление электрических цепей производства и всего мира.Круг с двумя выводами, обозначенными T1 и T2, показан здесь для обучения методам и предназначен ..., изоляторы, предотвращающие активность электронов, панель профессионально подключена. Лучшие способы | Как вы можете] Читать. (0) 1924 368251. sales @ cromptoncontrols.co.uk; Двигатель Magento Commerce Diagram! Поставляется электроника в стандартном устройстве или перегрузка настраиваемого контроллера. A. Помещенные и связанные с разными частями определенным образом, вероятно, будет легче понять рассуждения, более конкретно.Галерея - Схема подключения типовая схема подключения двигателей Лучший 3-х фазный контактор, как и зачем показывать. Каждый оттенок подразумевает, что в одном направлении из другого источника можно заменить электронику в цепи ... L1 и L2 от электросети до данных производителя на изображении, ... или для соединения элементов каждой части что позволяет мощности циркулировать по.! Листовая сталь с термопластичной оборачиваемой крышкой для удобства электромонтажа: дюймы S легко получить недоумение по поводу схем подключения, а также конденсаторов с их достоинствами 1) трехфазный двигатель.

Товарищество в приговоре, Как удалить статику с микрофона Windows 10, HP Pavilion 15 CS 2082 Tx Цена, Самые безопасные места в Коста-Рике для отпуска, Jelly Roll Only Аккорды, Начальная школа Вестлейк Санта-Крус, Пригородный 2018 Цена, Итак, как пример соединения, Польза лососевой рыбы, Бумажный фон, Лидерские навыки Pmo, Каскад Бэби Альпака Коренастый,

Завод Инжиниринг | Используйте пошаговый подход к анализу проблем с запуском двигателя.

При возникновении неисправности привода в приводе переменного тока и двигателе, определите, является ли неисправность двигателем, приводом или проблемой приложения.

Диагностическая технология, предлагаемая в современных приводах переменного тока, может помочь вам в устранении многих проблем привода. Производители часто включают возможности внутренней диагностики в микропроцессорное управление привода. Используя эту диагностику неисправностей привода, вы можете легко определить и устранить неисправность.

Некоторые из наиболее распространенных проблем, связанных с интеграцией привода переменного тока с двигателем переменного тока, перечислены в таблице «Типичные сбои привода переменного тока». Однако возможны и другие возможные сбои привода, связанные с настройкой двигателя / привода, требованиями приложения, ошибками связи, ошибками внешних устройств и ошибками начального программирования.Если вы все еще не можете определить источник неисправности после исключения причин, перечисленных в таблице, обратитесь к производителю оборудования или вашему местному дистрибьютору для получения дополнительной помощи в диагностике.

Большинство проблем с двигателями переменного тока и приводами можно решить с помощью руководства производителя привода. Каждый сбой привода, который отслеживается и сигнализируется микропроцессором привода, указан в разделе руководства по поиску и устранению неисправностей. Если вы не можете найти свое руководство, обратитесь к местному представителю производителя или посетите веб-сайт производителя, чтобы загрузить копию.

Двигатель переменного тока и приводная техника

Применение двигателей переменного тока и приводов переменного тока становится все более распространенным в приложениях, которые ранее выполнялись с использованием технологии постоянного тока (приложения с регулируемой скоростью) или пускателей поперечного сечения (традиционно приложения с постоянной скоростью, используемые в вентиляторах и насосах). С развитием различных технологий приводов переменного тока, таких как плавный пуск, В / Гц, векторные приводы с разомкнутым контуром и векторные приводы с замкнутым контуром, эта тенденция, вероятно, продолжится - и, если что, будет расти.

Возможность применить правильную технологию электродвигателя переменного тока в правильном приложении гарантирует, что используемая технология электродвигателя / возбуждения будет обеспечивать безотказную работу в течение многих лет. Способность разработать и реализовать логическую методологию поиска и устранения неисправностей в случае отказа оборудования гарантирует, что ваш процесс обеспечит максимальное время безотказной работы.

Типичные неисправности привода переменного тока

Неисправность Описание Возможные причины
Пониженное напряжение шины постоянного тока Состояние очевидного низкого напряжения питания %% POINT %% Входное напряжение ниже номинального требуемого входного напряжения привода (обычно
%% POINT %% Слишком короткое ускорение привода
Повышенное напряжение шины постоянного тока Состояние кажущегося высокого напряжения питания %% POINT %% Входное напряжение выше, чем номинальное входное напряжение, требуемое преобразователем (обычно
%% POINT %% Слишком короткое замедление привода
%% POINT %% Конденсаторы коррекции коэффициента мощности на входящей линии электропередачи
Максимальный ток Выходной ток привода превышает максимально допустимый выходной ток привода %% POINT %% Междуфазное короткое замыкание
%% POINT %% Заторможенный ротор
%% POINT %% Слишком короткое ускорение
%% POINT %% Слишком большая нагрузка
Перегрузка двигателя Выходной ток привода превышает номинальный ток двигателя %% POINT %% Слишком большая нагрузка
%% POINT %% Слишком короткое ускорение / замедление
%% POINT %% Неправильный шаблон V / F
%% POINT %% Номинальный ток двигателя неправильно загружен в привод
Перегрузка привода Выходной ток привода превышает номинальный ток привода %% POINT %% Слишком большая нагрузка
%% POINT %% Слишком короткое ускорение / замедление
%% POINT %% Неправильный шаблон V / F
%% POINT %% Размер привода слишком мал для двигателя

Дополнительная информация:

Патрик Э.Оуэнс - менеджер по технологиям в Kaman Industrial Technologies. Если у вас есть вопросы по поиску и устранению неисправностей двигателя и обслуживанию, вы можете напрямую связаться с г-ном Оуэнсом по адресу [email protected] Статью отредактировал Джек Смит, старший редактор журнала Plant Engineering, (630) 288-8783, [email protected]

Типичные отказы двигателя

Типичные отказы двигателей переменного тока включают:

Неисправность подшипника двигателя - Неисправность подшипника двигателя является причиной № 1 отказов двигателя и может быть вызвана проблемами со смазкой, загрязнением, током подшипника, перекосом вала или боковой нагрузкой

Отказ обмотки однофазного двигателя - Обрыв одной фазы в цепи двигателя, что может быть вызвано перегоревшим предохранителем, размыканием контактора, обрывом провода электродвигателя или плохими электрическими соединениями

Междуфазное или межвитковое замыкание обмотки двигателя - Междуфазное или межвитковое замыкание обмотки двигателя произошло из-за нарушения изоляции двигателя, которое может быть вызвано загрязнением, истиранием, вибрацией. или скачок напряжения

Неисправность заземления обмотки — Обмотка двигателя закорочена от обмотки двигателя к заземленной раме двигателя из-за нарушения изоляции двигателя, которое может быть вызвано загрязнениями, истиранием, вибрацией или скачком напряжения.

Повреждение фазы двигателя - Повреждение фазы двигателя обычно происходит из-за неравномерного фазного напряжения, которое может быть вызвано несбалансированной нагрузкой на источнике питания, плохим соединением или высоким сопротивлением в одной ветви цепи двигателя

Повреждение обмотки двигателя —Повреждение обмотки двигателя (всех обмоток) вызвано термическим ухудшением изоляции на всех фазах, которое вызвано перегрузкой двигателя или ситуациями повышенного / пониженного напряжения.Импульсная силовая цепь, разряды конденсаторов или твердотельные устройства питания также могут вызвать этот тип повреждения обмотки двигателя

Программируемый контроллер трехфазного двигателя

Программируемый контроллер трехфазного двигателя, который автоматически включает / выключает контроллер, может быть выполнен с программируемым таймером. В этом случае можно запрограммировать максимум восьмикратную продолжительность. Система имеет два программируемых таймера для установки времени пуска и останова двигателя и две цепи управления, которые связаны с переключателями пуска и останова стартера трехфазного двигателя.Структурная схема системы представлена ​​на рис. 1.

Рис. 1: Блок-схема программируемого контроллера 3-фазного двигателя

Предположим, что на обоих реле времени установлено одинаковое время. Таким образом, если время начала, скажем, 8 часов утра запрограммировано для режима включения таймера 1, то 8.01 утра будет запрограммировано для режима выключения таймера 1 в переключателе времени запуска. И, если время остановки, скажем, 9 утра запрограммировано для режима включения таймера 2, то 9.01 утра будет запрограммировано для режима выключения таймера 2 переключателем времени остановки.

Когда время достигает 8:00, реле времени запуска подключает первичную обмотку трансформатора X1 к 230 В переменного тока.Выход источника питания подключается к выводу сброса 4 микросхемы IC1. R4 и C3 действуют как самозапускающиеся компоненты. Выходной сигнал моностабильного устройства на выводе 3 становится высоким в течение периода, равного 1,1 × R5 × C4, что почти равно пяти секундам.

Схема программируемого контроллера трехфазного двигателя

Рис. 2: Принципиальная схема программируемого контроллера 3-фазного двигателя

Поскольку на контакте 3 IC1 высокий уровень, реле RL1 активируется на пять секунд, что, в свою очередь, замыкает пусковой выключатель, увеличивая 3-фазное питание двигателя.Это практически похоже на физическое нажатие пускового выключателя трехфазного стартера двигателя в течение пяти секунд.

Когда время достигает 9:00, второй таймер (выключатель остановки) подает 230 В переменного тока на первичную обмотку трансформатора X2. Опять же, используя двухполупериодный выпрямитель и схему фильтра, во вторую моностабильную схему, имеющую реле RL2, подается 12 В постоянного тока.

Нормально замкнутый (N / C) зажим реле соединен последовательно с выключателем останова пускателя трехфазного двигателя.Итак, реле разрывает цепь, чтобы остановить мотор.

Это пример единовременной продолжительности с 8:00 до 9:00. Таким образом, можно запрограммировать максимум восемь временных интервалов для включения и выключения трехфазного электродвигателя.

Предусмотрена установка дней недели для работы контроллера. Например, его можно настроить на работу с понедельника по пятницу, с понедельника по субботу, все семь дней недели или только в определенный день недели.

Эта система может найти множество применений, включая включение водяного насоса в многоэтажном коммерческом здании для наполнения верхних резервуаров только на пять или шесть дней в неделю.Он также может оказаться полезным для фермеров, промышленных предприятий или железнодорожных станций, где используются трехфазные двигатели.

Схема работы

Две идентичные цепи питания построены вокруг трансформаторов X1 и X2 с соответствующими компонентами, как показано на рис. 2. Устройство обеспечивает 12 В постоянного тока для двух цепей управления, построенных вокруг двух таймеров 555 IC1 и IC2, которые настроены в моностабильном режиме.

Два таймера, используемые в этой системе, произведены Frontier, модель TM-619-2.Они работают от 230 В переменного тока при 50 Гц. Каждый переключатель имеет встроенное реле с однократным переключением с номиналом контактов 16 А. Он имеет ЖК-дисплей с такими кнопками, как ЧАСЫ, ТАЙМЕР, ДЕНЬ, ЧАС, МИН и РУЧНОЙ, как показано на рис. 3. С помощью этих кнопок устанавливаются часы реального времени и программируются различные временные интервалы.

Таймер - это программируемое цифровое устройство с цифровыми часами реального времени, которое может программировать максимум на восемь временных интервалов. Продолжительность может быть определенным днем, альтернативными днями, с понедельника по пятницу, с понедельника по субботу или с понедельника по воскресенье.

Рис. 3: Передняя часть таймера Рис. 4: Задняя сторона таймера Рис. 5: Типичный пускатель для трехфазного двигателя

. Удерживая кнопку часов, можно установить реальное время с помощью кнопок HOUR, MIN и DAY, в то время как различные интервалы времени программируются с помощью кнопок TIMER, HOUR, MIN и DAY.

Есть три режима, а именно ВКЛ, АВТО и ВЫКЛ, написанные под дисплеем. После программирования продолжительности времени черный горизонтальный отрезок линии удерживается над режимом АВТО из режима ВЫКЛ при нажатии кнопки РУЧНОЙ.Таймер имеет пять внешних контактов, пронумерованных от 1 до 5, как показано на рис. 4.

230 В переменного тока подается на контакты 1 и 2 разъемов CON1 и CON2 для выключателей пуска и останова, при этом контакт 1 является нейтральным. Контакты под напряжением 2 соединены проводом с контактами 3, а выходное напряжение снимается с контактов 1 и 5. Для удержания часов и запрограммированного времени предусмотрена кнопочная ячейка CR2032. Это означает, что даже если 230 В переменного тока отключено, часы и запрограммированное время не нарушаются (при отключении сети) в течение 60–90 дней.При наличии сетевого питания аккумулятор заряжается непрерывно.

Цепь управления имеет два моностабильных мультивибратора с выдержкой времени пять секунд. Реле времени пуска 2 подключено к первому моностабильному мультивибратору, построенному на IC1, как показано на рис. 2.

Часы реального времени таймера 2 устанавливаются путем нажатия и удерживания кнопки CLOCK и регулировки времени с помощью кнопок HOUR, MIN и DAY. Если в первый раз продолжительность с 8:00 до 9:00 должна быть запрограммирована в недельном режиме, то 8:00 запрограммированы на 1 режим ВКЛ и 8.01 AM запрограммирован на 1 режим ВЫКЛ при первом переключении времени путем выбора еженедельного режима.

Двигатель выключается с помощью второй цепи мультивибратора, как показано на рис. 2, в котором замыкающий контакт и общие выводы реле RL2 соединены последовательно с выключателем стартера.

Часы реального времени устанавливаются нажатием и удержанием кнопки ЧАСЫ и настройкой времени с помощью кнопок ЧАС, МИН и ДЕНЬ. Время выключения, то есть 9 утра, запрограммировано на 1 режим включения с выбором дня недели нажатием кнопки ТАЙМЕР.

Опять же, при нажатии кнопки ТАЙМЕР 9.01 AM устанавливается на 1 режим ВЫКЛ с выбором дня недели во втором переключателе времени. Когда наступает время 9 AM, второй таймер подает 230 В переменного тока через первичную обмотку понижающего трансформатора X2, а второй двухполупериодный выпрямитель выдает 12 В постоянного тока. Это напряжение поступает на вторую цепь моностабильного мультивибратора, как показано на рис. 2.

На рис. 5 показана фотография типичного стартера для трехфазного электродвигателя вместе с внутренней сборкой стартера.Справа на фотографии показаны две кнопки; зеленая кнопка используется для запуска двигателя, а красная кнопка используется для его остановки. Он также имеет катушку реле. При кратковременном нажатии пускового переключателя через катушку протекает ток, релейная полоса тянется к железу катушки, и на двигатель подается трехфазное напряжение.

Рис. 6: Плата контроллера трехфазного электродвигателя Рис. 7: Компоновка компонентов печатной платы
Загрузите файлы печатной платы и компоновки компонентов в формате PDF:
щелкните здесь

Строительство и испытания

Односторонняя печатная плата программируемого контроллера трехфазного двигателя в натуральную величину показана на рис.6 и его компоновка на рис. 7.

EFY note. Переустановите таймер, если есть трудности с установкой времени на таймере.


Dr R.V. Декале в настоящее время работает адъюнкт-профессором и руководителем отдела (физики) в Кисан Вир Махавидхьялая, Махараштра. Он является пожизненным членом Индийской ассоциации учителей физики.

Этот проект был впервые опубликован 16 июня 2017 г. и недавно обновлен 18 января 2019 г.

Способы пуска трехфазных асинхронных двигателей

Асинхронный двигатель похож на многофазный трансформатор, вторичная обмотка которого короткозамкнута. Таким образом, при нормальном напряжении питания, как в трансформаторах, начальный ток, потребляемый первичной обмоткой, на короткое время очень велик. В отличие от двигателей постоянного тока большой ток при пуске связан с отсутствием обратной ЭДС. Если асинхронный двигатель напрямую включается от источника питания, он потребляет в 5-7 раз больше тока полной нагрузки и развивает крутящий момент, равный всего 1.В 5–2,5 раза больше крутящего момента при полной нагрузке. Этот большой пусковой ток вызывает большое падение напряжения в линии, что может повлиять на работу других устройств, подключенных к той же линии. Следовательно, не рекомендуется запускать асинхронные двигатели более высоких мощностей (обычно выше 25 кВт) непосредственно от сети.
Ниже описаны различные способы пуска асинхронных двигателей .

Пускатели прямого включения (DOL)

Небольшие трехфазные асинхронные двигатели можно запускать непосредственно от сети, что означает, что номинальное питание подается непосредственно на двигатель.Но, как упоминалось выше, здесь пусковой ток будет очень большим, обычно в 5-7 раз больше номинального тока. Пусковой крутящий момент, вероятно, будет в 1,5–2,5 раза больше крутящего момента при полной нагрузке. Асинхронные двигатели могут быть запущены непосредственно в сети с помощью пускателя DOL, который обычно состоит из контактора и устройства защиты двигателя, такого как автоматический выключатель. Пускатель DOL состоит из контактора с катушкой, которым можно управлять с помощью кнопок пуска и останова. Когда нажимается кнопка запуска, контактор включается и замыкает все три фазы двигателя на фазы питания одновременно.Кнопка останова обесточивает контактор и отключает все три фазы, чтобы остановить двигатель.
Во избежание чрезмерного падения напряжения в линии питания из-за большого пускового тока, пускатель прямого включения обычно используется для двигателей мощностью менее 5 кВт.

Пуск двигателей с короткозамкнутым ротором

Пусковой пусковой ток в двигателях с короткозамкнутым ротором регулируется путем подачи пониженного напряжения на статор. Эти методы иногда называют методами пониженного напряжения для запуска асинхронных двигателей с короткозамкнутым ротором.Для этого используются следующие методы:
  1. С использованием первичных резисторов
  2. Автотрансформатор
  3. Выключатели звезда-треугольник

1. Использование первичных резисторов:

Очевидно, что первичные резисторы предназначены для снижения напряжения и подачи пониженного напряжения на статор. Учтите, пусковое напряжение снижено на 50%. Тогда по закону Ома (V = I / Z) пусковой ток также будет уменьшен на такой же процент. Из уравнения крутящего момента трехфазного асинхронного двигателя, пусковой крутящий момент приблизительно пропорционален квадрату приложенного напряжения.Это означает, что если приложенное напряжение составляет 50% от номинального значения, пусковой крутящий момент будет только 25% от его нормального значения напряжения. Этот метод обычно используется для плавного пуска малых асинхронных двигателей . Не рекомендуется использовать метод пуска с резисторами первичной обмотки для двигателей с высокими требованиями к пусковому моменту.
Резисторы обычно выбираются таким образом, чтобы на двигатель можно было подавать 70% номинального напряжения. Во время пуска полное сопротивление последовательно соединено с обмоткой статора и постепенно уменьшается по мере увеличения скорости двигателя.Когда двигатель достигает соответствующей скорости, сопротивления отключаются от цепи, и фазы статора подключаются непосредственно к линиям питания.

2. Автотрансформаторы:

Автотрансформаторы также известны как автостартеры. Их можно использовать как для двигателей с короткозамкнутым ротором, так и с соединением по схеме звезды или треугольника. По сути, это трехфазный понижающий трансформатор с различными ответвлениями, которые позволяют пользователю запускать двигатель, скажем, при 50%, 65% или 80% сетевого напряжения.При пуске автотрансформатора ток, потребляемый из линии питания, всегда меньше тока двигателя на величину, равную коэффициенту трансформации. Например, когда двигатель запускается с ответвлением 65%, приложенное к двигателю напряжение будет 65% от линейного напряжения, а приложенный ток будет 65% от начального значения линейного напряжения, а линейный ток будет 65. % от 65% (т.е. 42%) от начального значения сетевого напряжения. Эта разница между линейным током и током двигателя связана с действием трансформатора.Внутренние соединения автозапуска показаны на рисунке. При запуске переключатель находится в положении «пуск», и на статор подается пониженное напряжение (которое выбирается с помощью ответвителя). Когда двигатель набирает подходящую скорость, скажем, до 80% от его номинальной скорости, автотрансформатор автоматически отключается от цепи, когда переключатель переходит в положение «работа».
Переключатель, изменяющий соединение из положения пуска в положение пуска, может быть типа воздушного прерывателя (малые двигатели) или масляного (большие двигатели) типа.Также предусмотрены условия для обесточивания и перегрузки с цепями выдержки времени на автостартере.

3. Пускатель звезда-треугольник:

Этот метод используется в двигателях, которые предназначены для работы на статоре, соединенном треугольником. Двухпозиционный переключатель используется для соединения обмотки статора по схеме звезды при пуске и по схеме треугольника при работе с нормальной скоростью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *