Схема зарядного устройства для аккумуляторов: Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Содержание

3 схемы зарядных устройств, полезных каждому автолюбителю | Лампа Электрика

Зарядное устройство для аккумуляторных батарей должно быть в арсенале каждого автолюбителя. Но, увы, промышленные приборы стоят дорого, а самостоятельно изготовить сложное устройство под силу не каждому. Предлагаемые в этой статье зарядные устройства просты по конструкции, не содержат дефицитных деталей, и повторить их сможет практически каждый, имеющий начальные знания по электротехнике.

Прибор для зарядки и тренировки АКБ

С помощью этого прибора можно не только зарядить 12-ти вольтовый аккумулятор емкостью до 60 А-ч, но и потренировать его ассиметричным током, что бывает необходимым на начальных стадиях сульфатации.

Зарядное устройство подойдет и для более емких аккумуляторов, но время зарядки несколько увеличится.
Схема устройства для тренировки аккумуляторных батарей

Схема устройства для тренировки аккумуляторных батарей

Сетевое напряжение поступает на трансформатор Т1, понижается до 25 вольт и выпрямляется при помощи одополупериодного выпрямителя, собранного на диодах D1, D2. Диоды включены параллельно для облегчения режима их работы. Далее выпрямленное однополупериодное напряжение поступает на узел регулировки тока, собранный на транзисторе VT1 и параметрическом стабилизаторе R1, D3. Регулируют зарядный ток при помощи переменного резистора R2.

Таким образом, во время положительной полуволны АКБ заряжается, во время отрицательной разряжается через резистор R4 током порядка 500 мА. При этом максимальный зарядный ток в импульсе может достигать 10 А (усредненное значение – 5 А). Силу зарядного тока контролируют по амперметру PA1, а напряжение на клеммах АКБ по вольтметру PV1.

Устанавливая зарядный ток по амперметру, необходимо учитывать, что во время зарядки часть тока протекает через резистор R4, поэтому из показаний прибора нужно вычесть 10%. Если есть возможность и желание, чтобы не заниматься математикой шкалу прибора можно переградуировать.

Узел защиты от глубокого разряда собран на электромагнитном реле К1. Пока напряжение в сети есть, реле включено и своими контактами К1.1 и К1.2 (включены параллельно для увеличения мощности) подает напряжение зарядки на АКБ. Если напряжение в сети исчезнет, реле обесточится и отключит батарею от зарядного устройства.

В устройстве можно использовать любой сетевой трансформатор, выдающий на вторичной обмотке напряжение 22-26 В при токе 10 А. Диоды D1, D2 – любые выпрямительные, выдерживающие ток 10 А и обратное напряжение не ниже 40 В. КТ827 можно заменить на КТ844. Резистор R4 – ПЭВ-15 или любой другой проволочный с рассеиваемой мощностью не менее 15 Вт. R3 – С5-16МВ или самодельный, выполненный из нихромового провода. Стабилитрон Д814А можно заменить на Д814 с буквами Б, В, Г. Реле – РПУ-0 или аналогичное с напряжением срабатывания 24 В, каждая группа контактов которого сможет выдерживать половину зарядного тока (включены параллельно).

Вольтметр PV1 с пределом измерения 20 В, амперметр PA1 рассчитан на измерение тока до 10 А. Диоды D1, D2 и транзистор VT1 установлены на радиаторы. При этом диоды можно установить на один общий радиатор без изолирующий прокладок.  В качестве радиатора для транзистора можно использовать металлический корпус прибора.

Зарядное устройство с защитой от перезарядки

Предыдущая конструкция имела существенный недостаток – если вовремя не снять аккумулятор с зарядки, то его легко перезарядить и вывести из строя. Предлагаемая конструкция не умеет тренировать АКБ, но не допустит перезарядка батареи.

Схема зарядного устройства с защитой от перезарядки

Схема зарядного устройства с защитой от перезарядки

Сетевое напряжение понижается трансформатором Tr1 до 18 В и подается на тиристор Т1, который является управляющим элементом и одновременно однополупериодным выпрямителем. Управляется тиристор цепью R2, R3, R4, R5 которая получает питание от однополупериодного выпрямителя (диод D1).

Изменяя сопротивление переменного резистора R2, мы можем менять напряжение, подаваемое на управляющий электрод тиристора при каждой положительной полуволне. Этим резистором мы регулируем зарядный ток, который можно контролировать по амперметру PA1. Напряжение на клеммах заряжаемого аккумулятора отображается прибором PA2. Лампа La1 – контрольная.

Переключатель S2 позволяет одним щелчком без возни с потенциометром увеличить зарядный ток вдвое. Узел предотвращения перезаряда собран на элементах R5 и D2. Как только напряжение на клеммах достигнет напряжения стабилизации стабилитрона, он откроется и запретит прохождение управляющих импульсов на тиристор. Заряд прекратится.

Стабилитроны имеют большой разброс по току стабилизации. У Д815Е, к примеру, он может лежать в диапазоне 13,3…15 В. Если напряжение стабилизации у конкретного экземпляра низкое, то АКБ будет недозаряжаться, высокое – произойдет  перезарядка. Прежде, чем установить стабилитрон в схему, необходимо отобрать экземпляр с напряжением стабилизации, равном напряжению полностью заряженной батареи.

В конструкции можно использовать любой трансформатор, обеспечивающий напряжение 18-21 В и способный отдать ток 10 А. Лампа La1 – индикаторная на рабочее напряжение 24 В. Диод Д7 можно заменить на любой, выдерживающий прямой ток не менее 200 мА и обратное напряжение не ниже 30 В. Резистор R1 — С5-16МВ. На месте VD2 могут работать тиристоры КУ202В-Н. Тиристор размещается на радиаторе площадью не менее 200 см2. Весь монтаж производится проводом сечением не менее 4 мм2.

Зарядное устройство на специализированной микросхеме

Это зарядное устройство отлично подойдет владельцам мототехники. Оно способно заряжать шести и двенадцативольтовые батареи током до 1.5 А в полностью автоматическом режиме.

Схема зарядного устройства на микросхеме L200CV

Схема зарядного устройства на микросхеме L200CV

Микросхема представляет собой регулируемые стабилизатор тока и напряжения. Имеет защиту от перенапряжения по входу, перегрева, перегрузки и короткого замыкания. Конечное напряжение зарядки 12-ти или 6-тивольтового аккумулятора выбирается переключателем SB2, переключателем SB1 выставляется ток зарядки. Как только напряжение на клеммах АКБ достигнет заданного предела (регулируется потенциометрами R7 и R8 для 12-ти и 6-ти вольтовой батареи соответственно) зарядка прекратится. Поскольку процесс полностью автоматический, прибор не имеет измерительных приборов, но при желании их можно установить.

Конструкция устройства произвольная, в схеме можно использовать любые переключатели на соответствующее число положений. На месте VD1 может работать любой выпрямительный диод, выдерживающий прямой ток не менее 5 А и обратное напряжение не менее 25 В. Микросхему DA1 необходимо установить на радиатор.

Тока в 1.5 А для зарядки автомобильного аккумулятора маловато (долго будет заряжаться). Но если кто-то из автомобилистов заинтересовался этой микросхемой, то может собрать схему, приведенную ниже.
Схема зарядного устройства для автомобильного аккумулятора

Схема зарядного устройства для автомобильного аккумулятора

Эта конструкция благодаря силовому транзистору VT1 способна отдать в нагрузку ток до 10А. Конечное напряжение зарядки устанавливается резистором R4, а ток зарядки резистором R3. Ручки обоих резисторов необходимо проградуировать по эталонным вольтметру и амперметру. Диод D1, транзистор VT1 и саму микросхему необходимо установить на радиаторы.

Вот, вроде, и все о простых зарядных устройствах. Будем надеяться, что автолюбители найдут в этой статье что-то полезное для себя.

до 10 А, своими руками, ЗУ для АКБ из трансформатора

Автор Акум Эксперт На чтение 12 мин Просмотров 59.6к. Опубликовано Обновлено

Практически каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядки аккумуляторной батареи стационарным зарядным устройством (СЗУ). Причин тут множество – частые пуски, короткие поездки, длительные стоянки. Но для того чтобы батарея служила долго, она должна не только быть постоянно заряженной, но и правильно заряжаться. В этой статье мы рассмотрим несколько схем регуляторов зарядного тока. Ведь этот узел – неотъемлемая часть любого «правильного» СЗУ.

Содержание

  1. Простые зарядные устройства с ручной регулировкой
  2. Простой регулятор с балластными конденсаторами
  3. С плавной регулировкой тока зарядки
  4. С зарядкой ассиметричным током
  5. Схемы регуляторов тока на микросхемах
  6. Стабилизатор
  7. Регулятор-стабилизатор
  8. Регулятор тока и напряжения
  9. Подведем итоги

Простые зарядные устройства с ручной регулировкой

Начнем с простых устройств, позволяющих вручную регулировать параметры зарядки. Поскольку большинство аккумуляторных батарей легковых автомобилей имеет емкость не более 100-120 Ач, зарядного устройства, обеспечивающего ток до 10 ампер, будет вполне достаточно.

Простой регулятор с балластными конденсаторами

Сделать такое зарядное устройство, не имеющее дефицитных деталей, сможет каждый, умеющий пользоваться мультиметром и держать в руках паяльник. Взглянем на схему, приведенную ниже.

Схема простого зарядного устройства с балластными конденсаторами

Устройство состоит из понижающего трансформатора Tr1, мощного выпрямителя, собранного на диодах VD1-VD4 и набора конденсаторов разной емкости С1-С4. Каждый из конденсаторов может включаться в цепь питания трансформатора при помощи отдельного выключателя S2-S4. Емкости конденсаторов подобраны так, что каждый последующий обеспечивает выходной ток ЗУ вдвое больший, чем предыдущий.

В зависимости от номинала и количества подключенных конденсаторов будет изменяться выходное напряжение, а значит, и зарядный ток. Комбинируя конденсаторы выключателями S2-S4, можно изменять зарядный ток от 1 до 15 А с шагом 1 А, что более чем достаточно для зарядки любой АКБ.

Напряжение на клеммах аккумуляторной батареи, подключенной к клеммам XS2, XS3, можно контролировать при помощи вольтметра PU1. Величину зарядного тока покажет амперметр PA1. Выключателем питания служит тумблер S1.

В конструкции можно использовать любой сетевой трансформатор (можно самодельный), обеспечивающий ток не менее 10 А при выходном напряжении 22-24 В. Диоды Д305 можно заменить на любые выпрямительные, рассчитанные на прямой ток не менее 10 А и выдерживающие обратное напряжение не ниже 40 В. Диоды выпрямительного моста необходимо установить на изолированные друг от друга радиаторы с площадью рассеяния не менее 100 см2 каждый.

Важно! Если полупроводники будут устанавливаться на один общий радиатор, то это нужно делать через изолирующие слюдяные прокладки. При этом рассеиваемая площадь радиатора выбирается не менее 300 см2 .

Конденсаторы C2-C4 – неполярные, бумажные, рассчитанные на рабочее напряжение не ниже 300 В. Подойдут, к примеру, МБГЧ, МБГО, КБГ-МН, МБМ, МБГП, которые широко использовались в качестве фазосдвигающих для асинхронных двигателей бытовой техники. На месте PU1 может работать любой вольтметр постоянного тока с пределом измерения 30 В. PA1 – амперметр с пределом измерения 20-30 А, в качестве которого удобно использовать любой микроамперметр с соответствующим шунтом.

С плавной регулировкой тока зарядки

Следующая схема сложнее, где в качестве регулирующего элемента использует тиристор. Преимущество данной конструкции – плавная регулировка выходного напряжения, а значит, и зарядного тока. Диапазон регулировки – 0-10 А. Принцип работы СЗУ – фазоимпульсное управление ключом (тиристором).

Схема импульсного зарядного устройства

Прибор состоит из силового трансформатора T1, выпрямительного моста, собранного на мощных диодах VD1-VD4, и схемы регулировки тока, собранной на транзисторах VT1, VT2 и тиристоре VS1. Переменное напряжение величиной 18-22 В поступает со вторичной обмотки силового трансформатора на выпрямительный мост. Выпрямленное, оно подается на схему регулировки. В начале полуволны начинает заряжать конденсатор С2. Скорость его зарядки можно плавно регулировать переменным резистором R1.

Как только конденсатор зарядится до определенной величины, откроется аналог однопереходного транзистора, собранный на элементах VT1, VT2. Конденсатор быстро разрядится через управляющий электрод тиристора, последний откроется и будет находиться в таком состоянии до окончания этой полуволны. При появлении следующей процесс повторится.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой (зависит от времени заряда конденсатора С2), отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет приложено к клеммам аккумулятора, а значит, и зарядный ток будет ниже.

В качестве силового подойдет любой сетевой трансформатор с напряжением на вторичной обмотке 18-22 В при токе не менее 10 А. На месте VT1, кроме указанного, могут работать КТ361Б-КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж-KT501K. Вместо КТ315А подойдут КТ315Б-Д, КТ3102А, КТ312Б,  КТ503В-Г, П307. В качестве С2 могут использоваться конденсаторы типа МБГП, К73-17, К42У-2, К73-16, К73-11 емкостью 0.47-1 мкФ. Вместо КД105Б подойдут КД105В, КД105Г или Д226 с любой буквой. Переменный резистор R1 типа СПО-1, СП-1, СПЗ-30а.

Амперметр PA1 – любой с током полного отклонения 10 А. Вместо мощных выпрямительных диодов Д245 подойдут любые из серий КД213, КД203, Д245, КД210, Д242, Д243, выдерживающие ток не менее 10 А и обратное напряжение на ниже 50 В. Их необходимо установить на радиаторы площадью не менее 100 см2. Тиристор КУ202В можно заменить на КУ202Г-Е и даже на Т-160 или Т-250. Он тоже устанавливается на радиатор.

Полезно! Если выходное напряжение трансформатора несколько выше 22 В (скажем, 24-28 В), то можно использовать и его. Единственное, при этом необходимо номинал резистора R5 увеличить до 200 Ом.

С зарядкой ассиметричным током

Это зарядное устройство имеет предел регулировки тока от 0 до 10 А и производит зарядку ассиметричным током, при котором определенное время батарея заряжается, а остальную часть – разряжается током около 600 мА. Это существенно продлевает жизнь АКБ и предотвращает сульфатацию.

Схема СЗУ с зарядкой ассиметричным током

Здесь регулировка зарядного тока производится по высокому переменному напряжению при помощи симметричного тиристора (симистора). Принцип регулировки тот же, что и в предыдущей схеме, – фазоимпульсное управление. Но схема регулятора выглядит и работает несколько иначе.

В начале положительной полуволны зарядка конденсатора С2 происходит через резистор R3 и диод VD1 диодного моста VD1-VD4. Как только конденсатор зарядится до напряжения зажигания газоразрядной лампы HL1 (время зарядки зависит от положения движка переменного резистора R1), последняя зажжется. Конденсатор быстро разрядится через управляющий электрод симистора, и он откроется, подавая напряжение на сетевую обмотку понижающего трансформатора Т1.

В таком состоянии симистор будет находиться до окончания полупериода. При отрицательной полуволне конденсатор будет заряжаться через резистор R5 и диод VD2. При этом полярность напряжения будет противоположной предыдущей. Снова разряд в лампе, тиристор открывается, пропуская на обмотку уже отрицательную полуволну.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Любопытно! Резисторы R3 и R5 исполняют еще одну немаловажную роль. Они попеременно через диоды VD3 и VD4 шунтируют сетевую обмотку трансформатора. Это предотвращает закрывание симистора сразу после короткого открывающего импульса на время, пока ток в обмотке Т1, являющейся индуктивной нагрузкой, не установится выше тока удержания симмитричного тиристора.

Пониженное напряжение, величина которого зависит от положения движка R1, выпрямляется диодами VD5, VD6 и подается на клеммы аккумуляторной батареи, производя ее зарядку выбранным нами током. После закрытия симистора и до следующего его открытия батарея разряжается через нагрузочный резистор R6, обеспечивающий разрядный ток порядка 600 мА.

Зарядный ток можно контролировать при помощи амперметра PA1, прибор PV1 показывает напряжение на клеммах АКБ.

Важно! Устанавливая величину зарядного тока по амперметру, необходимо учитывать и ток (600 мА), протекающий через резистор R6. То есть, если мы установим на приборе 6 А, фактический зарядный ток, протекающий через АКБ, будет составлять 6 – 0.6 = 5.4 А.

О деталях. В качестве сетевого подойдет любой трансформатор соответствующей мощности (выдаваемый ток не менее 10 А) с выходным напряжением 20 В и отводом от середины. Если вторичная обмотка не имеет отвода от середины, то можно использовать выпрямитель, собранный по мостовой схеме. Диоды VD5, VD6 – любые мощные выпрямительные на ток не менее 10 А и обратное напряжение не ниже 40 В.

VD1-VD4 можно заменить на любые выпрямительные, выдерживающие ток не менее 200 мА и напряжение 300 В. Конденсаторы С1, С2 – пленочные или бумажные, неполярные. Симистор можно заменить на КУ208В. Амперметр PA1 имеет предел измерения 15-20 А, вольтметр PV1 – 20 В. Мощные выпрямительные диоды VD5, VD6 и симистор VS1 необходимо установить на радиаторы. При этом диоды можно установить на общий радиатор без изолирующих прокладок. Диоды VD1-VD4 в радиаторе не нуждаются.

Схемы регуляторов тока на микросхемах

Выше мы рассмотрели несколько схем зарядных устройств с ручной регулировкой. Основной их недостаток – отсутствие стабилизации. В процессе зарядки АКБ ток через нее уменьшается, а это значит, что придется постоянно контролировать и подстраивать этот параметр. Но построить стабилизированный источник питания ненамного сложнее. Для начала несколько схем регулятора тока для зарядного устройства со стабилизацией, которые можно использовать для построения стационарных ЗУ.

Стабилизатор

Эта схема позволяет заряжать шести- и двенадцативольтовые батареи током одной, заранее установленной стабильной величины до 10 ампер.

Стабилизатор тока для зарядного устройства

Сердцем узла является интегральный стабилизатор напряжения, включенный по схеме токовой стабилизации. Величина зарядного тока будет зависеть от номинала резистора R4, который можно рассчитать по формуле:

I = 1. 2/R,

где:

  • I – необходимый зарядный ток в А;
  • R – номинал резистора R4 в Ом.

Поскольку сама по себе микросхема КР142ЕН12А маломощная, для обеспечения большей мощности используются  транзисторные ключи T1 и T2, включенные параллельно. Резисторы R1 и R2 – токовыравнивающие. Они компенсируют разброс параметров транзисторов.

Несмотря на токовыравнивающие резисторы желательно подбирать транзисторы с как можно более близкими коэффициентами передачи.

Резисторы R1, R2, R4 изготавливаются из отрезков обмоточного провода необходимой длины, которые для большей компактности свернуты в спираль. Транзисторы VT1 и VT2 можно установить на один общий радиатор без изолирующих прокладок. Площадь рассеяния радиатора – 300 см2. Если на место R4 установить мощный реостат сопротивлением 0.8 Ом, то легко получить регулируемый стабилизатор.

Регулятор-стабилизатор

Эта схема является регулируемым стабилизатором и в отличие от предыдущей имеет более высокий КПД, поскольку рассеиваемая мощность на токозадающем резисторе намного меньше из-за его низкого сопротивления.

Схема регулятора-стабилизатора на операционном усилителе

Узел собран на операционном усилителе LM358 и полевом транзисторе IRFZ44. Регулировка зарядного тока производится при помощи переменного резистора R3. Резистор R5 является токозадающим.

При указанных на схеме номиналах R5 регулировка будет производиться в диапазоне 0 … 8 А. Если необходимы большие величины, то номинал резистора нужно уменьшить.

На месте T1 может работать транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Полевой транзистор устанавливаем на радиатор.

Регулятор тока и напряжения

И напоследок рассмотрим схему, которая будет полезна для конструирования зарядного устройства с регулировкой напряжения и тока. Подойдет она и в качестве лабораторного источника питания. Устройство обеспечивает плавную регулировку напряжения в диапазоне 2.4-28 вольт и регулировку ограничения тока от 0 до 15 ампер. По сути, это готовое зарядное устройство-автомат, достаточно добавить к схеме силовой трансформатор с выходным напряжением 18-22 В и способный обеспечить ток до 15 А.

Схема универсального регулятора

Регулятор напряжения собран на транзисторах Т1 Т2 и регулируемом стабилитроне D1 по схеме обычного параметрического стабилизатора. Величина выходного стабилизированного напряжения регулируется при помощи переменного резистора P1. Стабилизатор-регулятор тока выполнен на интегральном стабилизаторе напряжения DD1 и мощном полевом транзисторе T3. Регулировка осуществляется при помощи переменного резистора P2. Схемы обоих узлов классические и особых пояснений не требуют.

Единственное, скажем пару слов о назначении светодиодов Led1 и Led2. Они служат для индикации правильного подключения СЗУ к аккумуляторной батарее. Если полярность верная, то загорится индикатор Led1: можно подключать зарядное устройство к сети и начинать зарядку. Если полярность перепутана, то загорится Led2. Пока прибор не включен в сеть, ему ничего не грозит. Просто меняем полярность на правильную.

Полезно! Зарядка батареи производится следующим образом. Резистором P1 устанавливаем конечное напряжение зарядки (14.5 В), резистором P2 – начальный ток заряда (0.1 от емкости батареи). В процессе зарядки АКБ напряжение на ее клеммах будет увеличиваться, и как только оно достигнет установленного нами значения, ток зарядки упадет до 100-200 мА, процесс закончен.

В устройстве вместо моста KBPC2510 можно использовать любые мощные выпрямительные диоды (VD1-VD4), выдерживающие ток не менее 15 А и обратное напряжение 50 В. Транзистор TIP35C можно заменить на КТ867А, TIP41С – на КТ805 или КТ819. Диоды и транзисторы нужно установить на радиаторы площадью не менее 100 см2 каждый. Если используется мост, то он тоже должен иметь радиатор. Аналоги управляемого стабилитрона TL431 – КР142ЕН19А, К1156ЕР5Т, KA431AZ, LM431BCM, HA17431VP, IR9431N.

Интегральный стабилизатор напряжения L7812CV заменим на LM7812CT, UA7812CKC KA7812A, MC7812CT, КР142ЕН8Б. Полевой транзистор IRFP250 можно заменить на IRFP260. Ему тоже нужен радиатор. Светодиоды – любые индикаторные, желательно разного цвета свечения.

Подведем итоги

Итак, мы выяснили, что схем, позволяющих регулировать параметры зарядки аккумуляторной батареи, немало. Сложные и простые, с широким функционалом и просто стабилизаторы – выбирать есть из чего. Ну а тем, кого не удовлетворила, надо признать, довольно скромная подборка конструкций, можно рекомендовать статью «» и несколько роликов по теме.

Простое зарядное устройство

Зарядное устройство из готовых узлов

Зарядное устройство с автоматическим отключением

Сейчас читают:

схема на тиристоре, с регулятором тока

Содержание

  1. Принцип работы и основные компоненты
  2. Принципиальные схемы зарядных устройств
  3. Простое зарядное устройство для АКБ автомобиля на 12В
  4. Зарядное на тиристоре ку202н
  5. ЗУ для автомобильного аккумулятора на tl494
  6. Схема с автоматическим отключением
  7. Схема мощного ЗУ с регулировкой тока
  8. Технология сборки
  9. Часто задаваемые вопросы

Зарядное устройство для автомобильного аккумулятора — необходимое устройство в любом автохозяйстве. Его можно купить в магазине. А можно сделать самостоятельно.

Принцип работы и основные компоненты

Свинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.

Полностью разряженная АКБ автомобиля выдает напряжение 10,5 вольт (ниже разряжать нельзя), полностью заряженная — 12,6 вольт. В процессе уровень на выходе ЗУ остается постоянным, на клеммах батареи плавно повышается. Поэтому в начале зарядки ток будет максимальным, по окончании – минимальным. Снижение уровня тока служит признаком окончания процесса. Также для автоматического завершения зарядки можно использовать достижение напряжения на АКБ значения 12,5..12,6 вольт.

Процесс зарядки свинцово-кислотной батареи стабильным напряжением.

Стандартная схема построения зарядника содержит:

  1. Сетевой трансформатор;
  2. Выпрямитель;
  3. Регулятор тока (напряжения) — стабилизированный или нет.
Общая схема построения зарядников для автомобильных АКБ.

Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:

  • схемой ограничения тока;
  • электрическими защитами;
  • индикацией или автоматическим отключением по окончании зарядки.

Эти функции являются сервисными и повышают удобство работы с ЗУ.

Принципиальные схемы зарядных устройств

Зарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.

Простое зарядное устройство для АКБ автомобиля на 12В

Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.

ЗУ с регулирующим потенциометром.

На практике такая схема не используется по двум причинам:

  • через потенциометр идет полный ток нагрузки, элемент такой мощности найти трудно;
  • ток нагрузки идет через подвижный контакт движка переменного резистора, это значительно снижает надежность работы устройства.

Зато по этой схеме легко понять принцип работы простых зарядников.

Схема простого ЗУ.

На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.


Зарядное на тиристоре ку202н

Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).

Схема зарядного устройства на тиристоре.

Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.

Принцип фазоимпульсного регулирования.

Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.


Схема ЗУ без однопереходного транзистора.

Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.

Зарядное устройство на симисторе.

Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.

Видео версия: Зарядное с десульфатацией на одном тиристоре.

ЗУ для автомобильного аккумулятора на tl494

Зарядник можно построить на микросхеме TL494. Эта микросхема используется не совсем стандартно – обычно на ней строят полностью импульсные источники питания с выпрямлением сетевого напряжения и «нарезанием» из полученной постоянки высокочастотных импульсов (как в компьютерных БП). Здесь же присутствует и сетевой трансформатор, и выпрямитель вторичного напряжения. Импульсным является только регулируемый стабилизатор. Его достоинство в том, что регулирующий элемент (транзистор) открывается на определенные промежутки времени, через него не течет сквозной ток (равный току нагрузки), поэтому размеры теплоотвода можно значительно уменьшить.

Схема ЗУ на TL494.

Микросхема генерирует импульсы, частота которых задается цепью R4C3, а ширина зависит от разницы между уровнями на входах 1 и 2. Импульсы управляют транзистором VT1, который, открываясь, подпитывает энергией дроссель L1. Запасенная энергия расходуется в нагрузку. Чем больше нагрузка, тем быстрее расходуется запас, тем быстрее падает напряжение на выходе, что приводит к увеличению длительности импульсов с выхода 8 микросхемы. К этому же приводит вращение потенциометра R9 — так регулируется выходное напряжение.

Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.

Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.

При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.

Рекомендуем: Как из БП компьютера сделать зарядное устройство

Схема с автоматическим отключением

Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.

Схема автоматического отключения.

Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.

Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.

От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).

Схема мощного ЗУ с регулировкой тока

Схема мощного зарядного устройства.

Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:

  • схема управления собрана по стороне 220 вольт;
  • первичная обмотка трансформатора служит одновременно индуктивностью, накапливающей энергию, а затем отдающей ее в нагрузку через вторичные обмотки.

Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.

Читайте также

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

 

Технология сборки

Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:

  1. 100 мл аптечной перекиси водорода.
  2. 30 г лимонной кислоты.
  3. Две чайные ложки поваренной соли.

Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.

Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:

  • измерительные приборы;
  • органы регулирования напряжения и тока;
  • индикаторы включенного состояния.

Для подключения проводов, отходящих к аккумулятору, клеммы и разъемы лучше не использовать. Токи через них идут большие, поэтому потенциальный источник дополнительного переходного сопротивления нежелателен. Провода лучше подпаять к плате и вывести через отверстия в передней панели. Сечение проводников должно достаточным – не менее 2 кв.мм, а лучше 4 кв.мм. С другой стороны проводов надо припаять зажимы «крокодил».

Зарядное устройство в самодельном корпусе.

Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.

Похожая статья: Самодельное зарядное устройство для литий ионных аккумуляторов

Часто задаваемые вопросы

Каковы должны быть пределы регулировки по напряжению

Изменением уровня напряжения изменяют зарядный ток. Если предстоит зарядка автомобильных свинцово-кислотных батарей, то можно выбрать нижний предел регулировки, равный нижнему напряжению разряженной батареи – 10,5 вольт. Верхний предел надо установить по верхнему уровню 12,5 вольт плюс 1,5..2 вольта. На практике неплохо иметь запас по лимитам регулирования. Пределы от 10 до 16 вольт обеспечиат полный диапазон практически используемых зарядных токов.

Где можно взять трансформатор для автомобильного зарядного

Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.

Тип промышленного трансформатораВыходное напряжение, ВНаибольший ток, А
ТТП-100127,5
ТТП-1501212
ТН8-127/220-502х6,3 (обмотки соединяются последовательно)4,8
ТН28-127/220-502х6,3 (обмотки соединяются последовательно)4,8

Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S2*/14000, где:

  1. P – габаритная мощность, ВА.
  2. 0,8..0,88 – коэффициент, учитывающий материал стали (если он неизвестен, выбирается значение 0,8).
  3. S — площадь сечения сердечника в квадратных сантиметрах.

Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.

Площадь сечения для разных типов сердечников

Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:

  • d – диаметр провода в мм;
  • I – потребный ток в амперах.

Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.

Можно ли с помощью самодельных ЗУ заряжать АКБ без снятия с автомобиля

Этого делать не стоит. При зарядке на аккумулятор подается напряжение, уровнем и формой отличающееся от напряжения бортсети машины. Есть риск повреждения автомобильной электроники. Клеммы от АКБ надо отключить. Сам аккумулятор при этом можно не демонтировать, но это не очень удобно, да и длины проводов от ЗУ может не хватить.

простая схема. С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?

Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства — полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства

Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен — 14,4 В.
Схему можете скачать здесь —

Печатная плата

Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка

Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.
В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1. 1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1. 2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Зарядные устройства аккумуляторов | Логический Элемент ⚡ Зарядные устройства для аккумуляторов

Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда — при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

Зарядные устройства аккумуляторов, обеспечивающие постоянный ток (гальваностатический режим заряда)

Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n — количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй — для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения (потенциостатический режим заряда) и комбинированный заряд

Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т. п.).

О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах

Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

1. Зарядные устройства нормального (медленного) заряда
2. Зарядные устройства быстрого заряда
3. Зарядные устройства скоростного заряда

1. Зарядные устройства нормального (медленного) заряда.Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда — 14…16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда — лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

2. Зарядные устройства быстрого заряда.Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3…6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

3. Зарядные устройства скоростного заряда.Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них — меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

Источник: материал сайта http://www.powerinfo.ru/

Схемы зарядных устройств для аккумуляторов

Предлагаемое зарядное устройство предназначено для заряда аккумуляторов напряжением до 28 В и емкостью не более 20 А · ч, а также подзаряда аккумуляторов емкостью до 3000 А · ч.

Подзаряд аккумуляторов (компенсационный заряд) необходим в тех случаях, когда аккумуляторы длительное время не эксплуатируются. В результате саморазряда аккумуляторы разряжаются примерно на 1% за сутки (для разных типов аккумуляторов норма саморазряда своя). Компенсационный ток заряда можно рассчитать по приближенной формуле ImA*0,5С (С — емкость аккумулятора, А · ч), исходя из указанной нормы саморазряда 1 % за сутки и зарядки на 20% большей, чем саморазряд. К примеру, для аккумуляторов емкостью 60 А · ч компенсационный ток заряда составит 30 mA. Следует заметить, что при высокой температуре саморазряд аккумулятора больше в связи с увеличением плотности электролита.

В инструкциях по эксплуатации свинцовых стартерных аккумуляторов, если они длительное время не эксплуатируются, рекомендуется заряжать их 1 раз в месяц или же держать на постоянном подзаряде. Лучше — второй вариант, так как при этом аккумулятор всегда готов к эксплуатации. На предприятиях, где используются резервные дизель-генераторы для стартерных аккумуляторов, применяется именно второй вариант.

В разработанном зарядном устройстве (рис.1) заряд производится стабильным током. Стабилизация тока происходит за счет включения балластных конденсаторов в цепь выпрямительного моста. Идея применения конденсатора как балластного сопротивления не новая, однако обычно конденсаторы включают в первичную обмотку силового трансформатора, а это приводит к тому, что устройство нельзя включать без нагрузки (при обрыве в цепи нагрузки происходят переходные процессы, и на обмотке силового трансформатора появляется высокое напряжение, что приводит к выходу из строя его или балластных конденсаторов).

Со вторичной обмотки (две обмотки включены последовательно) силового трансформатора Т1 переменный ток через один или несколько включенных параллельно конденсаторов С1 …С11 поступает на мостовой выпрямитель на диодах VD6…VD9, а с выхода выпрямителя через тиристор VS2, амперметр РА1 и предохранитель FU2 — на клемму “+” аккумулятора. Клемма аккумулятора подсоединяется к мостовой схеме непосредственно.

Управляющее напряжение для открывания тиристора VS2 формируется выпрямителем на диодах VD1…VD4 от отдельной обмотки трансформатора. В “ручном” режиме тиристор VS1 закрыт, и положительное напряжение через резисторы R3 и R6 поступает на управляющий электрод тиристора VS2. Тиристор открывается и пропускает зарядный ток в аккумулятор. Необходимый ток задается коммутацией включателей SA2…SA11. К примеру, чтобы получить зарядный ток 140 mA, необходимо замкнуть SA4 и SA6.

В режиме “автомат” замыкается SA12. При этом напряжение с аккумулятора через последовательно включенные светодиод HL3 и стабилитрон VD10 подается на управляющий электрод тиристора VS1. При заряде и увеличении напряжения на аккумуляторе до 14,5 В “пробивается” стабилитрон VD10, зажигается светодиод HL3 и открывается тиристор VS1, который дальше остается в открытом состоянии, шунтируя цепь управления тиристора VS2. Тиристор VS2 также закрывается по окончании очередной полуволны сетевого напряжения и падении напряжения на аноде до нуля. Заряд аккумулятора прекращается.

Свечение светодиода HL2 сигнализирует о включении зарядного устройства в сеть, светодиода HL1 — о наличии тока заряда (компенсационного заряда), a HL3 — о прекращении заряда.

Работу зарядного устройства можно проверить в “ручном” режиме без аккумулятора, соединив накоротко выходные клеммы и по показаниям амперметра РА1 оценить ток заряда. Настройка зярядного устройства сводится к проверке показаний вольтметра, подключенного к аккумулятору. В момент автоматического откпючения заряда 12-вольтового аккумулятора на нем должно быть напряжение порядка 14,5 В.

Если возникает необходимость увеличить порог срабатывания, то последовательно со светодиодом HL3 включается германиевый диод (Д7Г) либо кремниевый (Д226Б). Падение напряжения на германиевом диоде будет 0,5 В, а на кремниевом— 0,7…1 В. Полярность включения диода такая же, как и светодиода HL3. Для уменьшения порога срабатывания необходимо заменить стабилитрон VD10 (Д814Д на Д814Г).

В качестве силового трансформатора Т1 использован трансформатор ТС90-1. Первичные обмотки включены полностью (две обмотки на 127 В последовательно). Таким образом, трансформатор может свободно выдерживать напряжение 254 В и совершенно не греется даже при круглосуточной работе при напряжении в сети 220 В. Можно использовать также унифицированный трансформатор типа ТПП295, который обеспечивает выходное напряжение 40,4 В (две обмотки по 20,2 В включены последовательно) при токе 1,84 А и 20 В (четыре обмотки по 5 В включены последовательно) при токе 1,84 А. Данный трансформатор также можно включить в облегченном режиме, соединив последовательно первичные обмотки на 127 В. Выходные напряжения при этом понизятся до 36 и 18 В соответственно.

Если исключить схему автоматического отключения аккумулятора и ограничить емкость заряжаемых аккмуляторов до 4 А · ч с напряжением до 28 В, то схема зарядного устройства значительно упрощается (рис. 2). Это зарядное устройство можно применять и для подзаряда аккумуляторов емкостью до 360 А · ч. Амперметр в данной схеме практически не нужен, поскольку ток заряда (компенсационного заряда)определяется по замкнутым включателям SA2…SA7. Индикация заряда осуществляется светодиодом HL1.

Для упрощенной схемы подобрать силовой трансформатор еще проще. Здесь подойдет любой понижающий трансформатор для питания низковольтных электропаяльников на 36 В или на 42 В. Возможно также применение унифицированных трансформаторов типа ТАН2, ТАН14, которые имеют по две обмотки на 40 В и обеспечивают ток 0,2 А. Эти обмотки можно включить параллельно для умощ-нения. В этих трансформаторах есть также возможность включить первичные обмотки последовательно, но не по стандартной схеме (110 В+110 В), а по “полной” (127В+127В). При этом выходное напряжение понизится до 36 В. Подойдет также и трансформатор ТС90-1, который применялся в предыдущей схеме (рис.1). Схема на рис.2 приведена как раз с использованием трансформатора ТС90-1.

Предложенные схемы зарядных устройств безопасны в эксплуатации, имеют высокую надежность и экономичность в связи с тем, что на балластных конденсаторах активная мощность не расходуется.

Источник: Радиомир  Автор: Д.С.Бабын, пгт. Кельменцы Черновицкой обл.

Похожие радиосхемы и статьи:

  • Портативная зарядка для телефона своими руками
  • Собираем солнечный коллектор своими руками (часть 2)
  • Собираем солнечный коллектор своими руками (часть 1)
  • Как создать беспроводную зарядку самостоятельно?
  • Сборка автоматического зарядного устройства для ni-cd и ni-mh аккумуляторов

Предыдущая статья:Sprint-Layout 5.0 (Русская версия)Следующая статья:Светильник на SMD светодиодах своими руками

Руководство по сборке зарядных устройств для аккумуляторов

В этом руководстве мы рассмотрим схемы зарядки герметичных свинцово-кислотных (SLA), никель-кадмиевых (NiCd), никель-металлогидридных (NiMH) и литий-полимерных (LiPo) аккумуляторов. Мы предоставим схемы и инструкции по их сборке.

Но прежде чем мы начнем, знайте, что важно правильно заряжать аккумуляторы. Использование неправильного напряжения или тока, или неправильного типа цепи зарядки аккумулятора может привести к возгоранию или даже взрыву аккумулятора. Соблюдайте осторожность при использовании самодельных схем зарядки аккумуляторов и не оставляйте заряжающиеся аккумуляторы без присмотра.

Герметичные свинцово-кислотные аккумуляторы

Герметичные свинцово-кислотные (SLA) аккумуляторы отлично подходят, если у вас есть место. Их большой размер позволяет им долго сохранять заряд на полке. Аккумуляторы SLA обычно заряжаются от источника постоянного напряжения. Зарядное устройство настроено на определенное напряжение, которое остается неизменным на протяжении всего цикла зарядки. Это позволяет батарее изначально потреблять большой ток, который затем снижается по мере зарядки. Начальный ток должен быть ограничен, чтобы предотвратить повреждение и перегрев.

На боковой стороне батареи SLA обычно есть этикетка со списком напряжений, которые следует использовать для зарядки:

На изображении выше приведены характеристики напряжения и тока для зарядки батареи в режиме «ожидания» или «циклического использования». Использование в режиме ожидания относится к батареям, которые проводят большую часть времени на зарядном устройстве в режиме поддерживающей зарядки. Циклическое использование относится к батареям, которые часто используются и часто заряжаются.

Начальный зарядный ток показан для режима ожидания и циклического использования. Ток заряда не должен превышать указанного значения (в данном случае 2,1 А). Зарядное напряжение отличается для режимов ожидания и циклического использования.

В зарядном устройстве SLA цикличность должна контролироваться на этой частоте; аккумулятор будет перезаряжаться, как только он достигнет емкости. Зарядку можно производить с помощью настольного блока питания с ограничением тока. Просто установите значение напряжения, которое вы будете использовать, и установите ограничение тока на значение, указанное на аккумуляторе.

Ниже показана схема зарядного устройства для аккумуляторов SLA, которое автоматически переключает скорость, когда аккумулятор полностью заряжен:

Никель-кадмиевые и никель-металлогидридные

Никель-кадмиевые (NiCd) батареи были популярны в течение последних нескольких десятилетий, но постепенно их заменяют никель-металлогидридными (NiMH) батареями. Причина в том, что батареи NiMH имеют меньшую память заряда по сравнению с батареями NiCd.

Никель-кадмиевые и никель-металлогидридные аккумуляторы имеют аналогичные требования к зарядке. Оба типа предлагают возможность заряжать столько, сколько вам нужно последовательно. Оба могут заряжаться постоянным током.

Это схема сборки зарядного устройства на дискретных транзисторах, которое можно использовать для зарядки NiCd и NiMH аккумуляторов:

Эта схема предназначена для зарядки 12-вольтовой батареи при токе 50 мА, но ее можно легко масштабировать до более высоких напряжений и токов с помощью подходящих компонентов.

Диоды D1 и D2 и резистор R2 обеспечивают постоянное напряжение 1,2 В на базе Q1, так как напряжение база-эмиттер всегда составляет 0,6 В. Правильно подобрав R1, мы имеем программируемый источник постоянного тока. Чтобы рассчитать значение R1, которое будет обеспечивать определенный ток, используйте эту формулу:

R = V / I

В этом случае V равно 0,6 В, а ток заряда будет равен 50 мА, поэтому:

R = 0,6 В / 50 мА

R1 = 12 Ом

На приведенной ниже схеме показан регулируемый стабилизатор напряжения LM317, настроенный на постоянный ток. источник. Это зарядное устройство может заряжать как никель-кадмиевые, так и никель-металлогидридные аккумуляторы:

Схема предназначена для зарядки аккумулятора 12 В при токе 50 мА.

LM317 подает опорное напряжение 1,25 В между Vadj и Vout. Чтобы рассчитать значение R3 для получения определенного зарядного тока, используйте эту формулу:

R = V / I

Таким образом, с V при 1,25 В и I при 50 мА,

R = 1,25 В / 50 мА

R3 = 25 Ом , ноутбуки и блоки питания, потому что они могут иметь высокое напряжение и большую емкость для своего размера.

Аккумуляторы LiPo требуют осторожной и контролируемой зарядки. Батареи LiPo нельзя заряжать последовательно. Правильный цикл зарядки LiPo состоит из четырех последовательных этапов зарядки:

После подключения полностью разряженной батареи LiPo к зарядному устройству первым этапом является предварительная зарядка. На этом этапе зарядный ток устанавливается равным 10% от максимального зарядного тока. На следующем этапе к батарее подается постоянный ток, в то время как напряжение резко возрастает. В конечном итоге напряжение выравнивается на третьем этапе, когда к аккумулятору прикладывается постоянное напряжение. На заключительном этапе ток начинает падать. Когда ток заряда становится равным 10% от максимального тока заряда, зарядка прекращается:

Аккумуляторы LiPo можно заряжать с помощью модуля зарядки литиевых аккумуляторов TP4056. Модуль может питаться от 5В, подаваемого по кабелю micro USB, или через контакты на печатной плате.

Когда аккумулятор полностью заряжен, загорается зеленый светодиод. Аккумулятор подключается к контактам B+ и B-. Есть также контакты OUT, которые можно использовать для включения зарядного устройства в другую цепь. Модуль также контролирует и предотвращает переразряд.

Хотя сделать зарядное устройство не так уж сложно, всегда помните о необходимости соблюдать осторожность. Аккумуляторы, которые не заряжены должным образом, могут загореться или взорваться. Тем не менее, создание зарядных устройств, описанных выше, может быть чрезвычайно полезным в самых разных проектах по созданию электроники своими руками.

Спасибо за чтение и не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы о чем-либо!


Цепь зарядного устройства для литий-ионной батареи 3,7 В

Литий-ионная или литий-ионная батарея — это перезаряжаемая батарея, в которой на положительном конце используется интеркалированное соединение лития, а на отрицательном — графит. В большинстве бытовой электроники литий-ионные аккумуляторы на 3,7 В используются от компьютерных фонариков до аккумуляторов для электромобилей. С другой стороны, зарядное устройство — это приложение, используемое для хранения энергии в батарее, когда через нее проходит электрический ток. Они ограничивают скорость, с которой ток/напряжение проходит через батареи, чтобы предотвратить перезарядку. Следовательно, в этой статье мы подробно расскажем о зарядном токе или напряжении, а также о материалах, которые мы будем использовать при разработке схем зарядного устройства для литий-ионных аккумуляторов.

 

Содержание

  • 3,7 В зарядное устройство для литий-ионных аккумуляторов – принципиальная схема
  • Проект зарядного устройства для литий-ионных аккумуляторов – с использованием полевого МОП-транзистора, LM317 LM317
  • Принцип работы зарядного устройства для литий-ионных аккумуляторов с использованием ИС 317
  • Конструкция печатной платы
  • Заключение

Зарядное устройство для литий-ионных аккумуляторов 3,7 В — принципиальная схема

 

Это пример зарядного устройства для литий-ионных аккумуляторов, которое может заряжать литий-ионный аккумулятор на 3,7 В от источника питания на 5 В постоянного тока. В аккумуляторе используется микросхема MCP73831, ценный усовершенствованный контроллер для приложений с ограниченным пространством и ценой. В схеме применяется алгоритм постоянного напряжения/тока с заранее определенными условиями и прекращением заряда.

(Схема зарядного устройства для литий-ионных аккумуляторов на 3,7 В)

 

Проект зарядного устройства для литий-ионных аккумуляторов — с использованием MOSFET, LM317

 

Во-первых, мы должны определить, что литий-ионные аккумуляторы более склонны к перезарядке или высокому начальному току, функция, известная как зарядка со скоростью 1С. В этот момент C символизирует значение Ач батареи, получающей заряд. Как правило, стандартное значение составляет 0,5°C. Тем не менее, не рекомендуется использовать эти экстремальные зарядки, так как это вызывает нагрузку на аккумулятор, что приводит к высоким температурам. Тем не менее, вот несколько ИС зарядных устройств.

(изображение зарядного устройства для литий-ионных аккумуляторов)

 

Зарядное устройство для литий-ионных аккумуляторов с одним полевым МОП-транзистором

 

Это одно из самых дешевых и простых зарядных устройств для литий-ионных аккумуляторов. Чтобы создать эту простую схему, вам понадобится один полевой МОП-транзистор, таймер и резистор на 470 Ом мощностью ¼ Вт. В трассе отсутствует регулирование температуры батареи, поэтому не забудьте использовать низкий входной ток цепи. Рекомендуемая постоянная сила тока составляет приблизительно 0,5°C.

(Чертеж схемы литий-ионного зарядного устройства с одним МОП-транзистором)

Схема зарядного устройства ионной аккумуляторной батареи с использованием LM317

Материалы, необходимые

  • Три резистора: r1 (330 ОД), RV1 (1KOOM) и R2*(2.2–2–2– 2 -WATT 1/2 -WATT, 1/2 -WATT, 1/2 -WATT, 1/2 -WATT, 1/2 -WATT, 1/2 -WATT. )
  • Два конденсатора: C1 (1000 мкФ, 25 В) и C2 (100 нФ)
  • Полупроводники: LM317 (переменный регулятор положительного напряжения), BC547 (транзистор NPN общего назначения) и 1N4007 (выпрямительный диод)
  • Разное
  • Блок с двумя клеммами

 

Работа зарядного устройства для литий-ионных аккумуляторов с использованием IC 317

 

В схеме используются IC LM317 и NPN-транзисторы для контроля и ограничения тока, предотвращающие перезарядку. Когда в ходе курса допускается протекание тока, IC 217 ограничивает ток и генерирует выходное напряжение 3,9 В для подключенной литий-ионной батареи. С другой стороны, температура контролируется двумя транзисторами NPN, подключенными к выводу ADJ. Вывод ADJ заземлен таким образом, что если транзисторы проводят ток, создается короткое замыкание, в результате чего выходной ток на батарею отключается.

(Чертеж схемы зарядного устройства для литий-ионных аккумуляторов с использованием IC 317)

 

Пошаговая калибровка

 

  1. Отсоедините аккумулятор для зарядки
  2. Подключить блок питания входного тока
  3. Регулируйте переменный резистор до тех пор, пока не будет достигнут полный выходной заряд напряжения
  4. Подключить аккумулятор

 

Конструкция печатной платы

 

Ниже представлена ​​печатная плата со стороны компонентов схемы литий-ионного аккумулятора.

(изображение литий-ионного зарядного модуля со стороны компонентов)

 

Зарядка и производительность

 

Во время разряда процесс зарядки включает перемещение ионов лития от отрицательного электрода к положительному электроду. При зарядке происходит обратное.

Обслуживание литий-ионных аккумуляторов требует минимальных требований и простых инструкций; однако они являются важными приложениями. Например, убедитесь, что вы отсекаете ток/напряжение на всем уровне заряда, обеспечивая постоянное напряжение и постоянный ток на входе. Не допускайте полной разрядки аккумулятора. Кроме того, напряжение зарядки/разрядки аккумулятора влияет на температуру аккумулятора, которая находится в пределах диапазона комнатной температуры. Ваша батарея будет работать успешно.

Преимущества 

 

  • Доступность и дешевизна для производителя
  • Очень низкий саморазряд
  • Таким образом, старая технология созрела, и информации о батареях достаточно.
  • Требуют минимального обслуживания

 

Недостатки

 

  • Нельзя хранить аккумулятор в разряженном состоянии
  • Требуется защита от перезарядки или чрезмерной разрядки
  • Старение со временем, независимо от того, использовались они или нет
  • Требуется защита от перезарядки или чрезмерной разрядки
  • Аккумулятор со временем стареет независимо от того, использовался он или нет

 

Заключение

 Как правило, литий-ионные аккумуляторы имеют более длительный срок службы и значительно увеличиваются, если глубина каждого разряда находится в пределах 80% от номинальной емкости. Тем не менее, если ручной мониторинг вашей батареи является задачей, вы можете использовать автоматическую схему, чтобы обеспечить ее безопасность и продлить срок службы батареи. Например, микросхема TP4056 имеет функцию автоматического отключения и автоматической перезарядки. Наконец, свяжитесь с нами по любым вопросам о литий-ионных батареях или их схемах.

Схема зарядного устройства для солнечной батареи с регулятором напряжения

Зарядное устройство для солнечной батареи

Зарядное устройство для солнечной батареи очень предпочтительно для всех, независимо от того, в каком месте вы живете, поскольку, просто используя схему зарядного устройства для солнечной батареи, вы можете собирать электрическую энергию и повторно используйте его в таких приложениях, как зарядка мобильного телефона, планшета и т. д.

Солнечная энергия — одна из лучших возобновляемых или бесплатных источников энергии, которую вы можете получать в любом месте в любое время (кроме того, что это должно быть дневное время 🙂)

Концепция солнечных панелей была введена Александром Эдмондом Беккерелем в 1839 году. Сегодня все знают, что делают солнечные панели и как они используются до сих пор. В наши дни метод производства электроэнергии, который также известен как невозобновляемая энергия, причинил большой вред, включая истощение озонового слоя, который защищал нас от вредных ультрафиолетовых лучей солнца.

Было доказано, что огромная установка зарядных устройств для солнечных батарей стала великой революцией в сегодняшнем энергетическом кризисе, но это не ограничивается только этим, теперь вы можете носить зарядное устройство для солнечных батарей в своем кармане и использовать его в случае необходимости.

Сегодня мы здесь, чтобы обсудить, как сделать такую ​​схему зарядного устройства для солнечной батареи и установку, которую можно носить в кармане. Если вы хотите купить зарядное устройство для солнечных батарей вместо того, чтобы делать его самостоятельно, вы все равно можете выбрать его из списка. 🙂

Изготовление схемы зарядного устройства для солнечной батареи своими руками

Если вы все еще хотите сделать схему зарядного устройства для солнечной батареи, то ниже приведена блок-схема, которая показывает, что вы собираетесь сделать.

Из приведенной выше блок-схемы вы можете легко понять, как будет работать ваша схема. Зарядное устройство для солнечных батарей получает вход постоянного тока от солнечной панели и регулирует напряжение, чтобы заряжать от него батарею.

Схема зарядного устройства для солнечных батарей, которую мы производим, состоит из электронных компонентов, которые легко доступны на рынке, а также в Интернете.

Ниже приведены компоненты, которые вам понадобятся для завершения схемы зарядного устройства солнечной батареи.

  1. Солнечная панель
  2. Регулятор напряжения
  3. Резисторы с переменным сопротивлением
  4. Диод
  5. Schottky Diode
  6. Аккумулярный аккумулятор, который мы заряжаем, чтобы заряжать наши устройства, такие как мобильный телефон, от цепи или заряженного аккумулятора.

    Цепь зарядного устройства солнечной батареи

    Работа на цепи зарядного устройства солнечной батареи

    Солнечная панель, которая используется в качестве выходного напряжения и тока около 17 В и 0,3 А соответственно. Мы используем микросхему стабилизатора напряжения LM317T вместо традиционного семейства стабилизаторов напряжения 78XX, поскольку выходное напряжение микросхемы LM317T можно легко установить на желаемое напряжение от 1,25 В до 37 В при максимальном токе 1,5 А.

    Однако

    ИС регулятора напряжения LM317T имеет значительное падение напряжения от 2 до 2,5 В.

    Таким образом, нам удается подать входное и установить выходное напряжение, чтобы получить выходное напряжение, превышающее номинал свинцово-кислотной батареи, которую мы используем (т. е. 12 В и 1,3 Ач).

    Вы можете обратиться к техническому описанию LM317, если вам нужно знать, как регулируется регулируемое напряжение.

    Диод Шоттки играет очень важную роль в зарядном устройстве для солнечной батареи, так как отрицательный ток будет поступать на солнечную панель, когда батарея не заряжается. Диод Шоттки с номинальным током до 3А вполне справляется.

    Зарядка аккумулятора 12 В Зарядное устройство солнечной батареи

    Чтобы зарядить аккумулятор 12 В, необходимо установить напряжение микросхемы LM317 до 14,5 В. Для большинства аккумуляторов указано минимальное напряжение для зарядки, вам необходимо настроить напряжение регулятора IC до этого напряжения.

    Батарея, которую мы используем, нуждается в зарядном токе 0,2 А, что меньше выходной мощности солнечной панели (т.е. 0,29 А). Регулятор напряжения LM317 IC может обеспечить максимальное выходное напряжение 1,5 В. В случае, если аккумулятору требуется ток больше 1,5 А, использование LM317 IC не является хорошим вариантом.

    Используемый нами аккумулятор емкостью 1,3 Ач. Нам нужно решить 1,3 Ач / 0,29 А, чтобы рассчитать время полной зарядки, где 0,29 А — зарядный ток нашей схемы. Для полной зарядки аккумулятора потребуется около 4,5 часов.

    Применение зарядного устройства на солнечной батарее

    • Зарядное устройство на солнечной батарее можно использовать для зарядки нашей электроники во время путешествий.
    • Во время кемпинга резервная батарея, заряжаемая солнечным зарядным устройством, может использоваться для освещения.
    • Его можно использовать в качестве резервного источника питания, который можно носить в рюкзаке или кармане.

    Преимущества зарядного устройства для солнечных батарей

    Существует множество преимуществ использования этих цепей аккумуляторных батарей. Преимущества этой схемы перечислены ниже:

    • Это не только защищает нашу окружающую среду, но даже не делает дыру в наших карманах.
    • Таким образом, эти схемы доступны по цене и просты в использовании.
    • Можно легко отрегулировать выходное напряжение этих цепей в соответствии с требованиями их устройства.
    • Для создания этой схемы не используются никакие высокотехнологичные приборы. Для создания схемы зарядного устройства для солнечных батарей необходимы простые и легкие компоненты.
    • Разряд батареи практически равен нулю, когда нет потребления, поэтому энергия сохраняется.
    Недостатки зарядного устройства для солнечных батарей

    Ниже приведены некоторые ограничения схемы зарядного устройства для солнечных батарей:

    • В некоторых цепях ток ограничен до определенного предела.
    • А в некоторых цепях для нормального функционирования необходимо высокое напряжение.

    Поделитесь своими мыслями или предложениями в поле для комментариев ниже.

    Как сделать зарядное устройство для свинцово-кислотных аккумуляторов?

    Хамза Икбал 7 ноября 2019 г.

    6 минут чтения

    Свинцово-кислотные аккумуляторы были представлены много лет назад, но из-за их лучших характеристик и низкой стоимости они до сих пор используются в основном в автомобильной промышленности. Они известны своей высокой емкостью по току, они предпочтительнее других обычных батарей, доступных на рынке. Аккумулятор следует правильно заряжать и правильно разряжать, чтобы максимально увеличить время работы аккумулятора и обеспечить более длительный срок службы. В этом проекте я создам схему зарядки свинцово-кислотного аккумулятора, используя электронные компоненты, которые легко доступны на рынке.

    Зарядное устройство для свинцово-кислотных аккумуляторов

    Лучший способ начать любой проект — составить список компонентов и провести краткое изучение этих компонентов, потому что никто не захочет застревать на середине проекта только из-за отсутствующего компонента. Печатная плата предпочтительнее для сборки схемы на аппаратном обеспечении, потому что, если мы соберем компоненты на макетной плате, они могут отсоединиться от нее, и схема станет короткой, поэтому предпочтительнее использовать печатную плату.

    Шаг 1. Сбор компонентов (оборудования)

    • 1N4732 Диод (x1)
    • 10K Резистор OHM (x1)
    • 50K OHM Potentiometer (x1)
    • 1,5k OHM RESTOR (x2)
    • 1K OHM RESTSIOR). (1 шт.)
    • Резистор 1,2 кОм (1 шт.)
    • Резистор 1 Ом (1 шт.)
    • Реле 12 В пост.
    • Светодиоды (4 шт.)
    • Соединительные провода
    • FeCl3
    • Printed Circuit Board
    • Hot Glue Gun

    Step 2: Components Needed (Software)

    • Proteus 8 Professional (Can be downloaded from Here)

    After downloading the Proteus 8 Professional, design цепь на нем. Я включил сюда программные симуляции, чтобы новичкам было удобно спроектировать схему и выполнить соответствующие соединения на оборудовании.

    Шаг 3: Блок-схема

    Блок-схема сделана для удобства читателя, чтобы он мог легко понять пошаговый принцип работы проекта.

    Блок-схема

    Шаг 4: Понимание принципа работы

    Чтобы зарядить аккумулятор, напряжение на входе должно быть пониженным сначала пониженным , затем выпрямленным , а затем оно будет отфильтровано по порядку для поддержания постоянного источника постоянного тока. Напряжение, которое будет на выходе схемы, затем подается на аккумулятор который хотим зарядить. Возможны два варианта источника питания. Один — AC , а другой — DC . Это выбор человека, который проектирует схему. Если у него/нее есть батарея постоянного тока, ее можно использовать, и это рекомендуется, потому что схема становится сложной, когда мы используем трансформаторы для преобразования переменного тока в постоянный. Если у вас нет батареи постоянного тока, можно использовать адаптер переменного тока в постоянный.

    Шаг 5. Анализ схемы

    Основная часть схемы состоит из Мост Выпрямитель слева. На вход подается 220 В переменного тока, который понижается до 18 В постоянного тока. Вместо подачи переменного напряжения в качестве источника питания для работы схемы можно также использовать батарею постоянного тока. Это входное напряжение, независимо от того, является ли оно переменным или постоянным, подается на регулятор напряжения LM7815 , а затем подключаются конденсаторы для очистки напряжения, чтобы чистое напряжение могло быть подано далее на реле . После прохождения через конденсатор напряжение поступает на реле, и прибор, подключенный к цепи, начинает заряжаться через 1 Ом резистор. В момент, когда зарядное напряжение аккумулятора достигает точки преткновения, например, 14,5В, стабилитрон начинает проводимость и выдает на транзистор достаточное базовое напряжение. Из-за этой проводимости транзистор переходит в область насыщения, и его выход становится HIGH . Из-за этого высокого выхода реле становится активным, и прибор отключается от источника питания.

    Шаг 6. Моделирование схемы

    Перед созданием схемы лучше смоделировать и проверить все показания на программном обеспечении. Мы собираемся использовать программное обеспечение Proteus Design Suite . Proteus — это программа для моделирования электронных схем.

    1. После загрузки и установки программного обеспечения Proteus откройте его. Откройте новую схему, щелкнув значок ISIS  в меню. ISIS
    2. Когда появится новая схема, щелкните значок в боковом меню. Это откроет окно, в котором вы можете выбрать все компоненты, которые будут использоваться. Новая схема
    3. Теперь введите названия компонентов, которые будут использоваться для создания схемы. Компонент появится в списке справа. Выбор компонентов
    4. Таким же образом, как описано выше, выполните поиск всех компонентов. Они появятся в Devices List.Component List

    Шаг 7: Разводка печатной платы

    Так как мы собираемся сделать аппаратную схему на печатной плате, нам нужно сначала сделать разводку печатной платы для этой схемы .

    1. Чтобы сделать компоновку печатной платы в Proteus, нам сначала нужно назначить пакеты печатных плат каждому компоненту на схеме. чтобы назначить пакеты, щелкните правой кнопкой мыши компонент, которому вы хотите назначить пакет, и выберите Инструмент для упаковки.
    2. Нажмите на опцию ARIES в верхнем меню, чтобы открыть схему печатной платы. ARIES Design
    3. Из списка компонентов разместите все компоненты на экране так, как вы хотите, чтобы ваша схема выглядела.
    4. Нажмите на режим отслеживания и соедините все контакты, которые программа предлагает вам подключить, указывая стрелкой.

    Шаг 8: Принципиальная схема

    После компоновки печатной платы принципиальная схема будет выглядеть следующим образом:

    Схема цепи

    Шаг 9: Настройка оборудования

    Теперь мы смоделировали схему в программном обеспечении, и она отлично работает. Теперь давайте продолжим и разместим компоненты на печатной плате. После того, как схема смоделирована в программном обеспечении и сделана разводка ее печатной платы, схема распечатывается на масляной бумаге. Перед размещением масляной бумаги на плате печатной платы используйте скребок для печатных плат, чтобы потереть плату так, чтобы слой меди на плате уменьшился с верхней части платы.

    Удаление медного слоя

    Затем масляная бумага помещается на печатную плату и проглаживается утюгом до тех пор, пока схема не будет напечатана на плате (это занимает примерно пять минут).

    Проглаживание печатной платы

    Теперь, когда схема напечатана на плате, ее опускают в раствор горячей воды FeCl 3 , чтобы удалить лишнюю медь с платы, останется только медь под печатной платой.

    Травление печатной платы

    После этого потрите печатную плату скребком, чтобы проводка была видна. Теперь просверлите отверстия в соответствующих местах и ​​поместите компоненты на печатную плату.

    Сверление отверстий в печатной плате

    Припаяйте компоненты на плате. Наконец, проверьте непрерывность цепи и, если в каком-либо месте возникает разрыв, отсоедините компоненты и соедините их снова. В электронике проверка непрерывности — это проверка электрической цепи, чтобы проверить, течет ли ток по желаемому пути (что это определенно полная цепь). Проверка непрерывности выполняется путем подачи небольшого напряжения (соединенного со светодиодом или создающей помехи деталью, например, пьезоэлектрическим динамиком) над выбранным путем. Если тест на непрерывность проходит успешно, это означает, что цепь выполнена в соответствии с требованиями. Теперь он готов к испытаниям. Горячий клей лучше наносить с помощью пистолета для горячего клея на положительные и отрицательные клеммы батареи, чтобы клеммы батареи не отсоединились от цепи.

    Настройка цифрового мультиметра для проверки непрерывности

    Шаг 10: Проверка схемы

    После сборки аппаратных компонентов на печатной плате и проверки непрерывности нам нужно проверить, правильно ли работает наша схема, мы проверим нашу схему. Источником питания, упомянутым в этой статье, является батарея постоянного тока 18 В. В большинстве случаев аккумулятор на 18 В недоступен, и паниковать не стоит. Мы можем создать батарею на 18 В, соединив две батареи постоянного тока на 9 В в серии 9.0006 . Подсоедините положительный провод (красный) батареи 1 к отрицательному проводу (черный) батареи 2 и аналогичным образом подключите отрицательный провод батареи 2 к положительному проводу батареи 1. Для вашего удобства примеры соединений приведены ниже. показано ниже: Соединение серии

    Перед включением в цепь запишите напряжение с помощью цифрового мультиметра. Установите цифровой мультиметр на Вольт и подключите его к положительной и отрицательной клеммам свинцово-кислотного аккумулятора, который необходимо зарядить. Отметив напряжение, поверните ВКЛ цепь, подождите почти 30 минут и затем запишите напряжение. Вы увидите, что напряжение увеличилось бы, и свинцово-кислотная батарея находится в состоянии зарядки. Мы можем протестировать эту схему на автомобильном аккумуляторе, поскольку он также является свинцово-кислотным аккумулятором.

    Шаг 11. Калибровка цепи

    Для правильной зарядки цепь необходимо откалибровать. Установите напряжение 15 В в блоке питания стенда и подключите его к точкам CB+ и CB- схемы. Сначала установите перемычку между положениями 2 и 3 для калибровки. После этого возьмите отвертку и поверните потенциометр (50 кОм) до тех пор, пока светодиод с левой стороны не включит . Теперь отключите источник питания и подключите перемычку между точками 1 и 2. Поскольку мы настроили схему, мы можем заряжать любую свинцово-кислотную батарею. 15 В, которые мы установили во время калибровки, являются точкой срабатывания/спотыкания цепи, и в этой точке батарея будет заряжаться примерно на 80% своей емкости. Если мы хотим зарядить его на 100%, необходимо снять LM7815 и подать 18 В напрямую от источника питания к цепи, и это вообще не рекомендуется, потому что это может повредить аккумулятор.

    Цепь зарядного устройства для ионно-литиевых аккумуляторов: распределение нагрузки

    В современном мире электроники, который постоянно сокращается, существует постоянная потребность в использовании ионно-литиевых аккумуляторов в продуктах. При разработке безопасной и эффективной схемы аккумуляторов необходимо учитывать множество сложностей. Ранее я обсуждал некоторые аспекты безопасности/защиты конструкции литий-ионных аккумуляторов. Я еще не обсуждал схемы зарядных устройств для литий-ионных аккумуляторов. В этой статье будут рассмотрены некоторые передовые методы распределения нагрузки цепей литий-ионных аккумуляторов.

    То, что вы обнаружите, это почти все, что касается дизайна электроники, идеального решения не существует. Всегда нужно взвешивать все за и против конкретной схемы. Затем вы должны решить, что лучше всего подходит для вашего конкретного дизайна.

     

    Примечания к этой статье

    Для краткости мой пример схемы не будет функциональным, а предназначен только для отображения общего представления системы. Когда показана LI-ION CELL , предполагается, что в ячейку будут встроены все надлежащие схемы защиты.

     

    Что

    Не делать Что делать

    При проектировании первой схемы зарядного устройства для ионно-литиевых аккумуляторов первое, что вы, скорее всего, почувствуете, как показано на рисунке ниже:

    Рисунок 1. Часто простой и очевидный подход не т лучший метод. Параллельное подключение системной нагрузки к аккумулятору создает множество потенциальных проблем и опасностей.

    Многие спецификации зарядных устройств для литий-ионных аккумуляторов фактически поощряют и предлагают именно эту схему.


    Рис. 2. В техническом описании зарядной ИС Texas Instruments BQ24210 показана нагрузка, подключенная параллельно аккумулятору.

    Хотя эта установка может работать в определенных сценариях, она не является хорошей идеей для большинства проектов. Причина проста: если выход вашего зарядного устройства напрямую подключен к аккумулятору
    , и остальной нагрузке системы, он не сможет определить ток, который проходит через аккумулятор. Эта проблема усугубляется, если ваша система потребляет достаточно большую нагрузку, чтобы начать провисание самой шины напряжения. Это может исказить весь алгоритм зарядки аккумулятора.

    Основная проблема связана с последней частью алгоритма зарядки. Микросхема определяет ток заряда, чтобы знать, когда прекратить зарядку. Если системная нагрузка потребляет ток, зарядное устройство может никогда не выключиться, что приведет к повреждению аккумулятора.

    В оставшейся части этой статьи будут рассмотрены три варианта, которые, хотя и сложнее в реализации, гораздо безопаснее и эффективнее.

     

    1. Отключить загрузку системы во время зарядки

    Самая простая схема зарядного устройства для ионно-литиевых аккумуляторов — просто отключить выход системы во время зарядки. Это характерно для многих продуктов, с которыми вы сталкиваетесь в повседневной жизни. Это особенно верно для продуктов, которые потребляют много тока во время использования, таких как портативные пылесосы. Самый простой способ реализовать это — просто использовать полевой МОП-транзистор последовательно с батареей, подходящей к нагрузке вашей системы. Входной источник питания управляет затвором MOSFET. Когда вы подключаете источник питания, МОП-транзистор выключается, отключая системную нагрузку.


    Рисунок 3: Простое усовершенствование стандартной «параллельной» схемы зарядки.

    Поскольку нагрузка системы питается только тогда, когда она не заряжается, остальная часть конструкции системы упрощается. Вам не нужно беспокоиться об управлении ситуациями по-разному в зависимости от того, какой источник питания вы используете в настоящее время.

    Pro’s

    1. Требуется только один основной компонент.
    2. Быстрая зарядка аккумулятора, так как зарядное устройство подает питание только на аккумулятор.
    3. Вам нужно беспокоиться о цепи только тогда, когда она находится в условиях нагрузки от батареи.

    Con’s

    1. Не позволяет использовать систему при зарядке.

     

    2. Прием нагрузки во время зарядки

    Эта схема зарядного устройства для ионно-литиевых аккумуляторов очень похожа на предыдущую, но с двумя отличиями. Во-первых, вместо того, чтобы просто использовать MOSFET, вы также пропускаете входное питание нагрузки через диод. При последовательном подключении затвора полевого транзистора к входному источнику питания и диода (обычно Шоттки) нагрузка системы получает питание от входного источника питания во время зарядки. Диод необходим для предотвращения обратного питания батареи от источника входного сигнала. Вы можете заменить диод идеальным диодом MOSFET, чтобы уменьшить падение напряжения.

    Второе изменение заключается в добавлении дополнительного P MOSFET вплотную к другому. Это предотвращает прямую зарядку аккумулятора входным источником питания через диод в корпусе.

    Рис. 4. Добавив диод Шоттки последовательно с входным блоком питания, вы позволяете системной нагрузке получать питание во время зарядки.

    При использовании этого метода важно понимать ограничения источника питания.

    Например:

    • Стандартный USB 5В является основным входом, который может подавать ~500мА.
    • Имеется литий-ионный аккумулятор емкостью 1000 мАч с максимальной скоростью зарядки 0,5C (500 мА) и максимальной скоростью разрядки 1C (1A).
    • Зарядная ИС заряжается при максимальном токе 300 мА (это происходит на этапе цикла зарядки постоянным током).
    • В зависимости от состояния нагрузка может потреблять от 50 мА до 500 мА.

    Пока устройство не подключено к сети, нагрузка полностью питается от батареи, ограничений нет. Он способен полностью потреблять 500 мА. Подключив плату для зарядки, в режиме постоянного тока источник питания USB обеспечивает около 300 мА. Это означает, что для остальной части системы доступно только 200 мА. Внедрение надлежащей конструкции нисходящей системы необходимо для предотвращения повреждения источника питания.

    Эта схема почти всегда требует подключения VUSB к системному микроконтроллеру. Таким образом, вы можете учитывать время, когда он заряжается, чтобы гарантировать отсутствие ситуаций перегрузки.

    Еще один момент, который следует учитывать при использовании этого метода, заключается в том, что входное напряжение питания, вероятно, будет выше, чем напряжение батареи. Если вы используете повышающий преобразователь после аккумулятора для повышения напряжения одноэлементной литиевой батареи до 5 В и используете зарядное устройство на 5 В, тогда проблем не возникнет. Если вместо этого ваша система просто работает напрямую от номинального напряжения 3,7 В от батареи, вы должны учитывать 5 В, которые система увидит при зарядке.

    Pro’s

    1. Ненамного сложнее предыдущего метода. Все еще требует только несколько частей.
    2. Позволяет использовать систему во время зарядки.

    Коннекторы

    1. Нагрузка может перегрузить входное зарядное устройство, что приведет к повреждению.
    2. Система должна знать, когда она заряжается, что усложняет конструкцию системы.
    3. Требует, чтобы система учитывала разницу в напряжении между входным источником питания и аккумулятором.

     

    3. Распределение нагрузки с помощью интегральной схемы Power Path

    Окончательная схема зарядного устройства для ионно-литиевых аккумуляторов является наиболее совершенной, в ней используются преимущества предыдущего метода и устраняются основные недостатки. Существуют микросхемы для зарядки аккумуляторов производства Texas Instruments, Analog Devices и Maxim, которые имеют то, что они называют «управлением Power Path».


    Рис. 5: BQ2403x от Texas Instruments является примером зарядной ИС с Power Path.

    Они включают в себя тот же стиль переключателей MOSFET между аккумулятором и системной нагрузкой, что мы рассматривали ранее. Вместо того, чтобы просто отключать питание при зарядке, они используют DPPM (Dynamic Power-Path Management). Это означает, что при зарядке микросхема будет подавать питание на системную нагрузку от настенного источника питания, как и в моем примере 2. Если затем системная нагрузка потребляет больше, чем может обеспечить настенный источник питания, она переключается, позволяя аккумулятору работать. до разницы. Таким образом, ИС тракта питания может обеспечивать одинаковую мощность вне зависимости от того, заряжается он или нет.

    Это упрощает конструкцию системы, так как вам не нужно беспокоиться об ограничениях по току между аккумулятором и источником зарядки. Пока батарея способна генерировать такой большой ток, микросхема справится с этим.

    У них также есть много полезных функций, таких как мгновенная подача питания на системную нагрузку при зарядке, даже когда батарея глубоко разряжена. Одна вещь, о которой следует знать, это то, что большинство из них имеют встроенный в силиконовый МОП-транзистор. Вы должны быть уверены, что текущий предел для IC достаточно высок для вашего варианта использования. Есть некоторые, которые используют внешние МОП-транзисторы. Это позволяет выбирать мощные МОП-транзисторы.

    Pro’s

    1. Обеспечивает питание системы во время зарядки.
    2. Удаляет текущее ограничение входного источника зарядки.
    3. Позволяет разработчику системы не заботиться об электропитании, с ним полностью справляется ИС.

    Con’s

    1. Дороже
    2. Выбор деталей меньшего размера

     

    Заключение

    При проектировании схемы с литий-ионным аккумулятором необходимо учитывать множество факторов. Часто упускается из виду то, как аккумулятор распределяет нагрузку с зарядным устройством. В этой статье обсуждаются различные схемы зарядного устройства литий-ионных аккумуляторов для распределения нагрузки. Благодаря многим конструкциям нет необходимости использовать устройство во время зарядки. Для этого сценария отключение загрузки системы во время зарядки является дешевым и простым решением. Если вместо этого нагрузка системы постоянно нуждается в питании, питание должно подаваться от зарядного устройства или аккумулятора. В зависимости от требований к питанию необходимо либо получать питание напрямую от зарядного устройства, либо использовать интеллектуальную микросхему цепи питания.

    MicroType Engineering — фирма, занимающаяся проектированием электронных и механических изделий с полным спектром услуг. Мы предлагаем поддержку «под ключ», независимо от того, насколько далеко вы продвинулись в процессе проектирования. У нас есть полная схема, дизайн печатной платы, прошивка, механический дизайн, а также услуги по сборке прототипов/мелкосерийной сборки. Пожалуйста, свяжитесь, чтобы узнать больше!

    Категория:
      

    Схема автоматического зарядного устройства на операционном усилителе LM358 » Блоки питания

    Учебник по электронике Источники питания

    Опубликовано Автор Abhishek Singh Комментарии(4)

    Эта схема автоматического зарядного устройства отключает питание, когда аккумулятор полностью заряжен. Эта схема может заряжать любые батареи, такие как Li-Po, Lead , Acid, или Ni-Cd , если вы правильно настроите ее.

    Каждому нужно зарядное устройство с аккумулятором. Он заряжает свинцово-кислотный аккумулятор до 50 Ач. Вы можете установить батарею порог отсечки путем установки потенциометра. LM358 Компаратор использовался для открытия точек реле в соответствии с порогом. Вы можете найти техническое описание LM358 OP-AMP

      под статьей. Прежде чем перейти к техническому описанию, давайте быстро взглянем на выводы микросхемы LM358.

    № контакта Функция
    1 и 7 Выход для первого операционного усилителя
    2 и 6Он инвертирует сигналы на 180 градусов, т.е. если приложенный сигнал -5В, то мы получим на выходе тот же сигнал, что и +5В.
    3 и 5 не инвертирует сигнал, т. е. если подать сигнал +5В, то и на выходе получим то же напряжение
    4 Используется для заземления
    8 Вкк

    • Что такое операционные усилители?

    Цепь автоматического зарядного устройства:

    Компоненты:
    1. R1, R2, R3 1k (1/4 ватт)
    2. Потенциометр VR1, VR2 10k
    3. Реле HT3F-12В
    4. Д1 1N4007
    5. Д2 1N5408
    6. D3 1N5233B (стабилитрон 6 В)
    7. Q1 BC547
    8. У1 ЛМ358
    9. Светодиод DG (зеленый)
    10. Светодиод DR (красный)
    11. Аккумулятор 12 В

    Работа цепи автоматического зарядного устройства:

    Прежде всего, напряжение 220В понижается трансформатором до 15В. Затем он выпрямляется и сглаживается конденсатором С1. Регулируется до 14В регулятором напряжения Lm317. Затем он подается в цепь зарядки аккумуляторной батареи. Для установки порогового напряжения зарядки аккумулятора использовались LM358 и два потенциометра (или триммера). Подаем опорное напряжение на инвертирующий вывод LM358. Пороговое напряжение подается на неинвертирующий вывод операционного усилителя. Если батарея заряжается до порогового напряжения, операционный усилитель включит транзистор, и он будет действовать как переключатель, и реле будет запитано.

    Это происходит по мере того, как аккумулятор заряжается, потенциал повышается через стабилитрон. Потенциометр настроен так, что именно при пороговом напряжении происходит пробой стабилитрона, и стабилитрон начинает проводить, делая выход ОУ высоким. Это прерывает подачу питания к аккумулятору.

    • Работа стабилитрона

    Во время зарядки горит зеленый светодиод, указывающий на то, что батарея заряжается. Когда батарея полностью заряжается, ее напряжение достигает порогового напряжения, это напряжение изменяет выход OP-AMP на высокий уровень. Это меняет положение реле. Следовательно, выключите цепь, но КРАСНЫЙ светодиод будет гореть, указывая на завершение зарядки.

    Как установить порог отключения батареи:

    Сначала отключите питание схемы.

    Подключите переменный источник питания постоянного тока к клеммам батареи цепи.

    Примените напряжение, равное пороговому напряжению отключения батареи. Затем отрегулируйте RV1 так, чтобы реле просто срабатывало, то есть напряжение отключения.

    Для батареи 12 В это почти 13 В, а для батареи Li-Po — 4,35 В.

    Для зарядки аккумулятора Li-Po можно использовать эту схему зарядного устройства 5 В
    Настройка цепи завершена.
    Снимите внешний источник переменного напряжения и замените его аккумулятором для зарядки.

    Цепь регулируемого источника питания:

    Приведенная выше схема представляет собой цепь регулируемого источника питания. Эта схема может давать выходное напряжение в диапазоне от 1 или 2 до 37 вольт и выходной ток до 3А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *