Схематическое изображение радиодеталей на электрических схемах: полное руководство

Как правильно читать схемы электронных устройств. Какие условные обозначения используются для резисторов, конденсаторов и других радиодеталей. Чем отличаются отечественные и зарубежные стандарты маркировки.

Содержание

Основные принципы чтения электрических схем

Умение читать электрические схемы — важнейший навык для любого радиолюбителя и инженера-электронщика. Чтобы научиться понимать схемы, необходимо знать условные графические обозначения радиодеталей и компонентов. Вот несколько ключевых принципов:

  • Схемы обычно читаются слева направо и сверху вниз, как обычный текст
  • Прямые линии обозначают электрические соединения между компонентами
  • Точка на пересечении линий означает электрическое соединение проводников
  • Пересечение линий без точки означает отсутствие соединения
  • Компоненты обозначаются буквенно-цифровыми кодами (например, R1, C3, VT2)
  • Рядом с условным обозначением компонента указывается его номинал или тип

Зная эти базовые правила, можно приступать к изучению условных обозначений конкретных радиодеталей.


Обозначения пассивных компонентов на схемах

К пассивным компонентам относятся резисторы, конденсаторы и катушки индуктивности. Рассмотрим их обозначения подробнее:

Резисторы

Резисторы на схемах обозначаются латинской буквой R. Основные варианты обозначений:

  • Постоянный резистор — прямоугольник с выводами
  • Переменный резистор (потенциометр) — прямоугольник со стрелкой
  • Подстроечный резистор — прямоугольник с наклонной стрелкой
  • Терморезистор — прямоугольник с диагональной линией

Рядом с обозначением резистора указывается его номинал в омах, килоомах или мегаомах.

Конденсаторы

Конденсаторы обозначаются буквой C. Основные варианты:

  • Постоянный конденсатор — две параллельные линии
  • Электролитический конденсатор — две линии, одна из которых изогнута
  • Переменный конденсатор — две линии со стрелкой
  • Подстроечный конденсатор — две линии с наклонной стрелкой

Рядом указывается емкость в пикофарадах, нанофарадах или микрофарадах.

Катушки индуктивности

Катушки обозначаются буквой L. Варианты обозначений:


  • Катушка без сердечника — несколько полуокружностей
  • Катушка с сердечником — полуокружности с поперечной линией
  • Трансформатор — две катушки рядом

Указывается индуктивность в генри или микрогенри.

Условные обозначения полупроводниковых приборов

Полупроводниковые компоненты играют ключевую роль в современной электронике. Их обозначения на схемах имеют ряд особенностей:

Диоды

Диоды обозначаются буквой V или VD. Основные типы:

  • Выпрямительный диод — треугольник с чертой
  • Стабилитрон — треугольник с ломаной чертой
  • Светодиод — треугольник со стрелками
  • Варикап — треугольник с двумя линиями

Транзисторы

Транзисторы обозначаются VT. Варианты:

  • Биполярный транзистор — круг с тремя выводами
  • Полевой транзистор — прямоугольник с тремя выводами
  • IGBT-транзистор — комбинация биполярного и полевого

Указывается тип проводимости (n-p-n или p-n-p) и другие параметры.

Тиристоры

Тиристоры обозначаются VS. Основные типы:

  • Динистор — два треугольника
  • Тринистор — два треугольника с дополнительным выводом
  • Симистор — два встречных тринистора

Обозначения интегральных микросхем

Интегральные микросхемы (ИМС) обозначаются буквами DA, DD или DS в зависимости от типа. На схемах ИМС изображаются в виде прямоугольников с указанием выводов. Внутри прямоугольника указывается тип микросхемы.


Основные типы ИМС:

  • Аналоговые (операционные усилители, компараторы и др.)
  • Цифровые (логические элементы, триггеры, регистры и др.)
  • Аналого-цифровые и цифро-аналоговые преобразователи
  • Микропроцессоры и микроконтроллеры

Для сложных микросхем часто дается функциональное описание выводов.

Различия в обозначениях по отечественным и зарубежным стандартам

Хотя базовые принципы схемотехники универсальны, существуют различия в обозначениях радиодеталей по отечественным ГОСТам и зарубежным стандартам:

  • В отечественных схемах чаще используются кириллические обозначения (Р вместо R, К вместо C)
  • Зарубежные обозначения более компактны и используют меньше дополнительных символов
  • Нумерация компонентов может отличаться (R1, R2 или Р1, Р2)
  • Некоторые компоненты имеют разное графическое изображение

При работе с импортными схемами важно учитывать эти различия, чтобы избежать ошибок.

Обозначения источников питания и заземления

Важную роль в любой электрической схеме играют источники питания и цепи заземления. Их обозначения также стандартизированы:


Источники питания

  • Гальванический элемент или батарея — длинная и короткая черта
  • Источник постоянного тока — круг с плюсом и минусом
  • Источник переменного тока — круг с синусоидой

Заземление

  • Защитное заземление — три горизонтальные линии разной длины
  • Сигнальное заземление — треугольник
  • Общий провод — утолщенная линия

Правильное обозначение цепей питания и заземления критически важно для понимания работы схемы.

Как правильно читать принципиальные электрические схемы

Чтение принципиальных схем — это навык, который приходит с практикой. Вот несколько рекомендаций:

  1. Определите назначение устройства и его основные функциональные блоки
  2. Найдите источник питания и цепи заземления
  3. Проследите основной путь прохождения сигнала от входа к выходу
  4. Разберитесь с работой каждого функционального узла схемы
  5. Обратите внимание на ключевые компоненты (транзисторы, микросхемы)
  6. Проанализируйте цепи обратной связи и управления

Регулярная практика в чтении и анализе схем поможет быстро развить этот важный навык.


Программы для создания электрических схем

Современные инженеры редко рисуют схемы вручную, используя вместо этого специализированное программное обеспечение. Вот несколько популярных программ для создания электрических схем:

  • AutoCAD Electrical — мощный инструмент для проектирования электрических систем
  • KiCad — бесплатная open-source программа для разработки печатных плат
  • Eagle — популярное решение для проектирования электронных устройств
  • sPlan — простая и удобная программа для рисования электрических схем
  • EasyEDA — онлайн-инструмент для создания схем и печатных плат

Эти программы значительно ускоряют и упрощают процесс проектирования электронных устройств.


Графическое обозначение радиодеталей на схемах

AM амплитудная модуляция
АПЧ автоматическая подстройка частоты
АПЧГ автоматическая подстройка частоты гетеродина
АПЧФ автоматическая подстройка частоты и фазы
АРУ автоматическая регулировка усиления
АРЯ автоматическая регулировка яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная характеристика
БГИМС большая гибридная интегральная микросхема
БДУ беспроводное дистанционное управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный (с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное (выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска; головка записывающая
ГИР гетеродинный индикатор резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический шумопонижающий фильтр
ЕАСС единая автоматизированная сеть связи
ЕСКД единая система конструкторской документации
зг генератор звуковой частоты; задающий генератор
зс замедляющая система; звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
кк катушки кадровые отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура металл-диэлектрик-полупроводник
МОП структура металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора *по схеме с общим истоком)
ок общий коллектор (включение транзистора по схеме с обшим коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВ поверхностные акустические волны
пдс приставка двухречевого сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота; преобразователь частоты
птк переключатель телевизионных каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная установка
ПУ предварительный усили^егіь
ПУВ предварительный усилитель воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный сигнал
РЛС регулятор линейности строк; радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты гетеродина
РРС регулятор размера строк
PC регистр сдвиговый; регулятор сведения
РФ режекторный или заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
СДУ светодинамическая установка; система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент индуктивности
ткмп температурный коэффициент начальной магнитной проницаемости
ткнс температурный коэффициент напряжения стабилизации
ткс температурный коэффициент сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный ламповополупроводниковый телевизор
УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧ усилитель сигналов промежуточной частоты
УПЧЗ усилитель сигналов промежуточной частоты звук?
УПЧИ усилитель сигналов промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения; устройство сравнения
УСВЧ усилитель сигналов сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная испытательная таблица
ФАПЧ фазовая автоматическая подстройка частоты
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е • В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая вычислительная машина

ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ

   При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.


   Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


   Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM.

   Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа. 

   Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

   Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

   Форум по радиодеталям

   Форум по обсуждению материала ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ


МОДУЛЬ ДРАЙВЕРА МОТОРА BLDC

Модуль драйвера BLDC двигателя жесткого диска — принципиальные электрические схемы включения и обзор готовых блоков.




Обозначение радиоэлементов на схемах | Практическая электроника

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. 

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R  – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук.  Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания  в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды  – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V  – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод, стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT – транзистор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

 

Тензорезисторы

 

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Акустика

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

Измерители электрических величин

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

 

Электромагнитное реле с разными группами контактов

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

[quads id=1]

Тиристоры

Биполярный транзистор

Однопереходный транзистор

 

Полевой транзистор с управляющим PN-переходом

Моп-транзисторы

IGBT-транзисторы

Фото-радиоэлементы

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

 

Оптоэлектронные приборы

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Кварцевый резонатор

Датчик Холла

 

Микросхема

Операционный усилитель (ОУ)

Семисегментый индикатор

Различные лампы

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Соединение с корпусом (массой)

Земля

Если Вам проще по видео понять, вот можете посмотреть:

Как читать схемы радиоэлектронных устройств, обозначения радиодеталей

Буквенное
сокращение
Расшифровка
сокращения
AM амплитудная модуляция
АПЧ автоматическая подстройка
частоты
АПЧГ автоматическая подстройка
частоты гетеродина
АПЧФ автоматическая подстройка
частоты и фазы
АРУ автоматическая регулировка
усиления
АРЯ автоматическая регулировка
яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная
характеристика
БГИМС большая гибридная
интегральная микросхема
БДУ беспроводное дистанционное
управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
Буквенное
сокращение
Расшифровка
сокращения
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный
(с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное
(выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска;
головка записывающая
ГИР гетеродинный индикатор
резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
Сокращение Расшифровка
сокращения
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый
напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический
шумопонижающий фильтр
ЕАСС единая автоматизированная
сеть связи
ЕСКД единая система
конструкторской документации
зг генератор звуковой частоты;
задающий генератор
зс замедляющая система;
звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
Буквенное
сокращение
Расшифровка
сокращения
кк катушки кадровые
отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные
отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей
волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый
телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура
металл-диэлектрик-полупроводник
МОП структура
металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора
по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора
по схеме с общим истоком)
ок общий коллектор (включение
транзистора по схеме с обшим
коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение
транзистора по схеме с общим
эмиттером)
Сокращение Расшифровка
сокращения
ПАВ поверхностные акустические
волны
пдс приставка двухречевого
сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение
частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота;
преобразователь частоты
птк переключатель телевизионных
каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная
установка
ПУ предварительный усилитель
ПУВ предварительный усилитель
воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный
сигнал
РЛС регулятор линейности строк;
радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты
гетеродина
РРС регулятор размера строк
PC регистр сдвиговый;
регулятор сведения
РФ режекторный или
заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного
дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
Сокращение Расшифровка
сокращения
СДУ светодинамическая установка;
система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент
индуктивности
ткмп температурный коэффициент
начальной магнитной проницаемости
ткнс температурный коэффициент
напряжения стабилизации
ткс температурный коэффициент
сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
Буквенное
сокращение
Расшифровка
сокращения
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный
лампово полупроводниковый телевизор
УЛЛЦТ унифицированный лампово
полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов
звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока;
унифицированный полупроводниковый
телевизор
УПЧ усилитель сигналов
промежуточной частоты
УПЧЗ усилитель сигналов
промежуточной частоты звука
УПЧИ усилитель сигналов
промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения;
устройство сравнения
УСВЧ усилитель сигналов
сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная
испытательная таблица
ФАПЧ фазовая автоматическая
подстройка частоты
Буквенное
сокращение
Расшифровка
сокращения
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е • В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая
вычислительная машина

коды электронных компонентов на радиосхеме, их УГО

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Чтение электрической схемы

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводниковые диоды

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

  1. Диоды.
  2. Транзисторы.
  3. Микросхемы.

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

  • аналоговые;
  • цифровые;
  • аналого-цифровые.

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

  • A — устройства;
  • B — преобразователи;
  • C — конденсаторы;
  • D — микросхемы;
  • E — элементы разные;
  • F — защитные устройства;
  • G — источники питания;
  • H — индикаторы;
  • K — реле;
  • L — катушки;
  • M — двигатели;
  • P — приборы;
  • Q — выключатели;
  • R — резисторы;
  • S — выключатели;
  • T — трансформаторы;
  • U — преобразователи;
  • V — полупроводники, электровакуумные лампы;
  • X — контакты;
  • Y — электромагнит.

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Условные графические обозначения на принципиальных электрических схемах

см. также Буквенные обозначения радиодеталей


Под каждой картинкой есть кнопка для скачивания графических обозначений в векторе.

Обозначения сгруппированы по моему произволу:
0. Распространённые компоненты
1. Резисторы
2. Конденсаторы
3. Катушки индуктивности и трансформаторы
4. Диоды, стабилитроны, светодиоды
5. Транзисторы
6. Переключатели, реле, провода, соединители, антенны
7. Источники питания, лампы, электромоторы
8. Электроакустические устройства: микрофоны, громкоговорители
9. Микросхемы и прочая электроника

С обозначениями электронных ламп я уж не стал заморачиваться.
К некоторым нашим обозначениям полупроводников я добавил буржуйские символы — они представлены во вторую очередь как вариант к ГОСТовскому обозначению.

На странице представлены растровые изображения графических обозначений (все картинки кликабельны). Под каждой картинкой есть ссылка, по которой можно скачать тот или иной упакованный в архив файл в векторном формате svg. Пользуйтесь на здоровье.

При масштабировании элементов не забывайте включать режим «При изменении размеров объекта менять в той же пропорции толщину обводки».

Распространённые компоненты

⇩ УГО в векторе

Резисторы

⇩ Резисторы

Конденсаторы

⇩ Конденсаторы

Катушки индуктивности

⇩ Индуктивности

Диоды

⇩ Диоды

Транзисторы

⇩ Транзисторы

Переключатели, реле, провода, соединители, антенны

⇩ Переключатели

Источники и потребители

⇩ Источники питания, лампы и прочее

Электроакустические устройства

⇩ Микрофоны, динамики и прочее

Микросхемы, логические элементы

⇩ Микросхемы
Поделиться новостью в соцсетях

Как обозначается транзистор на плате. Обозначение электрических элементов на схемах

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

  1. Диоды.
  2. Транзисторы.
  3. Микросхемы.

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п-перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

  • аналоговые;
  • цифровые;
  • аналого-цифровые.

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.

В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.

Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.

Основное обозначение Наименование элемента Дополнительное обозначение Вид устройства
АУстройствоАА
АК
AKS
Регулятор тока
Блок реле
Устройство
BПреобразователи
BF
BK
BL
BM
BS
Громкоговоритель
Телефон
Датчик тепловой
Фотоэлемент
Микрофон
Звукосниматель
СКонденсаторыСВ
CG
Батарея конденсаторов силовая
Блок конденсаторов зарядный
DИнтегральные схемы, микросборкиDA
DD
ИС аналоговая
ИС цифровая, логический элемент
EЭлементы разныеEK
EL
Теплоэлектронагреватель
Лампа осветительная
FРазрядники, предохранители, устройства защитыFA
FP
FU
FV
Дискретный элемент защиты по току мгновенного действия
Дискретный элемент защиты по току инерционного действия
Предохранитель плавкий
Разрядник искровой
GГенераторы, источники питанияGB
GC
GE
Батарея аккумуляторов
Синхронный компенсатор
Возбудитель генератора
HУстройства индикационные и сигнальныеHA
HG
HL
HLA
HLG
HLR
HLW
HV
Прибор звуковой сигнализации
Индикатор
Прибор световой сигнализации
Табло сигнальное
Лампа сигнальная с зелёной линзой
Лампа сигнальная с красной линзой
Лампа сигнальная с белой линзой
Индикаторы ионные и полупроводниковые
KРеле, контакторы, пускателиKA
KH
KK
KM
KT
KV
KCC
KCT
KL
Реле токовое
Реле указательное
Реле электротепловое
Контактор, магнитный пускатель
Реле времени
Реле напряжения
Реле команды включения
Реле команды отключения
Реле промежуточное
LКатушки индуктивности, дросселиLL
LR
LM
Дроссель люминисцентного освещения
Реактор
Обмотка возбуждения электродвигателя
МДвигателиМА Электродвигатели
РПриборы измерительныеPA
PC
PF
PI
PK
PR
PT
PV
PW
Амперметр
Счётчик импульсов
Частотомер
Счетчик активной энергии
Счетчик реактивной энергии
Омметр
Измеритель времени действия, часы
Вольтметр
Ваттметр
QВыключатели и разъединители силовыеQF Выключатель автоматический
RРезисторыRK
RP
RS
RU
RR
Терморезистор
Потенциометр
Шунт измерительный
Варистор
Реостат
SУстройства управления и коммутацииSA
SB
SF
Выключатель, или переключатель
Выключатель кнопочный
Выключатель автоматический
TТрансформаторы, автотрансформаторыTA
TV
Трансформатор тока
Трансформатор напряжения
UПреобразователиUB
UR
UG
UF
Модулятор
Демодулятор
Блок питания
Преобразователь частоты
VПриборы электровакуумные и полупроводниковыеVD
VL
VT
VS
Диод, стабилитрон
Прибор электровакуумный
Транзистор
Тиристор
XСоединители контактныеXA
XP
XS
XW
Токосъёмник
Штырь
Гнездо
Соединитель высокочастотный
YУстройства механические с электромагнитным приводомYA
YAB
Электромагнит
Замок электромагнитный

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/ 0 С.

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Полупроводниковый диод – один из самых востребованных и распространённых компонентов в электронике. Какими параметрами обладает диод? Где он применяется? Каковы его разновидности? Об этом и пойдёт речь в этой статье.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид и схематическое обозначение радиодеталей

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора ниже и обозначение постоянного и переменного на схеме.

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

2.Транзистор и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн перехода npn

Э это эммитер , К это коллектор , а Б это база .Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка


Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С — сток, И — исток, З — затвор


И напоследок о транзисторах как же они выглядат на самом деле


Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора

Микросхемы , внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

PCB Design для радиочастотных цепей и электромагнитной совместимости

Развитие коммуникационных технологий привело к постепенному широкому применению беспроводных радиочастотных (РЧ) цепей, например, в мобильных телефонах, изделиях Bluetooth и РЧ-цепях, которые были основной технологией распространения радиоволн. Однако в последние годы постепенное распространение 4G и очевидное увеличение порядка передачи данных привели к проблемам при проектировании печатных плат радиочастотных схем.В конце концов, количество сигналов, передаваемых радиочастотной цепью, увеличивается в сотни раз каждый день. Кроме того, поскольку радиочастотная схема в основном применяется в портативных устройствах, которые обладают небольшими размерами и портативностью, основное требование ко всей схеме заключается в небольшом объеме, равномерной и разумной маршрутизации и отсутствии помех между микрокомпонентами. Тем не менее, появление электромагнитных помех между компонентами внутри мобильных телефонов кажется неизбежным. Не волнуйся. Некоторые операции могут применяться для эффективного уменьшения влияния электромагнитных помех.В этой статье будет представлен разумный дизайн печатной платы для радиочастотной схемы, и характеристики этой конструкции включают небольшой объем и очевидную способность защиты от помех.

Выбор материала подложки

Поскольку некоторые ИС (интегральные схемы) реализованы на подложке, сначала необходимо выбрать подходящую подложку для ВЧ-схемы в качестве шаблона, несущего электронные компоненты. Что касается выбора материала подложки, первые элементы для рассмотрения включают диэлектрическую проницаемость, диэлектрические потери и коэффициент теплового расширения, среди которых диэлектрическая проницаемость является наиболее значительной, поскольку она сильно влияет на импеданс и скорость передачи цепи, особенно в цепях с чрезвычайно высокой частоты, которые имеют жесткие требования к диэлектрической проницаемости.Поэтому обычно выбирают материал подложки с относительно небольшой диэлектрической проницаемостью.

Процедура проектирования печатной платы

• Разработка принципиальных схем

Первым шагом проектирования печатной платы является создание принципиальной схемы, которая должна быть завершена с помощью компьютеров. Дизайн принципиальной схемы реализуется с помощью программного обеспечения для проектирования печатных плат, которое содержит все электронные аналоговые компоненты. Прежде всего, принципиальная схема создается путем моделирования реальной схемы на компьютере.Затем электрическая схема должна быть соединена с соответствующими компонентами. Затем моделирование работы выполняется на основе принципиальной схемы, чтобы определить выполнимость основной операции.

• Дизайн печатной платы

После разработки схематической диаграммы рисунок и размер печатной платы могут быть научно определены на основе принципиальной схемы. Рисунок и размер печатной платы могут быть оптимизированы в соответствии с положением, размером, рисунком и другими параметрами, чтобы обеспечить оптимальную производительность всей системы.В этом процессе необходимо определить положение отверстий расположения, смотровых глазков и контрольных отверстий.

Найдите все необходимые компоненты. Обычные комплектующие легко найти на складе. Если комплектующие отсутствуют на складе, необходимо закупить или изготовить комплектующие. PCBCart имеет профессиональную и стабильную систему поиска компонентов, на которую клиенты могут положиться. Затем необходимо распределить компоненты и реализовать маршрутизацию вокруг них. Последним шагом является обнаружение работы схемы, чтобы гарантировать, что характеристики схемы соответствуют требованиям, а работа схемы может быть в основном стабильной.

Компоновка компонентов

В отличие от обычной компоновки компонентов, все компоненты в ВЧ-цепи настолько малы из-за небольшого размера схемы, что SMT (технология поверхностного монтажа) применяется для компоновки компонентов и инфракрасной печи оплавления для пайки микроэлектронных компонентов. Пайка является важным звеном в проектировании радиочастотных схем, качество которой напрямую влияет на общее качество всей схемы. Для печатной платы радиочастотной цепи между электронными компонентами должна быть обеспечена отличная электромагнитная совместимость, которая является наиболее важным элементом.Электромагнитное излучение между различными электронными компонентами влияет на независимую работу каждого электронного компонента, поэтому необходимо сначала подобрать компоненты с защитой от помех.

Кроме того, в процессе общей работы цепи ток в цепи имеет тенденцию приводить к генерации магнитного поля. Следовательно, с точки зрения РЧ-цепи, помимо учета помех между компонентами, необходимо учитывать электромагнитные помехи схемы для других схем.Макроскопическая компоновка схем очень важна, и следующие основные принципы компоновки схем можно рассматривать как справочные.

Во-первых, расположение компонентов следует расположить в один ряд. Определение направления системы оловянного покрытия на входе печатной платы применяется для уменьшения проблем, вызванных неплотной пайкой. Как правило, расстояние между компонентами должно составлять 0,5 мм или более, чтобы можно было осуществить пайку оловом между компонентами. В противном случае пайка не может быть осуществлена ​​из-за небольшого расстояния между компонентами.

Во-вторых, все интерфейсы должны быть совместимы друг с другом в системе печатных плат. Необходимо учитывать положение, размеры и форму интерфейсов компонентов, чтобы обеспечить плавное соединение между ними. Сложность схемы неизбежно приводит к разнице электрического потенциала между цепями. Из-за небольшого расстояния между этими различиями всегда имеют место короткие замыкания. Поэтому компоненты с высоким электрическим потенциалом не следует размещать слишком близко друг к другу, чтобы избежать короткого замыкания.Больше внимания следует уделять среде с высоким напряжением.

Наконец, необходимо тщательно рассмотреть структуру схемы в целом, и схему необходимо разрезать на отдельные модули, каждый из которых имеет множество электронных компонентов. Компоненты должны быть распределены по разным модулям. Например, схема высокочастотного усилителя или схема смесителя должны быть объединены в процессе компоновки, чтобы можно было эффективно уменьшить площадь контура проводов, а также потребление цепи и электромагнитное излучение.Более того, он способен останавливать взаимные помехи между разными модулями.

Маршрутизация

Маршрутизация реализуется по базовой схеме, разделенной на детальную маршрутизацию и общую маршрутизацию. Первое относится к маршрутизации внутри различных модулей в цепи. Хотя подробный маршрут может иметь место в проекте IC, предварительный подробный маршрут выполняется до закупки компонентов. Иногда требуется лишь небольшая модификация.

Общая маршрутизация означает взаимную маршрутизацию между различными модулями или сетевую маршрутизацию между источником питания и каждым модулем. Некоторые аспекты необходимо учитывать в процессе общей маршрутизации. Множество ограничений будет вызвано особенностями расположения и разным расстоянием между модулями. Если каждый модуль рассматривается как точка и определяется соединение между точками, будет сгенерирован лучший план с наименьшей длиной трассы, чтобы сэкономить на стоимости материала и сделать схему простой и аккуратной.

Основные символы электрических и электронных схем

Схемы схем и принципиальные схемы — это простой и эффективный способ наглядно показать электрические соединения, компоненты и работу конкретной электрической цепи или системы. Основные электрические и электронные графические символы, называемые Схематические символы обычно используются в принципиальных схемах, схемах и пакетах компьютерных чертежей для определения положения отдельных компонентов и элементов в цепи.

Графические символы определяют не только положение компонентов, но и тип электрического элемента, будь то резистивный, индуктивный, емкостной, механический и т. Д. Таким образом, на принципиальных схемах и схемах графические символы идентифицируют и представляют электрические и электронные устройства и показывают, как они работают. электрически соединенные вместе, а линии между ними представляют собой провода или выводы компонентов.

A соединительные выводы или контакты компонента на принципиальной схеме можно обозначить буквами или сокращениями.Например, соединительные выводы биполярного переходного транзистора (BJT) обозначаются как E (эмиттер), B (база) и C (коллектор). Стрелки также используются в схематических символах, чтобы указать направление тока преобразования вокруг цепи или через компонент, или используются как часть их графического символа, чтобы показать, что компоненты имеют переменное или регулируемое значение. Например, потенциометр или реостат.

Хотя электрические компоненты представлены общепринятыми схематическими символами, существует ряд вариантов и альтернативных символов, используемых во всем мире для обозначения одного и того же электрического компонента или устройства.Например, IEC ( Международная электротехническая комиссия ) имеет один набор символов, а IEEE ( Институт инженеров по электротехнике и электронике ) имеет альтернативный набор символов для того же компонента.

Основные электрические и электронные графические символы, представленные здесь, являются более общепринятыми графическими символами из-за их общего использования в различных электрических и электронных областях. Отдельные графические символы ниже приведены вместе с кратким описанием и объяснением.

Условные обозначения источника питания

Условные обозначения на схеме электрического заземления

Условные обозначения на схеме резистора

Условные обозначения конденсатора

Условные обозначения индукторов и катушек

Условные обозначения переключателей и контактов

Условные обозначения на схеме полупроводниковых диодов

Условные обозначения на схеме транзистора

Условные обозначения на схеме фотоустройства

Условные обозначения цифровой логической схемы

Здесь мы увидели ряд основных символов электрических и электронных схем в графической форме, используемых инженерами, чтобы показать, как конкретная схема соединена вместе и работает, с помощью типов символов, используемых в ней, чтобы другие инженеры могли понять.

Обозначения электронных схем — Компоненты и условные обозначения на принципиальных схемах

В электронных схемах есть много электронных символов, которые используются для обозначения или идентификации основного электронного или электрического устройства. Они в основном используются для построения принципиальных схем и стандартизированы на международном уровне стандартом IEEE (IEEE Std 315) и британским стандартом (BS 3939).Пользователь не может вносить изменения в любой электронный символ, но пользователь может вносить любые изменения в архитектурные чертежи, такие как источник питания и освещение.

Электронные символы

Символы для различных электронных устройств показаны ниже. Щелкните каждую ссылку, приведенную ниже, чтобы просмотреть символы. Помимо обозначений схем, каждому устройству также присвоено короткое имя. Хотя эти имена не утверждены в качестве стандартных обозначений, они обычно используются большинством людей.Эти обозначения также приведены в списке.

Провода | Источники питания | Резистор | Конденсатор | Диод | Транзистор | Логические ворота | Метры | Датчики | Переключатели | Аудио и радиоустройства | Устройства вывода

Обозначения проводов
Электронный компонент Обозначение цепи Описание
Провод Обозначение цепи провода Используется для подключения одного компонента к другому.
Провода соединенные Обозначение соединенной цепи проводов

Одно устройство может быть подключено к другому с помощью проводов. Это представлено в виде «пятен» в местах, где они закорочены.

Несоединенные провода Обозначение провода, не входящего в цепь,

Когда цепи нарисованы, одни провода могут не касаться других. Это можно показать, только соединив их или нарисовав без пятен. Но наложение мостов обычно практикуется, так как здесь не возникает путаницы.

Обозначения источников питания
Электронный компонент Обозначение цепи Описание
Ячейка Обозначение сотовой цепи Используется для питания цепи.
Аккумулятор Обозначение цепи аккумулятора

Батарея состоит из нескольких элементов и используется с той же целью.Меньшая клемма — отрицательная, а большая — положительная. Сокращенно «B».

Источник постоянного тока Обозначение цепи питания постоянного тока Используется как источник постоянного тока, то есть ток всегда течет в одном направлении.
Источник переменного тока Обозначение цепи питания переменного тока Используется в качестве источника питания переменного тока, то есть ток будет иметь переменное направление.
Предохранитель Обозначение цепи предохранителя Используется в цепях, где существует вероятность чрезмерного протекания тока.Предохранитель разорвет цепь, если будет протекать чрезмерный ток, и убережет другие устройства от повреждений.
Трансформатор Обозначение цепи трансформатора

Используется как источник питания переменного тока. Состоит из двух катушек, первичной и вторичной, соединенных между собой железным сердечником. Между двумя катушками нет физического соединения. Для получения мощности используется принцип взаимной индуктивности. Сокращенно «Т».

Земля / Земля Обозначение цепи заземления

Используется в электронных схемах для обозначения 0 вольт источника питания.Его также можно определить как настоящую землю, когда он применяется в радиосхемах и силовых цепях.

Обозначения резисторов
Электронный компонент Обозначение цепи Описание
Резистор Обозначение цепи резистора

Резистор используется для ограничения силы тока, протекающего через устройство.Сокращенно «R».

Реостат Обозначение цепи реостата

Реостат используется для управления током с помощью двух контактов. Применимо для управления яркостью лампы, скоростью заряда конденсатора и т. Д.

Потенциометр Обозначение цепи потенциометра

Потенциометр используется для управления потоком напряжения и имеет три контакта. Применяются при изменении механического угла изменения электрического параметра.Сокращенно «POT».

Предустановка Символ предустановленной цепи

Presets — это недорогие переменные резисторы, которые используются для управления потоком заряда с помощью отвертки. Приложения, в которых сопротивление определяется только в конце схемы.

Конденсатор Symols
Электронный компонент Обозначение цепи Описание
Конденсатор Обозначение цепи конденсатора

Конденсатор — это устройство, которое используется для хранения электрической энергии.Он состоит из двух металлических пластин, разделенных диэлектриком. Он применим в качестве фильтра, то есть для блокировки сигналов постоянного тока и разрешения сигналов переменного тока. Обозначается буквой «C».

Конденсатор — поляризованный Обозначение цепи поляризованного конденсатора Конденсатор можно использовать в схеме таймера, добавив резистор.
Конденсатор переменной емкости Обозначение цепи переменного конденсатора

Используется для изменения емкости поворотом ручки.Тип переменного конденсатора — это небольшой по размеру подстроечный конденсатор. Обозначения все те же.

Обозначения диодов
Электронный компонент Обозначение цепи Описание
Диод Обозначение диодной цепи

Диод используется для пропускания электрического тока только в одном направлении. Сокращенно «D».

Светоизлучающий диод (LED) Светодиодный индикатор цепи

Светодиод используется для излучения света, когда через устройство проходит ток. Сокращенно он обозначается как LED.

Стабилитрон Обозначение цепи стабилитрона

После пробоя напряжения устройство позволяет току течь и в обратном направлении. Он обозначается аббревиатурой «Z».

Фотодиод Обозначение схемы фотодиода

Фотодиод работает как фотодетектор и преобразует свет в соответствующее ему напряжение или ток.

Туннельный диод Обозначение цепи туннельного диода

Туннельный диод известен своей высокоскоростной работой из-за его применения в квантово-механических эффектах.

Диод Шоттки Обозначение цепи диода Шоттки

Диод Шоттки известен своим большим прямым падением напряжения и, следовательно, имеет большое применение в схемах переключения.

Обозначения транзисторов
Электронный компонент Обозначение цепи Описание
NPN транзистор Обозначение цепи транзистора NPN

Это транзистор со слоем полупроводника, легированного P, закрепленным между двумя слоями полупроводников, легированных азотом, которые действуют как эмиттер и коллектор.Сокращенно «Q».

PNP транзистор Обозначение цепи транзистора PNP

Это транзистор со слоем полупроводника с примесью азота, закрепленным между двумя слоями полупроводников с примесью фосфора, которые действуют как эмиттер и коллектор. Сокращенно «Q».

Фототранзистор Обозначение цепи фототранзистора

Работа фототранзистора аналогична работе биполярного транзистора с той разницей, что он преобразует свет в соответствующий ему ток.Фототранзистор также может действовать как фотодиод, если эмиттер не подключен.

Полевой транзистор Обозначение цепи полевого транзистора

Подобно транзистору, FET имеет три вывода: затвор, исток и сток. Устройство имеет электрическое поле, которое контролирует проводимость канала носителей заряда одного типа в полупроводниковом веществе.

Полевой транзистор с N-каналом Обозначение схемы полевого транзистора с n-канальным переходом (JFET)

Полевой транзистор Junction Field Effect Transistor (JFET) — это простейший тип полевого транзистора, применяемый в коммутации и переменном резисторе.В N-канальном JFET кремниевый стержень N-типа имеет два меньших куска кремниевого материала P-типа, рассеянных с каждой стороны его средней части, образуя P-N-переходы.

Полевой транзистор с P-каналом Обозначение схемы полевого транзистора (FET) с p-канальным переходом

P-канальный JFET аналогичен по конструкции N-канальному JFET, за исключением того, что полупроводниковая основа P-типа зажата между двумя переходами N-типа. В этом случае основными носителями являются дыры.

Металлооксидный полупроводниковый полевой транзистор Данные ниже

Сокращенно MOSFET. MOSFET — трехполюсное устройство, управляемое смещением затвора. Он известен своей низкой емкостью и низким входным сопротивлением.

МОП-транзистор расширения Обозначение цепи электронного МОП-транзистора

Усовершенствованная структура полевого МОП-транзистора не имеет канала, сформированного при ее создании. Напряжение прикладывается к затвору, чтобы создать канал носителей заряда, чтобы ток возникал при приложении напряжения к клеммам сток-исток.Сокращенно e-MOSFET.

Полевой МОП-транзистор истощения Обозначение цепи d-MOSFET

В конструкции, работающей в режиме обеднения, физически создается канал, и ток между стоком и истоком возникает из-за напряжения, приложенного к клеммам сток-исток. Сокращенно d-MOSFET.

Символы логических вентилей
Ворота Стандартный символ Символ IEC Описание
И Ворота И ВОРОТА Символ И ворота IEC Symbol

Если на всех входах логического элемента И ВЫСОКИЙ, то на выходе также будет ВЫСОКИЙ.Если какой-либо из них НИЗКИЙ, выход также будет НИЗКИМ.

NAND
Gate
Символ ворот NAND Ворота NAND, IEC, символ

Краткая форма НЕ И Ворота. Из всех входов ВЫСОКИЙ, выход будет НИЗКИЙ. Если какой-либо из входов НИЗКИЙ, выход будет ВЫСОКИЙ.

OR Выход ИЛИ символ ворот ИЛИ Ворота IEC Symbol

Если любой из входов ВЫСОКИЙ, выход также будет ВЫСОКИЙ.Если оба входа LOW, выход также будет LOW.

NOR Gate Символ ворот NOR Ворота NOR, символ IEC

Краткая форма НЕ ИЛИ. Если оба входа LOW, выход также будет LOW. В других случаях выход будет ВЫСОКИЙ.

EX-OR Ворота Символ ворот EX-OR Ворота EX-OR, символ IEC

Краткая форма эксклюзивного НОР. Если оба входа находятся в состоянии НИЗКИЙ или ВЫСОКИЙ, на выходе будет НИЗКИЙ.Если оба входа различаются, выход будет ВЫСОКИЙ.

EX-NOR Gate Символ ворот EX-NOR Выход EX-NOR, символ IEC

Краткая форма исключающего НЕ ИЛИ. Если оба входа одинаковы, выход будет ВЫСОКИЙ. Если оба они разные, результат также будет другим.

НЕ Ворота НЕ символ ворот НЕ символ ворот

Также известен как инверторный затвор.У этих ворот только один вход. Если вход ВЫСОКИЙ, выход будет НИЗКИЙ. Если на входе НИЗКИЙ, на выходе будет ВЫСОКИЙ.

Счетчики
Электронный компонент Обозначение цепи Описание
Вольтметр Обозначение цепи вольтметра Вольтметр служит для измерения напряжения в определенной точке цепи.
Амперметр Обозначение цепи амперметра

Амперметр используется для измерения тока, который проходит через цепь в определенной точке.

Гальванометр Обозначение цепи гальванометра

Гальванометр используется для измерения очень малых токов порядка 1 миллиампер или меньше.

Омметр Обозначение цепи омметра Сопротивление цепи измеряется омметром.
Осциллограф Обозначение цепи осциллографа

Осциллограф используется для измерения напряжения и периода времени сигналов, а также для отображения их формы.

Обозначения датчиков
Электронный компонент Обозначение цепи Описание
Светозависимый резистор (LDR) Обозначение цепи LDR

Сокращенно LDR. Светозависимый резистор используется для преобразования света в соответствующее ему сопротивление. Вместо того, чтобы напрямую измерять свет, он определяет содержание тепла и преобразует его в сопротивление.

Термистор Обозначение цепи термистора

Вместо прямого измерения света термистор определяет содержание тепла и преобразует его в сопротивление. Сокращенно «TH».

Обозначения переключателей
Электронный компонент Обозначение цепи Описание
Нажимной переключатель Обозначение цепи нажимного переключателя Это обычный переключатель, пропускающий ток только при нажатии.
Нажимной выключатель Обозначение цепи переключателя Push to Break

Переключающий переключатель обычно находится в состоянии ВКЛ. (Замкнут). Он переходит в состояние ВЫКЛ. (Разомкнут) только при нажатии переключателя.

Однополюсный однопозиционный переключатель Обозначение цепи выключателя (SPST)

Также известен как переключатель ВКЛ / ВЫКЛ. Этот переключатель позволяет протекать току только тогда, когда он находится во включенном состоянии. Сокращенно SPST.

Однополюсный двухпозиционный переключатель Обозначение цепи двухпозиционного переключателя (SPDT)

Также известен как двухпозиционный переключатель. Его также можно назвать переключателем ВКЛ / ВЫКЛ / ВКЛ, поскольку он имеет положение ВЫКЛ в центре. Переключатель вызывает прохождение тока в двух направлениях, в зависимости от его положения. Сокращенно его можно обозначить как SPDT.

Двухполюсный однопозиционный переключатель Обозначение цепи двойного двухпозиционного переключателя (DPST)

Сокращенно DPST.Может также называться двойным переключателем ВКЛ-ВЫКЛ. Он используется для изоляции соединения под напряжением и нейтрали в главной электрической линии.

Двухполюсный двухпозиционный переключатель Обозначение цепи DPDT

Сокращенно DPDT. Переключатель использует центральное положение ВЫКЛ. И используется как реверсивный переключатель для двигателей.

Реле Обозначение цепи реле

Реле сокращенно «RY».Это устройство может легко переключать сеть переменного тока 230 Вольт. Он имеет три ступени переключения, которые называются нормально разомкнутыми (NO). Нормально замкнутый (NC) и общий (COM).

Обозначения аудио и радиоустройств
Электронный компонент Обозначение цепи Описание
Микрофон Обозначение цепи микрофона

Это устройство используется для преобразования звука в соответствующую ему электрическую энергию.Сокращенно «MIC».

Наушники Обозначение цепи наушников Выполняет обратный процесс микрофона и преобразует электрическую энергию в звук.
Громкоговоритель Обозначение цепи громкоговорителя

Выполняет те же операции, что и наушники, но преобразует усиленную версию электрической энергии в соответствующий звук.

Пьезоэлектрический преобразователь Обозначение цепи пьезопреобразователя Это преобразователь, преобразующий электрическую энергию в звук.
Усилитель Обозначение цепи усилителя

Используется для усиления сигнала. В основном он используется для представления всей схемы, а не только одного компонента.

Антенна Обозначение воздушной цепи Это устройство используется для передачи / приема сигналов. Сокращенно «АЕ».

Устройства вывода
Электронный компонент Обозначение цепи Описание
Лампа освещения Обозначение цепи лампы Используется для освещения выхода.
Контрольная лампа Обозначение цепи индикатора лампы Используется для преобразования электрической энергии в свет. Лучшим примером является сигнальная лампа на приборной панели автомобиля.
Нагреватель Обозначение цепи нагревателя Этот преобразователь используется для преобразования электрической энергии в тепло.
Катушка индуктивности Обозначение цепи индуктора

Индуктор используется для создания магнитного поля, когда определенный ток проходит через катушку с проволокой.Проволока намотана на сердечник из мягкого железа. Имеют применение в двигателях и цепях резервуаров. Сокращенно «L».

Двигатель Обозначение цепи двигателя

Это устройство используется для преобразования электрической энергии в механическую. Также может использоваться как генератор. Сокращенно «М».

Колокол Обозначение контура звонка

Используется для создания звука на выходе в соответствии с производимой на входе электрической энергией.

Зуммер Обозначение цепи зуммера

Он используется для создания выходного звука, соответствующего входной электрической энергии.

Обозначения на схемах компонентов

»Примечания по электронике

Электронные схемы являются ключом к проектированию и определению электронных схем: каждый отдельный тип компонента имеет свой собственный символ схемы, позволяющий рисовать и лаконично читать схемы.


Цепи, схемы и символы Включает:
Обзор условных обозначений цепей Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, переключатели и соединители Блоки аналоговых и функциональных схем Логика


Четкие символы использовались для обозначения различных типов электронных компонентов в схемах с самого зарождения электротехники и электроники.

Сегодня условные обозначения схем и их использование в значительной степени стандартизированы. Это позволяет любому относительно быстро прочитать принципиальную схему и узнать, что она делает. Схематические символы используются для обозначения различных электронных компонентов и устройств на принципиальных схемах, от проводов до батарей и пассивных компонентов до полупроводников, логических схем и очень сложных интегральных схем.

Используя общий набор символов схем в схемах, инженеры-электронщики во всем мире могут передавать информацию о схемах кратко и без двусмысленности.

Понять, что означают различные символы цепи, не займет много времени. Часто это все равно происходит, когда вы изучаете общую электронику. Символы для более сложных интегральных схем и т.п., как правило, представляют собой прямоугольники с включенными номерами их типов, и это означает, что не существует бесконечного разнообразия различных символов, которые необходимо изучить и понять.

Хотя существует ряд различных стандартов, используемых для различных обозначений схем по всему миру, различия обычно невелики, а поскольку большинство систем хорошо известны, обычно остается мало места для двусмысленности.

Система условных обозначений

Во всем мире для схематических символов используются различные системы. Хотя между ними есть некоторые различия, разные органы по стандартизации осознают потребность в общих символах, и большинство из них одинаковы. Основные системы условных обозначений и органы стандартизации:

  • IEC 60617: Этот стандарт выпущен Международной электротехнической комиссией, и этот стандарт для символов электронных компонентов основан на более старом британском стандарте BS 3939, который, в свою очередь, был разработан на основе гораздо более старого британского стандарта 530.Часто делается ссылка на стандарт электрических компонентов BS, и теперь используется стандарт IEC. Всего в базе данных около 1750 обозначений схем.
  • Стандарт ANSI Y32: Этот стандарт для обозначений электронных компонентов является американским и известен также как IEEE Std 315. Этот стандарт IEEE для обозначений цепей имеет различные даты выпуска.
  • Австралийский стандарт AS 1102: Это австралийский стандарт символов электронных компонентов.

Из них наиболее широко используются стандарты IEC и ANSI / IEEE для электронных символов, то есть схематические символы. Оба очень похожи друг на друга, хотя есть ряд различий. Однако, поскольку многие принципиальные схемы используются во всем мире, обе системы будут хорошо известны большинству инженеров-электронщиков.

Условные обозначения и условные обозначения

При разработке принципиальной схемы или схемы необходимо идентифицировать отдельные компоненты.Это особенно важно при использовании списка деталей, поскольку компоненты на принципиальной схеме могут быть перекрестно связаны со списком деталей или спецификацией материалов. Также важно идентифицировать компоненты, поскольку они часто маркируются на печатной плате, и таким образом можно идентифицировать схему и физический компонент для таких действий, как ремонт и т. Д.

Для идентификации компонентов используется то, что называется условным обозначением цепи. Это условное обозначение цепи обычно состоит из одной или двух букв, за которыми следует цифра.Буквы обозначают тип компонента, а число определяет, какой именно компонент этого типа. Примером может быть R13 или C45 и т. Д.

Чтобы стандартизировать способ идентификации компонентов на схемах, IEEE представил стандарт IEEE 200-1975 как «Стандартные справочные обозначения для электрических и электронных деталей и оборудования». Позже он был отменен, и позже ASME (Американское общество инженеров-механиков) инициировало новый стандарт ASME Y14.44-2008.

Некоторые из наиболее часто используемых позиционных обозначений схем приведены ниже:

Переключатель Транзистор Стабилитрон
Более часто используемые условные обозначения принципиальных схем
Условное обозначение Тип компонента
ATT Аттенюатор
BR Мостовой выпрямитель
BT аккумулятор
С Конденсатор
Д Диод
Ф Предохранитель
IC Интегральная схема — альтернатива широко применяемой нестандартной аббревиатуре
Дж Разъем разъема (обычно, но не всегда относится к гнезду)
л Катушка индуктивности
LS Громкоговоритель
п. Заглушка
PS Блок питания
Q Транзистор
R Резистор
S Переключатель
SW — альтернатива широко применяемой нестандартной аббревиатуре
т Трансформатор
TP Контрольная точка
TR — альтернатива широко применяемой нестандартной аббревиатуре
U Микросхема
VR Резистор переменный
X Преобразователь
XTAL Кристалл — альтернатива широко используемой нестандартной аббревиатуре
Z Стабилитрон
ZD — альтернатива широко применяемой нестандартной аббревиатуре

Обозначения принципиальных схем

Поскольку существует очень много различных символов схем, охватывающих широкий диапазон различных компонентов всех типов, они были разделены и представлены на разных страницах в соответствии с их категориями.

Используя различные стандартные символы схемы в схематических диаграммах, можно создать схему, которая не только легко читается, но и допускает меньшее количество неверных интерпретаций, чем при использовании нестандартных символов.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Схема радиоуправления RCA

RCA 5Т RCA 5T1
  • Страница 1 — Технические характеристики и общее описание
  • Страница 2 — Сервис Данные и порядок согласования, фото кабинета
  • Страница 3 — Схема Схема и электрическая схема шасси
  • Страница 4 — Розетка Напряжения, расположение катушек и триммера, список деталей
RCA серии 5X5 (№ шассиRC-406)
  • Страница 1 — Технические характеристики, установка, выравнивание
  • Страница 2 — Схема и список деталей


RCA 3-BX-671, 3-BX-672

RCA 8BX6 RCA 7-HF-3 RCA 8-HFP-1 RCA 7K, 7T, 8K и 8T


RCA 9K3

RCA 15X, 16X1,2,3 RCA 19K RCA 46X21, 46X23, 46X24 (шасси серии RC-461) RCA 66X11, 66X12, 66X13, 66X14, 66X15 (шасси RC-1046 серии) RCA R-78 RCA 86E, 86K, 86K7, 86T, 86T1, 87K и 87T
  • Страница 1 — Технические характеристики и общее описание
  • Страница 2 — Описание Продолжение, процедура выравнивания
  • Страница 3 — Розетка напряжения, расположение катушки и триммера (86T, 86T1, 87T)
  • Страница 4 — Схема Схема
  • Страница 5 из 5 — Шасси Схема подключения (86K, 86K7 и 87K)
  • Стр.6 — Шасси Схема подключения (86E)
  • Стр.7 — Шасси Схема подключения (86T, 86T1 и 87T)
  • Стр. 8 — Кабинет Фото
  • Стр.9 — Сервис Данные и запасные части
  • Стр. 10 — Запасные части (продолжение)
RCA 86T3 и 87T1
  • Страница 1 — Технические характеристики и общее описание
  • Страница 2 — Сервисные данные, фото кабинетов и порядок юстировки
  • Стр. 3 — Показания напряжения и тока, расположение компонентов и триммера
  • Стр. 4 — Принципиальная схема
  • Стр. 5 — Расположение составных частей и электрическая схема R-F.
  • Стр. 6 — Запасные части
RCA 95T5, 96E, 96T и 96T1
  • Страница 1 — Электрические характеристики
  • Страница 2 — Процедура регулировки и регулировки для электротюнинга
  • Стр. 3 — Схема
  • Стр. 4 — Заменяемые детали
RCA 96E2, 96K5, 96K6, 96T7, 97T2 и 96K2 RCA 96K2, 96T3, 97E, 97 кг и 97T
  • Страница 1 — Технические характеристики и общее описание
  • Страница 2 — Рисунки для идентификации и шкала калибровки шкалы
  • Стр. 3 — Выравнивание и регулировка
  • Стр. 4 — Принципиальная схема
  • Стр. 5 — Схема подключения и схема закрепления шнура набора номера
  • Стр. 6 — Перечень запасных частей
RCA 128 и 224 RCA 220 и 222 RCA 262 RCA 810K, 810K1 и 810T
  • Страница 1 — Электрооборудование и механические характеристики и общее описание
  • Страница 2 — Сервис Данные и процедура согласования
  • Стр. 3 — Кабинет Рисунки, напряжения розеток, расположение катушек и триммера
  • Страница 4 из 4 — Шасси Схема подключения
  • Страница 5 — Схема Принципиальная схема
  • Стр. 6 — Меры предосторожности Свинцовая оправка и список запасных частей
RCA 811K RCA 812K
  • Страница 1 — Технические характеристики и общее описание
  • Страница 2 — Принципиальная схема
  • Стр. 3 — Схема электрических соединений шасси
  • Стр. 4 — Схема и фото
  • Стр. 5 — Сервисные данные, расположение трубок, катушек и триммера
  • Стр. 6 — Процедура выравнивания
  • Стр. 7 — Выравнивание продолжено, напряжение гнезда трубки
  • Стр. 8 — Регулировка электрического механизма настройки
  • Стр.9 — Электротюнинг
  • Стр.10 — Электротюнинг продолжение
  • Стр. 11 — Запасные части
  • Стр. 12 — Запасные части продолжение
RCA T7-5 и C7-6 RCA T8-18, C8-19 и C8-20

Бесплатный онлайн-инструмент для создания схем и диаграмм — Scheme-It

Scheme — это онлайн-инструмент для создания схем и диаграмм, который позволяет любому создавать электронные схемы и публиковать их.Инструмент включает в себя обширную библиотеку электронных символов и интегрированный каталог компонентов Digi-Key, позволяющий создавать широкий спектр схем. Кроме того, имеется встроенный диспетчер ведомости материалов для отслеживания деталей, используемых в конструкции. После завершения схематического рисунка пользователи могут экспортировать его в файл изображения или поделиться им по электронной почте с другими. Мы проводим бета-тестирование экспорта схем в KiCad. Scheme-it изначально работает во всех основных веб-браузерах, не требуя использования каких-либо плагинов.Вам нужно только быть зарегистрированным пользователем, если вы хотите делиться и сохранять дизайны.

Q) Сколько стоит Scheme-It? Какие варианты лицензирования доступны?

A) Scheme — это бесплатный инструмент, который клиенты могут использовать сколько угодно бесплатно. Не существует «лицензии» Scheme-It, и вы можете использовать ее для разработки схем, блок-схем, диаграмм и всего остального, что необходимо для вашего бизнеса или любых проектов, которые могут у вас возникнуть, без каких-либо юридических затруднений.Пока вы не пытаетесь продать доступ к Scheme-It самостоятельно, все будет в порядке.


Q) Как мне загрузить Scheme-It на свой компьютер, чтобы я мог использовать его в пути / офлайн?

A) Scheme-Это бесплатно для использования в любом браузере клиента и может быть легко доступно с веб-сайта Digi-Key. К сожалению, программу нельзя загрузить для использования в автономном режиме; он работает в браузере с подключением к Интернету за пределами наших серверов.


Q) Как изменить цвета на проводе Scheme-It? Я хочу использовать разные цвета для земли и шин разного напряжения.

A) К сожалению, в настоящее время нет возможности изменить цвет провода в Scheme-It. Проволока можно маркировать так же, как и любую другую деталь, но ее нельзя перекрашивать.


Q) Где «земля»? Не могу найти!

A) В Scheme-It Земля считается портом. Перейдите в Schematic Symbols> Ports, и у вас будет выбор из нескольких вариантов заземления.


Q) Как добавить текст в мою схему?

A) Это можно сделать двумя способами.На самой верхней панели инструментов, рядом с изогнутыми стрелками «Отменить» / «Вернуть», есть раскрывающаяся клавиша «Вставить». Вы можете использовать этот ключ для вставки изображений, веб-ссылок и текстовых полей в вашу схему. которые можно изменять по размеру и перемещать по мере необходимости, как и любую другую часть. В настоящее время метод Insert вызывает текстовое поле со словом «ЗАГОЛОВОК», за которым следует набор латиницей. Если вы видите латынь, вы все правильно поняли.

Существует также элемент «Метка» в разделе «Символы схемы»> «Основные формы», который действует почти так же, как текстовое поле «Вставить», но без латинского алфавита.Опять же, метку можно перемещать и изменять ее размер по мере необходимости.


Q) Где схематический символ моей ИС?

A) У большинства конкретных ИС нет своего собственного значка, который вы можете поместить на схемы в Scheme-It. Вместо этого вы можете создать свою собственную ИС с настраиваемой системой символов. Перейдите в Custom Symbols> Symbol Primitives, и вы увидеть различные формы тела детали, а также верхнюю / нижнюю / левую / правую ножки. Тело можно перетащить на схему, а ноги можно перетащить в соответствующие места на теле пользовательской детали.Используя эту систему, вы можете построить практически любой символ схемы IC, который вам понадобится.


Q) Как мне отредактировать [Thing]?

A) Для любого заданного объекта в Scheme-It есть меню «Свойства» с вкладками, относящимися к этому объекту, в правой части интерфейса программы. Электронным устройствам можно давать имена, ссылочные номера и их значения. настроены, а также есть области для указания производителя, MPN, DKPN и других полезных небольших инструментов.Для таких вещей, как метки или блоки блок-схемы, можно настроить шрифт и цвета, а также изменить размер или перевернуть по мере необходимости.


Q) Как мне распечатать только схему, которую я нарисовал в Scheme-It? Когда я иду печатать, он пытается напечатать огромный белый лист, а моя схема — это просто маленькая завитушка в углу!

A) Печать непосредственно из схемы — в настоящее время не рекомендуется, за исключением случаев, когда ваша схема достаточно велика для использования всего доступного пространства схемы.Вместо этого мы рекомендуем экспортировать схему в формате PDF и печатать из него. Начиная с команды «Экспорт» на верхней панели инструментов Scheme-It, вы устанавливаете тип экспорта на «Документ (PDF)», а в параметрах PDF устанавливаете в раскрывающемся меню «Область экспорта» значение «Активная область». В результате получается PDF-документ, содержащий только вашу схему, а не остальную часть рисованной области Scheme-It, идеально подходящую для печати.

Управление компонентами

в CircuitStudio | Электронная документация для продуктов Altium

Родительская страница: Изучение CircuitStudio

Компонент — это общее название детали, которая может быть помещена в электронную конструкцию во время процесса регистрации проекта.В своей обычной форме компонент обычно состоит из логического символа, который применяется к схеме проекта, и шаблона посадочного места (модели), который будет физически представлять компонент на печатной плате. Компоненты «соединены» вместе, чтобы сформировать целостную конструкцию.

Первоначальной задачей в этой части процесса проектирования, как правило, является фиксация его схемы в схеме, где размещенный компонент предоставляет графический символ, который включает в себя точки электрического соединения компонента, определяемые контактами.В CircuitStudio это схематическое представление компонента также предоставляет ряд дополнительных свойств, параметров и связей с шаблоном посадочного места печатной платы — или, точнее, двухмерной и / или трехмерной моделью, которая физически представляет компонент на печатной плате.

Определения компонентов схемы (состоящие из символа, связей модели, параметров и т. Д.) Все вместе хранятся в файле схемной библиотеки ( * .SchLib ), который можно загрузить в CircuitStudio. Определения моделей печатных плат аналогичным образом хранятся в библиотеке печатных плат ( *.PcbLib ), где составляющие его модели связаны с помощью определений символов (компонентов) в схемной библиотеке.


Базовое определение компонента схемы в библиотеке схем включает ссылки на подходящие модели печатных плат в библиотеке печатных плат, удовлетворяющие обоим доменам с помощью унифицированного компонента.

Этот унифицированный формат компонента означает, что его схематическое представление предоставляет всю информацию, необходимую для реализации компонента как в области схемотехники, так и в области проектирования печатной платы.Когда схематический проект передается в домен PCB (через процесс обновления PCB), CircuitStudio найдет и разместит модель (и) печатной платы, определенную ссылкой (ями) на модель компонента схемы.

Чтобы проверить модели печатных плат, прикрепленные к компоненту в существующем схематическом проекте, откройте диалоговое окно его свойств (дважды щелкните символ или выберите Properties из контекстного меню, вызываемого правой кнопкой мыши) и обратите внимание на ссылки в области Models .

Работа с библиотеками Sch / Pcb

В CircuitStudio отдельные файлы схем и библиотек печатных плат могут использоваться несколькими способами в зависимости от требований:

  • Файлы библиотеки можно добавить в дизайн-проект, где они будут доступны для использования при каждой загрузке проекта.
  • Библиотеки можно хранить отдельно, а затем устанавливать в CircuitStudio как постоянно доступные библиотеки.
  • Файлы схем
  • и библиотеки печатных плат могут быть добавлены в проект Library Package , который может быть скомпилирован для создания одного файла Sch / Pcb Integrated Library . Смотрите ниже для получения дополнительной информации.

Во всех случаях центральная точка для доступа и установки библиотек схем и плат находится через панель Libraries — выберите View | System | Библиотеки .Панель предоставляет список компонентов (символов / моделей) в текущей выбранной библиотеке, включая предварительный просмотр символа и / или посадочного места каждой записи компонента.

При просмотре открытой схемной библиотеки, которая содержит базовую информацию для унифицированного компонента, на панели Библиотеки отображается графическая сводка всех связанных моделей печатных плат.


Панель Библиотеки является центром команд для всех общих задач управления компонентами и библиотеками.

Библиотеки

могут быть добавлены в текущий проект или установлены через диалоговое окно «Доступные библиотеки », доступ к которому осуществляется с помощью кнопки на панели.Библиотеки также можно установить на странице «Управление данными — Установленные библиотеки» в диалоговом окне «Параметры » программы CircuitStudio (Файл »).

Практический обзор загрузки библиотек и доступа к библиотечным компонентам см. В разделе «Компоненты и библиотеки» в учебном пособии CircuitStudio От идеи до производства .

Редактирование компонентов

Компоненты, содержащиеся в отдельных библиотеках схем и плат, можно редактировать (или создавать / удалять) с помощью редактора библиотеки CircuitStudio и связанных панелей библиотеки SCH / PCB.

Чтобы открыть компонент схемы для редактирования, щелкните правой кнопкой мыши его запись в списке панели Libraries , затем выберите Edit Component из контекстного меню. Точно так же, чтобы открыть компонент для редактирования в открытой библиотеке печатной платы, выберите Edit Component из контекстного меню панели Libraries , вызываемого правой кнопкой мыши. Обратите внимание, что библиотеку также можно открыть для редактирования непосредственно из панели Projects .


Компоненты, содержащиеся в отдельных библиотеках схем или плат, можно редактировать до основных элементов и примитивов.

CircuitStudio откроет соответствующую панель библиотеки для редактируемого типа компонента (панель SCH Library или PCB Library панель) и загрузит изображение символа или модели в рабочее пространство редактора, готовое для редактирования. Панель библиотеки можно открыть вручную из меню ленты, если необходимо, из редактора схемной библиотеки или редактора библиотеки плат: View | Схема | Библиотека или Просмотр | Библиотека печатных плат | Библиотека .

Для редактирования компонентов система предоставляет полный набор графических инструментов редактирования как для графического образа, так и для редактирования образца печатной платы (доступный на вкладке меню Home ), а панель «Библиотека» предоставляет функции редактирования более высокого уровня, такие как добавление / удаление компонента. записи и доступ к основным элементам компонента.Для условных обозначений это электрические контакты, а для шаблонов печатных плат — дорожки, контактные площадки и трехмерные элементы, составляющие модель.

Данные компонентов и связывание

Помимо включения символов и шаблонов на основе библиотеки, комплексный многодоменный компонент должен содержать дополнительную информацию, такую ​​как его базовые спецификации, параметры и ссылки на 2D / 3D модели — полный набор описательных данных для унифицированного компонента.

Эти данные хранятся в самом схемном компоненте и могут быть отредактированы в диалоговом окне «Свойства библиотечного компонента схемы «.В открытом редакторе схемной библиотеки к нему можно получить доступ, выбрав Home | Библиотека | Библиотека »Свойства компонента из главного меню или двойным щелчком по записи имени компонента на панели SCH Library .


Помимо набора основных свойств компонента, компонент может иметь несколько связанных моделей и любое количество добавленных пользовательских параметров.

Возможно, наиболее важным аспектом при создании (и обслуживании) унифицированного компонента являются связи между схемой и моделью печатной платы.Они устанавливаются и редактируются в области Models диалогового окна Library Component Properties . Здесь можно добавлять, удалять и редактировать двухмерные и трехмерные библиотечные модели с помощью соответствующих кнопок раздела и соответствующего диалогового окна «Модель печатной платы» (доступ к которому осуществляется нажатием Edit в диалоговом окне Library Component Properties ).


Базовый схемный компонент может быть связан с различными данными модели.

Диалоговое окно PCB Model позволяет устанавливать связи модели из загруженной библиотеки, абсолютного пути к библиотеке, библиотеки в пути поиска библиотеки CircuitStudio или путем просмотра локального системного хранилища.

Интегрированные библиотеки компонентов

Следующим эволюционным шагом в управлении компонентами в CircuitStudio является эффективное объединение отдельных библиотек схем и плат в единые интегрированные библиотеки.

Они компилируют все необходимые элементы компонентов (символы схемы, модели печатных плат и т. Д.) В один файл библиотеки, доступный только для чтения ( * .IntLib ). Компоненты, содержащиеся в интегрированной библиотеке, постоянно унифицированы в доменах Schematic-PCB, поскольку внутренние связи модели являются постоянными, то есть их нельзя сломать, как в случае, когда элементы компонентов в отдельных файлах библиотеки Sch / PCB связаны.


Модели печатных плат импортируются в компонент интегрированной библиотеки при создании библиотеки.

На практике интегрированная библиотека ведет себя как доступная только для чтения схемная библиотека, которая содержит модели печатных плат для каждого компонента (а не ссылки на них). Таким образом, тип библиотеки является безопасным и переносимым.

Примеры интегрированных библиотек можно найти в локальной папке библиотеки CircuitStudio, C: \ Users \ Public \ Documents \ Altium \ CS \ Library , а различные интегрированные библиотеки обычно устанавливаются по умолчанию — Miscellaneous Connectors.IntLib и Разные устройства. IntLib .

Создание интегрированной библиотеки

Интегрированная библиотека CircuitStudio создается из специального типа проекта, который называется пакетом библиотеки ( * .LibPkg ). В самом простом подходе к этому проекту добавляется существующая схемная библиотека (с действующими ссылками на модель), которая затем компилируется для создания отдельной интегрированной библиотеки.

Основные шаги:

  • Создайте проект пакета библиотеки, открыв новый проект интегрированной библиотеки (файл »Новая библиотека ).
  • Сохраните проект под подходящим именем («Файл » Сохранить библиотеку как ).
  • Добавьте в проект целевую библиотеку схем (Проект | Проектные документы | Добавить существующий документ ).
  • Скомпилируйте проект для создания соответствующей интегрированной библиотеки (выберите имя проекта пакета, затем выберите Compile Integrated Library xx.LibPkg из контекстного меню, вызываемого правой кнопкой мыши).
  • Проверьте успешный результат компиляции, как показано на панели Сообщения ( View | System | Messages ).


Библиотека схем была добавлена ​​в проект пакета библиотеки MyIntLib и скомпилирована для создания интегрированной библиотеки MyIntLib .

Обратите внимание, что интегрированная библиотека, сгенерированная процессом (сохраненная в ../Library/Project Outputs для xx ), автоматически устанавливается в CircuitStudio и готова к использованию. Автономный файл библиотеки, который включает параметры символов компонентов и модели печатных плат, можно безопасно передать в хранилище или другим пользователям как часть проекта или как отдельную библиотеку.


Новая интегрированная библиотека ( MyIntLib ), установленная в CircuitStudio.

Чтобы настроить проверку ошибок компилятора, целевые пути, параметры и многое другое для создания интегрированной библиотеки, отредактируйте настройки параметров в диалоговом окне «Параметры для интегрированной библиотеки ». На панели Projects щелкните правой кнопкой мыши имя проекта пакета, затем выберите Project Options из контекстного меню.

Компоненты Altium Vault

Наиболее сложным и комплексным решением для управления компонентами в CircuitStudio является использование Altium Component Vault — отдельного, полностью управляемого репозитория новейших компонентов, предоставляемого Altium.

Наряду с предоставлением огромного набора компонентов, доступных для использования в ваших проектах, содержимое облачного хранилища управляется Altium в партнерстве с основными поставщиками компонентов. Это освобождает вас от задачи управления ресурсами компонентов, поскольку все части полностью утверждены, жизненный цикл управляется, а также предлагает широкий спектр дополнительных данных, таких как текущие спецификации, спецификации и цены.

На практике компоненты хранилища используются в CircuitStudio путем подключения удаленного хранилища компонентов Altium, просмотра или поиска нужной части в Vault Explorer и помещения ее в схематический проект.


CircuitStudio Vault Explorer обеспечивает прямой доступ к компонентам в Altium Component Vault.

См. Раздел Altium Content Vault в руководстве От идеи до производства , чтобы получить обзор подключения к Altium Vault и размещения компонентов хранилища.

Существенным преимуществом использования компонентов на основе Altium Vault является то, что они управляются за вас, поэтому вы можете быть уверены, что они актуальны, доступны и правильно реализованы.Использование компонентов хранилища также позволяет избежать необходимости создавать большие коллекции локальных библиотек компонентов и управлять ими.

Ссылки на поставщиков компонентов

Хотя доступ к высококачественным ресурсам компонентов имеет важное значение для успеха проекта, символы и модели представляют собой лишь виртуальный эквивалент «реальных» компонентов, то есть физических частей, которые в конечном итоге загружаются в изготовленную печатную плату. Решение, какие именно детали используются в конструкции — с какими спецификациями, от каких производителей и поставщиков и по какой цене — является важной частью процесса проектирования, который обычно включает в себя обширные исследования и сравнение продуктов.

CircuitStudio облегчает этот процесс, значительно улучшая его точность и актуальность за счет предоставления Live Supplier Links . Простые и быстрые в реализации, это живые связи, устанавливаемые между компонентом CircuitStudio и элементом в базе данных поставщиков электронных компонентов.

Ссылка на поставщика формируется путем прямого подключения к веб-службам поставщика, что позволяет выполнять поиск по всем базам данных поставщиков, поддерживаемым CircuitStudio. Когда желаемая деталь выбрана, к локальному компоненту схемы добавляется ссылка в виде набора параметров — Supplier и Supplier Part Number.Это связующее соединение затем восстанавливается каждый раз, когда компонент открывается в схеме или библиотеке, и, следовательно, гарантированно отражает данные текущего поставщика для этого компонента.

В существующем схематическом проекте связи с поставщиками компонента можно увидеть в диалоговом окне Properties (дважды щелкните компонент схемы).


Ссылки на поставщиков компонента хранятся в качестве параметров в записи компонента схемы в виде полей поставщика и номера детали.

Чтобы просмотреть данные, которые компонент Supplier Link извлекает из веб-сервисов поставщика, щелкните правой кнопкой мыши компонент схемы, затем выберите Supplier Links из связанного контекстного меню. Обратите внимание, что в этом диалоговом окне можно как добавлять, так и удалять ссылки на поставщиков.


В диалоговом окне Supplier Links отображаются все ссылки поставщиков, прикрепленные к выбранному компоненту, и результирующие данные, извлеченные из связанных веб-служб поставщика.

Возможность получать данные о компонентах, связанных с поставщиками, на ранних этапах цикла проектирования и просматривать эту информацию на протяжении всего процесса проектирования, позволяет принимать обоснованные решения о деталях на основе текущих спецификаций компонентов, таблиц данных, физических свойств, а также информации о доступности и ценах.Кроме того, после добавления действующих ссылок поставщиков к компонентам CircuitStudio связанные данные поставщиков, включая информацию о ценах и запасах, могут быть включены во время выпуска проекта в спецификацию материалов (BOM).

В CircuitStudio ссылки поставщиков могут быть добавлены к компонентам проекта или компонентам в библиотеке схем. Ссылки поставщиков, добавленные к компонентам в проекте, являются эксклюзивными для этого проекта, а ссылки поставщиков, добавленные к компоненту библиотеки, станут доступными в любом проекте, который использует этот компонент библиотеки.

Добавление ссылок на поставщиков в проект

Чтобы добавить ссылки поставщиков к компоненту в проекте, выберите компонент на схеме, выберите Supplier Links из контекстного меню, вызываемого правой кнопкой мыши, затем нажмите кнопку Добавить в появившемся диалоговом окне Supplier Links . Откроется диалоговое окно Добавить ссылки поставщика . Поле Ключевые слова диалогового окна будет предварительно заполнено текстом свойства Комментарий для этого компонента, который будет номинальной строкой поиска, применяемой к базам данных поставщиков, когда вы нажимаете кнопку Search .Обратите внимание, что строку ключевого слова можно редактировать.

Когда результаты поиска заполнены, вы можете просмотреть доступные параметры, чтобы определить оптимальный выбор детали для компонента проекта.


При добавлении ссылки поставщика к компоненту в диалоговом окне Добавить ссылки поставщика отображается полный список извлеченных записей поставщика, соответствующих поиску по ключевым словам в диалоговом окне.

При нажатии OK информация о выбранной детали поставщика будет добавлена ​​в диалоговое окно Supplier Links , а при нажатии OK в диалоговом окне Supplier Links информация о выбранной детали поставщика добавляется к текущему компоненту. .Существующую ссылку на поставщика можно удалить из диалогового списка Ссылки на поставщика , выбрав ссылку поставщика, которую нужно удалить, а затем нажав кнопку Удалить .

Данные поставщика / детали хранятся как параметры Supplier 1 и Supplier Part Number 1 , как упоминалось выше. Обратите внимание, что в диалоговом списке Supplier Links можно добавить несколько ссылок на детали. Они будут сохранены как последовательно пронумерованные параметры поставщика в компоненте — i.е. Поставщик 1 , Поставщик 2 и т. Д.

Базовый список спецификаций включает только информацию о детали для Решение 1 , поскольку выбор между опциями детали должен быть сделан до создания спецификации во время выпуска проекта. См. Содержание спецификации ниже.

Чтобы просмотреть полученные данные Supplier Link в спецификации проекта, выберите Project | Действия проекта | Сгенерировать выходные файлы , чтобы открыть диалоговое окно Сгенерировать выходные файлы. Спецификацию можно предварительно просмотреть и настроить, выбрав ссылку Настроить , связанную с Спецификацией материалов в области Outputers диалогового окна.Обратите внимание, что различные уровни информации о поставщиках могут быть включены в спецификацию путем включения и отключения столбцов данных.


Диалоговое окно конфигурации спецификации предоставляет параметры экспорта и валюты, а также предварительный просмотр содержимого спецификации.

Добавление ссылок поставщиков в библиотеку

Ссылки поставщиков

добавляются к компонентам библиотеки в редакторе схемных библиотек, инициируемые открытием схемной библиотеки.

Открыв выбранную деталь в редакторе, щелкните правой кнопкой мыши в рабочей области, затем выберите Supplier Links из контекстного меню.Варианты выбора деталей можно просмотреть и добавить в диалоговом окне Supplier Links , как описано выше для добавления ссылок на проект.


Ссылки поставщиков, добавленные к компоненту библиотеки, сохраняются вместе с компонентом и извлекаются всякий раз, когда этот компонент помещается в проект из библиотеки.

Если в библиотечный компонент включены ссылки поставщиков, на панели Библиотеки будет отображаться текущая информация о ценах на этот компонент, полученная напрямую от основного поставщика — параметр Supplier 1 для этого компонента.Это обеспечивает удобный просмотр информации о текущих ценах на компонент, полученной из действующей ссылки поставщика, всякий раз, когда этот компонент выбран в библиотеке для потенциального размещения в дизайне.


Текущие данные о ценах доступны, когда компонент библиотеки (со встроенными ссылками на поставщиков) выбран на панели Библиотеки .

Выбор поставщика

Благодаря соглашениям с рядом поставщиков компонентов, Altium позволил CircuitStudio доступ и поиск данных о компонентах из нескольких источников.Веб-доступ к этим порталам поставщиков обеспечивается с помощью CircuitStudio Extensions — подключаемых программных модулей, разработанных для взаимодействия с конкретными API баз данных поставщиков.

С практической точки зрения, расширение поставщика необходимо установить и активировать в диалоговом окне Добавить ссылку на поставщика , чтобы загрузить и отобразить данные этого поставщика, а также повторно получить доступ к связанным данным из компонента проекта или библиотеки.

Расширения устанавливаются из области Расширений и обновлений CircuitStudio на домашней странице (Просмотр | Начало ).Выберите Extension and Updates из раскрывающегося списка My Account .

Требуемые параметры поставщика также должны быть включены, что настраивается на странице Data Management — Suppliers раздела Data Management в диалоговом окне Preferences .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *