Схемы драйверов для led прожектора самодельные. Схемы драйверов для светодиодных прожекторов: особенности конструкции и ремонта

Как устроены драйверы светодиодных прожекторов. Какие бывают типовые неисправности LED-прожекторов. Как проверить и отремонтировать драйвер своими руками. Как заменить светодиоды в прожекторе.

Содержание

Устройство светодиодного прожектора и основные компоненты

Светодиодный прожектор состоит из следующих основных элементов:

  • Светодиоды — источники света
  • Драйвер — блок питания светодиодов
  • Корпус
  • Рассеиватель света
  • Линзы для фокусировки светового потока

Драйвер является ключевым компонентом, от которого зависит стабильность работы и срок службы прожектора. Он преобразует переменное напряжение сети в постоянный ток для питания светодиодов.

Типичные неисправности LED-прожекторов

Наиболее распространенные проблемы светодиодных прожекторов:

  • Выход из строя драйвера
  • Перегорание отдельных светодиодов
  • Окисление контактов
  • Нарушение герметичности корпуса
  • Повреждение линз или рассеивателя

Чаще всего выходит из строя именно драйвер из-за перегрева или скачков напряжения. Поэтому большинство ремонтов связано с заменой или восстановлением драйвера.


Проверка работоспособности драйвера светодиодного прожектора

Чтобы проверить исправность драйвера, выполните следующие шаги:

  1. Убедитесь, что на вход драйвера подается сетевое напряжение 220В.
  2. Отключите светодиодную матрицу от драйвера.
  3. Подайте питание и измерьте выходное напряжение драйвера.
  4. Исправный драйвер должен выдавать напряжение на 30-40% выше номинального.
  5. Если напряжение отсутствует или значительно ниже, драйвер неисправен.

Для точной диагностики рекомендуется использовать мультиметр и осциллограф. Это позволит оценить форму выходного сигнала и стабильность работы драйвера.

Диагностика светодиодной матрицы прожектора

Для проверки светодиодной матрицы выполните следующие действия:

  1. Отключите матрицу от драйвера.
  2. Подключите лабораторный блок питания к матрице.
  3. Плавно повышайте напряжение, начиная с минимального значения.
  4. Следите за током потребления и свечением светодиодов.
  5. При достижении номинального напряжения матрица должна светиться в полную силу.

Если часть светодиодов не горит или матрица потребляет аномальный ток, требуется ремонт или замена светодиодов.


Ремонт драйвера светодиодного прожектора своими руками

Основные этапы ремонта драйвера:

  1. Визуальный осмотр платы на предмет повреждений
  2. Проверка и замена вздувшихся конденсаторов
  3. Диагностика и замена силовых транзисторов
  4. Проверка выпрямительных диодов
  5. Замена управляющей микросхемы при необходимости
  6. Восстановление поврежденных дорожек платы

При ремонте важно использовать качественные компоненты с аналогичными или улучшенными характеристиками. Это повысит надежность драйвера после ремонта.

Замена светодиодов в прожекторе

Порядок замены неисправных светодиодов:

  1. Демонтируйте светодиодную матрицу из корпуса прожектора
  2. Определите неисправные светодиоды
  3. Аккуратно выпаяйте поврежденные элементы
  4. Очистите контактные площадки от припоя
  5. Установите и припаяйте новые светодиоды
  6. Проверьте работу матрицы от лабораторного БП

При замене важно использовать светодиоды с идентичными характеристиками по напряжению, току и цветовой температуре. Это обеспечит равномерное свечение прожектора.

Простые схемы самодельных драйверов для светодиодных прожекторов

Для самостоятельного изготовления драйвера можно использовать следующие схемы:


  • На основе микросхемы VIPer22A
  • С емкостным источником питания
  • Стабилизированный драйвер на полевом транзисторе
  • Схема с батарейным питанием
  • Повышающий драйвер на микросхеме ZXSC310

Выбор схемы зависит от мощности прожектора, напряжения питания и требований к стабильности. Для мощных прожекторов рекомендуются схемы с активной стабилизацией тока.

Меры безопасности при работе со светодиодными прожекторами

При ремонте и обслуживании LED-прожекторов соблюдайте следующие правила:

  • Отключайте прожектор от сети перед любыми работами
  • Используйте изолированный инструмент
  • Не прикасайтесь к токоведущим частям
  • Работайте в резиновых перчатках
  • Не включайте прожектор со снятым корпусом
  • Соблюдайте полярность при подключении

Помните, что в драйвере присутствует опасное сетевое напряжение даже в выключенном состоянии. Будьте предельно осторожны и не рискуйте, если не уверены в своих навыках.


20 Ватт драйвер светодиодов или «Конструкция выходного дня».

7.51

Перейти в магазин

Как то мне так понравилось экспериментировать со светодиодным освещением и переделывать светильники, что когда мне предложили выбрать товар для тестирования, то я не смог удержаться и решил попробовать светодиодный драйвер фабричного изготовления.

Кому интересно, развитие этой идеи под катом.

Как я дал понять в аннотации, драйвер был предоставлен бесплатно, впрочем особого значения в данном случае это не имеет, так как цель любого обзора — показать что вообще товар из себя представляет и стоит его покупать или нет. Обещаю быть не предвзятым и показать кто есть кто, да и обзора 20 Ватт драйвера я здесь еще не встречал.

Итак преамбула, давно стал замечать, что светильники с люминесцентными лампами, сделанные по принципу — чем дешевле- тем лучше, имеют характерный дефект, при частом включениивыключении они долго не живут, что лампы, что сами электронные балласты.
Дома есть пара светильников с фирменными балластами, Vossloh Schwabe и Philips, они работают отлично, но цена на них обычно несколько завышена, не говоря о том, что качественные Филлипсы из продажи пропали. И если для основного освещения я пока опасаюсь применять светодиоды, то для второстепенного вполне допускаю. Один из таких вариантов будет описан в обзоре.

Но буду последователен.
Приехал драйвер относительно быстро, примерно недели три, точно не скажу, так как ехал он без трека. Упакован был в стандартный желтый конвертик с пупырчатой пленкой внутри, сам драйвер лежал в пакетике с защелкой. Впрочем учитывая монолитную конструкцию драйвера поломать его сложно. В общем ничего особо интересного, упаковка как упаковка.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Длина входного кабеля и выходных проводов одинаковая, 27см, выходные провода в силиконовой изоляции, очень мягкие (где бы купить такого провода отдельно).


Размеры корпуса 75х30х20мм, длина с учетом крепежных лапок — 90мм.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

С обратной стороны драйвер залит массой, похожей на эпоксидную смолу, разборке и ремонту он не подлежит. А жаль, интересно было бы попробовать изготовить такой драйвер самому или доработать этот. Но хотел именно IP65. В общем ешьте что заказали и не квакайте. 🙂

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Характеристики драйвера заявленные производителем.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Основные характеристики драйвера.
Количество светодиодов 6-9.
Выходное напряжение драйвера — 28-40 Вольт.
Ток 600мА.
У продавца указано что 20-35V 600mAh 20W LED Driver (10 series 2 parallel)

Немного не сходится. Да и минимум 6 светодиодов дадут максимум 24 Вольта, здесь не сходится уже данными производителя, но эксперименты покажут кто прав.

Максимум, что мне удалось узнать из того, что у него внутри, это то, что емкость выходного конденсатора 100мкФ, и то предположительно.
Кстати включается драйвер с задержкой около 0.5-0.7 секунды, немного раздражает.

Дальше я начал испытания (самому было любопытно).
На холостом ходу драйвер дает около 44 Вольт (на всякий случай, сетевое входное было 230 Вольт)

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Сначала я его нагрузил на 100 Ватт матрицу (схема 10х10), напряжение упало до 30,9 Вольта, ток составил 0.57 Ампера, соответственно мощность 17,6 Ватта.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

После этого я перешел к испытаниям с той нагрузкой, с которой планировал использовать.
Светодиоды 10 Ватт (схема 3х3)

2 светодиода последовательно, напряжение 19.04 В, ток 0.58 А, мощность 11 Ватт.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

3 светодиода последовательно, напряжение 28.11 В, ток 0.57 А, мощность 16 Ватт.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Ну и напоследок испытание того, что я планировал к нему подключать, 4 светодиода 10 Ватт последовательно, напряжение поднялось до 37.08 В, ток упал до 0.53 А, мощность составила 19,65 Ватта.

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Фактически это максимум этого драйвера. Я считаю что довольно неплохо.
Нагрузка немного нештатная, но тем интереснее.

Кстати интересно что светодиоды немного разные, у трех штук четко видно кристаллы при работе, а у четвертого (на фото правый верхний) как бы смазаны, на фото меньше заметно, почему так, непонятно, вероятно другая партия

20 Ватт драйвер светодиодов или «Конструкция выходного дня».

Для гурманов.

 Осциллограммы напряжения и тока.

На этом экспериментальная часть закончена и пора уже перейти к практической.
Как все понимают, драйвер, лежащий на полке, пользы не приносит, разве что если что-то подпирает 🙂

В одном из обзоров я переделывал светильник китайского производства. В этом ситуация очень похожа, тоже светильник, тоже китайского производства, и не менее распространенный, чем предыдущий. И так же «болеющий» проблемой ненадежной работы.

 Описание переделки светильника.

Резюме.
Драйвер вполне нормальный, ток немного занижен относительно декларируемого производителем, 550-580мА против 600 заявленных производителем.
Нагрев даже на максимальной мощности, да еще и в фактически нештатном режиме вполне нормальный, производитель заявляет макс 75 градусов, у меня в закрытом корпусе вышло около 60, посмотрим как будет работать.
Пульсации небольшие, «карандашный» тест проходит, но можно добавить емкость на выходе, скорее всего еще уменьшатся.
Немного напрягает включение с задержкой, но это уже индивидуально.

Покупать или нет, стоит он своих денег или нет, решать Вам, в обзоре я старался максимально показать его реальные характеристики, надеюсь что у меня это получилось.
Вроде ничего не забыл. Особое спасибо тем, кто смог дочитать до конца.

Драйвер был бесплатно предоставлен для тестирования и обзора магазином Chinabuye.

7.51

Перейти в магазин

Ремонтируем светодиодный прожектор своими руками.

Содержание

  • 1 Устройство светодиодного прожектора и типовые неисправности
  • 2 Проверяем драйвер
  • 3 Проверяем светодиодную матрицу
  • 4 Что делать если мощность светодиодного модуля неизвестна?
  • 5 Ремонт драйвера светодиодного прожектора
  • 6 Замена светодиода

Сегодня светодиодные прожектора пользуются повышенным спросом и востребованностью у большого числа людей, потому как имеют массу преимуществ при использовании. Эти устройства выполнены из современных элементов и имеют высокую надежность и эффективность, но и он с течением определенного периода по времени могут сломаться, тогда потребуется выполнить их ремонт. Выполнить ремонт прожектора можно достаточно быстро по времени в зависимости от возникшей неисправности.

Устройство светодиодного прожектора и типовые неисправности

Светодиодные прожекторы считаются такими устройствами, которые сочетают высокие показатели эффективности в работе и экономичности. Эти изделия имеют длительный по времени эксплуатационный ресурс, но иногда требуют квалифицированного ремонта. Чтобы качественно отремонтировать, рекомендуется обращаться в специализированные мастерские, где работают квалифицированные и опытные специалисты. Этот прожектор представляет собой яркий прибор для освещения, которые состоит из определенных деталей и элементов, одними из них являются:

  • Специальные светодиоды, которые способны излучать свет.
  • Специальные драйвера.
  • Корпус.
  • Эффективный рассеиватель, который в заметной степени увеличивает КПД устройства.
  • Линзы.

Устройство светодиодного прожектора.

Частой поломкой, которая связана с представленным устройством — выход из строя драйвера. Осветительный прибор такими неисправностями быстро теряет яркость и с течением времени перегорает, потому как уменьшается качество передачи тепла в атмосферу. Эта проблема характерна для недорогих по стоимости изделий. Сгорание или же нечеткая работа драйвера является частой проблемой, которая часто встречается у производителей, экономящих на установке качественных радиаторов.

Проверяем драйвер

Ремонт светодиодных прожекторов должен проводиться с использованием современного оборудования и качественного инструмента. Чтобы осуществить проверку работы драйвера, потребуется убедиться, что на него подается электрическое питание 220 В. После этого, потребуется решить, что не работает. Здесь два варианта, первое — неисправность заключается в LED-драйвере. Второй вариант, поломка LED-матрицы. Необходимо сказать, что определение «драйвер» по своей основной сути — это определенный маркетинговый ход производителя, которым обозначается источник тока. Этот источник применяется для определенного устройства, которое рассчитано по току и значениям мощности.

Ремонт светодиодного прожектора своими руками  возможно осуществить при относительно несложных неисправностях. Чтобы осуществить проверку драйвера без подключенного светодиода, потребуется подать на его вход напряжение в 220В. После этого, на выходе, при исправном узле, должно возникнуть постоянное напряжение, которое будет по значению больше, чем допустимый предел указанный на самом блоке.

К примеру, когда на блоке установленного драйвера указано напряжение 28 В, тогда при осуществлении действий по его включении «вхолостую», показатели напряжения на выходе будут составлять ориентировочно 40 В. Это объясняется принципом функционирования схемы. Для полного восстановления ремонтируете драйвера светодиодного устройства с использованием качественных элементов, что в заметной степени увеличит показатели срока службы и эффективность оборудования.

Принципиальная схема самодельного прожектора на светодиодах.

Но, представленный способ проверку, не дает 100% гарантии такого факта, что он исправно работает. В некоторых случаях, может потребоваться отремонтировать ЛЕД прожекторов своими руками. Следует отметить, что иногда бывают рабочие блоки драйвера, которые при «холостом» включении, могут показывать различные параметры. Это не всегда указывает на неисправность узла, потому как у разных производителей свои схемы по которым могут работать. Этот момент в обязательном порядке требуется учитывать и полностью понимать, если вам необходимо проверить драйвер. Если мигает светодиодный прожектор или моргает, тогда это может указывать на недостаток питания, поэтому первым делом, следует проверить электрическое питание на выходе. Это делается в самую первую очередь, что позволяет сэкономить время на выполнение указанных мероприятий.

Проверяем светодиодную матрицу

Для проверки работы матрицы, рекомендуется использовать лабораторные БП. При этом, требуется подавать меньшее напряжение, чем требуется для работы этого узла. После этого, необходимо будет измерить показатели тока, то есть узнать, какое его количество потребляет в данный момент по времени наш прибор. При отсутствии неисправностей в таком случае, матрица должна будет загореться. По завершению указанной процедуры, необходимо постепенно повышать напряжение, которое подается на матрицу до номинальных значений. Когда матрица разгорается на полную мощность, тогда можно считать, что этот узел оборудования исправен. Многие люди, занимающиеся подобными работами, упускают важные моменты, которые связаны с правильной установкой различных деталей, что с течением времени приводит к поломке.

Схема-подключение светодиодной матрицы.

Что делать если мощность светодиодного модуля неизвестна?

Иногда случаются такие ситуации, когда показатели мощности установленного модуля не указаны. Поэтому, аппарат сложно правильно подобрать для решения поставленных задач, а также сложно будет в будущем подобрать адаптер. Отмечаем такой момент, что в матрицах применяются диоды, которые имеют показатели мощности в 1 Вт, а их ток равняется 320 мА. Если в матрице 9 постоянно включенных диодов, а ток один по 320 мА и напряжение 3,1 В. Напряжение будет около 29 В.

Ремонт драйвера светодиодного прожектора

При ремонтной операции драйвера светодиодного прожектора, необходимо будет обращать внимание на все элементы, которые присутствуют в схеме. Он должен выдавать определенные значения постоянного напряжения, которое используется для питания установленных диодов. При ремонте этой системы, обращают внимание на силовые детали, которые имеют радиаторы. Связано это с тем, что при плохом охлаждении, определенные элементы драйвера могут быстро выходить из строя и их требуется заменить на новые и более качественные. В этом случае полезно подключение и схема диммера, что сэкономит время на данную процедуру.

Электрическая схема  драйвера.

Замена светодиода

При выполнении работ, связанных с заменой светодиодов, необходимо обращать повышенное внимание на параметры этого элемента, они должны точно соответствовать тем, которые прописаны у неисправных элементов. Это поможет правильно сделать замену и стабильную работу прожектора на долгий отрезок по времени. Рекомендуется приобретать эти детали от известных производителей, потому как качество дешевых светодиодов не лучшее.

Неисправность светодиодного прожектора , блок питания не включается.

Если требуется оперативный ремонт оборудования, тогда можно приобрести в любом магазине, который торгует светодиодами необходимые элементы. Когда люди занимаются ремонтом современных систем на постоянной основе, тогда имеется отличная возможность приобретать необходимые элементы для замены при помощи магазинов, расположенных в интернете, что удобно и практично

5 Простые схемы драйверов светодиодов мощностью 1 Вт

В этом посте мы познакомимся с несколькими простыми в сборке компактными схемами светодиодных ламп мощностью 1 Вт. Первая схема основана на SMPS, во второй схеме используется емкостной источник питания, а остальные концепции показывают, как использовать источник постоянного тока для освещения светодиода мощностью 1 Вт.

Предупреждение. Многие из описанных ниже цепей не изолированы от сети переменного тока, поэтому прикасаться к ним при включенном и разомкнутом состоянии крайне опасно. Вы должны быть предельно осторожны при построении и тестировании этих цепей и обязательно принять необходимые меры предосторожности. Автор не может нести ответственность за какой-либо несчастный случай из-за какой-либо небрежности пользователя

1) Малый драйвер светодиодов SMPS мощностью 1 Вт

В первом наиболее рекомендуемом проекте мы изучаем схему драйвера светодиодов SMPS, которая может использоваться для управления светодиодами высокой мощности мощностью от 1 Вт до 12 Вт. . Он может напрямую питаться от любой домашней сети переменного тока 220 В или 120 В переменного тока.

Введение

Первый проект объясняет конструкцию небольшого неизолированного понижающего преобразователя SMPS (неизолированная точка нагрузки), которая является очень точной, безопасной и простой в сборке схемой. Давайте узнаем подробности.


Вы также можете узнать Как спроектировать схемы драйверов светодиодов


Основные характеристики

Предлагаемая схема драйвера светодиодов smps чрезвычайно универсальна и особенно подходит для управления светодиодами высокой мощности.

Однако неизолированная топология не обеспечивает защиты от поражения электрическим током на стороне светодиодов цепи.

Помимо вышеуказанного недостатка, схема безупречна и практически защищена от всех возможных опасностей, связанных с скачками напряжения в сети.

Хотя неизолированная конфигурация может показаться несколько нежелательной, она избавляет конструктора от необходимости наматывать сложные первичные/вторичные секции на Е-сердечниках, поскольку трансформатор здесь заменен парой простых ферритовых дросселей барабанного типа.

Основным компонентом, отвечающим за выполнение всех функций, является микросхема VIPer22A от ST microelectronics, которая была специально разработана для таких небольших бестрансформаторных компактных драйверов светодиодов мощностью 1 Вт.

Принципиальная схема

Изображение предоставлено: © STMicroelectronics — Все права защищены волна, выпрямленная D1 и C1.

C1 вместе с катушками индуктивности L0 и C2 составляют сеть круговых фильтров для подавления электромагнитных помех.

D1 желательно заменить двумя диодами, включенными последовательно, чтобы выдержать всплески 2 кВ, генерируемые C1 и C2.

R10 обеспечивает определенный уровень защиты от перенапряжения и действует как предохранитель в случае катастрофических ситуаций.

Как видно из приведенной выше принципиальной схемы, напряжение на C2 подается на внутренний сток полевого МОП-транзистора IC на контактах 5–8.

Встроенный источник постоянного тока микросхемы VIPer подает ток 1 мА на контакт 4 микросхемы, который также является контактом Vdd микросхемы.

При напряжении около 14,5 В на Vdd источники тока отключаются и переводят схему ИС в колебательный режим или инициируют пульсацию ИС.

Компоненты Dz, C4 и D8 становятся цепью регулирования цепи, где D8 заряжает C4 до пикового напряжения в период свободного хода и когда D5 смещен в прямом направлении.

Во время вышеперечисленных действий источник или опорный сигнал ИС устанавливается примерно на 1 В ниже уровня земли.

Подробную информацию о деталях схемы драйвера светодиодов мощностью от 1 до 12 Вт см. в следующем техническом описании в формате pdf от ST microelectronics.

DA ТАБЛИЦА

2) Использование бестрансформаторного емкостного источника питания

Следующий драйвер светодиода мощностью 1 Вт, описанный ниже, показывает, как построить несколько простых схем драйвера светодиода мощностью 1 Вт, работающих от 220 В или 110 В, которые будут стоить вам не более 1/2 доллара. , за исключением светодиода, конечно.

Я уже обсуждал емкостной тип источника питания в нескольких постах, например, в схеме светодиодной трубки и в схеме бестрансформаторного источника питания, в настоящей схеме также используется та же концепция для управления предлагаемым светодиодом мощностью 1 Вт.

Схема работы

На принципиальной схеме мы видим очень простую схему емкостного источника питания для управления светодиодом мощностью 1 Вт, которую можно понять со следующими пунктами.

Конденсатор 1 мкФ/400 В на входе образует сердцевину схемы и выполняет функции основного ограничителя тока в цепи. Функция ограничения тока гарантирует, что напряжение, подаваемое на светодиод, никогда не превысит требуемый безопасный уровень.

Однако у высоковольтных конденсаторов есть одна серьезная проблема, они не ограничивают и не способны препятствовать первоначальному включению сетевого питания в бросках, которые могут быть фатальными для любой электронной схемы. Светодиоды не являются исключением.
Добавление резистора 56 Ом на вход помогает ввести некоторые меры защиты от повреждений, но само по себе оно не может обеспечить полную защиту задействованной электроники.

Металлооксидный варистор определенно подойдет, а как насчет термистора? Да, термистор также был бы желанным предложением.
Но они относительно более дорогие, и мы обсуждаем дешевую версию предлагаемого дизайна, поэтому мы хотели бы исключить из общей стоимости все, что превышает долларовую отметку.

Итак, я придумал новаторский способ замены MOV на обычную дешевую альтернативу.

Какова функция MOV

Он заключается в том, чтобы поглотить первоначальный всплеск высокого напряжения/тока на землю, чтобы в данном случае он был заземлен до того, как достигнет светодиода.

Разве высоковольтный конденсатор не выполняет ту же функцию, если он подключен к самому светодиоду. Да, это, безусловно, будет работать так же, как MOV.

На рисунке показано подключение еще одного высоковольтного конденсатора непосредственно через светодиод, который поглощает мгновенный приток скачка напряжения при включении питания, он делает это во время зарядки и, таким образом, поглощает почти все начальное напряжение в броске, вызывая все сомнения связанные с емкостным типом питания отчетливо видны.

Конечным результатом, как показано на рисунке, является чистая, безопасная, простая и недорогая схема драйвера светодиодов мощностью 1 Вт, которую любой любитель электроники может собрать прямо дома и использовать для личных удовольствий и полезности.

ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ К ней ОЧЕНЬ ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПОД НАПРЯЖЕНИЕМ.

 Схема цепи

ПРИМЕЧАНИЕ. Светодиод на приведенной выше схеме представляет собой светодиод 12 В, 1 Вт , как показано ниже:

В показанной выше простой схеме светодиодного драйвера мощностью 1 Вт два конденсатора 4,7 мкФ/250 вместе с резисторами 10 Ом образуют в цепи своего рода «прерыватель скорости». в свою очередь помогает защитить светодиод от повреждения.

Эту функцию можно заменить на NTC, которые популярны благодаря своим функциям подавления скачков напряжения.

Усовершенствованный способ решения проблемы начального пускового тока может заключаться в подключении термистора NTC последовательно с цепью или нагрузкой.

Пожалуйста, перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.

Приведенную выше схему можно изменить следующим образом, однако свет может быть немного нарушен.

Хорошим способом решения проблемы начального выброса импульса является подключение термистора NTC последовательно с цепью или нагрузкой.

Пожалуйста, перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт 9.0003

https://www.homemade-circuits.com/2013/02/using-ntc-resistor-as-surge-suppressor.html

3) Стабилизированный драйвер светодиодов мощностью 1 Вт с использованием емкостного источника питания

Как может быть видно, что 6 шт. диодов 1N4007 используются на выходе в режиме прямого смещения. Поскольку каждый диод будет давать падение 0,6 В на себе, 6 диодов создадут общее падение 3,6 В, что является правильным значением напряжения для светодиода.

Это также означает, что диоды будут шунтировать остальную часть энергии от источника на землю, и, таким образом, обеспечивать идеально стабилизированное и безопасное питание для светодиода.

Другая схема стабилизированного емкостного драйвера мощностью 1 Вт

Следующая конструкция, управляемая полевым МОП-транзистором, вероятно, является лучшей универсальной схемой драйвера светодиодов, которая гарантирует 100% защиту светодиода от всех типов опасных ситуаций, таких как внезапное перенапряжение и перегрузка по току. или импульсный ток.

Светодиод мощностью 1 Вт, подключенный к приведенной выше схеме, сможет производить около 60 люменов интенсивности света, что эквивалентно лампе накаливания мощностью 5 Вт.

 Изображения прототипа

Вышеприведенная схема может быть изменена следующим образом, однако свет может быть немного нарушен.

4) Схема драйвера светодиода мощностью 1 Вт с использованием батареи 6 В

Как видно на четвертой диаграмме, концепция почти не использует какую-либо схему или, скорее, не включает активный компонент высокого класса для требуемой реализации управления мощностью 1 Вт. ВЕЛ.

Единственными активными устройствами, которые использовались в предлагаемой простейшей схеме драйвера светодиодов мощностью 1 Вт, являются несколько диодов и механический переключатель.

Начальные 6 вольт от заряженной батареи снижаются до требуемого предела в 3,5 вольта за счет включения всех диодов последовательно или на пути напряжения питания светодиода.

Поскольку на каждом диоде падает напряжение 0,6 вольта, все четыре вместе пропускают только 3,5 вольта к светодиоду, безопасно и ярко освещая его.

По мере того, как яркость светодиода падает, каждый диод последовательно шунтируется с помощью переключателя, чтобы восстановить яркость светодиода.

Использование диодов для понижения уровня напряжения на светодиодах гарантирует, что процедура не рассеивает тепло и, следовательно, становится очень эффективной по сравнению с резистором, который в противном случае рассеивал бы много тепла в процессе.

5) Освещение светодиодом мощностью 1 Вт с помощью элемента AAA 1,5 В

В 5-м проекте давайте узнаем, как освещать светодиод мощностью 1 Вт с помощью элемента AAA 1,5 в течение разумного периода времени. Схема, очевидно, основана на технологии повышающего драйвера. , в противном случае управлять такой огромной нагрузкой с таким минимальным источником невозможно вообразить.

Светодиод мощностью 1 Вт относительно велик по сравнению с источником питания 1,5 В типа AAA.

Для светодиода мощностью 1 Вт требуется минимум 3 вольта питания, что в два раза превышает номинал ячейки.

Во-вторых, для работы светодиода мощностью 1 Вт требуется от 20 до 350 мА тока, а 100 мА — вполне приемлемый ток для питания этих световых машин.

Таким образом, использование пальчикового фонарика AAA для вышеуказанной операции выглядит очень отдаленным и невозможным.

Тем не менее, обсуждаемая здесь схема доказывает, что все мы ошибались, и успешно управляет 1-ваттным светодиодом без особых осложнений.

СПАСИБО ZETEX за предоставленную нам замечательную маленькую ИС ZXSC310, для которой требуется всего несколько обычных пассивных компонентов, чтобы сделать это возможным.

Работа цепи

На схеме показана довольно простая конфигурация, которая в основном представляет собой настройку повышающего преобразователя.

Входной постоянный ток 1,5 В обрабатывается микросхемой для создания высокочастотного выходного сигнала.

Частота переключается транзистором и диодом Шоттки через дроссель.

Быстрое переключение катушки индуктивности обеспечивает необходимое повышение напряжения, которое подходит для питания подключенного светодиода мощностью 1 Вт.


Здесь, во время завершения каждой частоты, эквивалентная энергия, накопленная внутри индуктора, перекачивается обратно в светодиод, создавая необходимое повышение напряжения, которое поддерживает свечение светодиода в течение долгих часов даже с источником, который столь мал, как 1,5-вольтовая ячейка. .

Изображение прототипа

Драйвер светодиода мощностью 1 Вт на солнечной батарее

Это школьный выставочный проект, который дети могут использовать для демонстрации того, как можно использовать солнечную энергию для освещения светодиода мощностью 1 Вт.

Идея была запрошена г-ном Ганешем, как указано ниже:

Привет, Swagatam! Я наткнулся на ваш сайт и нашел вашу работу очень вдохновляющей. В настоящее время я работаю над программой «Наука, технологии, инженерия и математика» (STEM) для учащихся 4-5 классов в Австралии. Проект направлен на повышение интереса детей к науке и тому, как она связана с реальными приложениями.

Программа также привносит эмпатию в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирской проблемы. В течение следующих трех лет мы сосредоточимся на том, чтобы познакомить детей с наукой об электричестве и реальным применением электротехники. Введение в то, как инженеры решают проблемы реального мира на благо общества.

В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на младших школьников (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, в данном случае солнечной. В рамках программы самостоятельного обучения дети узнают и исследуют электричество и энергию, поскольку они знакомятся с реальным проектом, то есть обеспечивают освещением детей, укрытых в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в команды для сборки солнечных фонарей, которые затем отправляются детям из неблагополучных семей по всему миру.

В качестве некоммерческого образовательного фонда мы просим вашей помощи в составлении простой принципиальной схемы, которая может быть использована для создания солнечной лампы мощностью 1 Вт в качестве практического занятия в классе. Мы также закупили у производителя 800 комплектов солнечного света, которые дети будут собирать, однако нам нужен кто-то, кто упростит принципиальную схему этих комплектов света, которые будут использоваться для простых уроков по электричеству, цепям и расчету мощности, вольт, ток и преобразование солнечной энергии в электрическую энергию.

Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.

Схема

Всякий раз, когда требуется простой, но безопасный солнечный контроллер, мы неизбежно выбираем вездесущий IC LM317. Здесь тоже используем такое же недорогое устройство для реализации предлагаемой светодиодной лампы мощностью 1 Вт с использованием солнечной панели.

Полную схему можно увидеть ниже:

Беглый осмотр показывает, что при наличии контроля тока регулированием напряжения можно пренебречь. Вот упрощенная версия вышеупомянутой концепции, использующая только схему ограничения тока.

Создание мощного самостоятельного светодиодного драйвера мощностью 150 Вт для управления большими осветительными панелями

Большинство моих недавних проектов были направлены на создание световой панели с высоким CRI (индексом цветопередачи) для кинематографии. Видеосветовая панель хорошего качества стоит дорого, и на то есть веские причины, но как производитель я предпочитаю покупать вещи, а не просто покупать их.

Моя цель состояла в том, чтобы собрать панель мощностью 300-320 Вт. Однако я пришел к выводу, что ограничение панели с таким количеством светодиодов заключается не в их управлении, а в переплавке платы. Типичная недорогая самодельная установка оплавления с переделанным тостером/печью для пиццы или сковородой просто не может вместить доску такого размера. Чтобы иметь возможность оплавлять плату, я строю печь оплавления в паровой фазе, которая будет иметь максимальный размер платы 230 мм на 180 мм в качестве еще одного проекта. Из-за этого я решил вместо этого разделить панель на две панели по 150-160 Вт. Это также должно дать мне некоторую дополнительную гибкость, так как теперь я могу разделить панели, чтобы предложить более творческие варианты освещения, не потребляя больше энергии. Я все еще планирую подключить все от блока питания 350 Вт 48 В, чтобы обе панели питались от одного и того же источника 48 В.

Этот проект доступен на GitHub, и вы можете свободно использовать его по своему усмотрению. Если вам нужны компоненты, используемые в проекте, вы можете найти их в моей библиотеке Altium Designer с открытым исходным кодом.

Я хочу использовать Luminus Devices MP-3030-210H-40-95 для световых панелей. Это белый мощный светодиод с индексом цветопередачи 95 и прямым напряжением 6 вольт. Я хочу использовать максимально возможное напряжение, чтобы уменьшить потери и максимально снизить ток, тем самым уменьшив нагрев светодиодной панели. При поиске блока питания переменного/постоянного тока в диапазоне 300-400 Вт блок питания 48 В является самым дешевым у поставщиков, которых я использую.

В предыдущем проекте я пытался увидеть, как далеко может зайти монолитная микросхема драйвера, и 65 Вт действительно подталкивали ее, поэтому для моего окончательного решения драйвера я знаю, что мне нужен контроллер с внешними полевыми МОП-транзисторами.

Перебрав множество драйверов, я остановился на Analog Devices LT3756EMSE-2. Мало того, что он выглядит так, как будто у него отличная производительность, он также является очень хорошей отправной точкой для дизайна, упомянутого в одном из справочников по дизайну.

Я посмотрел на запуск драйвера, который может работать как в режиме понижения, так и в режиме повышения, в зависимости от того, какой из режимов обеспечивал лучшую производительность. В понижающем режиме драйверу требовалось 32 параллельных цепочки светодиодов для достижения желаемого напряжения, а это означало, что мне требовались компоненты с высоким номинальным током. Компоненты с более высоким номинальным током стоят дороже, чем компоненты с более высоким номинальным напряжением, поэтому я собираюсь использовать режим форсирования, который я изначально планировал.

Драйвер рассчитан на выходное напряжение 100 В, поэтому я планирую подключить 16 светодиодов последовательно, чтобы получить 96 В на цепочку. Это должно дать мне нагрузку 1,8 А для привода.

LT3756EMSE-2 имеет два токоизмерительных резистора для контроля нагрузки.

Первый резистор, значение которого мне нужно рассчитать, включен последовательно со светодиодом для программирования тока через светодиод. Контроллер светодиодов определяет падение тока на этом резисторе, расположенном на стороне высокого напряжения цепочки светодиодов. Драйвер ожидает падение на этом резисторе на 100 мВ, а поскольку я хочу подать 1,8 А в каждой цепи, небольшое применение закона Ома говорит мне, что мне нужен резистор на 56 мОм.

Резистор второго значения имеет формулу в техническом описании, а для добавочных резисторов это

Когда я подставляю свои значения, это дает мне резистор 20 мОм.

Этот чувствительный резистор используется для установки максимального тока переключения.

Я собираюсь использовать для конструкции резисторы типоразмера 2512. Они могут более чем справиться с током, а большой корпус поможет рассеивать тепло, сохраняя температуру моей платы.

Микросхема также имеет два интересующих нас делителя напряжения, первый из которых представляет собой типичный делитель блокировки пониженного напряжения, отключающий драйвер, когда напряжение на выводе падает ниже 1,22 В. Я устанавливаю это значение на 40 В для этого драйвера, так как я хочу допустить некоторое падение напряжения при включении драйвера до того, как регулятор AC-DC сможет наверстать упущенное. Функция плавного пуска LT3756 должна помочь уменьшить просадку напряжения при включении панели, убедившись, что напряжение ниже моего минимального установленного значения является явным признаком того, что что-то не так работает на регуляторе.

Второй делитель — установка выходного напряжения. Для этого я стремлюсь к 1,25 В на выводе. Я устанавливаю делитель на 96 В, что гарантирует, что драйвер не сможет превысить номинальное значение 100 В, при этом позволяя светодиодам работать на полной мощности.

Есть несколько соображений относительно частоты переключения в этой конструкции, в первую очередь размер компонентов и тепловыделение от управления затвором полевых МОП-транзисторов. Более низкие частоты переключения позволят драйверу оставаться намного холоднее, поскольку ему не нужно подавать столько энергии на полевой МОП-транзистор, если он не быстро включает и выключает затвор. Более низкая частота, как правило, более эффективна, но также требует более крупных компонентов. Я хотел бы, чтобы эта конструкция была очень эффективной, чтобы уменьшить количество тепла на плате, а также убедиться, что мне не нужно переходить на большой источник питания переменного/постоянного тока, чтобы иметь дело с неэффективной конструкцией. Светодиодная панель сама по себе будет довольно большой, а печатные платы дешевы, поэтому я не слишком беспокоюсь о размере платы драйвера для этого приложения.

Последнее соображение касается рабочего цикла. Если я хочу использовать диммирование с разрешением 3000:1, на которое способен драйвер, мне потребуется большой запас по минимальному времени включения драйвера, что также обеспечит более низкая частота переключения.

Учитывая, сколько факторов подталкивает меня к низкой частоте переключения, я рассмотрел несколько вариантов катушки индуктивности и обнаружил, что самая низкая частота переключения, подходящая для выбора катушки индуктивности, составляет около 250 кГц. Если я пойду ниже этого, я не смогу найти подходящие катушки индуктивности у своих постоянных поставщиков.

Значение индуктивности выбирается совместно с частотой коммутации. Существует много итераций взад и вперед, чтобы выбрать их вместе, чтобы убедиться, что дизайн выполним для источника деталей.

В техническом описании есть следующая формула для номинала катушки индуктивности:


Что дает мне

Правда, я решил эту задачу немного по-другому. Я искал максимальное значение, которое я мог найти для катушки индуктивности в практичном корпусе для поверхностного монтажа, чтобы рассчитать частоту переключения. Когда я узнал, что частота не будет работать, я решил соединить две катушки индуктивности последовательно, как это делал проект. Это, в свою очередь, позволило мне выбрать катушку индуктивности 47 мкГн, что близко к идеалу для конструкции на 250 кГц. Затем я убедился, что частота 250 кГц подходит для других конструктивных ограничений, установленных в техническом описании.

Таким образом, у меня остается огромный индуктор Wurth WE-HCF 7443634700, обеспечивающий минимальный ток насыщения 5 А при сохранении низкого сопротивления постоянному току. Две из этих катушек индуктивности 47 мкГн идеально соответствуют требованиям по индуктивности, а ток насыщения 8,5 А значительно выше минимального. При сопротивлении постоянному току 12,2 мОм они не должны перегреваться. Не говоря уже о том, что большой корпус также обеспечивает большую тепловую массу и действует как радиатор.

Согласно техническому описанию, наша главная забота о мощных МОП-транзисторах будет заключаться в заряде затвора и напряжении сток-исток (VDSS). Я также хочу упаковку, с которой относительно легко иметь дело в количествах прототипов DIY. Хотя в техническом описании сопротивление RDS-ON не слишком упоминается, я не уверен, сколько медной площади у меня будет для отвода тепла, поэтому я также хочу, чтобы это значение было низким. В принципе, я хочу иметь все это без жертв!

Существует не так уж много полевых МОП-транзисторов, отвечающих моим требованиям, поэтому я решил использовать Infineon BSC060N10NS3GATMA1. Прежде чем я подтвержу свой выбор, мне нужно убедиться, что микросхема драйвера справится с этим, поскольку заряд затвора, возможно, является основным недостатком MOSFET при 68 нКл. К счастью, я выбрал низкую частоту переключения, которая снижает ток, необходимый для управления затвором. Я также решил использовать пакет MSOP вместо QFN, так как MSOP имеет тепловое сопротивление (θJA) 43°C/Вт, что является более благоприятным по сравнению с 68°C/Вт QFN.

Мы можем рассчитать температуру перехода, создаваемую при возбуждении полевого транзистора, по формуле из таблицы данных. Я удалил параметр температуры окружающей среды, поэтому мы просто видим фактическое повышение температуры.

Драйвер может обеспечить максимальный ток покоя 1,5 мА, поэтому я буду использовать его в уравнении. С другими уже известными параметрами я получаю:

Когда драйвер готов работать при 125°C, это дает мне максимальную температуру окружающей среды/платы около 77°C. Драйвер выключится при температуре 165°C, позволяя плате достичь примерно 117°C, прежде чем мы перейдем к отключению из-за перегрева. Я бы не ожидал, что температура окружающей среды превысит 77°C, так как на светодиодной панели будут установлены вентиляторы, которые также будут охлаждать плату драйвера.

Схема драйвера мощного светодиода

После расчета всех значений схему очень легко нарисовать. Самая большая проблема — просто попытаться сделать его разборчивым и понятным.

Пути утечки и зазоры

Поскольку я имею дело с напряжением 100 В на плате, я хотел добавить правила утечки и зазоры для конструкции платы, чтобы гарантировать, что все пойдет не так, как если бы компоненты или дорожки слишком близко подходили к друг друга под высоким напряжением.

Если вы читали другие мои проекты, то знаете, что я люблю онлайн-калькуляторы. Я использую Creepage.com для расчета требований к зазору и пути утечки для платы. Мой расчетный зазор составляет 0,5 мм, а путь утечки должен быть 1,4 мм. Учитывая зазор 0,195 мм между штырями корпуса MSOP, это больше, чем мне бы хотелось, поэтому я выбрал вариант «плата с покрытием», который снижает требования к пути утечки до всего 0,2 мм. Конформное покрытие значительно упростит добавление в области платы, где у меня есть путь утечки менее 1,4 мм, чем если бы я проектировал плату для больших требований к утечке.

Учитывая требования к зазору и пути утечки, я добавляю директиву набора параметров к каждой цепи на схеме.

Я использую стиль Tiny, чтобы символ оставался маленьким. Сети с более низким потенциалом (такие как земля) и сети с относительно низким напряжением получают имя класса цепей «LP», в то время как сети с высоким напряжением добавляются к классу цепей, называемому «HV».


После размещения параметра вы можете использовать кнопку добавления в окне свойств, чтобы добавить класс цепей.


То же самое повторяется для сетей с низким потенциалом.

Схема платы

После добавления всех компонентов на плату я пытаюсь прикинуть схему расположения компонентов. Для конструкции, которая переключает довольно большую мощность, очень важно, чтобы токовая петля была как можно меньше, чтобы уменьшить электромагнитные помехи и обеспечить хорошую работу драйвера.

Эта плата будет состоять из четырех слоев. Несмотря на то, что это простая схема, я не хочу разрезать нижний слой для логических дорожек, чтобы обеспечить хороший тепловой путь для земли. Верхний слой не будет особенно эффективен для тепловых целей, так как будет разбит на большие многоугольники для проведения тока. 4-слойная плата не требует больших дополнительных затрат по сравнению с 2-слойной и обеспечивает хороший тепловой путь. Верхний внутренний слой также будет иметь сплошное заземление, обеспечивая защиту от высоких токов на верхнем слое и не создавая проблем с логическими сигналами на нижнем внутреннем слое. Кроме того, эта заземляющая пластина также поможет отвести часть тепла от микросхемы драйвера.

После нескольких макетов, которые меня не очень удовлетворили, я остановился на черновом макете ниже.


Я не большой поклонник того, что входной разъем (вверху справа) находится так далеко от регулятора, поэтому я добавлю много переходных отверстий вокруг заземления, чтобы обеспечить хороший обратный путь. Прежде чем я слишком увлекусь компоновкой, мне нужно установить правила утечки и зазора для высоковольтных цепей.

Для питания я использую коннекторы JST PH, так как для них легко найти предварительно обжатые кабели (серия JST KH). Штыри для разъемов рассчитаны только на 1 ампер, поэтому, чтобы удовлетворить требования схемы, я использую 3 контакта для земли и 3 контакта для напряжения. Я рассматривал возможность использования чего-то вроде цилиндрических разъемов, припаянных непосредственно к плате, но разъемы JST PH будут работать хорошо и доставят гораздо меньше хлопот при сборке.

Создание правил утечки и зазора

Первое, что нам нужно, это новое правило для пути утечки. Вы можете перейти к правилам, перейдя в Дизайн -> Правила.

Я добавляю в проект новое правило пути утечки.

В свойствах нового правила я вижу свой расчетный путь утечки 0,2 мм (с конформным покрытием!). Обычно вы ожидаете, что правило утечки будет намного выше, чем правило зазора.

Затем мы можем сделать то же самое для зазора с расчетным минимальным расстоянием 0,5 мм.

Проблема с этими правилами заключается в том, что любой след, исходящий от водителя, будет немедленно нарушать правило, поскольку невозможно выполнить требования по разрешению.

На данный момент у меня есть несколько вариантов:

  • Создайте правила для каждого исключения, чтобы четко определить, что может нарушать общее правило.
  • Оставьте все как есть и тщательно проверяйте каждое нарушение правил проектирования, прежде чем подписывать проект.
  • Создайте комнату для локального исключения.

Использование комнат для создания локальных исключений

Должен признаться, я не так часто использую комнаты в своих проектах, как следовало бы. Если вы смотрели другие мои проекты, то могли заметить, что я отключил генерацию комнат на уровне проекта для большинства дизайнов. Однако создание локализованных исключений из правил — это тот случай, когда комнаты действительно удобны!

По умолчанию комната автоматически содержит любой объект, находящийся в ней. Для большинства объектов это означает, что весь объект должен находиться в пределах комнаты, однако для переходных отверстий это означает, что только центр переходного отверстия должен находиться на границе комнаты или в ее пределах. Я нашел это очень удобным позже в процессе планировки, чтобы ограничить размер комнаты.

Для начала я добавлю новую комнату. Для моих целей здесь мне просто нужна прямоугольная комната. Область, в которой мне нужно исключение, довольно мала и не требует сложной геометрии, как это позволяет полигон.

После размещения комнаты и присвоения ей имени «ClearanceException» мне нужно добавить новое исключение из правила очистки.

Я мог бы также добавить сюда новое правило утечки, чтобы я мог просто использовать конформное покрытие на самой микросхеме и иметь общее требование к утечке тока 1,4 мм для платы — однако для этого проекта я не чувствую необходимости этого делать. . Вы можете использовать тот же самый процесс, что и исключение для правила зазора, чтобы создать правило утечки, если вам нужно сделать это для ваших собственных проектов.

Я не мог вспомнить точный запрос, который нужно использовать для определения того, находится ли объект на доске в комнате или нет, к счастью, окно Query Helper имеет его в разделе «Проверки членства».

Наше исключение очистки имеет специальный запрос для WithinRoom(‘ClearanceException’) и проверку InNetClass.

При этом я устанавливаю зазор на 0,19 мм. Подушечки на посадочном месте имеют зазор 0,195 мм, поэтому 0,19 мм должны удовлетворять требованиям правил проектирования.

Наконец, мне нужно убедиться, что приоритет правил правильный. Исключения из правил всегда должны быть первыми. Чем шире область действия правила, тем ниже оно должно быть в списке приоритетов.

Оглядываясь назад на мою печатную плату с проделанной первоначальной разводкой, я вижу, что мои ярко-зеленые нарушения теперь исчезли.

Я буду сокращать комнату по мере продвижения макета, чтобы он покрывал только те части, к которым нужно применить исключение.

Продолжение компоновки

Теперь, когда на меня не смотрят ужасные нарушения правил, я могу продолжить компоновку и маршрутизацию. Как обычно в проектах высокой мощности, я начинаю с «разводки» платы с помощью полигонов. Я решил использовать скругленные многоугольники для этой платы в основном для развлечения, но это действительно служит определенной цели — для цепей с более высоким напряжением твердый угол — это место для потенциального разряда, если паяльная маска немного тонкая или повреждена. Учитывая качество паяльной маски даже на самых дешевых платах, я должен признать, что в конечном итоге это в основном эстетический выбор.

Я поместил логический сигнал на нижний внутренний слой (середина 2) и попытался как можно меньше повредить нижнюю медную область, чтобы она могла служить хорошим большим радиатором для драйвера. Я попытался максимизировать медную площадь каждого верхнего полигона, который также будет отводить тепло.

В моем окончательном макете много переходных отверстий, многие из которых, вероятно, излишни. Я большой поклонник перебора. В верхней части доски нет насыпи грунта, так как это бесполезно. Он не будет проводить много энергии или служить щитом для любых следов.

 

Power Simulation

В прошлом я писал отдельные статьи о моделировании сетей распределения электроэнергии для этого типа проекта, однако для этого проекта я просто хочу провести быструю проверку, поэтому я включу его в Эта статья. Я моделирую только самый минимум, поэтому моя сеть питания довольно проста.

Глядя на плотность тока заземления и дорожки распределения питания, максимальное значение составляет 35 А/мм2, что намного ниже, чем мы видели на других платах. Этого должно быть более чем достаточно, а также уменьшить потери тепла на плоскостях, сохраняя температуру всей платы.

Несмотря на быструю настройку симуляции, знание того, что на этой плате нет сумасшедших точек с точки зрения плотности тока, является хорошим спокойствием.

Окончательные характеристики доски

Чтобы сделать эту доску пригодной для производства, мы должны убедиться, что на доске есть реперные точки для машины для захвата и размещения, которую можно использовать. Чтобы плату можно было использовать, ее необходимо прикрепить к корпусу. Я добавил монтажные отверстия M3, так как простое использование зажимов из корпуса не идеально, учитывая вес катушек индуктивности. Из-за нехватки места в верхней части платы для крепежного винта я сделал вырез в контуре платы, который обеспечит достаточную площадь контакта для винта, чтобы плата не могла двигаться

Мне кажется, финальная доска выглядит неплохо. Я с нетерпением жду следующей разработки светодиодной панели и объединения всех моих последних проектов в законченный продукт.

 

Наконец

Как упоминалось ранее, вы можете найти файлы дизайна для этого проекта на GitHub. Его можно использовать по своему усмотрению для любых целей в соответствии с лицензией MIT.

Это будет очень мощный драйвер светодиодного освещения, способный управлять более чем 100 мощными светодиодами. Учитывая напряжения на плате, если вы решите построить ее самостоятельно, вам следует считать конформное покрытие обязательным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *