Как правильно выбрать блокировочный конденсатор для схемы. Какое значение емкости оптимально. Почему важны ESR и ESL конденсатора. Как размещать блокировочные конденсаторы на печатной плате.
Роль блокировочных конденсаторов в электронных схемах
Блокировочные конденсаторы играют важную роль в обеспечении стабильной работы электронных устройств. Их основная задача — подавление высокочастотных помех и пульсаций в цепях питания микросхем и других компонентов. Правильный выбор и размещение блокировочных конденсаторов позволяет:
- Уменьшить уровень шумов в аналоговых цепях
- Повысить помехоустойчивость цифровых схем
- Предотвратить самовозбуждение усилителей
- Улучшить форму фронтов цифровых сигналов
- Снизить уровень электромагнитных помех, излучаемых устройством
Выбор емкости блокировочного конденсатора
Многие разработчики задаются вопросом — какую емкость выбрать для блокировочного конденсатора? На самом деле, точное значение емкости не так важно. Гораздо большее значение имеют другие параметры конденсатора — ESR (эквивалентное последовательное сопротивление) и ESL (эквивалентная последовательная индуктивность).
Типовые рекомендации по выбору емкости:
- 0.1 мкФ — для высокочастотной блокировки цифровых микросхем
- 1-10 мкФ — для низкочастотной блокировки
- 47-100 мкФ — для сглаживания длительных пульсаций питания
Почему точное значение емкости не критично? Дело в том, что даже небольшой конденсатор 0.1 мкФ способен накопить заряд, многократно превышающий потребности микросхемы при переключении. Например, типичный КМОП инвертор потребляет около 4.2×10^-10 Кл заряда при переключении. А конденсатор 0.1 мкФ при напряжении 5В накапливает заряд 5×10^-7 Кл, что в 1000 раз больше.
Влияние ESR и ESL на эффективность блокировки
ESR и ESL — это паразитные параметры реального конденсатора, которые ограничивают его способность быстро отдавать накопленную энергию. ESR вносит активные потери, а ESL препятствует быстрому изменению тока через конденсатор.
Чем меньше ESR и ESL конденсатора, тем эффективнее он работает на высоких частотах. Поэтому для блокировки высокочастотных помех рекомендуется использовать керамические конденсаторы в малогабаритных корпусах для поверхностного монтажа.
Зависимость импеданса конденсатора от частоты определяется формулой:
Z = √(ESR^2 + (XC — XL)^2)
где XC = 1/(2πfC) — емкостное сопротивление, XL = 2πfL — индуктивное сопротивление.
Параллельное включение конденсаторов разной емкости
Для обеспечения эффективной блокировки в широком диапазоне частот рекомендуется параллельно включать конденсаторы разной емкости. Типовая комбинация:
- 0.1 мкФ — керамический для ВЧ
- 10 мкФ — танталовый или керамический для НЧ
- 100 мкФ — электролитический для НЧ
При этом суммарный импеданс цепи блокировки будет определяться наименьшим импедансом из трех конденсаторов на каждой конкретной частоте. Это позволяет получить низкий импеданс в очень широком диапазоне частот.
Правила размещения блокировочных конденсаторов
Правильное размещение блокировочных конденсаторов на печатной плате не менее важно, чем их выбор. Основные рекомендации:
- Размещать конденсатор как можно ближе к выводу питания микросхемы
- Использовать короткие и широкие трассы для подключения
- Подключать конденсатор к полигонам питания и земли через переходные отверстия
- Размещать высокочастотные конденсаторы в первую очередь
Увеличение расстояния между конденсатором и микросхемой с 7 мм до 25 мм может привести к росту амплитуды помех в 2-3 раза. Поэтому размещение блокировочных конденсаторов требует особого внимания при компоновке печатной платы.
Типы конденсаторов для блокировки питания
Для блокировки питания используются различные типы конденсаторов, каждый из которых имеет свои преимущества и недостатки:
- Керамические — низкие ESR и ESL, подходят для ВЧ
- Танталовые — большая емкость, умеренные ESR и ESL
- Электролитические — большая емкость, высокие ESR и ESL
- Полимерные — низкий ESR, большая емкость
Для высокочастотной блокировки оптимальны керамические конденсаторы в малогабаритных корпусах для поверхностного монтажа. Они обеспечивают минимальные ESR и ESL.
Моделирование цепей блокировки питания
Для анализа эффективности блокировки питания в сложных схемах рекомендуется использовать моделирование. Основные виды анализа:- AC-анализ — для оценки импеданса цепи блокировки
- Transient-анализ — для оценки переходных процессов
- EMI-анализ — для оценки уровня электромагнитных помех
При моделировании важно учитывать не только параметры конденсаторов, но и паразитные параметры печатных проводников. Это позволит получить более точные результаты и оптимизировать схему блокировки.
Заключение
Правильный выбор и применение блокировочных конденсаторов — важный этап проектирования электронных устройств. Ключевые моменты:
- Использовать керамические конденсаторы с низкими ESR и ESL
- Размещать конденсаторы максимально близко к выводам питания
- Применять параллельное включение конденсаторов разной емкости
- Уделять внимание компоновке печатной платы
- При необходимости проводить моделирование
Соблюдение этих рекомендаций позволит обеспечить стабильную работу электронных устройств и снизить уровень помех.
Выбор и использование блокировочных конденсаторов
Добавлено 11 октября 2018 в 00:06
Сохранить или поделиться
Правильный выбор компонентов и тщательная компоновка печатной платы являются неотъемлемой частью развязки питания.
Емкость: сколько достаточно?
В конце предыдущей статьи мы представили идею о том, что эффективность конкретного конденсатора как части схемы блокировки (обхода источника питания) зависит от двух его неидеальных характеристик, а именно от эквивалентного последовательного сопротивления (ESR) и эквивалентной последовательной индуктивности (ESL). На самом деле, оказывается, что точная емкость компонента не особенно важна в контексте блокировки источника питания. Вот почему производители микросхем могут с уверенностью предлагать одну ту же рекомендацию – «керамический конденсатор 0,1 мкФ на каждом выводе питания» – для широкого спектра аналоговых и цифровых микросхем. Почему важность емкости относительно незначительна? Напомним, что емкость – это просто отношение заряда, хранящегося на пластинах конденсатора, к напряжению на конденсаторе.
\[C = { Q \over V}\]
Таким образом, емкость говорит вам, сколько заряда конденсатор может хранить на вольт на конденсаторе. Если полностью заряженные конденсаторы 10 мкФ и 0,1 мкФ находятся параллельно между шинами земли и 5В, больший конденсатор имеет заряд 50×10-6 кулонов (10×10-6 кулонов на вольт), а меньший – 0,5×10-6 кулонов (0,1×10-6 кулонов на вольт).
Насколько величина заряда связана с применением конденсаторов в качестве блокировочных? Давайте посмотрим: ток (в амперах) определяется как количество заряда (в кулонах), проходящее через проводник в единицу времени (в секундах). Другой способ выразить это – через производную:
\[I = {dQ\over dt}\]
Следовательно, ток является скоростью изменения заряда во времени. Это означает, что если мы проинтегрируем ток по времени, то получим общий заряд:
\[\int I dt = Q\]
Теперь давайте вернемся к промоделированным пульсациям питания, о которых говорилось в предыдущей статье. В цепи с 8 инверторами и паразитной индуктивностью 1 нГн, включенной последовательно с внутренним сопротивлением источника питания, генерируются следующие пульсации тока:
Пульсации тока в цепиLTspice не дает нам реального интегрирования, но мы можем вычислить его, умножив средний ток (26,3 мкА) на интервал (114 мкс – 98 мкс = 16 мкс). Таким образом, общий заряд, необходимый для компенсации этого возмущения, составляет 26,3 мкА × 16 мкс = 4,2×10-10 кулонов. Это примерно в 1000 раз меньше заряда, чем мы хранили на нашем конденсаторе 0,1 мкФ.
Это моделирование очень упрощено – количество требуемого заряда будет зависеть от числа инверторов в микросхеме, электрических характеристик транзисторов и так далее. Тем не менее, мы всё же можем заключить на основе этих расчетов, что один конденсатор емкостью 0,1 мкФ может хранить намного больше заряда, чем требуется для компенсации высокочастотных импульсов тока, генерируемых цифровым переключением. И это, в свою очередь, демонстрирует, почему точная емкость блокировочного конденсатора не особенно важна: до тех пор, пока конденсатор может хранить достаточный заряд, значение емкости подходит. Оказывается, что 0,1 мкФ является удобным значение, но конденсатор 1 мкФ, или даже 0,01 мкФ, могут быть одинаково подходящими по емкости.
Итак, теперь у нас есть еще один вопрос: ясно, что конденсатор на 10 мкФ обеспечит более чем достаточное пространство для заряда для требований блокировки, так зачем заморачиваться с конденсатором 0,1 мкФ? Это возвращает нас к обсуждению ESR и ESL.
Секретная жизнь конденсатора
Как показывает следующая эквивалентная схема, внутри конденсатора происходит гораздо больше, чем просто емкость:
Эквивалентная схема конденсатораДля данного обсуждения нам не нужно беспокоиться о Rпар (который учитывает ток утечки через диэлектрик) или Rдп и Cдп (которые вместе учитывают диэлектрическое поглощение). Таким образом, мы имеем следующую упрощенную эквивалентную схему:
Упрощенная эквивалентная схема конденсатораПроблема здесь должна быть очевидна. Наш блокировочный конденсатор предназначен для быстрого обеспечения током во время переходных возмущений на линии питания, но теперь у нас есть две составляющие, которые препятствуют протеканию тока: резистор, который представляет собой фиксированный импеданс независимо от частоты, и индуктивность, которая представляет увеличивающийся импеданс по мере увеличения частоты. На этом этапе важно понять, что ESR и ESL определяются главным образом «типом» конденсатора (керамика, тантал, полимер и т.д.) и корпусом. Керамические конденсаторы наиболее популярны при использовании в качестве блокировочных, поскольку они показывают низкие ESR и ESL (а также они недороги). Следующие в очереди, танталовые конденсаторы показывают умеренные значения ESR и ESL вместе с большим отношением емкости к размеру, и поэтому они используются в качестве больших блокировочных конденсаторов, предназначенных для компенсации низкочастотных колебаний на линии питания. Как для керамических, так и для танталовых конденсаторов более крупные корпуса обычно соответствуют более высоким ESL. В следующей таблице, взятой из технического отчета, опубликованного компанией AVX Corporation, перечислены ESL для разных корпусов поверхностного монтажа:
Размер корпуса | Индуктивность (пГн) |
---|---|
0603 (керамический) | 850 |
0805 (керамический) | 1050 |
1206 (керамический) | 1250 |
1210 (керамический) | 1020 |
0805 (танталовый) | 1600 |
1206 (танталовый) | 2200 |
1210 (танталовый) | 2250 |
2312 (танталовый) | 2800 |
Учитывание ESR при проектировании довольно просто: конденсаторы с малой емкостью, предназначенные для работы с высокочастотным шумом линии питания, должны иметь низкое значение ESR. Однако фактор ESL несколько сложнее. На следующем графике показан импеданс керамического конденсатора 0,1 мкФ размером 0603 с ESL 850 пГн и ESR 50 мОм:
Импеданс керамического конденсатора 0,1 мкФ размером 0603 в зависимости от частотыКак обсуждалось в предыдущей статье, блокировочный конденсатор должен обеспечивать путь с низким импедансом, который позволяет высокочастотному шуму «обходить» микросхему на своем пути к узлу земли на схеме. Идеальный конденсатор легко выполнил бы это, так как импеданс конденсатора уменьшается по мере увеличения частоты. Но приведенный выше график говорит о другом: на определенной частоте ESL начинает доминировать над емкостью, поэтому импеданс начинает увеличиваться по мере увеличения частоты. Теперь давайте представим, что вместо керамического конденсатора мы решили использовать танталовый конденсатор 1 мкФ с ESL 2200 пГн и ESR 1,5 Ом:
Сравнение импедансов керамического конденсатора 0,1 мкФ и танталового конденсатора 1 мкФ в зависимости от частотыИмпеданс танталового конденсатора сначала меньше, чем у керамического, из-за его более высокой емкости, но эффект более высоких ESR и ESL приводит к тому, что импеданс достигает минимума на 100 кГц, и в итоге на 10 МГц импеданс керамического конденсатора фактически в 10 раз ниже, чем у танталового. Таким образом, если схема восприимчива к шуму на частотах около 10 МГц, керамический конденсатор будет гораздо более эффективен, чем танталовый, хотя танталовый конденсатор и имеет более высокую емкость. Кроме того, если мы имеем дело с шумом на очень высоких частотах, даже керамический конденсатор может иметь слишком большой импеданс. В таком случае нам понадобится более низкий ESL, что означает меньший корпус. Следующий график сравнивает исходный конденсатор 0603 с керамическим конденсатором 0,01 мкФ только с 500 пГн ESL (значение, которое может быть достигнуто с корпусом 0402).
Сравнение импедансов керамического конденсатора 0,1 мкФ в корпусе 0603 и керамического конденсатора 0,01 мкФ в корпусе 0402 в зависимости от частотыНа первый взгляд, кажется, что мы не можем выиграть: конденсатор 0402 улучшает эффективность на высоких частотах, но его импеданс хуже, чем у 0603, от нижней частоты и вплоть до 50 МГц. Хотя мы можем выиграть: мы можем поставить все три этих конденсатора параллельно, и на любой конкретной частоте общий импеданс будет определяться самым низким импедансом из трех.
Зависимость общего импеданса соединенных параллельно трех конденсаторов от частотыИтак, теперь у нас есть цепь обхода, которая поддерживает относительно низкий импеданс в очень широком диапазоне частот. Единственным сюрпризом здесь является пик на частоте 50 МГц, где общий импеданс выше, чем отдельные импедансы. Это называется антирезонансным пиком, и вам нужно следить за этим везде, где уменьшающийся (т.е. с доминирующей емкостью) импеданс пересекается с увеличивающимся (т.е. с доминирующей индуктивностью) импедансом.
Не разрушайте хороший проект плохой компоновкой
Правильная компоновка печатной платы является критическим аспектом проектирования блокировки, например, инженеры Texas Instruments обнаружили, что увеличение расстояния между конденсатором 0,1 мкФ и питающим выводом микросхемы с 0,3 дюйма (7,62 мм) до 1 дюйма (25,4 мм) увеличивает амплитуду пульсаций на шине питания с 250 мВ до 600 мВ. К счастью, правила компоновки блокировочных конденсаторов просты: минимизируйте сопротивление, минимизируйте индуктивность. Это достигается путем размещения конденсатора как можно ближе к питающему выводу и использования самых коротких возможных дорожек для всех соединений. В идеале, как земля, так и шина питания могут быть доступны через сквозные отверстия на полигоны.
Использование сквозных отверстий на полигоны земли и шины питания при размещении блокировочных конденсаторовПодведем итоги о блокировочных конденсаторах
Теперь у нас достаточно информации, чтобы сформулировать краткий набор рекомендаций для успешной блокировки:
- В случае сомнений обеспечьте каждый питающий вывод керамическим конденсатором 0,1 мкФ, предпочтительно размером 0805 или меньше, параллельно танталовому или керамическому конденсатору 10 мкФ.
- Если речь идет только о высокочастотном шуме, возможно, вы можете опустить конденсатор на 10 мкФ или заменить его чем-то меньшим.
- Если вам необходимо компенсировать продолжительные колебания питания, которые потребуют большого количества сохраненного заряда, вам может потребоваться обеспечить каждую микросхему дополнительным более крупным конденсатором, скажем, 47 мкФ.
- Если ваш проект включает в себя очень высокие частоты или особенно чувствительную схему, используйте симулятор для анализа переходных процессов (AC анализ) вашей цепи блокировки. (Возможно, будет сложно найти точные спецификации на ESR и ESL, особенно учитывая, что ESR конденсатора может значительно варьироваться в зависимости от частоты – просто сделайте всё возможное.) При необходимости добавьте керамические конденсаторы с малой ESL для улучшения высокочастотных характеристик импеданса.
- Устанавливайте высокочастотные керамические конденсаторы как можно ближе к питающему выводу и используйте короткие дорожки и сквозные отверстия для минимизации паразитных емкости и сопротивления. Размещение более крупных конденсаторов, предназначенных для низкочастотной блокировки, не столь критично, но они также должны быть близки к микросхеме (в пределах полдюйма (12,7 мм) или около того).
Оригинал статьи:
Теги
ESL (эквивалентная последовательная индуктивность)ESR (эквивалентное последовательное сопротивление)PCB (печатная плата)Блокировочный конденсаторКомпоновка печатных платКонденсаторРазвязкаТипы конденсаторовЦелостность сигналов и питанияШумШум системыСохранить или поделиться
где плюс, где минус по внешнему виду
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача — как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
- по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
- по внешнему виду;
- с помощью универсального измерительного прибора — мультиметра.
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт — знаком «+». Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак «+» ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак «плюс» нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком «плюс».
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: «чтобы узнать, где плюс, сначала нужно найти, где минус». Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак «минус», а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность «электролита», как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача «как узнать полярность конденсатора» решается путем применения универсального тестера — мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен — для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие — на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью «крокодилов» (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.
Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.
После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.
Практически на каждой печатной плате самого простого электронного прибора находится конденсатор – радиоэлектронное устройство, способное оперативно накапливать электрический заряд и так же быстро передавать энергию далее по цепи, питая другие ее элементы. Описанная цикличность является характерным признаком нормальной работы данного устройства. Содержание статьиИзделие состоит из двух проводящих обкладок (тонкие металлические пластинки) и диэлектрического материала между ними (бумага, воздух, стекло и керамика, пластик, слюда, оксидные пленки). Несмотря на простую конструкцию, устройство способно выполнять множество полезных функций:
Параметры и принцип работыВеличина электричества, накапливаемого изделием, а также периоды циклов разрядки и зарядки конденсатора определяются характеристиками, зависящими от типа конкретной модели. Благодаря широким пределам параметров и характеристик данные радиодетали могут успешно применяться для различных целей. Эти параметры без затруднений определяются по маркировке на корпусе элемента. Конденсаторы, произведенные в России и постсоветском пространстве, в обязательном порядке имеют буквенно-цифровую маркировку, обозначающую технологию и тип, ТКЕ, номинальное напряжение, значение емкости и погрешность производства, а также дату изготовления. Для импортных аналогов характерно только обозначение емкости. На схемах конденсатор изображается двумя параллельными черточками. Основные и дополнительные параметры:
Существуют также и паразитные параметры, которые производители стараются снизить при изготовлении продукции. Выбирая радиодетали, следует учитывать стабильность, емкость, ток утечки, рабочее напряжение, точность и температурный коэффициент емкости. Принцип работы заключается в накоплении электрических зарядов благодаря присутствию диэлектрического материала между металлическими пластинками, на которых собираются электроны и ионы. Проходя через данное устройство, сила тока имеет наибольшее значение и минимальное напряжение, но по мере накопления электроэнергии напряжение возрастает, а сила тока наоборот падает до тех пор, пока не исчезнет совсем. Виды и области примененияСуществует много способов классификации современных конденсаторов, которые позволяют группировать их в зависимости от типа конструкции, рабочего напряжения, видов поляризации и назначения, изменению емкости, а также разновидности диэлектрика. Виды поляризации:
Исходя из конструктивных особенностей, различают трубчатые и цилиндрические, монолитные, пластинчатые и секционные, дисковые, горшкообразные и литые, бочоночные, а также секционные разновидности. Область применения конденсаторов:
В зависимости от изменения емкости различают постоянные, переменные (изменение осуществляется механически или электрически) и подстроечные конденсаторы (изменение осуществляется разово или периодически). Способы зарядки и разрядки конденсатораПри зарядке конденсатора энергия источника питания переходит в энергию электрического поля, возникающего между металлическими пластинками радиоэлектронного устройства. Важно учитывать, что на каждом участке цепи существует явное (резистор) или неявное сопротивление (провода, внутреннее сопротивление). В этом случае скорость зарядки конденсатора будет зависеть от его емкости и сопротивления во всей цепи. Процесс считается завершенным, когда подаваемое напряжение по своей величине становится равным напряжению на металлических пластинках. Процесс зарядки и разрядки конденсатора лучше всего определяется мультиметром или при помощи специального измерительного прибора – индикаторной отвертки. Можно зарядить конденсатор через лампочку. Для этого потребуется подключить «плюс» к аккумулятору через автомобильную лампочку, а «минус» подключить к массе (кузов автомобиля). Лампочка вспыхнет и погаснет. Таким же образом можно зарядить конденсатор для сабвуфера, если он не имеет системы контроля зарядного тока. Данная схема зарядки конденсатора эффективна, проста и безопасна. Разрядка может понадобиться при ремонте бытовых приборов и электронных устройств. Это можно сделать при помощи отвертки с изолированной рукояткой, поочередно замыкая контакты, одновременно с этим касаясь массы стержнем отвертки. Если конденсатор извлечен из платы, необходимо, не касаясь руками контактов, приложить стержень отвертки к обеим клеммам изделия (должна появиться искра). Также можно собрать разрядное устройство, припаяв к резистору (на несколько кОм) два провода с зажимами, после чего подсоединить их к клеммам конденсатора. Важно проверять напряжение, чтобы убедиться в разреженности прибора. Была ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Другие материалы по темеАнатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Емкостной делитель напряжения ⋆ diodov. net
Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.
Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.
Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:
По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.
Емкостной делитель напряжения в цепи переменного тока
В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.
Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.
Реактивный элемент
Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток отстает от напряжения на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.
Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.
Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:
Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.
Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.
Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:
Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.
Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:
Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:
Индуктивный делитель напряжения
В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.
Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.
XL = 2πfL.
Упрощенный вариант формулы:
Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.
Еще статьи по данной теме
принцип работы и для чего нужен?
Конденсатор — это устройство, предназначенное для накопления зарядов. От латинского слова condensare — уплотнять, сгущать, накапливать. Он стал одним из обязательных кирпичиков, из которых строятся электрические схемы.
Принцип работы конденсатора
Конденсатор, видимо, есть самый первый прибор, с помощью которого научились достаточно долго удерживать электрические заряды в одном месте.
Если зарядить какой-нибудь диэлектрик трением, например, ту же классическую расческу, потерев ее шерстью, то заряд на ее поверхности останется на некоторое время. Однако ни накопить его, ни как-то использовать не удастся: кроме пары-тройки фокусов с притягиванием к расческе всякого мусора, ничего не выйдет. Металл же зарядить трением вообще невозможно. Все заряды, которые были бы как-то им приняты, на поверхности не удерживаются, а разбегаются сразу по всей массе применяемого металла. Или сбегают с него, благодаря большой площади контакта с воздухом, всегда содержащим влагу, что делает задачу невозможной.
Удалось придумать накопление электричества благодаря свойству притяжения друг к другу зарядов разного знака. Если два листочка из фольги прижать друг к другу, проложив между ними тонкий слой хорошего диэлектрика, то такой сэндвич можно зарядить, прикоснувшись телами, содержащими заряды разного знака, к разным листочкам фольги. Заряды разного знака притягиваются друг к другу и обязательно побегут в фольге навстречу друг другу. Они бы и разрядились, не будь между слоями фольги диэлектрика. И заряды только растекутся каждый по своему листу фольги и, притягиваясь друг к другу, будут находиться в ней достаточно долго.
Вот это и называется конденсатор. Чем больше площадь фольги — тем больше емкость. Чтобы добиться большой площади, фольгу с изолятором сворачивают рулоном — две ленты фольги и две ленты бумаги — и помещают в банку, выводя наружу от каждой ленты по контакту. Снаружи банка запаивается, чтобы предотвратить поступление влаги внутрь. Вездесущая влага же и является причиной, по которой бумажную ленту пропитывают парафином.
Устройство конденсатораа) устройство, б) внешний вид
1 – фольговые обкладки, 2 – внутренние выводы обкладок,
3 – парафинированная бумага, 4 – металлический корпус, 5 – провод
На рисунке изображено, как устроен простейший фольговый автомобильный конденсатор. У него один контакт выведен от одной обкладки наружу проводом, а другим является металлический корпус, внутри присоединенный ко второй обкладке.
Работа конденсатора в электрической цепи
Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.
Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.
Зарядка конденсатора
Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.
Конденсатор: принцип действияεc – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель
Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.
Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.
КонденсаторРазрядка конденсатора
Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.
Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.
Процессы внутри конденсатораУ ситуации, описанной в этих двух случаях, есть интересные особенности:
- Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
- Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
- В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.
Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.
Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:
ФормулаПроизведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах.
Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.
Временная диаграмма разрядки конденсатора через резисторUc – напряжение на конденсаторе (вольт), U0 – первоначальное напряжение заряженного конденсатора, t – время (сек)
На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.
Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.
Принцип работы на переменном напряжении
Так же, как в механике масса обладает свойством инерции, в электричестве заряд в конденсаторе тоже проявляет инерционность. Действительно, при любых электрических процессах он начинает подзаряжаться (если напряжение на его контактах имеет такую же полярность, как и заряд в нем) или разряжаться (если полярность противоположная). Это влияет на картину токов в цепи, а на синусоидальном токе проявляется как сдвиг фазы между напряжением и током.
Фактически в цепи переменного тока непрерывно происходит переходный процесс.
Конденсатор в цепи переменного тока Процессы в конденсатореПеременное напряжение U то подзаряжает, то разряжает конденсатор, в результате этого в нем течет ток I, сдвинутый по времени на 90° от периода колебаний напряжения.
ФормулаСчитается, что конденсатор пропускает переменный ток, причем введен параметр «кажущееся сопротивление конденсатора». Он зависит от емкости конденсатора С и от частоты переменного напряжения ω.
Это реактивное сопротивление, которое используется в расчетах цепей, содержащих инерционные, реактивные компоненты. То есть везде, где применяются конденсаторы и катушки индуктивности.
Назначение компонента
Из рассмотренных свойств ясно, что нужны конденсаторы не как источники электрического питания, а именно как реактивные элементы схем, чтобы создавать определенные режимы переменного/импульсного тока.
Используются конденсаторы настолько многообразно, что здесь, на уровне «конденсатор для чайников», можно перечислить только бегло их применение:
- В выпрямителях служат для сглаживания пульсаций тока.
- В фильтрах (совместно с резисторами и/или индуктивностями) выступают в роли частотно зависимого элемента для выделения или гашения определенной полосы частот.
- В колебательных контурах используется конденсатор, работающий при генерации синусоидального напряжения.
- Несут функцию накопителя в устройствах, где нужно обеспечить мгновенное выделение большой энергии в виде импульса — например, в фотовспышках, лазерах и т.д.
- Используются в схемах точного управления временными событиями с использованием простейших по строению RC-цепей — реле времени, генераторы одиночных импульсов и т.д.
- Фазосдвигающий конденсатор применяется в схемах питания синхронных и асинхронных, а также однофазных и трехфазных двигателей переменного тока.
Кроме собственно прибора «конденсатор», вполне успешно используются в технике явления, в основе которых лежит электрическая емкость.
Уровень можно измерить, используя факт того, что жидкость, поднимаясь в датчике между проводниками, играющими роль обкладок, меняет диэлектрическую проницаемость среды, а, следовательно, и емкость прибора, что он и показывает как изменение уровня.
Если жидкость — вода, то она и сама может играть роль обкладки Измерение сверхмалых толщинАналогично этому, сверхмалые толщины можно измерять, меняя расстояние между двумя проводниками-обкладками или их эффективную площадь.
Похожие статьи:Как проверить твердотельный или электролитический конденсатор
Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.
Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.
По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.
Как работает полимерный конденсатор
Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:
Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.
Элемент имеет определенные основные характеристики:
- Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
- Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
Второстепенные характеристики:
- Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
- Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
- Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.
Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.
Устройство электролитических и твердотельных конденсаторов
Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:
Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.
Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.
Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.
Преимущества твердотельных конденсаторов
- В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
- Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
- Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
- Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.
Самостоятельная диагностика конденсатора
Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.
Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.
Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.
Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра
В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.
Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.
- Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.
Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.
- Затем необходимо выставить предел измерения в режиме омметра на значение 2 МОм. Подключить конденсатор к мультиметру и наблюдать за показаниями.
Измерения такого рода лучше проводить с помощью стрелочного прибора, так будет нагляднее видно динамику. Но и на цифровом дисплее все будет понятно. Исправный радиоэлемент будет демонстрировать плавное увеличение сопротивления. Причем чем выше емкость, тем медленнее происходит процесс. Когда значение будет близким к бесконечности, цифровой индикатор покажет «1» (стрелочный соответственно «∞»). - Почему так происходит? У мульиметра есть элемент питания. При измерении сопротивления, на деталь подается напряжение, которое заряжает конденсатор. Далее простые законы физики: набралась емкость, сопротивление увеличилось до бесконечности. Если снова замкнуть контакты в режиме «коротыша», сопротивление резко уменьшится. Затем снова плавно восстановится до бесконечности.
Проверка межобкладочного замыкания
Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.
В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.
Проверка истинных значений емкости
Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.
Тестирование проводится в несколько этапов:
- несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
- нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).
Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.
Практическое применение на автомобиле
Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.
- Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
- Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».
Итог
Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.
Видео по теме
Керамический конденсаторв рабочем состоянии, разные типы и их применение
Конденсатор — это электрическое устройство, которое накапливает энергию в виде электрического поля. Он состоит из двух металлических пластин, разделенных диэлектриком или непроводящим веществом. Типы конденсаторов широко делятся на основе постоянной емкости и переменной емкости. Наиболее важными из них являются конденсаторы постоянной емкости, но существуют и конденсаторы переменной емкости. К ним относятся роторные или подстроечные конденсаторы.Конденсаторы с постоянной емкостью делятся на пленочные, керамические, электролитические и сверхпроводниковые. Перейдите по ссылке, чтобы узнать больше Различные типы конденсаторов. Более подробно керамический конденсатор описан в этой статье.
Различные типы конденсаторовПолярность и символ керамического конденсатора
Керамические конденсаторы чаще всего встречаются в каждом электрическом устройстве, и в качестве диэлектрика используется керамический материал. Керамический конденсатор не имеет полярности, что означает, что у них нет полярности.Таким образом, мы можем подключить его в любом направлении на печатной плате.
По этой причине они обычно намного безопаснее электролитических конденсаторов. Вот символ неполяризованного конденсатора, приведенный ниже. Многие типы конденсаторов, такие как танталовые бусины, не имеют полярности.
Полярность керамического конденсатора и символКонструкция и свойства керамических конденсаторов
Керамические конденсаторы доступны трех типов, хотя доступны и другие стили:
- Дисковые керамические конденсаторы с выводами для монтажа в сквозные отверстия, покрытые смолой.
- Многослойные керамические конденсаторы для поверхностного монтажа (MLCC).
- Дисковые неизолированные керамические конденсаторы специального типа для микроволновых печей, предназначенные для установки в разъем на печатной плате.
Керамические дисковые конденсаторы изготавливаются путем покрытия керамического диска серебряными контактами с обеих сторон, как показано выше. Керамические дисковые конденсаторы имеют значение емкости от 10 пФ до 100 мкФ с широким диапазоном номинальных напряжений от 16 В до 15 кВ и более.
Для увеличения емкости эти устройства могут быть сделаны из нескольких слоев. MLCC изготовлены из смеси параэлектрических и сегнетоэлектрических материалов и в качестве альтернативы имеют металлические контакты.
После завершения процесса наслоения устройство нагревается до высокой температуры, и смесь спекается, в результате чего получается керамический материал с желаемыми свойствами. Наконец, полученный конденсатор состоит из множества конденсаторов меньшего размера, соединенных параллельно, что приводит к увеличению емкости.
MLCC состоят из более чем 500 слоев с минимальной толщиной слоя приблизительно 0,5 мкм. По мере развития технологии толщина слоя уменьшается, а емкость увеличивается в том же объеме.
Диэлектрики керамических конденсаторов различаются от одного производителя к другому, но общие соединения включают диоксид титана, титанат стронция и титанат бария.
В зависимости от диапазона рабочих температур, температурного дрейфа, допуска определяются различные классы керамических конденсаторов.
Керамические конденсаторы класса 1
Что касается температуры, то это самые стабильные конденсаторы. У них почти линейные характеристики.
Наиболее распространенными соединениями, используемыми в качестве диэлектриков, являются
- Титанат магния для положительного температурного коэффициента.
- Титанат кальция для конденсаторов с отрицательным температурным коэффициентом.
Керамические конденсаторы класса 2
Конденсаторы класса 2 демонстрируют лучшие характеристики по объемному КПД, но это происходит за счет более низкой точности и стабильности.В результате они обычно используются для развязки, соединения и байпаса, где точность не имеет первостепенного значения.
- Диапазон температур: от -50 ° C до + 85 ° C
- Коэффициент рассеяния: 2,5%.
- Точность: от средней до низкой
Керамические конденсаторы класса 3
Керамические конденсаторы класса 3 обеспечивают высокую объемную эффективность при низкой точности и низком коэффициенте рассеяния. Он не выдерживает высоких напряжений. В качестве диэлектрика часто используется титанат бария.
- Конденсатор класса 3 изменит свою емкость на -22% до + 50%
- Диапазон температур от + 10 ° C до + 55 ° C.
- Коэффициент рассеяния: от 3 до 5%.
- У него будет довольно низкая точность (обычно 20% или -20 / + 80%).
Тип класса 3 обычно используется для развязки или в других источниках питания, где точность не является проблемой.
Значения керамических дисковых конденсаторов
Код керамических дисковых конденсаторов обычно состоит из трехзначного числа, за которым следует буква.Найти номинал конденсатора очень просто.
Значения керамического дискового конденсатораПервые две значащие цифры обозначают первые две цифры фактического значения емкости, которое составляет 47 (конденсатор выше).
Третья цифра — множитель (3), который равен × 1000. Буква J означает допуск ± 5%. Поскольку это система кодирования EIA, значение будет в пикофарадах. Следовательно, емкость конденсатора выше 47000 пФ ± 5%.
Таблица системы кодирования EIAНапример, если конденсатор обозначен как 484N, его значение будет 480000 пФ ± 30%.
Применение керамических конденсаторов
- Керамические конденсаторы в основном используются в резонансных контурах передающих станций.
- Конденсаторы большой мощности класса 2 используются в источниках питания высоковольтных лазеров, силовых выключателях, индукционных печах и т. Д.
- Конденсаторы для поверхностного монтажа часто используются в печатных платах и устройствах с высокой плотностью размещения.
- Керамические конденсаторы также могут использоваться в качестве конденсаторов общего назначения из-за их неполярности и доступны в большом разнообразии емкости, номинального напряжения и размеров.
- Керамические дисковые конденсаторы используются в щеточных двигателях постоянного тока для минимизации высокочастотного шума.
- MLCC, используемые в печатных платах (PCB), рассчитаны на напряжения от нескольких вольт до нескольких сотен вольт, в зависимости от области применения.
Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что в этих конденсаторах в качестве диэлектрика используется керамика. Благодаря неполярности, они могут подключаться к печатной плате в любом направлении. Мы надеемся, что вы лучше понимаете эту концепцию.Кроме того, любые сомнения относительно этой концепции или реализации проектов электронной инженерии, пожалуйста, дайте свой отзыв, комментируя в разделе комментариев ниже. Вот вам вопрос, какие существуют типы керамических конденсаторов?
Аудиосхемы: Руководство по применению пленочных конденсаторов поверхностного монтажа — Industrial Devices & Solutions
- Политика в отношении файлов cookie
- Потребитель
- Бизнес
- Продукты
- Руководства по применению
- Загрузить
- Поддержка дизайна
- Новости
- Свяжитесь с нами
- Конденсаторы
- Резисторы
- Катушки индуктивности
- Решения для управления температурным режимом
- Компоненты ЭМС, защита цепей
- Датчики
- Устройства ввода
- Полупроводники
- Реле, разъемы
- FA Датчики и компоненты
- Моторы, компрессоры
- Промышленные устройства, носители информации
- Пользовательские и модульные устройства
- Завод автоматики, сварочные аппараты
- Промышленные батареи
- Электронные материалы
- Материалы
- Конденсаторы электролитические с проводящим полимером
- Алюминиевые электролитические конденсаторы
- Электрические двухслойные конденсаторы (золотой конденсатор)
- Пленочные конденсаторы
- Чип резисторы
- Другие резисторы
- Силовые индукторы для автомобильной промышленности
- Силовые индукторы для потребителей
- Силовые индукторы многослойного типа
- Катушки повышения напряжения
- Лист термозащиты (Графитовый лист (PGS) / продукты, применяемые PGS / NASBIS)
- Термистор NTC (чип)
- Вентилятор охлаждения с уникальным гидродинамическим подшипником
- Материалы для печатных плат
- Компоненты ЭМС
- Защита цепи (электростатический разряд, скачок напряжения, предохранитель и т. Д.)
- Датчики
- Встроенные датчики
- Датчики для автоматизации производства
- Переключатели
- Емкостное чувствительное устройство
- Энкодеры, потенциометры
- Микрокомпьютеры
- Аудио и видео
- Тег NFC и защищенная микросхема
- ИС драйвера светодиодов
- ИС драйвера двигателя
- МОП-транзисторы
- Лазерные диоды
- Датчики изображения
- Радиочастотные устройства
- Силовые устройства
- Реле
- Разъемы
- Датчики для автоматизации производства
- Устройства FA
- Двигатели для FA и промышленного применения
- Двигатели для предприятий / бытовой техники и автомобилей
- Компрессоры
- Насосы постоянного тока
- Носители записи
- Оптические компоненты
- Пользовательские устройства
- Модульные устройства
- FA
- Сварочные аппараты, промышленные роботы
- Устройства FA
- Вторичные батареи (аккумуляторные батареи)
- Первичные батареи
- Материалы печатных плат
- Герметичные полупроводниковые материалы, клеи
- Пластиковый формовочный состав
- Продвинутые фильмы
- Монокристалл оксида цинка пана-тетра
- Составная смола Pana-Tetra
- Пленка для предотвращения электризации Pana-Tetra
- «AMTECLEAN A» Чистящее средство для литьевых машин
- «AMTECLEAN Z» Неорганическое противомикробное средство
- Проводящие полимерные алюминиевые электролитические конденсаторы (SP-Cap)
- Твердотельные конденсаторы из токопроводящего полимера и тантала (POSCAP)
- Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
- Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
- Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
- Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
- Алюминиевые электролитические конденсаторы (поверхностного монтажа)
- Алюминиевые электролитические конденсаторы (с радиальными выводами)
- Двухслойные электрические конденсаторы (намотанного типа)
- Пленочные конденсаторы (для электронного оборудования)
- Пленочные конденсаторы (для двигателей переменного тока)
- Пленочные конденсаторы (для автомобилей, промышленности и инфраструктуры)
- Высокотемпературные чип-резисторы
- Прецизионные чип-резисторы
- Чувствительные чип-резисторы
- Чип-резисторы малой и большой мощности
- Антисульфурные чип-резисторы
- Чип-резисторы общего назначения
- Сеть резисторов
- Резисторы с выводами
- Аттенюатор
- Силовые индукторы для автомобильной промышленности
- Силовые индукторы для потребителей
- Силовые индукторы многослойного типа
- Катушки повышения напряжения
- Лист термозащиты (Графитовый лист (PGS) / продукты, применяемые PGS / NASBIS)
- Термистор NTC (чип)
- Вентилятор охлаждения с уникальным гидродинамическим подшипником
- Материалы печатных плат для светодиодных светильников / силовых модулей «ECOOL» серии
- Фильтры синфазных помех
- Пленка для защиты от электромагнитных волн
- Подавитель ЭСР
- Варистор микросхемы
- Варисторы (поглотитель перенапряжения ZNR)
- Предохранители
- Датчик MR
- Инерционный датчик 6DoF для автомобилей (датчик 6в1)
- Гироскопические датчики
- Датчики температуры (для автомобилей)
- Датчики положения
- Инфракрасный датчик Grid-EYE
- Датчики давления PS-A (встроенная схема усиления и температурной компенсации)
- Датчики давления PS
- Датчики давления PF
- Датчик пыли (PM)
- TOF Камера
- Датчик движения PIR PaPIRs
- Волоконно-оптические датчики
- Световые завесы / Компоненты безопасности
- Датчики площади
- Фотоэлектрические датчики / лазерные датчики
- Микро-фотоэлектрические датчики
- Индуктивные датчики приближения
- Датчики давления / датчики расхода
- Датчики измерения
- Датчики особого назначения
- Опции датчика
- Системы экономии проволоки
- Детекторные переключатели
- Кнопочные переключатели
- Тактильные переключатели (Light Touch Switches)
- Кулисные переключатели питания
- Переключатели с уплотнением
- Выключатели без уплотнения
- Сенсорные панели
- Концевые выключатели
- Переключатели мгновенного действия
- Выключатели обнаружения падения
- Выключатели блокировки
- Датчик силы емкостный
- Энкодеры
- Автомобильные энкодеры
- Потенциометры поворотные
- Автомобильные поворотные потенциометры
- 32-битное управление инвертором MN103H
- 32-битное управление инвертором MN103S
- 32 бит с низким энергопотреблением MN103L
- 8 бит с низким энергопотреблением MN101E
- 8 бит с низким энергопотреблением MN101C
- 8-битное сверхнизкое энергопотребление MN101L
- MCU Arm® Cortex®-M7 MN1M7
- Arm® Cortex®-M0 + MCU MN1M0
- БИС отображения интерфейса человек-машина
- Аудио интегрированные БИС
- БИС с метками NFC
- Модули тегов NFC
- Безопасность IC
- Микросхемы драйверов светодиодов для освещения
- ИС драйвера светодиодов для развлечений
- ИС драйвера светодиодов для освещения
- ИС драйвера шагового двигателя
- ИС драйвера трехфазного бесщеточного двигателя постоянного тока
- ИС драйвера однофазного бесщеточного двигателя постоянного тока
- ИС драйвера двигателя постоянного тока с щеткой
- Микросхемы драйвера объектива для видеокамеры и фотоаппарата
- МОП-транзисторы для защиты литий-ионных батарей МОП-транзисторы
- для общего переключения
- МОП-транзисторы для балансировки автомобильных ячеек МОП-транзисторы
- для автомобильной схемы переключения
- Другие полевые МОП-транзисторы
- Красный и инфракрасный (ИК) двухволновые лазерные диоды
- Красные лазерные диоды
- Инфракрасные (ИК) лазерные диоды
- Датчики изображения для безопасности, промышленности и медицины
- Датчики изображения для вещания и цифровые фотоаппараты
- Решение 3D-зондирования (ToF)
- Малошумящие усилители (МШУ)
- Преобразователь переменного тока в постоянный / ИС источника питания (IPD)
- Регулятор DC-DC для автомобилей, AV и промышленности
- IC мониторинга батареи
- PhotoMOS
- Силовые реле (более 2 А)
- Реле безопасности
- Твердотельные реле (SSR)
- Сигнальные реле (2 А или меньше)
- СВЧ-устройства (СВЧ реле / коаксиальные переключатели)
- Автомобильные реле
- Реле отключения постоянного тока большой емкости
- Устройство сопряжения PhotoIC
- Интерфейсный терминал
- Коннектор с узким шагом для платы к FPC
- Коннектор с узким шагом между платой
- Сильноточные соединители
- Разъемы FPC / FFC
- Активные оптические соединители
- MIPTEC 3D Упаковочные устройства
- Волоконно-оптические датчики
- Световые завесы / Компоненты безопасности
- Датчики площади
- Фотоэлектрические датчики / лазерные датчики
- Микро-фотоэлектрические датчики
- Индуктивные датчики приближения
- Датчики давления / датчики расхода
- Датчики измерения
- Датчики особого назначения
- Опции датчика
- Системы экономии проволоки
- Устройства статического управления
- Решения для управления энергопотреблением
- Программируемые контроллеры / интерфейсный терминал
- Человеко-машинный интерфейс
- Системы машинного зрения
- Системы УФ-отверждения
- Лазерные маркеры / считыватели 2D-кода
- Таймеры / счетчики / компоненты FA
- Серводвигатели переменного тока
Схема компонентов Учебное пособие | Полное руководство с примерами
В то время как другие диаграммы UML, описывающие функциональные возможности системы, диаграммы компонентов используются для моделирования компонентов, которые помогают реализовать эти функции.
В этом руководстве по диаграммам компонентов мы рассмотрим, что такое диаграмма компонентов, символы диаграммы компонентов и как их нарисовать. Вы можете использовать приведенный ниже пример схемы компонентов, чтобы быстро начать работу.
Что такое схема компонентов
Диаграммы компонентов используются для визуализации организации компонентов системы и взаимосвязей между ними. Они обеспечивают общее представление о компонентах системы.
Компоненты могут быть программным компонентом, таким как база данных или пользовательский интерфейс; или аппаратный компонент, такой как схема, микрочип или устройство; или бизнес-подразделение, такое как поставщик, платежная ведомость или доставка.
Схемы компонентов
- Используются в компонентно-ориентированной разработке для описания систем с сервис-ориентированной архитектурой
- Показать структуру самого кода
- Может использоваться, чтобы сосредоточиться на взаимосвязи между компонентами, скрывая при этом детали спецификации
- Помогите сообщить заинтересованным сторонам и объяснить функции создаваемой системы
Обозначения на схемах компонентов
Ниже мы объяснили общие обозначения схем компонентов, которые используются для построения схемы компонентов.
Компонент
Существует три способа использования символа компонента.
1) Прямоугольник со стереотипом компонента (текст <
2) Прямоугольник со значком компонента в правом верхнем углу и названием компонента.
3) Прямоугольник со значком компонента и стереотипом компонента.
Предоставляемый интерфейс и требуемый интерфейс
Интерфейсы на диаграммах компонентов показывают, как компоненты соединяются вместе и взаимодействуют друг с другом. Коннектор сборки позволяет связать требуемый интерфейс компонента (представленный полукругом и сплошной линией) с предоставленным интерфейсом (представленный кругом и сплошной линией) другого компонента. Это показывает, что один компонент предоставляет услугу, которая требуется другому.
Порт
Порт (представленный маленьким квадратом в конце требуемого интерфейса или предоставленного интерфейса) используется, когда компонент делегирует интерфейсы внутреннему классу.
Зависимости
Хотя вы можете показать более подробную информацию о взаимосвязи между двумя компонентами, используя нотацию шаровой опоры (предоставленный интерфейс и требуемый интерфейс), вы также можете использовать стрелку зависимости, чтобы показать взаимосвязь между двумя компонентами.
Как нарисовать схему компонентов
Вы можете использовать диаграмму компонентов, если хотите представить свою систему как компоненты и хотите показать их взаимосвязь через интерфейсы. Это поможет вам получить представление о реализации системы. Ниже приведены шаги, которые вы можете выполнить при рисовании схемы компонентов.
Шаг 1: определите цель диаграммы и определите артефакты, такие как файлы, документы и т. Д. В вашей системе или приложении, которые вам необходимо представить на диаграмме.
Шаг 2: По мере того, как вы выясняете отношения между элементами, которые вы определили ранее, создайте мысленный макет диаграммы компонентов
Шаг 3: Когда вы рисуете диаграмму, сначала добавляйте компоненты, группируя их внутри других компонентов по своему усмотрению
Шаг 4: Следующим шагом является добавление других элементов, таких как интерфейсы, классы, объекты, зависимости и т. Д., В диаграмму компонентов и завершение ее.
Шаг 5: Вы можете прикрепить примечания к различным частям диаграммы компонентов, чтобы уточнить некоторые детали для других.
Примеры схем компонентов
Ниже приведены шаблоны схем компонентов для распространенных сценариев, которые можно мгновенно редактировать в Интернете. Просто щелкните шаблон, чтобы открыть его в редакторе Creately, чтобы применить изменения.
Схема компонентов системы управления библиотекой
Схема компонентовдля системы управления библиотекой (щелкните шаблон для редактирования в Интернете)
Схема компонентовдля системы онлайн-покупок
Схема компонентовдля системы онлайн-покупок (щелкните шаблон для редактирования в Интернете)
Схема компонентовбанкомата
Схема компонентовдля банкомата (щелкните шаблон для редактирования в Интернете)
Схема компонентовдля системы управления больницей
Схема компонентовдля системы управления больницей (щелкните диаграмму, чтобы редактировать онлайн)
Схема компонентов системы управления запасами
Схема компонентов для системы управления запасами (щелкните шаблон для редактирования в Интернете)
Что вы думаете об Учебном пособии по диаграммам компонентов
В этом руководстве по диаграммам компонентов мы рассмотрели все, что вам нужно знать о диаграммах компонентов, чтобы их было легко нарисовать.