Схемы унч на транзисторах с печатной платой. Схемы усилителей НЧ на транзисторах: от простых до сложных

Как работают усилители низкой частоты на транзисторах. Какие бывают схемы УНЧ — от простейших однокаскадных до многокаскадных. Как выбрать и собрать УНЧ для разных применений. На что обратить внимание при проектировании транзисторных усилителей.

Содержание

Основные принципы работы транзисторных УНЧ

Усилители низкой частоты (УНЧ) на транзисторах используются для усиления слабых звуковых сигналов до уровня, необходимого для работы динамиков или наушников. Основные принципы работы транзисторных УНЧ:

  • Усиление происходит за счет изменения тока через транзистор под действием входного сигнала
  • Частотная характеристика УНЧ должна быть равномерной в диапазоне 20 Гц — 20 кГц
  • Используются низкочастотные и среднечастотные транзисторы
  • Основные классы работы выходных каскадов — A, AB, B
  • Для уменьшения искажений применяется отрицательная обратная связь

Простейшие схемы однокаскадных УНЧ

Простейший УНЧ можно собрать на одном транзисторе по схеме с общим эмиттером:


  • Один транзистор, резистор смещения, входной и выходной конденсаторы
  • Коэффициент усиления до 10-20
  • Подходит для усиления сигнала микрофона или звукоснимателя
  • Питание 3-12 В
  • Нагрузка — наушники или малогабаритный динамик

Двухкаскадные УНЧ с емкостной связью

Соединив два однокаскадных усилителя через разделительный конденсатор, получаем двухкаскадный УНЧ:

  • Два транзистора, работающие в классе A
  • Коэффициент усиления 100-200
  • Разделительные конденсаторы между каскадами
  • Подходит для усиления сигналов до 1 Вт
  • Питание 9-12 В

УНЧ с непосредственной связью между каскадами

Более совершенные схемы УНЧ используют непосредственную связь между каскадами:

  • Отсутствие разделительных конденсаторов улучшает частотную характеристику
  • Требуется тщательный подбор режимов работы транзисторов
  • Коэффициент усиления может достигать 1000 и более
  • Меньше нелинейных искажений
  • Расширенный диапазон усиливаемых частот

Каскодные схемы УНЧ

Каскодное включение транзисторов позволяет получить высокий коэффициент усиления:


  • Два транзистора включены последовательно
  • Высокое входное сопротивление и малая входная емкость
  • Коэффициент усиления до 100 и более
  • Широкая полоса пропускания
  • Малые нелинейные искажения

УНЧ на полевых транзисторах

Применение полевых транзисторов позволяет создать УНЧ с высоким входным сопротивлением:

  • Входное сопротивление может достигать десятков МОм
  • Малый уровень собственных шумов
  • Хорошая линейность характеристик
  • Подходят для предварительных каскадов усиления

Выходные каскады УНЧ

Выходные каскады УНЧ обеспечивают необходимую мощность в нагрузке:

  • Однотактные (класс A) — для маломощных УНЧ до 1 Вт
  • Двухтактные (класс B, AB) — для мощных УНЧ от единиц до сотен Ватт
  • Используются составные транзисторы или пары комплементарных транзисторов
  • Применяется глубокая отрицательная обратная связь

Особенности проектирования транзисторных УНЧ

При разработке УНЧ необходимо учитывать следующие факторы:

  • Выбор рабочей точки транзисторов для обеспечения линейности
  • Температурная стабилизация режимов работы
  • Борьба с самовозбуждением и паразитными колебаниями
  • Обеспечение требуемых частотных характеристик
  • Минимизация нелинейных и интермодуляционных искажений
  • Защита от перегрузок по входу и выходу

Современные тенденции в разработке УНЧ

Основные направления совершенствования УНЧ на транзисторах:


  • Применение транзисторов с улучшенными параметрами
  • Использование интегральных схем и гибридных модулей
  • Цифровая обработка сигналов и коррекция искажений
  • Импульсные методы усиления (класс D)
  • Снижение энергопотребления и тепловыделения
  • Улучшение массогабаритных показателей

Выбор схемы УНЧ для конкретного применения

При выборе схемы УНЧ следует учитывать:

  • Требуемую выходную мощность
  • Диапазон частот входного сигнала
  • Допустимый уровень искажений
  • Напряжение питания
  • Тип нагрузки (наушники, динамики)
  • Сложность изготовления и настройки
  • Стоимость компонентов

Заключение

Транзисторные усилители низкой частоты остаются востребованными благодаря простоте, надежности и хорошим характеристикам. Широкий выбор схемотехнических решений позволяет создавать УНЧ для самых разных применений — от простейших до hi-end аудиосистем. При грамотном проектировании транзисторные УНЧ обеспечивают высокое качество звучания при доступной стоимости.


Схема усилителя звука на тразисторах с печатной платой

Рубрика: Принципиальные схемы, Схемы для начинающих, Транзисторные УНЧ Опубликовано 25.03.2018   ·   Комментарии: 0   ·   На чтение: 2 мин   ·   Просмотры:

Post Views: 2 284

Схема усилителя мощности звуковой частоты, построенная на транзисторах.


Краткое описание схемы усилителя

Устройство может питаться от источника с напряжением от 10 В до 15 В. Номинальная выходная мощность 3 Вт. Максимальная 5 Вт.

Допустимый уровень входного сигнала должен быть не более 0,8 В. Это старая советская схема, которая применялась в аудиотехнике.


Печатная плата


Вы можете скачать файл печатной платы для программы SprintLauot.

Комментарии по печатной плате и сборке

На месте синих стрелочек нужно установить перемычку.

Обязательно установите изоляционную термопрокладку под эти два транзистора. Они должны быть изолированы от других, иначе произойдет короткое замыкание.

Список используемых деталей

C1
0,22 мкФ
C2390 пФ
C347 мкФ 16 В
C4470 мкФ 16 В
C5560 пФ
C6150 пФ
C7, C81000 мкФ 16 В
HL1Любой маломощный светодиод
R13,6 кОм 0,125 Вт
R215 кОм 0,125 Вт
R3, R5, R11820 Ом 0,125 Вт
R4220 Ом 0,125 Вт
R6100 кОм 0,125 Вт
R724 кОм 0,125 Вт
R827 Ом 0,125 Вт
R91,5 кОм 0,125 Вт
R10, R12390 Ом 0,125 Вт
R132,5 кОм 0,125 Вт
VT1, VT5КТ3102БМ
VT2КТ361В
VT3КТ815В
VT4КТ817Б
VT6КТ816Б
VT7КТ814В

Post Views: 2 284

ДОМАШНИЙ УСИЛИТЕЛЬ — СХЕМЫ И ПЕЧАТНЫЕ ПЛАТЫ

   Начну с того, что этот проект был создан и реализован при помощи добрых людей, которые во многом помогли в деле реализации этого комплекса. Как всегда начну с благодарностей. Администрация и весь коллектив сайтов http://radioskot.ru/ и http://x-shoker.ru/ — спасибо за конкурс и моральную поддержку, критикам тоже большое спасибо, хорошему другу Евгению за помощь с компонентами инверторов, и всем читателям, подписчиками и другим частным лицам, которые в какой-то мере оказали помощь в реализации давней идеи — создания мощного и качественного домашнего усилителя. Прошлым летом был создан автомобильный аудиокомплекс, но с тех пор прошел уже год и пришло время перемен. Для начала поясню суть идеи. Было задумано собрать усилительную установку разряда Hi-Fi для работы в автомобиле. Требования к усилителю были такими: мощный канал 250-350 ватт для питания сабвуфера, два канала для питания тыловой акустики, и 8 каналов для питания маломощных головок фронта, но все выбранные усилители должны были относится к Hi-Fi. Для реализации такого крупномасштабного проекта нужны были финансы, нервы и куча времени, которые у меня имелись.

ПЕЧАТНАЯ ПЛАТА


   Над платой долго не думал, в наличии имелись все платы отдельных блоков, нужно было только все шаблоны перенести на фольгированный стеклотекстолит и потравить. Файлы плат и схем находятся здесь. Шаблоны были нанесены на общую плату после недолгих подсчетов. Для этого процесса использовал широко-известный метод ЛУТ, каждый шаблон гладил 90 секунд, гладить нужно тщательно, чтобы тонер намертво прилип к фольгированной поверхности текстолита и не отклеивался при удалении бумаги. 


   Далее даем текстолиту остыть 5-10 минут, затем аккуратно убираем бумагу. Для начала плату нужно поставить в сосуд с водой и ждать пару минут, после чего аккуратно убрать бумагу. Реагентов для травления в городке не нашел, пришлось идти на альтернативу. Альтернативный раствор состоит из трех основных компонентов — перекиси водорода, лимонной кислоты и поваренной соли


   На мою плату в общем случае было потрачено 12 бутылок перекиси водорода (3-х процентный раствор перекиси водорода, каждая бутылка 100 мг) — приобретено в аптеке 12 пачек лимонной кислоты (пачка — 40 мг) — куплено в продуктовом магазине 9 чайных ложек поваренной соли — украдено из кухни собственного дома. Все компоненты перемешиваются до полного растворения соли и лимонной кислоты.

   Из-за больших размеров платы, возникли трудности с сосудом, в котором планировалось травление. Тут тоже решил пойти на альтернативу. В магазине был приобретен полиэтиленовый пакет, который поместил в коробку от какого-то проигрывателя, плата отлично поместилась в такой «сосуд». Налил раствор и все это дело поставил на солнце. 

   Весь процесс травления длился не более часа. Довольно бурная реакция, поэтому нужно проводить на чистом воздухе. Дальше нужно стереть тонер. Для этого используют чистые (или не очень) тряпочки и ацетон. Уже готовую плату нужно тщательно помыть теплой водой, затем высушить феном. 


   Еще одна проблема — утилизация раствора, я поступил по-варварски сливая весь раствор в канализацию, когда будете делать также, следите, чтоб никто не увидел, а то нахлынут экологи, в моем случае такой проблемы не возникло, поскольку сам являюсь экологом (lol).


   Дальше уже нужно заняться сверлением отверстий, а тут их очень, очень много. Половину отверстий сверлил 3-х килограммовой дрелью, затем специально для этой затеи на аукционе ebay была куплена мини-дрель со всеми удобствами. В процессе сверления использовал сверла 0.8мм для мелких компонентов (резисторы, конденсаторы, микросхемы и т.п.), сверла 1 мм для более крупных (выходные транзисторы усилителей, силовые диоды) и сверла 5мм для выводов обмоток импульсных трансформаторов. 


   Уже просверленную плату нужно залудить. Для этого нужен паяльник на сотню ватт, сосновая канифоль, ну и разумеется олово. Советую во время этого процесса надеть маску, дым от канифоли не токсичен, но тут образуется целое облако дыма, дышать довольно трудно при таких условиях. Глянцевый слой олова предает печатной плате красивый внешний вид и сохранит медные дорожки от окисления. Только после завершения этого процесса мы имеем полностью готовую печатную плату, а теперь можно приступить к монтажу… С уважением — АКА КАСЬЯН.

   Форум по созданию домашнего УМЗЧ

   Форум по обсуждению материала ДОМАШНИЙ УСИЛИТЕЛЬ — СХЕМЫ И ПЕЧАТНЫЕ ПЛАТЫ

Схемы усилителей нч на транзисторах. Простейшие усилители низкой частоты на транзисторах

Схема простого усилителя звука на транзисторах , которая реализована на двух мощных составных транзисторах TIP142-TIP147 установленных в выходном каскаде, двух маломощных BC556B в дифференциальном тракте и один BD241C в цепи предварительного усиления сигнала — всего пять транзисторов на всю схему! Такая конструкция УМЗЧ свободно может быть использована например в составе домашнего музыкального центра или для раскачки сабвуфера установленного в автомобиле, на дискотеке.

Главная привлекательность данного усилителя мощности звука заключается в легкости его сборки даже начинающими радиолюбителями, нет необходимости в какой либо специальной его настройке, не возникает проблем в приобретении комплектующих по доступной цене. Представленная здесь схема УМ обладает электрическими характеристиками с высокой линейностью работы в частотном диапазоне от 20Гц до 20000Гц. p>

При выборе или самостоятельном изготовлении трансформатора для блока питания нужно учитывать такой фактор: — трансформатор должен иметь достаточный запас по мощности, например: 300 Вт из расчета на один канал, в случае двухканального варианта, то естественно и мощность удваивается. Можно применить для каждого свой отдельный трансформатор, а если использовать стерео вариант усилителя, то тогда вообще получится аппарат типа «двойное моно», что естественно повысит эффективность усиления звука.

Действующее напряжение во вторичных обмотках трансформатора должно составлять ~34v переменки, тогда постоянное напряжение после выпрямителя получится в районе 48v — 50v. В каждом плече по питанию необходимо установить плавкий предохранитель рассчитанный на рабочий ток 6А, соответственно для стерео при работе на одном блоке питания — 12А.


Всем Привет! В этой статье я буду подробно описывать как изготовить классный усилитель для дома или авто . Усилитель несложный в сборке и настройке, и имеет хорошее качество звучания. Ниже вашему вниманию представлена принципиальная схема самого усилителя.


Схема выполнена на транзисторах и не имеет дефицитных деталей. Питание усилителя двуполярное +/- 35 вольт, при сопротивлении нагрузки в 4 Ома. При подключении 8-ми Омной нагрузки, питание можно увеличить до +/- 42 вольт.

Резисторы R7, R8, R10, R11, R14 — 0,5 Вт; R12, R13 — 5 Вт; остальные 0.25 Вт.
R15 подстроечный 2-3 кОм.
Транзисторы: Vt1, Vt2, Vt3, Vt5 — 2sc945 (на корпусе пишется обычно c945).
Vt4, Vt7 — BD140 (Vt4 можно заменить нашим Кт814).
Vt6 — BD139.
Vt8 — 2SA1943.
Vt9 — 2SC5200.

ВНИМАНИЕ! У транзисторов c945 есть разная цоколевка: ЭКБ и ЭБК. Поэтому перед впайкой нужно проверять мультиметром.
Светодиод обычный, зеленого цвета, именно ЗЕЛЕНОГО! Он здесь не для красоты! И НЕ должен быть сверхъярким. Ну а остальные детали видно на схеме.

И так, Погнали!

Для изготовления усилителя нам понадобятся

инструменты :
-паяльник
-олово
-канифоль (желательно жидкий), но можно обойтись и обычным
-ножницы по металлу
-кусачки
-шило
-медицинский шприц, любой
-сверло 0.8-1 мм
-сверло 1.5 мм
-дрель (лучше какую-нибудь мини дрель)
-наждачная бумага
-и мультиметр.

Материалы:
-односторонняя текстолитовая плата размером 10х6 см
-лист тетрадной бумаги
-ручка
-лак для дерева (желательно темного цвета)
-небольшой контейнер
-пищевая сода
-лимонная кислота
-соль.

Список радиодеталей я перечислять не буду, их видно на схеме.
Шаг 1 Готовим плату
И так, нам нужно изготовить плату. Так как лазерного принтера у меня нет (вообще нет ни каково), плату мы будем изготавливать «по старинке»!
Для начала нужно просверлить отверстия на плате для будущих деталей. У кого есть принтер, просто распечатайте эту картинку:


если нет, то тогда нам надо перенести на бумагу разметку для сверловки. Как это сделать вы поймете на фото ниже:


когда будете переводить, не забудьте про размер платы! (10 на 6 см)


вот как то так!
Отрезаем ножницами по металлу нужный нам размер платы.


Теперь прикладываем листок к вырезанной плате и фиксируем скотчем, чтобы не съехала. Далее берем шило и намечаем (по точкам) где будем сверлить.


Можно конечно обойтись без шила и сверлить сразу, но сверло может съехать!


Теперь можно и начать сверловку. Сверлим дырки 0.8 — 1 мм.Как я говорил выше: лучше использовать мини дрель, так как сверло очень тонкое и легко ломается. Я например использую моторчик от шуруповерта.


Дырки под транзисторы Vt8, Vt9 и под провода сверлим сверлом 1.5 мм. Теперь надо зачистить наждачкой нашу плату.


Вот теперь можно и начать рисовать наши дорожки. Берем шприц, стачиваем иголку, чтоб была не острой, набираем лак и вперед!


Подравнивать косяки лучше когда лак уже застынет.


Шаг 2 Травим плату
Для травления плат я использую самый простой и самый дешевый метод:
100 мл перекиси, 4 ч ложки лимонной кислоты и 2 ч ложки соли.


Размешиваем и погружаем нашу плату.


Далее счищаем лак и получается вот так!


Желательно сразу все дорожки покрыть оловом для удобства пайки деталей.


Шаг 3 Пайка и настройка
Паять удобно будет по этой картинке (вид со стороны деталей)


Для удобства с начало впаиваем все мелкие детали, резисторы и прочее.


А потом уже все остальное.


После пайки плату нужно отмыть от канифоли. Отмыть можно спиртом или ацетоном. На крайняк можно даже бензином.


Теперь можно и пробовать включать! При правильной сборке усилитель работает сразу. При первом включении резистор R15 надо вывернуть в сторону максимального сопротивления (меряем прибором). Колонку не подключать! Выходные транзисторы ОБЯЗАТЕЛЬНО на радиатор, через изолирующие прокладки.

И так: включили усилитель, светодиод должен гореть, меряем мультиметром напряжение на выходе. Постоянки нет, значит все хорошо.
Далее нужно установить ток покоя (75-90mA): для этого замкните вход на землю, нагрузку не подключать! На мультиметре поставьте режим 200mV и подсоедините щупы к коллекторам выходных транзисторов. (на фото отмечено красными точками)


Далее медленным вращением резистора R15 нужно установить 40-45 mV.


Выставили, теперь можно подключить динамик и погонять усилитель на небольшой громкости 10-15 мин. Потом опять нужно будет подкорректировать ток покоя.
Ну вот и все, можно наслаждаться!

Вот видео работы усилителя:

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Усилитель на транзисторах, несмотря на свою уже долгую историю, остается излюбленным предметом исследования как начинающих, так и маститых радиолюбителей. И это понятно. Он является непременной составной частью самых массовых и усилителей низкой (звуковой) частоты. Мы рассмотрим, как строятся простейшие усилители на транзисторах.

Частотная характеристика усилителя

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты — НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку — частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Эта кривая практически плоская с 15 Гц по 20 кГц. Это означает, применять такой усилитель следует именно для входных сигналов с частотами между 15 Гц и 20 кГц. Для входных сигналов с частотами выше 20 кГц или ниже 15 Гц эффективность и качество его работы быстро уменьшаются.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: «А», «B», «AB», «C», «D».

В классе работы ток «А» через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада «AB» ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада «В» ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада «C» ток через него протекает менее чем 50 % периода входного сигнала.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса «А» обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы «А» в класс работы «АВ» повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов «АВ» и «В» искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Промежуточные классы работы

У класса работы «А» имеется разновидность — класс «А+». При этом низковольтные входные транзисторы усилителя этого класса работают в классе «А», а высоковольтные выходные транзисторы усилителя при превышении их входными сигналами определенного уровня переходят в классы «В» или «АВ». Экономичность таких каскадов лучше, чем в чистом классе «А», а нелинейные искажения меньше (до 0,003 %). Однако звук у них также «металлический» из-за наличия высших гармоник в выходном сигнале.

У усилителей еще одного класса — «АА» степень нелинейных искажений еще ниже — около 0,0005 %, но высшие гармоники также присутствуют.

Возврат к транзисторному усилителю класса «А»?

Сегодня многие специалисты в области качественного звуковоспроизведения ратуют за возврат к ламповым усилителям, поскольку уровень нелинейных искажений и высших гармоник, вносимых ими в выходной сигнал, заведомо ниже, чем у транзисторов. Однако эти достоинства в немалой степени нивелируются необходимостью согласующего трансформатора между высокоомным ламповым выходным каскадом и низкоомными звуковыми колонками. Впрочем, с трансформаторным выходом может быть сделан и простой усилитель на транзисторах, что будет показано ниже.

Существует и точка зрения, что предельное качество звучания может обеспечить только гибридный лампово-транзисторный усилитель, все каскады которого являются однотактными, не охвачены и работают в классе «А». То есть такой повторитель мощности представляет собой усилитель на одном транзисторе. Схема его может иметь предельно достижимый КПД (в классе «А») не более 50 %. Но ни мощность, ни КПД усилителя не являются показателями качества звуковоспроизведения. При этом особое значение приобретают качество и линейность характеристик всех ЭРЭ в схеме.

Поскольку однотактные схемы получают такую перспективу, мы рассмотрим ниже их возможные варианты.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе «А», приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер — к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 — разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход «база — эмиттер транзистора Q1». Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки — Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э — Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э — Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc — Vb = Vcc — (Vbe + Ve) = 20 В — 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib — ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Однотактный усилитель с МДП-транзистором

Как и любой усилитель на полевых транзисторах, рассматриваемая схема имеет свой аналог среди усилителей на Поэтому рассмотрим аналог предыдущей схемы с общим эмиттером. Она выполнена с общим истоком и R-C-связями по входному и выходному сигналам для работы в классе «А» и приведена на рисунке ниже.

Здесь C1 — такой же разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vdd. Как известно, любой усилитель на полевых транзисторах должен иметь потенциал затвора своих МДП-транзисторов ниже потенциалов их истоков. В данной схеме затвор заземлен резистором R1, имеющим, как правило, большое сопротивление (от 100 кОм до 1 Мом), чтобы он не шунтировал входной сигнал. Ток через R1 практически не проходит, поэтому потенциал затвора при отсутствии входного сигнала равен потенциалу земли. Потенциал же истока выше потенциала земли за счет падения напряжения на резисторе R2. Таким образом, потенциал затвора оказывается ниже потенциала истока, что и нужно для нормальной работы Q1. Конденсатор C2 и резистор R3 имеют такое же назначение, как и в предыдущей схеме. Поскольку эта схема с общим истоком, то входной и выходной сигналы сдвинуты по фазе на 180°.

Усилитель с трансформаторным выходом

Третий одноступенчатый простой усилитель на транзисторах, показанный на рисунке ниже, также выполнен по схеме с общим эмиттером для работы в классе «А», но с низкоомным динамиком он связан через согласующий трансформатор.

Первичная обмотка трансформатора T1 является нагрузкой коллекторной цепи транзистора Q1 и развивает выходной сигнал. T1 передает выходной сигнал на динамик и обеспечивает согласование выходного полного сопротивления транзистора с низким (порядка нескольких Ом) сопротивлением динамика.

Делитель напряжения коллекторного источника питания Vcc, собранный на резисторах R1 и R3, обеспечивает выбор рабочей точки транзистора Q1 (подачу напряжения смещения на его базу). Назначение остальных элементов усилителя такое же, как и в предыдущих схемах.

Двухтактный звуковой усилитель

Двухтактный НЧ-усилитель на двух транзисторах расщепляет входной частоты на две противофазные полуволны, каждая из которых усиливается своим собственным транзисторным каскадом. После выполнения такого усиления полуволны объединяются в целостный гармонический сигнал, который и передается на акустическую систему. Подобное преобразование НЧ-сигнала (расщепление и повторное слияние), естественно, вызывает в нем необратимые искажения, обусловленные различием частотных и динамических свойств двух транзисторов схемы. Эти искажения снижают качество звука на выходе усилителя.

Двухтактные усилители, работающие в классе «А», недостаточно хорошо воспроизводят сложные звуковые сигналы, так как в их плечах непрерывно протекает постоянный ток повышенной величины. Это приводит к несимметрии полуволн сигнала, фазовым искажениям и в конечном итоге к потере разборчивости звука. Нагреваясь, два мощных транзистора увеличивают вдвое искажения сигнала в области низких и инфранизких частот. Но все же основным достоинством двухтактной схемы является ее приемлемый КПД и повышенная выходная мощность.

Двухтактная схема усилителя мощности на транзисторах показана на рисунке.

Это усилитель для работы в классе «А», но может быть использован и класс «АВ», и даже «В».

Бестрансформаторный транзисторный усилитель мощности

Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе «В». Схема такого усилителя мощности показана на рисунке ниже.

Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.

Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.

Усилитель на одном транзисторе

Для усвоения вышеизложенного соберем простой усилитель на транзисторах своими руками и разберемся, как он работает.

В качестве нагрузки маломощного транзистора Т типа BC107 включим наушники с сопротивлением 2-3 кОм, напряжение смещения на базу подадим с высокоомного резистора R* величиной 1 МОм, развязывающий электролитический конденсатор C емкостью от 10 мкФ до 100 мкФ включим в базовую цепь Т. Питать схему будем от батареи 4,5 В/0,3 А.

Если резистор R* не подключен, то нет ни тока базы Ib, ни тока коллектора Ic. Если резистор подключен, то напряжение на базе поднимается до 0,7 В и через нее протекает ток Ib = 4 мкА. Коэффициент усиления транзистора по току равен 250, что дает Ic = 250Ib = 1 мА.

Собрав простой усилитель на транзисторах своими руками, можем теперь его испытать. Подключите наушники и поставьте палец на точку 1 схемы. Вы услышите шум. Ваше тело воспринимает излучение питающей сети на частоте 50 Гц. Шум, услышанный вами из наушников, и является этим излучением, только усиленным транзистором. Поясним этот процесс подробнее. Напряжение переменного тока с частотой 50 Гц подключено к базе транзистора через конденсатор С. Напряжение на базе теперь равно сумме постоянного напряжения смещения (приблизительно 0,7 В), приходящего с резистора R*, и напряжения переменного тока «от пальца». В результате ток коллектора получает переменную составляющую с частотой 50 Гц. Этот переменный ток используется для сдвига мембраны динамиков вперед-назад с той же частотой, а это означает, что мы сможем услышать тон 50 Гц на выходе.

Слушать уровень шума 50 Гц не очень интересно, поэтому можно подключить к точкам 1 и 2 низкочастотные источника сигнала (CD-плеер или микрофон) и слышать усиленную речь или музыку.

Источник питания должен выдавать стабильное или нестабильное двуполярное напряжение питания ±45V и ток 5А. Эта схема УНЧ на транзисторах весьма проста, так как в выходном каскаде используется пара мощных комплементарных транзисторов Дарлингтона . В соответствии с справочными характеристиками эти транзисторы могут коммутировать ток до 5А при напряжении эмиттерном-коллекторном переходе до 100V.

Схема УНЧ представлена на рисунке чуть ниже.

Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных транзисторах VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6. ОС по переменной состовляющей осуществляется через резистор R6, но её величина зависит от номиналов цепочки R7-C3. Но следует учитовать, что слишком сильное увеличение сопротивления R7 приводет к возбуждению.


Режим работы по постоянному току обеспечивается подбором резистора R6. Выходной каскад на транзисторах Дарлингтона VT3 и VT4 работает в классе АВ. Диоды VD1 и VD2 нужны для стабилизации рабочей точки выходного каскада.

Транзистор VT5 ппредназначен для раскачки выходного каскада, на его базу поступает сигнал с выхода дифференциального предварительного усилителя, а так же постоянное напряжение смещения, которое определяет режим работы выходного каскада по постоянному току.

Все конденсаторы схемы должны быть рассчитаны на максимальное постоянное напряжение не ниже 100V. Транзисторы выходного каскада рекомендуется закрепить на радиаторы площадью не меньше 200 см в квадрате

Рассмотренная схема простого двухкаскадного усилителя разработана для работы с наушниками или для использования в простых устройствах с функцией предварительного усилителя.

Первый транзистор усилителя подсоединен по схеме с общим эмиттером, а второй транзистор с общим коллектором. Первый каскад предназначен для базового усиления сигнала по напряжению, а второй каскада усиливает уже по мощности.

Малое выходное сопротивление второго каскада двухкаскадного усилителя, называемого эмиттерным повторителем, позволяет подсоединять не только наушники с большим сопротивлением, но и другие виды преобразователей акустического сигнала.

Эта тоже двухкаскадная схема УНЧ выполненная на двух транзисторах, но уже противоположной проводимости. Ее главная особенность в том, что связь между каскадами непосредственная. Охваченная ООС через сопротивление R3 напряжение смещения со второго каскада проходит на базу первого транзистора.

Конденсатор СЗ, шунтирует резистор R4, уменьшает ООС по переменному току, тем самым уменьшающая усиление VT2. Путем подбора номинала резистора R3 задают режим работы транзисторов.

УМЗЧ на двух транзисторах

Этот достаточно легкий усилитель мощности звуковой частоты (УМЗЧ) можно спаять всего на двух транзисторах. При напряжении питания 42В постоянного тока выходная мощность усилителя достигает 0,25 Вт при нагрузке 4 Ом. Потребляемый ток всего 23 mA. Усилитель работает в однотактном режиме «А».

Напряжение низкой частоты от источника сигнала подходит к регулятору громкости R1. Далее через защитный резистор R3 и конденсатор C1 сигнал оказывается на базе биполярного транзистора VT1 включенного по схеме с общим эмиттером. Усиленный сигнал через R8 подается на затвор мощного полевого транзистора VT2 включенный по схеме с общим истоком и его нагрузкой служит первичная обмотка понижающего трансформатора К вторичной обмотке трансформатора можно подключить динамическую головку или акустическую систему.

В обоих транзисторных каскадах присутствует местная отрицательная обратная связь по постоянному и переменному току, так и общей цепью ООС.

В случае увеличения напряжения на затворе полевого транзистора сопротивление сток исток его канала уменьшается и напряжение на его стоке уменьшается. Это влияет и на уровень сигнала поступающий на биполярный транзистор, что снижает напряжения затвор-исток.

Совместно с цепями местной отрицательной обратной связи, таким образом, стабилизируются режимы работы обоих транзисторов даже в случае незначительного изменения питающего напряжения. Коэффициент усиления зависит от соотношения сопротивлений резисторов R10 и R7. Стабилитрон VD1 предназначен для предотвращения выхода полевого транзистора из строя. Питание усилительного каскада на VT1 производится через RC фильтр R12C4. Конденсатор C5 блокировочный по цепи питания.

Усилитель может быть собран на печатной плате размерами 80×50 мм,на ней расположены все элементы кроме понижающего трансформатора и динамической головки


Наладку схемы усилителя осуществляют при том напряжении питания, при котором он будет работать. Для тонкой настройки рекомендуется использовать осциллограф, щуп которого подключают к выводу стока полевого транзистора. Подав на вход усилителя синусоидальный сигнал частотой 100 … 4000 Гц, с помощью регулировки подстроечного резистора R5 добиваются того, чтобы отсутствовали заметные искажения синусоиды при как можно большем размахе амплитуды сигнала на выводе стока транзистора.

Выходная мощность усилителя на полевом транзисторе небольшая, всего 0,25Вт, напряжение питания от 42В до 60В. Сопротивление динамической головки 4 Ома.

Аудио сигнал через переменное сопротивление R1, затем R3 и разделительную емкость C1 поступает на усилительный каскад на биполярном транзисторе по схеме с общим эмиттером. Далее с этого транзистора усиленный сигнал через сопротивление R10 проходит на полевой транзистор.

Первичная обмотка трансформатора является нагрузкой для полевого транзистора, а к вторичной обмотки подключен четырех омная динамическая головка. Соотношением сопротивлений R10 и R7 задаем степень усиления по напряжению. С целью защиты униполярного транзистора в схему добавлен стабилитрон VD1.

Все номиналы деталей имеются на схеме. Трансформатор можно использовать типа ТВК110ЛМ или ТВК110Л2, от блока кадровой развертки старого телевизора или аналогичный.

УМЗЧ по схеме Агеева

Наткнулся на эту схему в старом выпуске журнала радио, впечатления от нее остались самыми приятными,во первых схема настолько проста, что ее сможет собрать и начинающий радиолюбитель,во вторых при условии рабочих компонентов и правильной сборки наладки она не требует.

Если вас заинтересовала эта схема, то остальные подробности по ее сборке вы сможете найти в журнале радио №8 за 1982 год.

Высококачественные транзисторные УНЧ

Схема качественного усилителя мощности

   Собрать мощный и качественный транзисторный усилитель мощность, трудно, особенно если мощность усилителя нужна большая. Из-за большого количества комплектующих компонентов, радиолюбители часто используют микросхему. Микросхемные усилители более просты и недороги, но по-моему каждый себя уважающий радиолюбитель должен хоть раз собрать мощный усилитель на транзисторах. Сегодня мы рассмотрим вариант схемы такого усилителя, электросхема достаточно популярна, называется схема Ланзара. 

   Схема усилителя мощности была успешно повторена многими радиолюбителями, из-за своих качественных параметров. Выходной каскад усилителя работает в классе АВ, схема отличается достаточно малым количеством используемых компонентов и сравнительно высокой мощностью. Рисунок печатной платы УНЧ:

   При двухполярном питании 75 вольт, выходная мощность схемы достигает 360-380 ватт на нагрузку 4 ом, при повышении питания, нужно добавить еще одну пару выходных транзисторов, тогда можно получить на выходе 450 ватт чистой мощности, при использовании 4-х пар выходных транзисторов можно получить от схемы 550 ватт! Схема УМЗЧ отлично работает и на нагрузку в 2 ом, но повышать выходное напряжение не стоит, 40 вольт вполне хватит для получения 300 -320 ватт на нагрузку в 2 ом.

   Схема имеет широкий диапазон питяющих напряжений, от 20 до 80 вольт, малое количество деталей, высокие показатели и именно из-за этого схема нашла широкое применение не только радиолюбительских конструкциях, но и в промышленных усилителях. Схему Ланзара очень часто используют в автомобильных усилителях мощности, в этой области схема стала настоящим брендом. Это полностью симметричная схема схема была придумана в 70-х годах и до сих пор не теряет свою славу.

   В этой статье мы поговорили про общее ознакомление со схемой усилителя мощности звука, в дальнейшем мы рассмотрим разновидности схемы и особенности конструкции усилителей такого класса.
Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Самый простой усилок своими руками. Схемы для создания унч своими руками

Заводские устройства для усиления звукового сигнала отличаются высокой стоимостью и могут быть недостаточно мощными. Рассматривая фото самодельных усилителей звука очевидно, что они внешне ничем не уступают готовым изделиям. К тому же их изготовление своими силами не требует специальных навыков и больших материальных затрат.

Основа устройства

Начинающие радиолюбители в первую очередь задаются вопросом: из чего можно собрать простой усилитель звука в домашних условиях. Работа устройства основывается на транзисторах или микросхемах, либо возможен редкий вариант — на лампах. Рассмотрим подробнее каждый из них.

Микросхемы

Микросхему серии TDA и аналогичную можно приобрести в магазинах или воспользоваться микросхемой от ненужного телевизора.

Используя микросхемы автомобильных усилителей с блоком питания на 12 вольт, очень просто добиться качественного звучания без применения особых навыков и с минимумом деталей.

Транзисторы

Преимущества транзисторов в малом потреблении электроэнергии. Устройство выдает отличные показатели звука, легко встраивается в любую технику и не требует дополнительной настройки. К тому же нет необходимости в поиске и использовании сложных микросхем.

Лампы

На сегодняшний день устаревший метод сборки, основанный на лампах дает качественное звучание, но обладает рядом недостатков:

  • повышенная энергоемкость
  • габариты
  • стоимость комплектующих

Рекомендации по правильной сборке усилителя звука своими руками

Устройство для усиления качества звука, собранное в домашних условиях на основе микросхем серий TDA и их аналогов, выделяет много тепла. Для охлаждения нужна радиаторная решетка подходящего размера в зависимости от модели самой микросхемы и мощности усилителя. В корпусе нужно предусмотреть место для нее.

Преимущество аппарата, изготовленного своими руками в низком потреблении энергии, что позволяет использовать его в автомобилях, подключив к аккумулятору, а также в дороге или дома с помощью батареи. Потребляемая мощность зависит от необходимой степени усиления сигнала. Некоторым изготовленным моделям требуется напряжение тока всего лишь в 3 Вольта.

К сборке усилителя звука применим серьезный и ответственный подход во избежание короткого замыкания и выхода из строя комплектующих.

Необходимые материалы

В процессе сборки потребуются следующие инструменты и комплектующие:

  • микросхема
  • корпус
  • конденсаторы
  • блок питания
  • штекер
  • кнопка-выключатель
  • провода
  • радиатор охлаждения
  • шурупы
  • термоклей и термопаста
  • паяльник и канифоль

Схемы и инструкции по изготовлению усилителя в домашних условиях

Каждая схема уникальна и зависит от источника звука (старая или современная цифровая техника), источника питания, предполагаемых конечных размеров. Она собирается на печатной плате, которая сделает устройство компактным и более удобным. В процессе сборки не обойтись без паяльника или паяльной станции.

Схема британца Джона Линсли – Худа, основана на четырех транзисторах без микросхем. Она позволяет аналогично повторить форму входного сигнала, получив в результате лишь чистое усиление и синусоиду на выходе.

Самый простой и распространённый вариант изготовления одноканального усилителя — использование в основе микросхемы, дополненной резисторами и конденсаторами.

Алгоритм действий по изготовлению

  • установить на печатную плату радиодетали, учитывая полярность
  • собрать корпус (предусмотрев место под дополнительные детали, например, решетку радиатора)

Допустимо использование готового корпуса или создание его своими руками, а также установка платы в корпус колонок.

  • запустить устройство в тестовом режиме (выявить и устранить неисправности в случае возникновения)
  • сборка усилителя (подключение к блоку питания и остальным комплектующим)

Обратите внимание!

Домашние и автомобильные усилители своими силами

В домашних условиях часто не хватает мощного звучания при просмотре фильмов на ноутбуке или прослушивании музыки в наушниках. Рассмотрим, как правильно сделать усилитель звука своими руками.

Для ноутбука

Усилитель звуковых волн должен учитывать мощность внешних колонок до 2 ватт и сопротивление обмоток до 4 Ом.

Комплектующие для сборки:

  • блок питания на 9 вольт
  • печатная плата
  • микросхема TDA 7231
  • корпус
  • конденсатор неполярный 0,1 мкФ — 2 шт
  • конденсатор полярный 100 мкФ
  • конденсатор полярный 220 мкФ
  • конденсатор полярный 470 мкФ
  • резистор постоянный 10 Ком м 4,7 Ом
  • выключатель двухпозиционный
  • гнездо для входа

Схема изготовления

Алгоритм действий по сборке выбирается в зависимости от выбранной схемы. Необходимо учитывать подходящий размер радиатора охлаждения, чтобы рабочая температура внутри корпуса не поднималась выше 50 градусов по Цельсию. При эксплуатации ноутбука на улице нужно предусмотреть отверстия в корпусе для доступа воздуха.

Для автомагнитолы

Усилитель для автомагнитолы возможно собрать на распространенной микросхеме TDA8569Q. Ее характеристики:

  • напряжение питания 6-18 вольт
  • входная мощность 25 ватт на канал в 4 Ом и 40 ватт на канал в 2 Ом
  • диапазон частот 20-20000 Гц

Обратите внимание!

Обязательно необходимо предусмотреть дополнительно к схеме фильтр от помех, создаваемых работой автомобиля.

Для начала нарисуйте печатную плату, после просверлите отверстия в ней. Затем плату нужно протравить хлорным железом. После лудить и припаять все детали микросхемы. Во избежание присадок по питанию на дорожки питания нужно будет нанести толстый слой припоя. Предусмотреть систему охлаждения с помощью кулера или радиаторной решетки.

В заключении сборки необходимо изготовить фильтр от помех системы зажигания и плохой шумоизоляции по следующей схеме: на ферритовом кольце диаметром 20 мм намотать проводом сечением 1-1,5 мм в 5 витков дроссель.

Собрать устройство для улучшения качества звука в домашних условиях не составит труда. Главное определиться со схемой и иметь под рукой все комплектующие, из которых можно с легкостью собрать простой усилитель звука.

Фото усилителя звука своими руками

Обратите внимание!

Делаем простой усилитель звука своими руками. Нам понадобится следующее:
1) Катушка: L1 5 мкГн
2) Резисторы: R1,R3 2,2 кОм; R2,R5 22кОм; R4 680 Ом; R6 2,2 Ом; R7 10 Ом.
3)Конденсаторы: С1,C4- 4,7 мкФ-25В; С3-22 мкФ-25В; С3-22 мкФ-25В; С5-0,47 мкФ-25В; С6,C7-1000 мкФ-35В.
4)Микросхема: DA1 TDA2050
Также для пайки необходимо приобрести: керамический паяльник, припой, стеклотекстолит, хлорное железо, флюс (канифоль), динамик (для проверки работоспособности усилителя), питание 10 В («крона»), провода, разъем, радиатор (первое время микросхема будет греться не сильно, но все же рекомендуется поставить охлаждение), глянцевая фотобумага.
Теперь самое интересное, подготовка к работе. Вот схема нашего устройства:

Теперь нам необходимо сделать разводку, которую проще всего сделать в программе sprint layout. После того, как разводка готова печатаем на фотобумаге нашу разводку (принтер обязательно должен быть лазерным!). После чего накладываем напечатанный фрагмент на нашу плату и в течение 5-10 мин гладим утюгом. Затем опускаем под воду и легкими движениями счищаем бумагу. Теперь нам необходимо протравить плату. Для этого берем хлорное железо и добавляем его в слегка подогретую воду и окунаем туда плату (ни в кое случае не используйте посуду, предназначенную для приёма пищи!) Процесс травления занимает от 10 мин до 5-8 часов, все зависит от количества раствора и температуры воды. После того, как плата протравилась счищаем слой краски, в результате чего наши дорожки станут медными. Теперь нам осталось припаять элементы. Для начала просверлим отверстия под наши элементы, после чего дорожки рекомендуется смазать флюсом. После это по схеме вставляем все элементы и припаиваем их. На этом наша работа переходит в завершающую стадию, проверка на работоспособность.

Подключив питание, динамик и подсоединив джек к устройству с разъемом 3,5 мм, вы услышите свою любимую музыку. Для удобства можно придумать корпус к вашему устройству, пример корпуса вы можете увидеть ниже.

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах — музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин — практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» — ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно — чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД — свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД — менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток — полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений — не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше — до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется — характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, — обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление — несколько тысяч Ом. Но сопротивление обмотки динамиков — 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток — существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная — в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий — порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности — они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная — с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм — наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h31 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 — 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h31 — 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения — это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле — сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 — 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h31. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое — обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, — с общим эмиттером. Одна особенность — необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина — повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог — например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток — 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора — он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку — наушники.

Коснитесь входа усилителя пальцем — должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука — выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Очень часто подключение динамиков к какому-нибудь устройству требует наличия отдельного усилительного устройства. Но как поступить, если базовый усилитель вышел из строя? Можно попробовать взять инициативу в свои руки и создать собственное устройство. Как сделать усилитель звука? Обладая базовыми знаниями в работе с печатными платами, можно сделать такой прибор самому. И об этом мы и расскажем вам в этой статье.

Делаем усилительное устройство

Абсолютно любая сборка должна сопровождаться поиском необходимых комплектующих частей и инструментов:

  • Для начала нужно обзавестись паяльником с термоустойчивой опорой. Лучше всего подойдут специальные паяльные станции, которые без труда можно найти и приобрести в любом магазине радиолюбителя.
  • Если же процесс сборки в домашних условиях проводится только для того, чтобы протестировать схему или использовать ее в течение непродолжительного времени, то прекрасно подойдет вариант с проводами. Но такой метод потребует наличия большего рабочего пространства для размещения деталей.
  • Печатная плата дает гарантию компактности прибора и удобства в последующей эксплуатации. Бюджетный популярный усилок для пары наушников или колонок очень легко воссоздать на базе микросхемы, которая предоставляет базовый набор комплектующих.
  • К такой схеме нужно будет просто добавить парочку резисторов и конденсаторных элементов.

Стоимость проведения монтажа платы значительно меньше рыночной стоимости готового усилителя из любого магазина техники, но и функционал ограничивается возможностями и инструментами, которые вы имеете в наличии.

Важно! Не забывайте про особенности малогабаритных моноблоков, которые вы будете собирать собственноручно. Схема выделяет немалое количество тепла в ходе эксплуатации, поэтому обязательно нужно исключить любые соприкосновения этой детали с другими компонентами прибора. Для отвода тепла можно использовать радиаторную решетку.

Следующая особенность — это низкий порог потребляемого напряжения. Эта особенность позволяет использовать усилитель где угодно.

Как собрать усилитель для ноутбука в домашних условиях?

Сперва нужно понять: нужно ли заниматься созданием такого устройства вообще? Сборка в домашних условиях может потребоваться для следующих случаев:

  • Встроенная аудиосистема вышла из строя и вам требуется новая.
  • Качество передаваемого звука не удовлетворяет вашим потребностям.

Важно! Для этих случаев необходим самый простой усилительный элемент, мощность работы которого составляет около 2 Ватт.

Инструменты для работы

Сперва потребуется обзавестись инструментами, которые имеет в наличии каждый уважающий себя радиолюбитель:

  1. Плоскогубцы.
  2. Плата.
  3. Паяльник (паяльная станция).
  4. Корпус и радиокомпоненты.

Важно! Понадобятся полярные и неполярные конденсаторы, а также набор резисторов. Рекомендуем обзавестись сразу несколькими упаковками с разными номиналами. Также необходимо приобрести выключатель и гнездо, которое понадобится для выхода на громкоговоритель.

После подготовки можно приступать к “созданию” девайса:

  1. Скачайте необходимую схему из интернета с форматом.lay.
  2. Найдите радиатор, размер которого позволит сохранить температуру ниже пятидесяти градусов по Цельсию.
  3. Откройте скачанную схему, вооружайтесь инструментами и приступайте к сборке.

Усилок для наушников

Самый простой прибор обязан иметь небольшую мощность и необходимое потребление энергии. Рассмотрим идеальный случай:

  1. Девайс питается от батареек пальчикового типа или от обычного адаптера на 3 В.
  2. Лучше всего выбрать качественную микросхему. Прекрасным кандидатом является схема TDA 2822 или ее аналоги.
  3. Понадобятся следующие радиокомпоненты: четыре конденсатора на 100 мкФ, медный провод с длиной до 30 сантиметров, гнездо для джека.

Имея все эти вещи, можно смело скачивать необходимую схему из интернета и приступать за работу.

Важно! Если у вас есть желание уместить все это дело в маленьком закрытом корпусе, то понадобится обзавестись теплоотводом.

Если вы автолюбитель, то вам будет полезно знать, как самому собрать усилитель звука в машину.

Устройство для сабвуфера

Если предыдущие случаи не вызвали у вас вопросов, то и здесь все должно пройти гладко. Усилитель низких частот в домашних условиях можно сделать на базе микросхемы TDA 7294. Тут вам будет и мощная акустика с хорошим басами и прекрасный автоусилитель.

Вам потребуется:

  • Источник питания на три десятка вольт. Устройство должно быть двухполярным.
  • Конденсаторы и резисторы, номиналы которых будут указаны на схеме сборочного чертежа.

Важно! Такие усилки прекрасно работают на низких частотах и дают выходную мощность до 100 Ватт.

Малогабаритный усилитель для маленьких колонок

Тот факт, что устройство будет неподвижным, только вам на руку. Это позволит расширить выбор адаптеров питания, подойдет любой имеющийся на руках. Малые размеры и приятный внешний вид бюджетного прибора можно обеспечить, если следовать следующим правилам:

  • Работать необходимо с очень качественной печатной платой.
  • Использовать нужно корпус из металла или пластика, который должен быть довольно-таки прочным.
  • Нужно умело орудовать паяльником, чтобы не замазать устройство припоем.
  • Желательно использовать только готовые гнезда.
  • Радиатор не должен касаться ничего, кроме самой микросхемы.

Усилитель на лампе

Такие устройства довольно дорогие, если вы сразу не имеете в наличии необходимых “исходников”. Радиолюбители старой школы всегда хранят у себя в шкафу небольшую коллекцию ламп и других полезных компонентов.

Мощный усилитель на транзисторах. Простая схема усилителя на транзисторе своими руками

Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.

Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.

Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.

Принципиальная схема УМЗЧ Holton


Усилитель Холтон на MOSFET — схема

Схема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.

Печатная плата


Печатная плата УНЧ — готовый вид

Вот архив с PDF файлами печатной платы — .

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).


Самодельный транзисторный УНЧ на МОСФЕТ

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Источник питания для УМЗЧ

Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.


Усилитель Холтон на плате с деталями

Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе .

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от Uб на базе.

В качестве опыта для начинающего радиолюбителя соберем самый простой усилитель транзистор, в соответствии с предлагаемой схемой и рисунком.

К коллектору VT1 подсоединим высокоомный телефон BF2 , между базой и минусом блока питания подключим сопротивление , и развязывающую емкость конденсатора C св .

Конечно, сильного усиления звукового сигнала от такой схемы мы не получим, но услышать звук в телефоне BF1 все таки можно, т.к мы собрали ваш первый усилительный каскад.

Усилительным каскадом называют схему транзистора с резисторами, конденсаторами и другими радиокомпонентами, обеспечивающими последнему условия работы как транзистор усилитель. Кроме того сразу скажем о том, что усилительные каскады можно соединять между собой и получать многокаскадные усилительные устройства.

При подключение источника питания к схеме, на базу транзистора через сопротивление Rб идет небольшое отрицательное напряжение порядка 0,1 – 0,2В, называемое напряжением смещения. Оно немного приоткрывает транзистор, т.е снижает высоту потенциальных барьеров, и через переходы полупроводникового прибора начинает течь небольшой ток, который держит усилитель в дежурном режиме, из которого он способен мгновенно выйти, как только на входе появится входной сигнал.

Без присутствия напряжения смещения эмиттерный переход будет заперт и, как диод, будет не пропускать положительные полупериоды входного напряжения, а усиленный сигнал будет искажаться.

Если на вход усилителя подсоединить еще один телефон и применить его в роли микрофона, то он будет преобразовывать возникающие на его мембране звуковые колебания в переменное напряжение звукового диапазона, которое через емкость Ссв будет следовать на базу транзистора.

Конденсатор Ссв является связующим компонентом между телефоном и базой. Он отлично пропускает напряжение ЗЧ, но создает серьезную преграду постоянному току идущему из базовой цепи к телефону. Кроме того телефон обладает внутренним сопротивлением порядка 1600 Ом, поэтому без этой емкости конденсатора база через внутреннее сопротивление соединялась бы с эмиттером и никакого усиления не было бы.

Теперь, если начать говорить в телефон-микрофон, то эмиттерной цепи появятся колебания тока телефона Iтлф, которые и будут управлять большим током возникающем в коллекторе и эти усиленные колебания, преобразованные вторым телефоном в обычный звук, мы и будем слышать.

Процесс усиления сигнала можно представить так. В момент отсутствия напряжения входного сигнала Uвх, в цепях базы и коллектора протекают незначительные токи (прямые участки диаграммы а, б, в), заданные приложенным напряжением блока питания, напряжением смещения и усилительными характеристиками биполярного транзистора.

Как только на базу поступает входной сигнал (правая часть диаграммы а), то в зависимости от него начнут изменяться и токи в цепях трехвыводного полупроводникового прибора (правая часть диаграммы б, в).

В отрицательной полуволне сигнала, когда Uвх и напряжение БП суммируются на базе — токи протекающие через транзистор возрастают.

При плюсовой волне минусовое напряжение на базе снижается, как и протекающие токи. Вот таким образом и работает транзистор усилитель.

Если на выход подключить не телефон а резистор, то появляющееся на нем напряжение переменной составляющей усиленного сигнала можно подвести ко входной цепи второго каскада для дополнительного усиления. Один прибор способен усиливать сигнал в 30 — 50 раз.

По этому же принципу работают VT противоположной структуры n-p-n. Но для них полярность включения блока питания необходимо поменять на противоположную.

Для работы транзистора усилителя на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно должно поступать постоянное напряжение смещения, открывающее полупроводниковый прибор.

Для германиевых VT открывающее напряжение должно быть не более 0,2 вольта, а для кремниевых 0,7 вольта. Напряжение смещения на базу не подают только тогда, когда эмиттерный переход транзистора применяют для детектирования сигнала, но об этом мы поговорим позднее.

На Хабре уже были публикации о DIY-ламповых усилителях, которые было очень интересно читать. Спору нет, звук у них чудесный, но для повседневного использования проще использовать устройство на транзисторах. Транзисторы удобнее, поскольку не требуют прогрева перед работой и долговечнее. Да и не каждый рискнёт начинать ламповую сагу с анодными потенциалами под 400 В, а трансформаторы под транзисторные пару десятков вольт намного безопаснее и просто доступнее.

В качестве схемы для воспроизведения я выбрал схему от John Linsley Hood 1969 года, взяв авторские параметры в расчёте на импеданс своих колонок 8 Ом.

Классическая схема от британского инженера, опубликованная почти 50 лет назад, до сих пор является одной из самых воспроизводимых и собирает о себе исключительно положительные отзывы. Этому есть множество объяснений:
— минимальное количество элементов упрощает монтаж. Также считается, что чем проще конструкция, тем лучше звук;
— несмотря на то, что выходных транзисторов два, их не надо перебирать в комплементарные пары;
— выходных 10 Ватт с запасом хватает для обычных человеческих жилищ, а входная чувствительность 0.5-1 Вольт очень хорошо согласуется с выходом большинства звуковых карт или проигрывателей;
— класс А — он и в Африке класс А, если мы говорим о хорошем звучании. О сравнении с другими классами будет чуть ниже.


Внутренний дизайн
Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.

Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.

Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:

Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:

Не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.

Не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.

При регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:

Пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф.
— предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы.
— очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.

Слесарно-столярное
Теперь о традиционно самой сложной части в DIY — корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя — каждое отверстие проходится за несколько секунд!

Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.

Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.

Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.

Я угадаю этот контейнер за 5 секунд…
Наконец, можно приступать к прослушиванию. В качестве источника звука используется Foobar2000 → ASIO → внешняя Asus Xonar U7. Колонки Microlab Pro3. Главное достоинство этих колонок — это отдельный блок собственного усилителя на микросхеме LM4766, который можно сразу убрать куда-то подальше. Намного интереснее с этой акустикой звучали усилок от мини-системы Panasonic с гордой надписью Hi-Fi или усилитель советского проигрывателя Вега-109. Оба вышеупомянутых аппарата работают в классе АВ. Представленный в статье JLH переиграл всех вышеперечисленных товарищей в одну калитку, по результатам слепого теста для 3 человек. Хотя разницу было слышно невооружённым ухом и без всяких тестов – звук явно детальнее и прозрачнее. Весьма легко, например, услышать различие между MP3 256kbps и FLAC. Раньше я думал, что эффект lossless больше как плацебо, но теперь мнение изменилось. Аналогичным образом гораздо приятнее стало слушать нескомпрессованые от loudness war файлы — dynamic range меньше 5 Дб вообще не айс. Линсли-Худ стоит затрат времени и денег, ибо аналогичный брендовый усилок будет стоить намного дороже.
Материальные затраты
Трансформатор 2200 р.
Выходные транзисторы (6 шт. с запасом) 900 р.
Конденсаторы фильтра (4 шт) 2700 р.
«Рассыпуха» (резисторы, мелкие конденсаторы и транзисторы, диоды) ~ 2000 р.
Радиаторы 1800 р.
Оргстекло 650 р.
Краска 250 р.
Разъёмы 600 р.
Платы, провода, серебряный припой и пр. ~1000 р.
ИТОГО ~12100 р.

Усилитель на транзисторах, несмотря на свою уже долгую историю, остается излюбленным предметом исследования как начинающих, так и маститых радиолюбителей. И это понятно. Он является непременной составной частью самых массовых и усилителей низкой (звуковой) частоты. Мы рассмотрим, как строятся простейшие усилители на транзисторах.

Частотная характеристика усилителя

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты — НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку — частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Эта кривая практически плоская с 15 Гц по 20 кГц. Это означает, применять такой усилитель следует именно для входных сигналов с частотами между 15 Гц и 20 кГц. Для входных сигналов с частотами выше 20 кГц или ниже 15 Гц эффективность и качество его работы быстро уменьшаются.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: «А», «B», «AB», «C», «D».

В классе работы ток «А» через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада «AB» ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада «В» ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада «C» ток через него протекает менее чем 50 % периода входного сигнала.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса «А» обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы «А» в класс работы «АВ» повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов «АВ» и «В» искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Промежуточные классы работы

У класса работы «А» имеется разновидность — класс «А+». При этом низковольтные входные транзисторы усилителя этого класса работают в классе «А», а высоковольтные выходные транзисторы усилителя при превышении их входными сигналами определенного уровня переходят в классы «В» или «АВ». Экономичность таких каскадов лучше, чем в чистом классе «А», а нелинейные искажения меньше (до 0,003 %). Однако звук у них также «металлический» из-за наличия высших гармоник в выходном сигнале.

У усилителей еще одного класса — «АА» степень нелинейных искажений еще ниже — около 0,0005 %, но высшие гармоники также присутствуют.

Возврат к транзисторному усилителю класса «А»?

Сегодня многие специалисты в области качественного звуковоспроизведения ратуют за возврат к ламповым усилителям, поскольку уровень нелинейных искажений и высших гармоник, вносимых ими в выходной сигнал, заведомо ниже, чем у транзисторов. Однако эти достоинства в немалой степени нивелируются необходимостью согласующего трансформатора между высокоомным ламповым выходным каскадом и низкоомными звуковыми колонками. Впрочем, с трансформаторным выходом может быть сделан и простой усилитель на транзисторах, что будет показано ниже.

Существует и точка зрения, что предельное качество звучания может обеспечить только гибридный лампово-транзисторный усилитель, все каскады которого являются однотактными, не охвачены и работают в классе «А». То есть такой повторитель мощности представляет собой усилитель на одном транзисторе. Схема его может иметь предельно достижимый КПД (в классе «А») не более 50 %. Но ни мощность, ни КПД усилителя не являются показателями качества звуковоспроизведения. При этом особое значение приобретают качество и линейность характеристик всех ЭРЭ в схеме.

Поскольку однотактные схемы получают такую перспективу, мы рассмотрим ниже их возможные варианты.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе «А», приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер — к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 — разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход «база — эмиттер транзистора Q1». Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки — Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э — Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э — Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc — Vb = Vcc — (Vbe + Ve) = 20 В — 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib — ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Однотактный усилитель с МДП-транзистором

Как и любой усилитель на полевых транзисторах, рассматриваемая схема имеет свой аналог среди усилителей на Поэтому рассмотрим аналог предыдущей схемы с общим эмиттером. Она выполнена с общим истоком и R-C-связями по входному и выходному сигналам для работы в классе «А» и приведена на рисунке ниже.

Здесь C1 — такой же разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vdd. Как известно, любой усилитель на полевых транзисторах должен иметь потенциал затвора своих МДП-транзисторов ниже потенциалов их истоков. В данной схеме затвор заземлен резистором R1, имеющим, как правило, большое сопротивление (от 100 кОм до 1 Мом), чтобы он не шунтировал входной сигнал. Ток через R1 практически не проходит, поэтому потенциал затвора при отсутствии входного сигнала равен потенциалу земли. Потенциал же истока выше потенциала земли за счет падения напряжения на резисторе R2. Таким образом, потенциал затвора оказывается ниже потенциала истока, что и нужно для нормальной работы Q1. Конденсатор C2 и резистор R3 имеют такое же назначение, как и в предыдущей схеме. Поскольку эта схема с общим истоком, то входной и выходной сигналы сдвинуты по фазе на 180°.

Усилитель с трансформаторным выходом

Третий одноступенчатый простой усилитель на транзисторах, показанный на рисунке ниже, также выполнен по схеме с общим эмиттером для работы в классе «А», но с низкоомным динамиком он связан через согласующий трансформатор.

Первичная обмотка трансформатора T1 является нагрузкой коллекторной цепи транзистора Q1 и развивает выходной сигнал. T1 передает выходной сигнал на динамик и обеспечивает согласование выходного полного сопротивления транзистора с низким (порядка нескольких Ом) сопротивлением динамика.

Делитель напряжения коллекторного источника питания Vcc, собранный на резисторах R1 и R3, обеспечивает выбор рабочей точки транзистора Q1 (подачу напряжения смещения на его базу). Назначение остальных элементов усилителя такое же, как и в предыдущих схемах.

Двухтактный звуковой усилитель

Двухтактный НЧ-усилитель на двух транзисторах расщепляет входной частоты на две противофазные полуволны, каждая из которых усиливается своим собственным транзисторным каскадом. После выполнения такого усиления полуволны объединяются в целостный гармонический сигнал, который и передается на акустическую систему. Подобное преобразование НЧ-сигнала (расщепление и повторное слияние), естественно, вызывает в нем необратимые искажения, обусловленные различием частотных и динамических свойств двух транзисторов схемы. Эти искажения снижают качество звука на выходе усилителя.

Двухтактные усилители, работающие в классе «А», недостаточно хорошо воспроизводят сложные звуковые сигналы, так как в их плечах непрерывно протекает постоянный ток повышенной величины. Это приводит к несимметрии полуволн сигнала, фазовым искажениям и в конечном итоге к потере разборчивости звука. Нагреваясь, два мощных транзистора увеличивают вдвое искажения сигнала в области низких и инфранизких частот. Но все же основным достоинством двухтактной схемы является ее приемлемый КПД и повышенная выходная мощность.

Двухтактная схема усилителя мощности на транзисторах показана на рисунке.

Это усилитель для работы в классе «А», но может быть использован и класс «АВ», и даже «В».

Бестрансформаторный транзисторный усилитель мощности

Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе «В». Схема такого усилителя мощности показана на рисунке ниже.

Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.

Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.

Усилитель на одном транзисторе

Для усвоения вышеизложенного соберем простой усилитель на транзисторах своими руками и разберемся, как он работает.

В качестве нагрузки маломощного транзистора Т типа BC107 включим наушники с сопротивлением 2-3 кОм, напряжение смещения на базу подадим с высокоомного резистора R* величиной 1 МОм, развязывающий электролитический конденсатор C емкостью от 10 мкФ до 100 мкФ включим в базовую цепь Т. Питать схему будем от батареи 4,5 В/0,3 А.

Если резистор R* не подключен, то нет ни тока базы Ib, ни тока коллектора Ic. Если резистор подключен, то напряжение на базе поднимается до 0,7 В и через нее протекает ток Ib = 4 мкА. Коэффициент усиления транзистора по току равен 250, что дает Ic = 250Ib = 1 мА.

Собрав простой усилитель на транзисторах своими руками, можем теперь его испытать. Подключите наушники и поставьте палец на точку 1 схемы. Вы услышите шум. Ваше тело воспринимает излучение питающей сети на частоте 50 Гц. Шум, услышанный вами из наушников, и является этим излучением, только усиленным транзистором. Поясним этот процесс подробнее. Напряжение переменного тока с частотой 50 Гц подключено к базе транзистора через конденсатор С. Напряжение на базе теперь равно сумме постоянного напряжения смещения (приблизительно 0,7 В), приходящего с резистора R*, и напряжения переменного тока «от пальца». В результате ток коллектора получает переменную составляющую с частотой 50 Гц. Этот переменный ток используется для сдвига мембраны динамиков вперед-назад с той же частотой, а это означает, что мы сможем услышать тон 50 Гц на выходе.

Слушать уровень шума 50 Гц не очень интересно, поэтому можно подключить к точкам 1 и 2 низкочастотные источника сигнала (CD-плеер или микрофон) и слышать усиленную речь или музыку.

— Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

«Бестрансформаторный» ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

Узнаем как изготовить УНЧ своими руками из подручных материалов?

В статье будет рассказано о том, как сделать УНЧ своими руками из подручных материалов. И предпочтение будет отдано только тем конструкциям, которые сможет повторить даже начинающий радиолюбитель, который только лишь научился читать электрические принципиальные схемы. Но обо всем по порядку. Для начала стоит отметить, что существует четыре типа схем: на лампах, транзисторах, микросхемах, а также смешанные, которые могут содержать несколько видов элементов. Например, предусилитель может быть собран на транзисторах, а оконечный — на лампах.

Какую схему выбрать?

Стоит решить, что вы ждете от устройства и в какой области собираетесь его применять. От этого зависит то, какая схема УНЧ будет использоваться. Но в любом случае, конечно же, выбор современной элементной базы – это наиболее эффективное решение. Обратите внимание на то, что у ламповой техники имеется огромный недостаток – массивный блок питания. Да и найти сейчас трансформаторы окажется крайне сложно. А если нет запаса ламп, то при выходе из строя одной вы потеряете свой усилитель. Изготовить на лампах УНЧ своими руками довольно просто, только конструкция получается громоздкой.

Транзисторные конструкции выглядят более привлекательными, но у них тоже есть большой минус. При явной сложности схемы вы получаете очень низкую мощность. Вполне вероятно, что у вас может получиться огромная печатная плата, на которой элементы будут расположены близко друг к другу, а мощность всего этого устройства – не более 10 Вт. Поэтому остается третий вариант – использование микросхем. Просто, надежно, долговечно (при правильной эксплуатации).

Печатная плата

Произвести монтаж можно на небольшом участке, поэтому вам вполне хватит куска фольгированного материала размером 30х30 мм. Но можно применить и так называемую рыбу – текстолит с отверстиями для монтажа элементов и небольшими участками металла вокруг них. Это будет самым оптимальным решением. Изготовить простой УНЧ своими руками – это дело нескольких минут.

Если имеется только фольгированный текстолит, то придется вырезать на нем бороздки. Они позволят сделать на небольшой плате несколько пятачков из меди. На них и будет производиться монтаж всех элементов усилителя. Обратите внимание на то, что блок питания можно выполнить как отдельно от основной части УНЧ, так и вместе с ним.

Питание усилителя

Как правило, для бытовых усилителей оказывается достаточно питания в 9-18 Вольт. Это стандартные значения напряжений, трансформаторы можно найти практически везде. Схема питания стандартная – трансформатор, четыре диода и конденсатор емкостью не менее 100 мкФ для избавления от переменной составляющей питающего напряжения.

Но многое зависит от того, какая именно схема УНЧ будет использоваться в вашей конструкции. Если вы планируете собирать УНЧ малой мощности, то нужно взглянуть на даташит микросхемы, которую собираетесь применить. Особое внимание уделите строке, в которой указан диапазон напряжений питания. Если допустимо снижение до 5 В, то вполне можно использовать любой зарядник от телефона.

Как собрать усилитель

УНЧ на микросхемах нуждается в дополнительном охлаждении. Порой даже маломощные конструкции выделяют большое количество тепла. Следовательно, обязательно использовать алюминиевые радиаторы для эффективного охлаждения.

Если вы собираете мощный УНЧ своими руками, то следует тщательно обдумать вопрос охлаждения. Вполне возможно, что дополнительно потребуется установка кулера.

В целом же сборка УНЧ своими руками не должна быть сложной. Все элементы соединяются согласно схеме. И после контрольной проверки и прозвонки подается питание и подключается источник сигнала на вход. Само собой, на выходе нужна нагрузка – динамик. При исправной микросхеме усилитель начинает работать без настроек. Стоит отметить, что схему усилителя лучше всего использовать именно ту, которая приведена в даташите микросхемы. В этих типовых схемах учитываются все, даже самые мелкие нюансы работы конкретной микросхемы. И она будет хорошо работать только с учетом этих нюансов. Используя схемы из непроверенных источников, вы рискуете повредить микросхему. А порой ее стоимость оказывается довольно высокой.

Узнайте о компонентах печатной платы | Сьерра Схемы

Проверяет ли ваша печатная плата на наличие ошибок компонентов?

Electronics — это преобразование информации в электрические сигналы и использование возможностей высокоскоростной обработки электроники для надежного, многократного и быстрого выполнения задач. Электронные компоненты и печатные платы (ПП) образуют основные части электронной системы.

В то время как электронные компоненты обрабатывают информацию в виде электрических сигналов, печатная плата PCB представляет собой каркасную структуру, на которой электронные компоненты смонтированы и припаяны, чтобы удерживать их вместе и обеспечивать пути для передачи информации между компонентами через дорожки на печатной плате.

Дорожки на печатной плате — это металлические провода, соединяющие компоненты. Эти следы обычно представляют собой медные полоски, а иногда и алюминиевые или серебряные. Материал печатной платы, на котором размещены компоненты и дорожки, изготовлен из изоляционного материала (диэлектрика), как правило, из стекловолокна, пропитанного смолой. Этот диэлектрический материал может быть различных видов в зависимости от области применения печатной платы.

За последние несколько десятилетий электронные технологии и разработка продуктов росли и быстро становились все более и более сложными.Знание электронных компонентов необходимо для создания успешных электронных продуктов.

В этой статье дается обзор различных типов электронных компонентов. В статье рассматриваются параметры, которые следует учитывать при выборе электронного компонента, а также приводятся подробные сведения о стандартных размерах и формах компонентов. Это очень важно при разработке и производстве электронного продукта.

Некоторые из наиболее часто используемых электронных компонентов: резисторы, конденсаторы, катушки индуктивности, диоды, светодиоды, транзисторы, кристаллы и генераторы, электромеханические компоненты, такие как реле и переключатели, ИС и соединители.Эти компоненты имеют выводы / клеммы и доступны в определенных стандартизированных пакетах, которые разработчик может выбрать в соответствии со своим приложением. SMT (технология поверхностного монтажа) и сквозное отверстие — это два типа методов монтажа, используемых для размещения компонентов на печатной плате.

Типы электронных устройств

Электронные устройства можно разделить на два основных типа: пассивные и активные устройства в зависимости от их функциональности.

Пассивные устройства

Обычно резисторы, конденсаторы, катушки индуктивности указываются как пассивные устройства.

Резисторы

Резистор — это пассивный электрический компонент, функция которого заключается в создании сопротивления потоку электрического тока в электрической цепи для ограничения тока. Величина сопротивления протеканию тока называется сопротивлением резистора. Более высокое значение сопротивления указывает на большее сопротивление току. Сопротивление измеряется в омах (Ом), и его уравнение выглядит следующим образом.

R = V / I

Напряжение (В), ток (I) и сопротивление (R) связаны законом Ома.то есть V = IR. Чем выше сопротивление R, тем меньше ток I при заданном напряжении на нем V. Это линейное устройство.

Резисторы рассеивают электрическую энергию, равную P = I² R Вт или Джоулей / сек.

Резистор

Резисторы изготавливаются с использованием различных материалов, таких как углеродная пленка, металлическая пленка и т. Д. Однако мы сосредоточимся на наиболее распространенных разновидностях и их характеристиках.

Номиналы резисторов

варьируются от миллиомов до мегамов, а допуск типичных резисторов варьируется от 1% до 5%.Однако для прецизионных резисторов допуск составляет менее 1% от 0,1% до 0,001%, и, следовательно, они более дорогие и используются в аналоговых схемах, где требуется точное / опорное напряжение. Обычно используемые резисторы доступны с максимальной номинальной мощностью 1/8 (0,125 Вт), 1/4 Вт (0,25 Вт), 1/2 Вт (0,5 Вт), 1 Вт, 5 Вт. В зависимости от значений и номинальной мощности резисторы SMD изготавливаются разных размеров с кодами 1210, 1206, 0805, 0603, 0402, 0201. Это также включает в себя резисторную сеть R-packs, используемую для повышения / понижения для интерфейсов схем.

Различные типы резисторов по размеру и форме

  • Резисторы для сквозного монтажа
  • Резисторы для поверхностного монтажа SMD / SMT.

Различные типы резисторов по применению

  • Общий резистор: используется в ограничителе тока, настройке смещений, делителях напряжения, подтягивании, фильтрации, оконечных резисторах, нагрузочных резисторах и т. Д.
  • Прецизионный резистор для цепей обратной связи по напряжению, опорных напряжениях.
  • Токоизмерительные резисторы
  • Силовые резисторы

Параметры выбора резистора

При выборе любого резистора в схеме разработчик должен учитывать следующие параметры в зависимости от приложения и площади, доступной на печатной плате.

  • Значение сопротивления (R),
  • Мощность (Вт), рассеиваемая через него,
  • Допуск (+/-%)
  • Размер основан на доступном пространстве на печатной плате.

Изготовители резисторов: AVX, Rohm, Kemet, Vishay, Samsung, Panasonic TDK, Murata и т. Д.

Конденсатор

Конденсатор — это пассивный электрический компонент, функция которого состоит в том, чтобы накапливать электрическую энергию и передавать ее в цепь при необходимости. Емкость конденсатора для хранения электрического заряда называется емкостью этого конденсатора.Обозначается (C). Единица измерения емкости — фарад (Ф) и может варьироваться от микрофарада (мкФ) 1x 10 -6 F, килопикофарада (KpF) или нанофарада (нФ) 1x 10 -9 F до пикофарада. (пФ) 1x 10 -12 F. Типичные значения находятся в диапазоне от 1 пФ до 1000 мкФ.

Различные варианты использования конденсаторов:

  • Он блокирует поток постоянного напряжения и разрешает поток переменного тока, который используется для соединения цепей.
  • Он шунтирует частоты нежелательного сигнала на землю.
  • Используется для фазового сдвига и создания временных задержек.
  • Он также используется для фильтрации, особенно для удаления ряби из выпрямленного сигнала.
  • Используется для получения настроенной частоты.
  • Используется как пускатель двигателя.

Уравнение конденсатора приведено ниже;

C = Q / V

Где Q обозначает заряд, V обозначает напряжение на конденсаторе, а C обозначает емкость.

Начиная с текущего i = dq / dt , т.е. скорость изменения заряда,

Следовательно, I = C dV / dt

Символы конденсатора

Следовательно, если напряжение на конденсаторе постоянное, ток через конденсатор не будет протекать; и ток будет течь через конденсатор, только если напряжение на нем изменяется со временем, например, напряжение переменного тока. Вот почему конденсатор блокирует сигналы постоянного тока и позволяет проходить через него только сигналам переменного тока при использовании в последовательном тракте прохождения сигнала.

Энергия, запасенная в конденсаторе C, который был заряжен до напряжения V, определяется как

.

E = 1/2 CV² ; где V — вольт, а C — емкость

.

Хотя идеальный конденсатор не обладает сопротивлением и индуктивностью, однако в реальном конденсаторе он имеет небольшое эффективное последовательное сопротивление из-за пластин конденсатора, диэлектрического материала и выводов клемм. Более высокое значение ESR увеличивает шум на конденсаторе, снижая эффективность фильтрации, поэтому значение ESR должно быть меньше.

Конденсатор состоит из двух параллельных пластин (проводников), разделенных непроводящей областью, такой как диэлектрик, образующий конденсатор.

C = ε A / d

Где A — площадь пластины, d — расстояние между двумя пластинами, а ε — диэлектрическая проницаемость. Диэлектрическая среда может быть из воздуха, бумаги, керамики, пластика, слюды, стекла и т. Д.

Различные типы конденсаторов Конденсаторы

делятся на две категории — поляризованные и неполяризованные.

Поляризованные конденсаторы могут получать положительное напряжение только в одном направлении и размещаться на плате только в одном направлении. Поляризованные конденсаторы электролитические и танталовые конденсаторы

Неполяризованный — керамический конденсатор, полиэфирный конденсатор, бумажный конденсатор, который не имеет полярности и может быть размещен в любом направлении.

Типы конденсаторов

Параметры выбора конденсатора

При выборе конденсатора в любой схеме пользователям необходимо учитывать следующие параметры, помимо области применения / использования.

  • Значение емкости
  • Максимальное рабочее напряжение конденсатора.
  • Допуск
  • Напряжение пробоя
  • Диапазон частот
  • Эквивалентное последовательное сопротивление, (ESR)
  • Размер

Производитель: AVX, Kemet, Vishay, Samsung, Panasonic TDK, Murata и т. Д.

Катушки индуктивности

Катушка индуктивности (также называемая катушкой или дросселем) — это пассивный двухконтактный электрический компонент, который накапливает магнитную энергию при прохождении через него электрического тока.Это изолированный провод, намотанный на катушку вокруг сердечника из какого-либо материала (воздуха, железа, порошкового железа или феррита) в форме спирали.

Катушка индуктивности обозначается индуктивностью «L», а единица измерения — Генри (H). Индукторы обычно имеют значения от 1 мкГн до 2000 мГн.

Символы индуктора

Когда изменяющийся во времени ток течет через индуктор, создается магнитное поле, которое индуцирует электродвижущую силу (ЭДС) (напряжение) в индукторе. Напряжение V на катушке индуктивности L равно

.

V = L di / dt

То есть напряжение на катушке индуктивности есть только в том случае, если ток через нее изменяется; Постоянный ток не производит напряжения через катушку индуктивности.Обычно индуктор блокирует переменный ток и пропускает постоянный ток.

Энергия, запасенная в катушке индуктивности со значением «L» Генри. Дается выражением;

E = 1/2 Li² Энергия E выражается в джоулях, а I — в амперах.

Идеальный индуктор имеет нулевое сопротивление и нулевую емкость. Однако настоящие катушки индуктивности имеют небольшое сопротивление, связанное с обмоткой катушки, и всякий раз, когда через нее протекает ток, энергия теряется в виде тепла.

Применение индукторов

  • В понижающих / повышающих регуляторах мощности.
  • В цепях фильтров в источниках питания постоянного тока.
  • Изолирующие сигналы
  • В трансформаторе для повышения / понижения уровня напряжения переменного тока
  • В схемах генератора и настройки
  • Для создания скачков напряжения в люминесцентных лампах.

Типы индукторов

Катушки индуктивности

в основном классифицируются в зависимости от материала сердечника и рабочей частоты. Ниже приведены различные типы индукторов, доступные в сквозном отверстии, а также в SMD-корпусе в зависимости от конструкции.

  • Индукторы с железным сердечником
  • Индукторы с воздушным сердечником
  • Индукторы с порошковым сердечником
  • Индукторы с ферритовым сердечником
  • Переменные индукторы
  • Индукторы звуковой частоты
  • Радиочастотные индукторы
Типы индукторов

Параметры выбора индуктора

При выборе индуктора в любой цепи пользователь должен позаботиться о следующих параметрах, помимо приложения / использования.

  • Значение индуктивности
  • Допуск
  • Максимальный номинальный ток
  • Экранированный и неэкранированный
  • Размер
  • Оценка Q
  • Диапазон частот
  • Сопротивление индуктора
  • Тип используемого сердечника

Производитель: Murata, TDK, Bourns Inc., Abracon Electronics, AVX corporation, Schaffner, Signal Transformer и др.

Диоды

Диод представляет собой полупроводниковые устройства с двумя выводами, которые позволяют электрическому току проходить в одном направлении, блокируя его в обратном направлении. Диод состоит из полупроводникового прибора из материала P-типа и материала N-типа. Типичный материал, используемый в диоде, — это кремний и германий. Они проводят, когда на них подается минимальное прямое напряжение (~ 0,7 В для кремния), и остаются выключенными во время обратного смещения.

Символ диода представлен ниже, а их физические упаковки

Типы диодов

Применение диода

  • Преобразование мощности (переменный ток в постоянный) / выпрямление
  • Ограничение напряжения
  • Стабилитрон в качестве регулятора напряжения
  • Защита от перенапряжения
  • Защита от электростатического разряда
  • Демодуляция сигналов

Тип диодов:

  • Выпрямительный диод
  • Переключающий диод
  • Светоизлучающий диод
  • Стабилитрон
  • Диод Шоттки
  • ESD-диод
  • Туннельный диод
  • Варикап-диод
  • Фотодиод
  • Лазерный диод в оптической связи
  • диодных пакетов

    Диоды

    доступны в версиях со сквозным отверстием (DIP) и SMD.

    Например, DIP: DO214, SMA, TO-220 с радиатором SMD 1206, 1210, SOD323, SOT23, TO-252, D2PAK,

    Параметры выбора диода

    При выборе диода в любой схеме пользователям необходимо позаботиться о следующих параметрах, помимо области применения / использования.

    • Напряжение прямого смещения
    • Максимальный прямой ток
    • Средний прямой ток
    • Рассеиваемая мощность
    • Напряжение обратного пробоя / пиковое обратное напряжение
    • Максимальный обратный ток
    • Рабочая температура перехода
    • Время обратного восстановления
    • Размер

    Производители : Rohm Semiconductor, Встроенные диоды, On semi, Vishay.

    Кристаллы

    Кристалл кварца изготовлен из тонкой кварцевой пластины. Эта пластина изготовлена ​​из кремниевого материала. Пластина плотно прилегает и регулируется между двумя параллельными металлизированными поверхностями, которые образуют электрическое соединение. Когда к пластинам прикладывается внешнее напряжение, кристалл вибрирует с определенной основной частотой, которая создает переменную форму волны, которая колеблется между высоким и низким уровнями. Это явление известно как пьезоэлектрический эффект.Благодаря этому свойству они используются в электронных схемах вместе с активными компонентами для создания стабильного тактового сигнала на входе процессора.

    Генератор на кварцевом кристалле

    Приложение на кристалле

    Используется в схеме генератора для обеспечения тактового сигнала на процессоре

    Источник опорных сигналов для РФ

    Параметр выбора кристалла

    • Емкость нагрузки
    • Основная частота
    • Допуск частоты
    • Стабильность частоты
    • ESR
    • Рабочее напряжение

    Производители: NDK, Murata, Epson, ECS, CTS, Kyocera.

    Реле

    Реле — это электромагнитный переключатель, который размыкает и замыкает беспотенциальные контакты. Электромеханическое реле состоит из якоря, катушки, пружины и контактов. Когда напряжение подается на катушку, она создает магнитное поле. Это притягивает якорь и вызывает изменение разомкнутого / замкнутого состояния цепи. Он в основном используется для управления цепью высокой мощности с использованием сигнала низкой мощности.

    В основном существуют реле двух типов по конструкции — электромеханические (EMR) и твердотельные (SSR) реле.

    Твердотельное реле имеет фотодиод на входе и переключающее устройство, такое как транзистор / полевой транзистор, на выходе. Когда на его вход подается определенное напряжение, фотодиод проводит и запускает базу транзистора, чтобы вызвать переключение. Благодаря быстрому переключению, миниатюрному форм-фактору, низкому напряжению и устранению механической дуги, электрического шума и дребезга контактов, оно широко используется в приложениях по сравнению с механическими реле.

    Типы реле

    Различные типы реле формы

    Реле

    подразделяются на категории в зависимости от полюсов и бросков, такие как SPDT, SPST, DPST, DPDT.

    Приложение

    • Управление цепью высокой мощности с изолированной низкой мощностью. Например. Управление 230V a.c. цепи с сигналом + 5В.
    • Напряжение переключения ВКЛ. / ВЫКЛ.
    • Электрический MCB
    • Схема управления диак. / Симист.

    Параметр выбора для реле:

    • Тип выходной нагрузки — AC / DC
    • Входное напряжение катушки для механического реле
    • Напряжение фотодиода для SSR
    • Выходное коммутируемое напряжение
    • Выходной ток
    • Сопротивление в открытом состоянии
    • Количество щелчков / переключений
    • Количество полюса и контакты
    • Тип выходных контактов NC / NO
    • Пакеты

    Активные устройства

    Основные электронные компоненты, работа которых зависит от внешнего источника питания, называются активными компонентами.Они могут усиливать сигналы и / или обрабатывать сигналы. Некоторые из активных компонентов — транзисторы, интегральные схемы ИС.

    Транзистор

    Транзистор представляет собой нелинейное полупроводниковое трехполюсное устройство. Транзистор считается одним из важнейших устройств в области электроники. Транзистор изменил многие аспекты жизни человека. Транзисторы выполняют две основные функции: усиливают входные сигналы и действуют как твердотельные переключатели.Транзистор действует как переключатель при работе в режиме насыщения или отсечки. Тогда как он усиливает сигналы при использовании в активной области. Он предлагает очень высокое входное сопротивление и очень низкое выходное сопротивление.

    Транзисторы

    делятся на биполярные переходные транзисторы и полевые транзисторы в зависимости от их конструкции.

    Тип транзистора:

    • BJT: NPN и PNP,
    • FET: JFET, P-MOSFET, N-MOSFET

    Символ транзистора представлен ниже

    Transistor Symbol

    Самыми популярными и часто используемыми транзисторами являются BC547, 2N2222.Ниже приведены несколько распространенных корпусов транзисторов:

    Блоки транзисторов

    MOSFET

    MOSFET-транзистор (полевой транзистор с металлическим оксидом и полупроводником) представляет собой полупроводниковое устройство, которое отличается от транзистора с биполярным переходом с точки зрения конструкции, хотя его применение остается таким же, как переключение и усиление. Он имеет четыре терминала, таких как Drain, Gate, Source и Body. Корпус закорочен клеммой Source. Затвор изолирован от канала очень тонким слоем оксида металла.Благодаря этому он предлагает очень высокое сопротивление по сравнению с BJT.

    Регулируя напряжение затвора (VGS + ve / -ve), можно управлять шириной канала, по которому поток носителей заряда (электронов или дырок) от истока к стоку. MOSFET с P-каналом имеет область P-канала между истоком и стоком, а для N-канального MOSFET есть область с N-каналом.

    Преимущества MOSFET перед BJT

    • Очень высокое входное сопротивление
    • Низкое сопротивление в открытом состоянии
    • Низкие потери мощности
    • Высокая частота срабатывания
    Работа транзистора

    Применение транзисторов (BJT / FET)

    • Усиление аналоговых сигналов.
    • Используется в качестве переключающих устройств в SMPS, микроконтроллерах и т. Д.
    • Генераторы
    • Защита от повышенного / пониженного напряжения
    • Цепи модуляции и демодуляции сигналов.
    • Управление мощностью в инверторах и зарядных устройствах (сильноточные транзисторы)

    Типы корпусов транзисторов

    С точки зрения упаковки BJT и MOSFET, транзисторы доступны в версиях для сквозных отверстий (DIP) и SMD. например ДИП: ТО-92, ТО-220 и SMD: SOT23, SOT223, TO-252, D2PAK.

    Параметры выбора транзистора

    При выборе транзистора в любой схеме необходимо учитывать следующие параметры.

    • Максимальный ток коллектора (Ic)
    • Макс.напряжение коллектора (Vce)
    • Напряжение VBE
    • Напряжение Vce (насыщение) насыщения
    • Коэффициент усиления по току, hfe / ß
    • Входное сопротивление
    • Выходное сопротивление
    • Напряжение обратного пробоя
    • Максимальный обратный ток.
    • Рассеиваемая мощность
    • Рабочая температура перехода
    • Размер
    • Время переключения / частота

    Производители: аналоговые устройства, Rohm semiconductor, встроенные диоды, полупроводниковые, On semiconductor, Texas Instrument, Panasonic, Infineon, Honeywell.

    Интегральные схемы

    Интегральная схема (ИС) — это электронная схема, построенная на полупроводниковой пластине, обычно сделанной из кремния. На этой пластине размещены миллионы миниатюрных транзисторов, резисторов и конденсаторов, соединенных металлическими дорожками.ИС получают питание от внешнего источника питания для своей работы. ИС выполняют определенные функции, такие как обработка данных и обработка сигналов. Полный физический размер пластины IC чрезвычайно мал по сравнению с размерами дискретных схем, поэтому ее называют микрочипом или просто микросхемой. Из-за своего небольшого размера ИС имеют низкое энергопотребление.

    Типы микросхем

    ИС

    делятся на цифровые, аналоговые и микросхемы со смешанными сигналами в зависимости от их схемотехнических функций.

    Цифровые ИС

    Цифровые ИС

    для простоты можно разделить еще на две категории:

    • Простые ИС Пример: таймер, счетчик, регистр, переключатели, цифровые логические вентили, сумматор и т. Д.
    • Сложные ИС Пример: микропроцессор, память, коммутационные ИС, Ethernet MAC / PHY.

    Микропроцессор / микроконтроллер — это интегральная схема, которая может обрабатывать цифровые данные. Например, данные датчика температуры могут быть считаны микропроцессором и с использованием его внутренней логики для выполнения функций управления, таких как включение или выключение кондиционера.Возможность программирования микропроцессора дает ему гибкость для использования в широком диапазоне приложений. Некоторые из приложений — это бытовая электроника: микроволновая печь, стиральная машина, телевизор, промышленные приложения: управление двигателем, управление технологическим процессом, коммуникационные приложения: беспроводная связь, телефония, спутниковая связь.

    Микропроцессор — это сложная ИС, имеющая встроенный центральный процессор (ЦП), состоящий из арифметико-логического блока (АЛУ), регистров, буферной памяти, часов.Процессор не имеет встроенной памяти и требует внешнего интерфейса RAM и ROM. Приложения: компьютеры, ноутбуки, серверы, в основном для высокопроизводительной обработки.

    Микроконтроллер — это интегральная схема, которая имеет ЦП, встроенную память, универсальные входы-выходы, интерфейс связи, такой как SPI, I2C, UART, ADC, DAC, PWM. В зависимости от размера памяти и интерфейса микроконтроллеры предназначены для конкретных приложений. Применение: встроенные устройства, такие как стиральная машина, весы, станок с ЧПУ и т. Д.

    Контроллеры цифровой обработки сигналов (DSP)

    — это тип процессора, который используется в высокопроизводительных вычислительных приложениях, таких как обработка изображений, обработка речи, сжатие видео и т. Д.

    Аналоговые ИС

    Операционные усилители, Дифференциальный усилитель, Инструментальный усилитель, ВЧ устройства, АЦП, ЦАП.

    Интерфейсные ИС — Драйвер RS232, Ethernet, драйверы шины CAN, буферы и преобразователи уровня.

    ИС питания — Регуляторы напряжения, такие как линейные регуляторы, LDO, импульсные регуляторы

    Программируемая вентильная матрица — FPGA, FPGA со смешанными сигналами

    Пакеты ИС

    ИС

    доступны в различных корпусах и с разным количеством выводов, например, DIP и SMD.Ниже приведены некоторые из популярных и широко используемых пакетов.

    Пакет Название пакета и количество выводов
    Маленький контурный пакет SOIC-8,12,14,16, 24 TSSOP
    Сквозной пакет DIP- , 12,14,16,24,
    Шаровая решетка BGA 44, 48… 1000 и т. Д.
    Плоский корпус QFN, DFM 44 и т. Д.

    Стандартные параметры выбора

    При выборе ИС в любой схеме пользователю необходимо учитывать следующие параметры, помимо приложения / использования.

    Цифровые ИС

    • Рабочее напряжение (Vcc): + 2,5 В, + 3,3 В, + 1,8 В, + 5 В, + 12 В / -12 В
    • Максимальная рабочая частота
    • Время переключения и максимальная скорость передачи данных
    • Уровень напряжения ввода-вывода (TTL5V, CMOS ), максимальный допуск, VIH, VIL, VOH, VOL
    • Время настройки ввода-вывода, время удержания, время достоверности данных
    • Тип ввода-вывода: цифровой или аналоговый вывод
    • Открытый коллектор или выход на тотемный полюс.
    • Общее количество операций ввода-вывода, необходимых для приложения.
    • Тип коммуникационных интерфейсов, таких как SPI или I2C, и скорость.
    • Рассеиваемая мощность.
    • Коммерческий от 0 ° C до 60 ° C, класс Mil от -55 ° C до 125 ° C, Промышленный от -40 ° C до 85 ° C
    • Размер

    Аналоговые ИС

    • Рабочее напряжение (Vcc): + 2,5 В, + 3,3 В, + 1,8 В, + 5 В, + 12 В / -12 В
    • Опорные напряжения
    • Максимальное и минимальное выходное напряжение
    • Напряжение и ток смещения
    • CMRR, PSRR
    • Диапазон значений входного сигнала
    • Тип интерфейса цифровой связи и скорость
    • Рассеиваемая мощность.
    • Коммерческий от 0 ° C до 60 ° C, класс Mil от -55 ° C до 125 ° C, Промышленный от -40 ° C до 85 ° C
    • Размер

    Размеры устройств SMT

    Размеры выбранных компонентов SMT важны при производстве электронного продукта. Сборщик должен иметь возможность собирать компоненты небольшого размера на печатных платах. Пассивные компоненты, такие как резисторы, конденсаторы и катушки индуктивности с двумя выводами, представлены в стандартных размерах, как показано в таблице ниже.Размеры компонентов SMT указаны в дюймах, а также в метрической системе. Чаще всего размеры указаны в дюймах, например 0402, 0603,0805 1210 и т. Д.

    В приведенной ниже таблице указаны упаковки компонентов SMT с двумя выводами и их размеры.

    ОБЩИЙ ПАССИВНЫЙ КОД ПАКЕТА SMT

    0,19 0,125
    ТИП УПАКОВКИ SMD
    Стандарт IPC
    РАЗМЕРЫ РАЗМЕРЫ
    MM
    Метрический стандарт
    ДЮЙМЫ
    2920 7.4 x 5,1 (7451) 0,29 x 0,20
    2725 6,9 x 6,3 (6936) 0,27 x 0,25
    2512 6,3 x 3,2 (6332)6 0,25 x 0,125 2010 5,0 x 2,5 (5025) 0,20 x 0,10
    1825 4,5 x 6,4 (4564) 0,18 x 0,25
    1812 4,5 x 3,2 (45632)
    1806 4.5 x 1,5 (4516) 0,18 x 0,06
    1210 3,2 x 2,5 (3225) 0,125 x 0,10
    1206 3,0 x 1,5 (3216) 0,12 x 0,06 906 1008 2,5 x 2,0 (2520) 0,10 x 0,08
    805 2,0 x 1,2 (2012) 0,08 x 0,05
    603 1,6 x 10 ((1606) 0,06 906 x 0,03
    402 1.0 x 0,5 (1005) 0,04 x 0,02
    201 0,6 x 0,3 (0603) 0,02 x 0,01

    Базовые номера компонентов электронных компонентов и таблицы данных

    Основные электронные компоненты обозначены соответствующими номерами деталей производителя (MPN). Они также идентифицируются по номеру детали дистрибьютора / поставщика (VPN).

    Каждый базовый электронный компонент имеет техническое описание, в котором описаны его характеристики, характеристики и характеристики.Например, для резистора 100 Ом:

    Номера деталей
    Дистрибьюторы компонентов Дистрибьюторы электронных компонентов

    являются ключевым ресурсом для управления цепочкой поставок. Они представляют собой единый источник компонентов, из которого разработчик может покупать компоненты напрямую, а не у отдельного производителя. Дистрибьюторы имеют компоненты от разных производителей и предоставляют простой и эффективный интерфейс веб-портала для выбора и покупки компонентов.

    Наиболее известные дистрибьюторы компонентов в мире:

    • Digikey https://www.digikey.com/
    • Mouser https://www.mouser.com/
    • Arrow https://www.arrow.com/
    • Avnet https://www.avnet. com /
    • Future Electronics https://www.futureelectronics.com/

    Как работают электронные компоненты

    Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее.Электронные гаджеты находят широкое применение в современном мире, от авиации до медицины и здравоохранения. Фактически, революция в электронике и революция в компьютерах идут рука об руку.

    Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию. Проще говоря, электронные схемы — это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

    В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов. Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

    1. Конденсатор
    2. Резистор
    3. Диод
    4. Транзистор
    5. Индуктор
    6. Реле
    7. Кристалл кварца


    Обзор электронной схемы

    Электронная схема — это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


    Элементы электронной схемы

    Сложность и количество компонентов в электронной схеме может изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

    Элемент 1: токопроводящий путь

    Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки — это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

    Элемент 2: Источник напряжения

    Основная функция цепи — обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент — это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

    Элемент 3: Нагрузка

    Нагрузка — это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка — простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


    Факты об электронных схемах

    Факт 1: Обрыв цепи

    Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может протекать, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

    Факт 2: Замкнутый контур

    Замкнутый контур — это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

    Факт 3: Короткое замыкание

    В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

    Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоких уровнях. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

    Факт 4: Печатные платы (PCB)

    Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

    Рисунок 1: Печатная плата . [Источник изображения]
    Факт 5: Интегральные схемы (ИС)

    Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС — повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными по мере развития технологий. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

    Рисунок 2: интегральных схем. [Источник изображения]

    Электронные компоненты

    Благодаря современным технологиям процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

    Следующие компоненты используются для создания электронных схем.


    Компонент 1: Конденсатор

    Конденсаторы

    широко используются для построения различных типов электронных схем.Конденсатор — это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, которая накапливает электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

    Рисунок 3: Конденсаторы [Источник изображения]
    A. Состав Конденсаторы

    бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик — это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

    B. Как это работает?

    Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

    Емкость — это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

    C. Функция и значение

    Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, такие как блокировка постоянного тока с одновременным прохождением переменного тока или сглаживание выходного сигнала от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

    Фильтры для конденсаторов

    Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, так как это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

    Применения удерживающего конденсатора

    В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

    Применение конденсатора таймера

    В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


    Компонент 2: Резистор

    Резистор — это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

    Рисунок 4: Резисторы [Источник изображения]
    A. Состав

    Резистор — это совсем не модное устройство, потому что сопротивление — это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

    Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они разработаны для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может протекать в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

    B. Как это работает?

    Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме как потребляет энергию. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

    Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

    Точно так же, когда ток проходит через тонкую проволоку в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается по мере увеличения длины и толщины провода.

    C. Функция и значение У резисторов

    есть множество применений, но три наиболее распространенных — это управление током, деление напряжения и цепи резистор-конденсатор.

    Ограничение тока

    Если в цепь не добавить резисторы, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

    Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

    Делительное напряжение Также используются резисторы

    для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

    Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

    Резисторно-конденсаторные цепи Резисторы

    также используются в сочетании с конденсаторами для создания интегральных схем, содержащих массивы резистор-конденсатор в одной микросхеме.Их также называют RC-фильтрами или RC-сетями. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


    Компонент 3: Диод

    Диод — это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготовлено из полупроводникового материала, особенно из кремния.

    Рисунок 5: Диод [Источник изображения]
    A. Состав

    Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

    B. Как это работает?
    Вакуумный диод

    Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

    Соединительный диод P-N

    Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

    Когда вы складываете блоки p-типа и n-типа вместе, дополнительные электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

    Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток через диод не будет протекать, потому что дырки и электроны отталкиваются друг от друга, расширяя зону истощения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

    С.Функция и значение

    Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

    Преобразование переменного тока в постоянный

    Наиболее распространенным и важным применением диодов является преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

    Обходные диоды

    Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

    Защита от скачков напряжения

    Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа безопасности эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

    Демодуляция сигнала

    Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, в радиоприемниках обычно используются диоды для извлечения сигнала из несущей волны.

    Защита от обратного тока

    Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с положительной стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, он может защитить ваше оборудование от возможных повреждений.


    Компонент 4: Транзистор

    Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

    Рисунок 6: Транзисторы [Источник изображения]
    A. Состав

    Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

    B. Как это работает?

    Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете NPN-транзистор. Эмиттер присоединен к одному n-типу, а коллектор — к другому.База прикреплена к р-образному типу. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

    Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

    C. Функция и значение

    Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

    Транзисторы в слуховых аппаратах

    Одно из самых известных применений транзисторов — слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете слышать значительно более громкую версию окружающего шума.

    Транзисторы в компьютерах и калькуляторах

    Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

    Транзисторы Дарлингтона

    Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственная цель транзистора Дарлингтона — обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

    IGBT и MOSFET транзисторы

    Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


    Компонент 5: Индуктор

    Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности размещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

    Рисунок 7: Катушки индуктивности [Источник изображения]
    A. Состав

    Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

    B. Как это работает?

    Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

    Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

    Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор накапливает некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

    C. Функция и значение

    Хотя индукторы полезны, их сложно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы имеют широкий спектр промышленных применений.

    Фильтры в настроенных схемах

    Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что сопротивление конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они присутствуют в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

    Дроссели как дроссели

    Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет питание переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они используются в цепях питания, которым необходимо преобразовать источник переменного тока в источник постоянного тока.

    Ферритовые бусины

    Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

    Индукторы в датчиках приближения

    Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

    Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

    Асинхронные двигатели

    Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

    Трансформаторы

    Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

    Накопитель энергии

    Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные накопители энергии в импульсных источниках питания, таких как настольные компьютеры.


    Компонент 6: реле

    Реле — это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле — это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

    Рисунок 8: Реле [Источник изображения]
    A. Состав

    Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь — это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты — это токопроводящие части, которые размыкают и замыкают цепь.

    Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее электромеханических реле.

    B. Как это работает?

    Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

    В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

    Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал из входной цепи в выходную.Выходная цепь включает нагрузку или выполняет желаемое действие.

    C. Функция и значение

    Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения, возникающие в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

    Защитные реле

    Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигналы тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

    Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

    Реле автоматического повторного включения

    Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

    Тепловые реле

    Тепловое воздействие электрической энергии — принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле — защита электродвигателя от перегрузки.


    Компонент 7. Кристалл кварца

    Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц — это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Он проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы на кварцевом кристалле доступны во многих размерах в зависимости от требуемых применений.

    Рисунок 9: Кристалл кварца [Источник изображения]
    A. Состав

    Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на плиты прямоугольной формы. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

    Б.Как это работает?

    Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

    C. Функция и значение

    Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, как схемы генератора тактовых импульсов в платах микропроцессоров, а также как элемент синхронизации в цифровых часах.

    Кварцевые часы

    Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

    Фильтры

    Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


    Заключение

    От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе — электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы — основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

    // Эта статья изначально была опубликована на ICRFQ.

    13 часто используемых компонентов на печатных платах для начинающих

    Печатные платы

    — довольно сложные устройства, которые на первый взгляд могут показаться запутанными и устрашающими.Если вы новичок в обычной электронной инженерии, возможно, вы сталкивались с этим один или два раза. Фактически, вы, возможно, уже знакомы с ним. Но как новичку определенно стоит понять назначение печатной платы и знать, с чем вам придется работать, прежде чем пытаться создать свою собственную.

    Итак, вот наша разбивка 13 наиболее часто используемых электронных компонентов для печатных плат.

    Что такое печатные платы? Печатные платы

    или печатные платы могут считаться базовым строительным блоком любой электронной конструкции.Плата PCB соединяет несколько электронных компонентов, образуя единую полнофункциональную систему, способную питать различные устройства. Точно так же, как целые города формируются из улиц, кварталов, районов и зданий, компоненты печатных плат также взаимодействуют между собой. Платы печатных плат с годами эволюционировали, чтобы сыграть решающую роль в работе инженеров-электриков и любителей.

    Печатные платы

    могут варьироваться от односторонних плат (только один слой меди) до многосторонних (до 20+ слоев). Чем больше добавлено слоев, тем сложнее печатная плата, тем более продвинутым является соответствующий гаджет, на котором она работает.Больше слоев также означает больше электронных компонентов.

    Надежные печатные платы определенно могут вместить до пары десятков электронных компонентов. Однако новичкам мы рекомендуем начать с 13 наиболее распространенных компонентов.

    1. Резисторы
    2. Конденсаторы
    3. Трансформаторы
    4. Транзисторы
    5. Диоды
    6. Батареи
    7. Интегральные схемы
    8. Осцилляторы
    9. Катушки индуктивности
    10. Переключатели / Реле
    11. Потенциометры
    12. SCR
    13. Датчики Контроль энергии 9 Резисторы

      — это основа контроля тока, поэтому они так часто используются в печатных платах.Эти двухсторонние электрические детали довольно просты для понимания и интеграции в различные проекты.

      Сопротивление часто определяется как «легкость», с которой объекты пропускают электричество через себя. Подумайте о разнице между изоляторами и проводниками; очевидно, что первый обладает более высоким сопротивлением, чем второй.

      С другой стороны, резисторы

      позволяют пользователям точно определять уровень сопротивления объекта. Они предназначены для сопротивления прохождению электрического тока путем преобразования электрической энергии в тепло — тепло, которое затем рассеивается.

      Резисторы

      могут быть изготовлены из самых разных материалов и бывают разных стилей. Наиболее распространены (и настоятельно рекомендуются для начинающих) резисторы из углеродной пленки в осевом стиле. Резисторы осевого типа имеют выводы на обоих концах стержня. Их корпус отмечен разноцветными кольцами, которые представляют величину сопротивления резистора.

      Конденсаторы — накопитель энергии

      Конденсаторы — это электронные компоненты, которые уступают только резисторам. Вы обязательно найдете их на каждой печатной плате.В то время как резисторы контролируют электрический заряд, конденсаторы временно его накапливают. Думайте о них как о крошечных батареях с еще более крошечным местом для хранения. Они способны потерять и , набрав полный заряд за доли секунды. Из-за этого конденсаторы обычно используются для «фильтрации»: процесса, при котором резервный источник энергии берет на себя, когда основной источник питания падает, чтобы не потерять или не сбросить данные.

      В печатных платах конденсаторы электростатически накапливают энергию, чтобы позже передать ее туда, где требуется питание в цепи.Он работает, собирая противоположные заряды (положительный и отрицательный) на двух проводящих пластинах (обычно металлических) с изоляционным материалом между ними.

      Существуют разные типы конденсаторов, часто классифицируемые по проводящему материалу пластин или изоляционному материалу, который их разделяет. Большинство новичков и любителей используют полиэфирные конденсаторы, керамические конденсаторы или радиальные конденсаторы.

      Вы заметите, что некоторые конденсаторы напоминают резисторы. Самая заметная разница в том, что резисторы имеют выводы на противоположных концах.Конденсаторы имеют два вывода, выходящих с одной стороны.

      Трансформаторы — Transfer Energy

      Трансформаторы общего назначения передают мощность от одного источника к другому посредством процесса, называемого «индукцией». Трансформаторы для печатных плат работают точно так же. Они передают электрическую энергию из разных цепей и преобразуют их, увеличивая или уменьшая напряжение. Как и резисторы, они технически регулируют ток. Самая большая разница в том, что они обеспечивают большую электрическую изоляцию, чем контролируемое сопротивление, «преобразовывая» напряжение.

      Трансформаторы

      для печатных плат состоят из двух или более отдельных индуктивных цепей (называемых обмотками) и сердечника из мягкого железа. Первичная обмотка предназначена для цепи источника или источника энергии, а вторичная обмотка предназначена для цепи приема, куда направляется энергия. Трансформаторы прерывают большое количество напряжения на меньшие, более управляемые токи, чтобы не перегружать или перегружать оборудование.

      Транзисторы — усиление энергии

      Резисторы могут иметь важное значение для контроля тока, но транзисторы являются основой всей современной электроники.Фактически, их можно рассматривать как строительные блоки.

      В отличие от хранения, регулирования или контроля зарядов на печатной плате, транзисторы усиливают их. Биполярный транзистор, который является наиболее распространенным типом транзисторов, имеет три области и три контакта, в которых ток течет и усиливается. Есть два типа биполярных транзисторов; НПН и ПНП. Оба состоят из (1) базы, (2) коллектора и (3) эмиттера и имеют как области P-типа, так и области N-типа.

      • База: основа / основа всего устройства
      • Эмиттер: место высвобождения / испускания зарядов
      • Коллектор: собирает носители заряда

      Биполярный транзистор NPN имеет область P-типа, зажатую между двумя областями N-типа .В типе NPN небольшой ток течет от базы к эмиттеру. Затем этот ток включает другую цепь , которая заставляет намного больший ток течь от коллектора к эмиттеру, эффективно увеличивая (или усиливая) высвобождаемый ток.

      Биполярный транзистор PNP имеет область N-типа, зажатую между двумя областями P-типа. Это меняет текущий процесс типа NPN на противоположный. Небольшой ток начинается на коллекторе и течет к эмиттеру, вызывая больший ток, который проходит через базу и далее к эмиттеру.

      Транзисторы

      NPN используются чаще, чем транзисторы PNP, по ряду причин. Однако у обоих есть свои преимущества и недостатки в зависимости от проекта.

      Диоды — перенаправление энергии

      Возвращаясь к нашей печатной плате — сравнение городов, диоды — это в основном улицы с односторонним движением на печатной плате. Эти двухконтактные компоненты управляют и перенаправляют поток энергии, позволяя току течь в одном направлении и блокируя его движение в другом.Поток обычно идет от положительной клеммы (называемой анодом) к отрицательной клемме (называемой катодом).

      Подобно резисторам, диоды используют электрическое сопротивление для управления потоком энергии. Высокое сопротивление в одном направлении и нулевое сопротивление в другом эффективно блокируют протекание тока в неправильном направлении и потенциальное повреждение оборудования.

      Самый распространенный диод, с которым знакомы многие люди — даже не любители, — это светодиоды или светодиоды.Другие распространенные примеры диодов для печатных плат включают стабилитроны, быстродействующие переключающие диоды и диоды Шоттки.

      Аккумулятор — обеспечивает энергию

      Теоретически все знают, что такое аккум. Возможно, это самый популярный компонент в этом списке. Батареи используются не только инженерами-электронщиками и любителями. Люди используют это маленькое устройство для питания своих повседневных предметов; пульты дистанционного управления, фонарики, игрушки, зарядные устройства и многое другое.

      На печатной плате батарея в основном накапливает химическую энергию и преобразует ее в полезную электронную энергию для питания различных схем, присутствующих на плате.Они используют внешнюю цепь, позволяющую электронам переходить от одного электрода к другому. Это образует функциональный (но ограниченный) электрический ток.

      Ток ограничен процессом преобразования химической энергии в электрическую. Для некоторых аккумуляторов этот процесс может завершиться за считанные дни. Другим могут потребоваться месяцы или годы, прежде чем химическая энергия будет полностью израсходована. Вот почему некоторые батареи (например, батарейки в пультах дистанционного управления или контроллерах) необходимо менять каждые несколько месяцев, тогда как другим (например, батарейкам для наручных часов) требуются годы, прежде чем они все разрядятся.

      Существуют разные типы батарей для печатных плат, но мы определенно рекомендуем приобретать аккумуляторные.

      Интегральные схемы — Многофункциональные электростанции

      Интегральные схемы — это основа всех печатных плат. Батареи могут быть источником энергии, но электрические цепи — это фабрики. Эти крошечные пластины содержат тысячи (или даже миллионы) транзисторов, резисторов и конденсаторов. Благодаря этому они могут усиливать, генерировать колебания и обрабатывать энергию на печатной плате — и это лишь некоторые функции.

      Как следует из названия, интегральные схемы (или ИС) в основном представляют собой схемы, которые были интегрированы в печатную плату путем минимизации. Эти пластинчатые компоненты обычно изготавливаются из силикона и помещаются в пластиковый корпус. Более современные могут также использовать цифровые или аналоговые технологии для выполнения расчетов.

      Эти типы технологий дополнительно определяют два типа ИС: цифровые и аналоговые. Лучший вариант для новичков зависит от того, какой проект предстоит осуществить.Цифровые интегральные схемы обычно используются в компьютерах и бытовой электронике. Аналоговые интегральные схемы (также называемые линейными) обычно используются для усиления звука и радиочастот.

      Генераторы — точные таймеры

      В печатных платах кварцевые генераторы действуют как программируемые таймеры или часы, которые периодически генерируют электронные сигналы. Они названы так потому, что зависят от резонанса колеблющегося кристалла, сделанного из пьезоэлектрического материала, чтобы определять частоту электронного сигнала или колебания.

      Для создания резонанса можно использовать различные пьезоэлектрические материалы, но кристаллы кварца, безусловно, являются фаворитом сообщества. Генератор использует электрическое поле в тандеме с напряжением, приложенным к электроду рядом с кристаллом кварца, чтобы создать свойство, известное как обратное пьезоэлектричество. Затем электрическое поле снимается, чтобы позволить кристаллу вернуться к своей прежней форме. При этом кварц генерирует другое электрическое поле, которое, в свою очередь, генерирует напряжение определенной частоты — другими словами, колебания.

      Кристаллические генераторы

      обычно используются в качестве точных таймеров для наручных часов, микроконтроллеров и других подобных устройств.

      Индукторы — увеличение энергии

      Катушки индуктивности, как и резисторы и конденсаторы, считаются линейными пассивными компонентами печатных плат. Как и конденсаторы, индукторы представляют собой устройства с двумя выводами, которые накапливают энергию. Но в то время как конденсаторы накапливают энергию электростатически, индукторы используют магнитное поле.

      Также известные как катушки, дроссели и реакторы, индукторы обычно состоят из сердечника, обернутого изолированным проводом.Чем чаще проволока наматывается на сердечник (т. Е. Количество витков), тем больше создается магнитное поле и, следовательно, энергия. Обмотки усиливают магнитное поле и, как следствие, запасенную энергию и энергетические возможности устройства.

      Катушки индуктивности

      характеризуются свойством, называемым индуктивностью, которое в основном представляет собой отношение напряжения к скорости изменения тока. Они часто используются для фильтрации или блокировки определенных сигналов, например радиопомех в звуковом оборудовании.

      Переключатели — кнопки питания

      Переключатель — еще один широко известный компонент печатной платы, уступающий только батареям. Многие люди — опять же, не только инженеры и любители — покупают переключатели для повседневных, повседневных функций. Им не место только на печатных платах. Их можно увидеть на кухнях, в комнатах, удаленных устройствах и т. Д.

      Думайте о переключателях / реле как о кнопках питания. Они в основном управляют потоком тока в цепи, размыкая и закрывая цепь.Одно нажатие переключателя — и цепь размыкается, позволяя току течь к лампочке в комнате. Еще один щелчок — и цепь замыкается. Лампочка отключается от тока и выключается.

      Существует дюжина различных типов переключателей , по крайней мере, , все различающиеся по физической конструкции и внешнему виду. Наиболее распространены кнопочные переключатели, рычаги и тумблеры. Другие примеры включают коробчатые, кулисные, микропереключатели, ползунки и поворотные переключатели.

      Потенциометры — переменное сопротивление

      Потенциометры в основном представляют собой переменные резисторы с тремя выводами.Как и резисторы, они контролируют энергию в цепи. Они так называются, потому что в основном определяют электрический потенциал или напряжение устройства. Обычные потенциометры бывают двух типов: поворотные и линейные.

      Поворотные потенциометры немного более известны, чем линейные. Они используют ручку для изменения сопротивления устройства, позволяя контакту ползунка перемещаться по полукруглому резистору, чтобы определять, насколько высокой или низкой должна быть энергия. Самый популярный пример вращающегося потенциометра — ручка регулировки громкости на радио.Величина тока, подаваемого на усилитель, регулируется потенциометром, соответственно регулируя громкость звука.

      Линейные потенциометры во многом похожи, только это прямая линия, а не полукруг. Подумайте о кнопках регулировки громкости на современных смартфонах или наушниках.

      SCR — Управление сильным током

      SCR означает выпрямитель с кремниевым управлением. Подобно транзисторам и диодам, тиристоры, также называемые тиристорами, названы так потому, что они состоят из четырех слоев кремния (вместо трех составов NPN или PNP, используемых в транзисторах).В некотором смысле их можно рассматривать как два транзистора, работающих в тандеме для управления большими значениями напряжения и мощности. В этом смысле они больше подходят для проектов и операций с высоким переменным током, где обычного транзистора может быть недостаточно.

      Четыре уровня — NPNP или PNPN — функционируют больше как переключатели, а не как усилители. Более того, для активации указанных переключателей требуется всего один импульс, а не постоянный ток, как в одиночных или биполярных транзисторах.

      Датчики

      И последнее, но не менее важное: датчики.Это довольно простые электронные компоненты в том смысле, что они «чувствуют» физический ввод или изменения окружающей среды и соответствующим образом реагируют. Тип входа может варьироваться от изменений тепла, света и влажности до давления, шума, движения и т. Д.

      Отклик, генерируемый датчиком, поступает в виде электрического сигнала, соответствующего любому типу изменения, которое он обнаружил. Затем этот сигнал отправляется на другие компоненты схемы или печатной платы.

      Если запрограммировано, эти датчики затем генерируют выходной сигнал в виде удобочитаемых дисплеев или нескольких сигналов, передаваемых в электронном виде для будущего считывания или дальнейшей обработки.

      Датчики на печатной плате обычно преобразуют физическую энергию в электрическую. В некотором смысле это делает их преобразователями. Датчики на самом деле довольно гибкие и могут быть разных форм. Они могут быть даже в виде диодов, таких как красный светодиод на пульте дистанционного управления телевизором, который сигнализирует, включено устройство или нет. Обычные практические реализации датчиков включают измерение влажности, определение качества воздуха, датчики движения и автоматическое освещение.

      Заключение

      Подведем итоги 13 наиболее распространенных компонентов печатных плат, которые мы рассмотрели:

      1. Резисторы
      2. Конденсаторы
      3. Трансформаторы
      4. Транзисторы
      5. Диоды
      6. Батареи
      7. Интегральные схемы
      8. Осцилляторы
      9. Индукторы
      10. Переключатели / Реле
      11. Потенциометры
      12. SCR
      13. Датчики

        909 новичок и любитель, эти 13 электронных компонентов окажутся довольно легкими — и полезными — для работы, когда вы погрузитесь в создание своих первых нескольких печатных плат.Даже если у вас достаточно опыта, всегда полезно разобраться в основных строительных блоках. Эти 13 электронных компонентов по-своему вносят свой вклад в функциональность печатной платы, и один из них не предпочтительнее другого. Различие в их возможностях и дизайне делает их подходящими для разных проектов.

        Часть 2 Печатная плата и компоненты

        Резисторы, диоды и транзисторы являются неотъемлемыми частями работающей печатной платы. Без них печатная плата не смогла бы выполнять свои задачи.Каждый из этих компонентов выполняет определенную функцию.

        Резисторы

        Резисторы являются частью печатной платы. Резистор создает сопротивление в потоке электричества. При расчете сопротивления измерения производятся в омах. Ом — это стандарт для измерения электрического сопротивления.

        Резисторы имеют различное назначение. Назначение резистора заключается в делении напряжения. Резисторы делят напряжение, когда они включены последовательно друг с другом.Еще одно предназначение резисторов — это способ генерации тепла. Резистор может генерировать тепло, преобразовывая проходящую через него электрическую энергию в тепловую. Конечная цель, которую мы опишем, — это то, как резисторы согласовываются и нагружают цепи. Большая часть выходной мощности перемещается в виде тепла в случае слишком низкого сопротивления нагрузки. Однако, если сопротивление нагрузки слишком велико, ток будет слишком низким для передачи энергии нагрузке.

        Вот отличное видео от ResistorGuide.com:

        Диоды

        Диоды позволяют току течь только в одном направлении. Также диоды имеют два электрода. Анод и катод — это два электрода внутри диода. Анод позволяет току течь из внешней цепи. В то время как катод позволяет току течь в поляризованном устройстве. Катод тоже металлический.

        Диод работает правильно, только если катод заряжен отрицательно по отношению к аноду при заданном напряжении.Следовательно, когда катод заряжен положительно, диод вообще не работает. Это также произойдет, если на катоде будет такое же напряжение, что и на аноде. Это также происходит, когда его отрицательность меньше, чем у прямого размыкающего напряжения по отношению к аноду. Направление катода очень важно для функциональности диодов.

        Транзисторы

        Транзисторы — это трехконтактные устройства. Это трехконтактное устройство может регулировать ток или напряжение, а также действовать как переключатель для сигналов электронной разновидности.Полупроводники составляют три слоя транзистора. Следовательно, каждый из этих слоев может проводить ток. Материал полупроводника находится между материалом реального проводника и изолятора. Работа транзистора заключается в усилении или переключении электронных сигналов и электроэнергии, а также в регулировании тока или напряжения в цепи, а это возможно только благодаря полупроводникам.

        Оставайтесь на связи

        Скоро в продаже: продолжение нашей серии о печатных платах и ​​их компонентах.

        Вы всегда можете посетить наш блог для получения дополнительной информации или наш сайт!

        Также посетите наши Facebook, Twitter, Google+ и LinkedIn.

        Как работают печатные платы — Паспортная табличка с клеймом

        Одним из многих продуктов, которые мы в Hallmark Nameplate можем создать, является сборка печатной платы (печатной платы), и правда в том, что это может быть именно то, что вам нужно для вашего бизнеса. Но для того, чтобы действительно понять назначение печатной платы, вы должны понимать самые базовые технологии, лежащие в основе продукта.

        Основы схемотехники

        Электрические цепи состоят из проводов и других компонентов, таких как лампочки, транзисторы, компьютерные микросхемы и двигатели. Проводящие материалы составляют провода, соединяющие компоненты цепей. Медь и алюминий чаще всего используются в качестве проводников, но иногда золото также используется для прикрепления проводов к небольшим электронным микросхемам, поскольку оно имеет более высокую устойчивость к коррозии.

        Различные типы цепей

        Силовые цепи работают с передачей и контролем больших объемов электроэнергии.Примерами силовых цепей являются линии электропередач, а также системы электропроводки в жилых или служебных помещениях. Основными компонентами силовых цепей являются генераторы на одном конце и системы освещения, системы отопления или бытовые приборы на другом конце с линиями электропередач, трансформаторами и автоматическими выключателями между ними. Электронные схемы , с другой стороны, отвечают за обработку и передачу информации. Это больше похоже на компьютеры, радио, телевизоры, радары и сотовые телефоны.

        Вот еще несколько компонентов схем:

        • Если вы работаете с замкнутой цепью , вы работаете с полным путем прохождения тока.
        • Обрыв цепи этого не имеет, что свидетельствует о том, что он не работает.
        • Короткое замыкание — это путь с низким сопротивлением, который может возникнуть, когда два неизолированных провода в цепи соприкасаются друг с другом.
        • В цепи серии одинаковый ток протекает через все компоненты — представьте себе гирлянду рождественских огней! Если один уходит, уходят все; ток не будет течь, и ни один из индикаторов не загорится.
        • Когда вы думаете о параллельной схеме , представьте себе кровеносные сосуды, которые отходят от артерии и соединяются с веной. То же самое и с проводами; одна действует как «артерия», а другая действует как «вена» с прикрепленными меньшими проводами. Самые маленькие провода имеют одинаковое напряжение, но различное количество тока, протекающего через них, в зависимости от индивидуальной проводки.

        Классификация цепей

        Один из способов классификации цепей — это ток.Некоторые из самых ранних из когда-либо существовавших были питались от батареи, что позволяло току постоянно течь в одном направлении. Это считается постоянным током или постоянным током.

        Чтобы удовлетворить потребность в энергии для перемещения на большие расстояния, инженер Никола Тесла изобрел переменный ток, или переменный ток. Переменные токи всегда меняются и все время меняют направление. С помощью этого вида тока можно использовать трансформаторы для изменения уровня напряжения, необходимого для электронных схем.

        При чем здесь печатные платы?

        Назначение печатной платы — удерживать вместе электронную схему. Когда к нему прикреплены все различные компоненты, он называется сборкой печатной платы или PCBA. Печатная плата с несколькими слоями может содержать до десяти уложенных друг на друга печатных плат, что позволяет сформировать трехмерную электронную схему.

        Транзисторы являются наиболее важной частью электронной схемы и могут быть описаны как крошечные переключатели, которые запускаются электрическими сигналами.Они являются основными строительными блоками микрочипов. Наряду с этим работают более пассивные элементы, такие как резисторы и конденсаторы. Задача резистора состоит в том, чтобы прикладывать определенное сопротивление к току, а конденсатор накапливает электрический заряд. Другой компонент — индуктор — накапливает энергию в виде магнитного поля. В небольших схемах, обычно называемых «микроэлектрическими», нечасто используются индукторы. Они чаще используются в более крупных схемах.

        Самые продвинутые разработчики печатных плат используют программы автоматизированного проектирования или САПР.Это наиболее реалистичный способ проектирования печатных плат из-за сложности цифровых компьютеров, поскольку они используют миллионы транзисторов.

        Один из лучших способов понять продукты, которые мы создаем для любых ваших потребностей, — это изучить основные компоненты. Мир схем и печатных плат огромен, и всегда можно узнать что-то новое, будь то прогресс или еще один элемент вашего проекта печатной платы. Если вы готовы начать свой следующий проект, свяжитесь с Hallmark Nameplate сегодня!

        Методы поиска и устранения неисправностей печатных плат

        Ошибки и отказы компонентов — это реальность.Печатные платы иногда поставляются с производственными дефектами, компоненты могут быть припаяны назад или в неправильном положении, а компоненты выходят из строя. Все эти потенциальные точки отказа приводят к тому, что схема работает плохо или совсем не работает.

        Поиск и устранение неисправностей печатной платы

        Печатные платы или печатные платы представляют собой массу изоляторов и медных проводов, которые соединяют плотно упакованные компоненты для создания современной схемы. Поиск и устранение неисправностей печатных плат часто представляет собой проблему, поскольку такие факторы, как размер, количество слоев, анализ сигналов и типы компонентов, играют большую роль.

        Некоторые более сложные платы требуют специального оборудования для правильного устранения неполадок. Однако в большинстве случаев поиск и устранение неисправностей может выполняться с помощью базового электронного оборудования, отслеживающего следы, токи и сигналы в цепи.

        Westend61 / Brand X Pictures / Getty Images

        Найдите нужные инструменты

        Для устранения большинства основных неисправностей печатной платы требуется всего несколько инструментов. Самый универсальный инструмент — мультиметр. Однако, в зависимости от сложности печатной платы и проблемы, также могут потребоваться измеритель LCR, осциллограф, источник питания и логический анализатор, чтобы глубже изучить рабочее поведение схемы.

        Проведите визуальный осмотр

        Визуальный осмотр печатных плат позволяет выявить более очевидные проблемы, включая перекрывающиеся дорожки, сгоревшие компоненты, признаки перегрева и отсутствующие компоненты. Некоторые сгоревшие компоненты, поврежденные чрезмерным током, не так легко увидеть, но визуальный осмотр в увеличенном масштабе или запах могут указать на наличие поврежденного компонента. Вздутие компонентов — еще один хороший индикатор проблемы, особенно для электролитических конденсаторов.

        Проведите физический осмотр

        Одним из шагов, выходящих за рамки визуального осмотра, является физический осмотр с включением питания цепи.Прикоснувшись к поверхности печатной платы и компонентов на плате, вы можете обнаружить горячие точки без использования дорогой термографической камеры. При обнаружении горячего компонента охладите его сжатым сжатым воздухом, чтобы проверить работу контура с компонентом при более низких температурах.

        Этот метод потенциально опасен и должен использоваться только в цепях низкого напряжения с соблюдением надлежащих мер безопасности.

        При прикосновении к цепи под напряжением примите несколько мер предосторожности.Убедитесь, что только одна рука контактирует с цепью в любое время, чтобы предотвратить потенциально смертельный электрический удар по вашему сердцу. Держать одну руку в кармане — хороший прием при работе с цепями под напряжением, чтобы предотвратить такие удары. Убедитесь, что все возможные пути тока к земле, такие как ваши ноги или нерезистивный заземляющий браслет, отключены, чтобы снизить опасность поражения электрическим током.

        Прикосновение к различным частям цепи также изменяет сопротивление цепи, что может изменить поведение системы и, таким образом, определить места в цепи, которым для правильной работы требуется дополнительная емкость.

        Проведение испытаний дискретных компонентов

        Тестирование каждого отдельного компонента часто является наиболее эффективным методом устранения неисправностей печатной платы. Проверьте каждый резистор, конденсатор, диод, транзистор, катушку индуктивности, MOSFET, светодиод и дискретные активные компоненты с помощью мультиметра или измерителя LCR. Если регистр компонентов меньше или равен указанному значению компонента, компоненты обычно исправны. Если значение компонента выше, это означает, что либо компонент неисправен, либо паяное соединение неисправно.

        Проверяйте диоды и транзисторы в режиме проверки диодов на мультиметре. Переходы база-эмиттер и база-коллектор транзистора должны вести себя как дискретные диоды и проводить только в одном направлении с одинаковым падением напряжения. Узловой анализ — это еще один вариант, который позволяет тестировать компоненты без питания путем подачи питания на один компонент и измерения его зависимости напряжения от тока (V / I).

        Тестирование ИС

        Наиболее сложные компоненты для проверки — это микросхемы.Большинство из них можно легко идентифицировать по маркировке, а многие можно проверить в рабочем состоянии с помощью осциллографов и логических анализаторов. Однако количество специализированных ИС в различных конфигурациях и конструкциях печатных плат может затруднить тестирование. Сравнение поведения схемы с заведомо исправной схемой часто является полезным методом и должно помочь выявить аномальное поведение.

        Спасибо, что сообщили нам!

        Расскажите, почему!

        Другой Недостаточно подробностей Сложно понять

        5 самых распространенных ремонтов печатных плат (PCB)

        Многие не осознают, что электроника, устройства и предметы, которыми они владеют, построены на нескольких внутренних компонентах, которые работают совместно, чтобы обеспечить необходимые функциональные возможности и функции, которые они используют.Например, мобильный телефон — это больше, чем просто корпус, кнопки и дисплей, которые вы видите снаружи. Внутри устройства находятся несколько частей, в которых размещаются и соединяются необходимые компоненты. Одна из этих основных частей называется печатной платой или PCB для краткости.

        Печатные платы — основа большинства электронных устройств. Ожидается, что только к концу 2018 года объем продаж печатных плат в мире достигнет 82 миллиардов долларов США. Это должно дать вам некоторое представление о том, как часто печатные платы используются в производстве.

        Без них многие устройства просто перестали бы функционировать. В случае серьезного сбоя или неисправности это может вызвать довольно серьезные проблемы. Печатные платы тоже не неуязвимы. Со временем они сильно изнашиваются, что может ухудшить их производительность и функциональность. Такие вещи, как погода, влажность, возраст и даже высота над уровнем моря, могут повлиять на состояние доски.

        К счастью, можно отремонтировать или модернизировать платы, чтобы они снова стали как новые.Это делает одно из двух. Либо рассматриваемую плату можно вернуть в исходное устройство, чтобы оно снова работало. Или, если хотите, его можно использовать в совершенно другом устройстве, как форму вторичной переработки.

        Конечно, прежде чем какую-либо плату можно будет отремонтировать или отремонтировать, инженеры должны понять и понять, почему она вообще вышла из строя. Вы не сможете решить проблему, если не знаете, что пошло не так, не так ли?

        Очень полезно знать и определять некоторые из наиболее распространенных проблем, связанных с печатными платами, чтобы в случае отказа устройства вы, по крайней мере, знали, что пошло не так.Мы собираемся взглянуть на некоторые из наиболее распространенных проблем с печатными платами и изучить пути их решения.

        Для большей точности давайте разберемся, что такое печатная плата на самом деле и чем она занимается.

        Что такое печатные платы?

        Печатная плата или PCB является основным компонентом почти всех электронных устройств. Во всем, кроме самой простой электроники, используется какая-то плата для соединения и механической синхронизации всех элементов продукта.Кофеварка, например, может иметь внутри небольшую печатную плату для подключения электронной системы управления, нагревательного элемента и дисплея.

        В первые дни — задолго до того, как появилось программное обеспечение для проектирования — печатные платы планировались с использованием листов майлара путем ручной разработки и часто были в четыре раза больше, чем сама печатная плата. Дизайнеры закладывали контактные площадки, следы и компоненты в предложенный дизайн, который использовался как своего рода раскадровка для тестирования и объяснения схем.Сегодня все это делается с помощью программного обеспечения для проектирования и производства.

        Печатные платы механически необходимы для поддержки и соединения всех компонентов в устройстве, которые синхронизируются с помощью токопроводящих дорожек — это позволяет электричеству свободно течь через плату и от компонента к компоненту.

        Компоненты печатной платы припаяны к плате, которая электрически и механически скрепляет их с общей схемой. Эти «компоненты» включают в себя такие вещи, как аккумулятор, резисторы, светодиоды, транзисторы, конденсаторы и многое другое.

        Платы часто производятся слоями, которые включают различные уровни проводящих и непроводящих листов. Они могут быть односторонними с одним слоем меди, двусторонними с двойным слоем меди с обеих сторон слоя подложки или многослойными с разными слоями меди и подложки. Стоит отметить, что многослойные платы обеспечивают множество преимуществ, таких как повышенная плотность компонентов, однако их намного сложнее анализировать, ремонтировать и модифицировать.

        Важно понимать, что детали и методы ремонта печатных плат часто состоят из тех же материалов и компонентов, которые изначально использовались для создания оборудования.Заменителей или альтернатив очень мало, особенно когда речь идет о надежных и проводящих материалах. Это подчеркивает необходимость найти подходящую профессиональную ремонтную команду с нужными активами и связями.

        Какие устройства их используют?

        Печатные платы используются почти во всех электронных устройствах, которые вы можете найти, от смартфонов и компьютеров до телевизоров и пылесосов. Если устройство требует для работы электрического соединения, можно с уверенностью сказать, что внутри есть какая-то печатная плата, иногда невероятно маленькая и тонкая.

        По мере того, как технологии развивались на протяжении многих лет, проектирование и разработка печатных плат позволяли использовать более мелкие, более сложные компоненты и более тонкие и менее громоздкие платы. Это делает процесс ремонта печатной платы особенно сложным, потому что существует очень много различных типов, различающихся по размеру и дизайну. Вы не можете пойти ни к кому для ремонта, модификации или повторного изготовления печатной платы. Крайне важно, чтобы вы пошли к авторизованной группе, у которой есть опыт и необходимое оборудование, чтобы это произошло.

        Почему выходят из строя печатные платы?

        Как и все, что ухудшается со временем и при длительном использовании, печатные платы могут столкнуться с множеством проблем. От следовых повреждений, влияющих на проводимость платы и схемы, до отказа компонентов, в результате которого умирают конденсаторы или диоды, на печатной плате есть много спорных моментов.

        Это помогает выявить и понять некоторые из наиболее распространенных отказов, чтобы вы могли решить проблему соответствующим образом.Это также может помочь людям, не имеющим прямого опыта работы с печатными платами, поддерживать их в лучшей форме.

        1. Физические повреждения
        Это наиболее очевидный выбор, когда речь идет о повреждении печатной платы. Фактически, наиболее частые причины отказов печатных плат связаны с физическим повреждением устройства или его внутренних компонентов. Это может быть что угодно, относящееся к физическому давлению или шоку. Рассматриваемое устройство могло быть уронено с большого расстояния. Возможно, его ударили или ударили другим предметом? Также существует вероятность того, что устройство было разобрано по какой-либо причине, и повреждение произошло непосредственно на плате.

        Как диагностировать и отремонтировать

        До тех пор, пока полный отказ не является сценарием — плата упала на землю и раскололась или полностью сломалась — физические повреждения можно устранить с помощью процесса восстановления. Как правило, это включает в себя плавление поврежденных участков платы или ремонт путем разборки и повторной сборки. Из-за характера большинства физических повреждений маловероятно, что это может быть сделано своими руками теми, у кого нет опыта ремонта печатных плат.Ремонт физических повреждений должен производиться только обученным и опытным специалистом. В большинстве случаев это требует переделки платы, перепайки компонентов и реболлинга токопроводящих дорожек.

        2. Отказ компонентов
        Помимо физического повреждения, неисправные компоненты являются другой наиболее частой причиной отказов печатных плат. Фактически, если и когда нет физических повреждений, но устройство не работает или не включается, вы можете почти гарантировать, что это связано с одним из компонентов, подключенных к плате.

        Сам по себе компонент может быть чем угодно, от конденсатора до диода или микропроцессора. Если проблема заключается в компоненте, который вышел из строя или не работал, возможно, его необходимо полностью заменить. Однако проблема не всегда в фактическом компоненте. Иногда из-за старения, перегрева и провалов напряжения электрическая цепь может ухудшиться до такой степени, что перестает быть проводящей. Также возможно, что один или несколько компонентов полностью отсоединились от платы и их необходимо переустановить.

        Как диагностировать и отремонтировать

        Вы можете спросить, как починить печатную плату при выходе из строя какого-либо компонента? Опять же, процесс ремонта и восстановления неисправных компонентов лучше доверить профессионалам. Существуют инструменты для измерения напряжения и различные устройства, которые можно использовать для проверки проводимости схемы платы. Их также можно использовать, чтобы определить, течет ли электричество к компоненту или полностью вышел из строя элемент платы. Часто, просто открыв устройство, можно увидеть неисправные компоненты.Их внешняя оболочка может показаться обгоревшей, потрескавшейся или сломанной, либо компонент полностью отсоединен от платы и болтается.

        Чтобы отремонтировать неисправный компонент, вам может потребоваться нагреть — обычно с помощью теплового пистолета — припаять и провести тщательное тестирование.

        3. Следы повреждений
        Следы на печатной плате — это проводящие пути, состоящие из серебра или меди. Как правило, проблему со следами можно увидеть невооруженным глазом, но не всегда. Если след повреждается в результате регулярного использования или физического повреждения, это может вызвать серьезные проблемы с проводимостью печатных плат, компонентами и рассматриваемым устройством.

        К наиболее частым причинам следовых повреждений относятся удары молнии, сильные скачки напряжения или короткие замыкания, загрязнение металлической пылью, перегрев и нормальный износ.

        Как диагностировать и исправить

        При условии, что след не очень тонкий и трудно различимый, вы обычно можете определить повреждение, просто сканируя путь. Медь и серебро по своей природе являются яркими и блестящими, что упрощает определение поломки или повреждения. Имейте в виду, что это не всегда так, но это беспроигрышный вариант.

        Чтобы отремонтировать дефектные или поврежденные дорожки следов, вам просто нужно перепаять или переболеть доской с необходимым материалом. Это повторно подключает разорванную цепь и позволяет электричеству беспрепятственно течь по плате.

        4. Плохой дизайн
        Как бы нам ни хотелось хвалить каждого существующего инженера или разработчика продукта, это просто нежизнеспособно. Иногда по какой-либо причине команда может срезать углы при разработке платы или производстве необходимых компонентов.Это может привести к плохому дизайну и конструкции платы, что впоследствии вызовет проблемы.

        К сожалению, плохой дизайн печатной платы может привести к нескольким причинам, многие из возникающих сбоев уже обсуждались здесь.

        Как диагностировать и отремонтировать

        Вы узнаете, как только у вас будет неисправная или неисправная печатная плата, потому что ваше устройство будет продолжать выходить из строя снова и снова, даже после ремонта или обслуживания. Лучшее решение для некачественной печатной платы — полностью заменить ее, посетив официальный или лицензированный ремонтный центр.

        Самый простой способ определить плохо спроектированную плату — это количество отказов или проблем после продолжительного использования. За исключением значительных физических или электрических повреждений устройства, если вы возьмете плату для ремонта или анализа и обнаружите несколько проблем, вероятно, что-то не так с конструкцией платы. В некоторых случаях это просто означает, что оригинальный производитель использовал дешевые или ненадежные компоненты, но сама плата в порядке.

        5.Сбой питания
        В большинстве случаев сбой питания очень похож на отказ компонента, он может даже быть одним и тем же. Основная проблема связана с тем, что произошел серьезный сбой питания всей платы или ее части. Один из компонентов мог оказаться под более высоким напряжением, чем обычно, что привело к его перегреву и взрыву. Или, может быть, где-то произошел сбой трассировки, вызвавший короткое замыкание? В любом случае, измеритель мощности может использоваться для проверки каждого отдельного компонента и общей проводимости платы.

        Как диагностировать и ремонтировать

        У всех профессиональных ремонтных бригад есть измеритель мощности или напряжения, который можно использовать для выявления электрических проблем с платой и ее компонентами. Это действительно единственный способ диагностировать проблему за пределами видимого повреждения компонента. Что касается ремонта, лучше всего доверить этот процесс профессионалам, но, как правило, он включает переустановку или замену компонентов.

        Из чего состоит ремонт и восстановление печатных плат?

        Существует несколько способов ремонта или обслуживания печатной платы с различной степенью квалификации.Однако по большей части все, что связано с внутренним устройством электроники или устройства, требует знаний в области техники и механики, а также основных электрических схем. Что касается некоторых более крупных устройств, представленных на рынке, вы можете серьезно или даже смертельно пораниться, если не будете знать, что делаете.

        При наличии следов и токопроводящих дорожек вам может потребоваться покрытие, удаление или замена необходимого материала: будь то медь или серебро. Часто для этого используются такие инструменты, как паяльник или тепловая пушка.

        При физическом или видимом повреждении платы необходим ремонт основной платы. Это может включать плавление аналогичных материалов для изменения формы или модификации платы, а иногда даже может потребовать полной разборки.

        Для ремонта проводов и компонентов могут потребоваться знания и навыки пайки, демонтажа, восстановления BGA и высокой точности. Если вы когда-либо работали или держали паяльник раньше, не так-то просто удержать устойчивую руку и равномерно распределить материал.Вам понадобится большой опыт работы с паяльником и демонтажным паяльником, чтобы убедиться, что компоненты и детали правильно установлены на плате.

        Конечно, существует множество стандартов IPC и ICO, которым должны следовать профессионалы, чтобы гарантировать, что электроника и компоненты сконструированы и отремонтированы с использованием надлежащих протоколов. Если вы не знаете или недостаточно знаете об этих стандартах, вы можете позже оказаться в затруднительном положении.

        Убедитесь, что все службы по производству электроники или EMS, с которыми вы работаете, знают и соблюдают необходимые процедуры.

        EMS, если вы не знаете, часто представляет собой компанию по ремонту печатных плат, которая проектирует, производит, тестирует, распространяет и ремонтирует электронные компоненты и внутренние узлы. Обычно они обслуживают компоненты и устройства для OEM-производителей или производителей оригинального оборудования. OEM — это компания, которая изначально разработала и владеет данным продуктом.

        Весь этот процесс называется контрактным производством электроники или сокращенно ECM.

        Какие материалы необходимы для ремонта печатной платы?

        Как и следовало ожидать, для большинства ремонтов требуются те же материалы или улучшенные материалы, которые использовались в официальном дизайне платы.Это может потребовать повторной установки меди или серебра для восстановления путей следа. Подложки для печатных плат часто состоят из стекловолокна или эпоксидной смолы с медной фольгой, прикрепленной к проводящему слою. Они также могут состоять из армированной фенольной смолы, материала, более напоминающего бумагу, который тоньше стекловолокна.

        Золото также используется многими производителями или ремонтными центрами, особенно когда дело доходит до повторного покрытия или улучшения паяных сегментов платы.

        Лучшие сервисные и ремонтные бригады могут собрать или отремонтировать поврежденную плату достаточно близко к ее первоначальному состоянию, так что разница между предыдущей версией и обновленной почти не наблюдается.Конечно, это требует большого мастерства и опыта, которых вы не найдете за пределами опытной и профессиональной среды.

        Важной частью поиска и найма профессиональной ремонтной службы является обеспечение наличия надлежащих материалов и инструментов для ремонта печатных плат для выполнения работы. У некоторых сервисных ремонтных бригад не все находится в собственности или на месте, что может увеличить время, необходимое для ремонта или повторной сборки деталей. Им приходится ждать получения необходимых материалов или инструментов.

        Не секрет, что многие используемые материалы не являются экологически чистыми или безопасными. До нас еще далеко, но есть ученые и передовые команды, работающие над биоразлагаемыми ПХБ, которые после утилизации разрушаются естественным путем.

        Почему работа с EMSG так важна?

        Для ремонта и восстановления печатных плат, а также услуг по ремонту промышленных печатных плат вы не можете сделать ничего лучше, чем EMSG Inc. (Electronic Manufacturing Services Group). Мы хорошо приспособлены для обработки сборок на уровне платы и полных коробок, включая любую индивидуальную упаковку, которую вы, возможно, создали или использовали.

        Мы располагаем высокотехнологичным производством с новейшими технологиями производства и ремонта, которые позволяют нам быть невероятно точными, но при этом эффективными в наших обязанностях. Это, в сочетании с нашим невероятно опытным персоналом, современным оборудованием и отличной командой менеджеров, означает, что мы можем действовать быстро и надежно и выполнять любой ремонт или развитие в соответствии с выбранным вами графиком.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *