Схемы управления сварочным полуавтоматом: особенности конструкции и настройки

Как устроены схемы управления сварочным полуавтоматом. Какие основные компоненты входят в конструкцию. Как правильно настроить работу сварочного полуавтомата. Какие особенности нужно учитывать при самостоятельном изготовлении.

Содержание

Принцип работы и основные компоненты сварочного полуавтомата

Сварочный полуавтомат состоит из следующих основных компонентов:

  • Сварочный трансформатор
  • Выпрямитель
  • Дроссель
  • Механизм подачи проволоки
  • Газовый клапан
  • Схема управления

Принцип работы сварочного полуавтомата заключается в следующем:

  1. При нажатии кнопки управления сначала подается защитный газ в зону сварки
  2. Через 1-3 секунды включается подача сварочного тока и начинается подача проволоки
  3. При отпускании кнопки прекращается подача проволоки
  4. Через 1-3 секунды отключается подача газа и сварочного тока

Такая последовательность обеспечивает качественное формирование сварного шва и защиту расплавленного металла от окисления.

Особенности конструкции сварочного трансформатора

Сварочный трансформатор является ключевым элементом полуавтомата. При его изготовлении необходимо учитывать следующие моменты:


  • Мощность трансформатора должна составлять 2-3 кВт для сварки металла толщиной до 4 мм
  • Напряжение холостого хода 40-60 В
  • Крутопадающая внешняя характеристика
  • Возможность регулировки сварочного тока

Для получения крутопадающей характеристики и возможности регулировки тока применяют следующие решения:

  • Использование сердечника с воздушным зазором
  • Применение многоотводной первичной обмотки
  • Использование дополнительного дросселя в цепи сварочного тока

Схема управления сварочным полуавтоматом

Схема управления обеспечивает правильную последовательность включения и отключения узлов сварочного полуавтомата. Основные элементы схемы:

  • Реле времени для задержки включения сварочного тока
  • Реле включения подачи проволоки
  • Реле включения газового клапана
  • Тиристорный регулятор сварочного тока

Схема может работать в двух режимах:

  1. Ручной — длительность сварки определяется временем удержания кнопки
  2. Автоматический — длительность сварки задается таймером

Автоматический режим позволяет получать сварные точки одинакового размера, что удобно при сварке тонких деталей.


Настройка и регулировка сварочного полуавтомата

Для получения качественного сварного соединения необходимо правильно настроить следующие параметры:

  • Сварочный ток — зависит от толщины свариваемого металла
  • Скорость подачи проволоки — должна соответствовать току сварки
  • Расход защитного газа — обычно 8-12 л/мин
  • Вылет электрода — расстояние от токоподводящего наконечника до изделия
  • Угол наклона горелки — обычно 5-15 градусов от вертикали

Настройка производится опытным путем на образцах металла, аналогичных свариваемым деталям. Правильная настройка обеспечивает стабильное горение дуги и качественное формирование сварного шва.

Особенности конструкции механизма подачи проволоки

Механизм подачи проволоки является важным узлом сварочного полуавтомата. При его изготовлении необходимо обеспечить:

  • Плавную регулировку скорости подачи проволоки в диапазоне 0,7-11 м/мин
  • Надежное сцепление подающего ролика с проволокой
  • Быструю остановку подачи при отключении двигателя

Часто для самодельных полуавтоматов используют двигатели от стеклоочистителей автомобилей. При этом необходимо правильно подобрать передаточное отношение редуктора для обеспечения нужного диапазона скоростей.


Выбор и настройка газового оборудования

Для защиты сварочной ванны от воздействия атмосферы используется углекислый газ или смеси на его основе. Основные компоненты газового оборудования:

  • Баллон с газом
  • Редуктор-расходомер
  • Газовый клапан
  • Газовый шланг

При настройке газовой аппаратуры необходимо обеспечить:

  • Стабильный расход газа 8-12 л/мин
  • Быстрое включение и отключение подачи газа
  • Отсутствие утечек в соединениях

Правильная настройка подачи защитного газа позволяет получить качественный сварной шов без пор и включений.

Техника безопасности при работе со сварочным полуавтоматом

При работе со сварочным полуавтоматом необходимо соблюдать следующие правила безопасности:

  • Использовать средства индивидуальной защиты — маску, перчатки, спецодежду
  • Обеспечить хорошую вентиляцию рабочего места
  • Не допускать попадания влаги на токоведущие части
  • Проверять исправность изоляции кабелей
  • Не оставлять включенный аппарат без присмотра

Соблюдение правил техники безопасности позволит избежать травм и несчастных случаев при проведении сварочных работ.


Советы по изготовлению сварочного полуавтомата своими руками

При самостоятельном изготовлении сварочного полуавтомата рекомендуется:

  • Тщательно продумать конструкцию и подобрать качественные комплектующие
  • Уделить особое внимание изготовлению сварочного трансформатора
  • Обеспечить надежную изоляцию всех токоведущих частей
  • Предусмотреть эффективное охлаждение силовых элементов
  • Использовать готовые узлы от промышленных сварочных аппаратов

Правильный подход к изготовлению позволит получить надежный и функциональный сварочный полуавтомат для бытового или мелкосерийного применения.


Схема простого сварочного полуавтомата

Сварочные полуавтоматы (СПА) находят все большее распространение в народном хозяйстве нашей страны. Их использование дает возможность многим мелким предприятиям эффективно сваривать металлические конструкции любой сложности.

В этой статье рассмотрена конструкция наиболее простого сварочного полуавтомата, а также основные принципы работы и требования, предъявляемые к сварочным   не нажатом положении). В других подающих механизмах двигатели имеют обмотку реверса движения.

Рис. 1. Структурная схема.

В основном используют двигатели постоянного тока. В некоторых современных портативных СПА механизм подачи как бы вращается вокруг проволоки, тем самым, заставляя двигаться ее, благодаря нарезанию резьбы вокруг проволоки.

Существуют подающие механизмы, находящиеся на рукаве у самого наконечника, они выполнены в виде цанги, которая является сердечником соленоидной катушки. При воздействии импульса цанга захватывает проволоку и оттягивает ее на небольшое расстояние, отпуская проволоку только в конце движения. При поступлении серии импульсов проволока потихоньку двигается.

Рис. 2. Конструкция.

В данной статье остановимся на самом простом варианте. Для любого простого СПА необходим в первую очередь сварочный трансформатор. Так как СПА обязан проваривать металл толщиной до 3 мм, то с учетом [1, 2] его мощность должна быть 1,8-3 кВт при напряжении холостого хода 40-60 В и крутопадающей характеристике (можно с низким КПД, т.е. собранном в любительских условиях).

Для соблюдения мер безопасности в холостом режиме СПА не должен выдавать напряжение на наконечник рукава. Логика управления должна соответствовать диаграмме на рис. 3, где имк — напряжение включения СПА, снимаемое с микровыключателя; идв -напряжение, подаваемое на двигатель; ирев — напряжение, подаваемое на реверсивную обмотку двигателя; Ucna -напряжение, подаваемое на рукав и на отсекатель газа.

Рис. 3. Диаграмма логики управления.

Принципиальная схема

Схема на рис.4 является наиболее распространенной, хотя имеет ряд недостатков. В некоторые СПА устанавливают трансформаторы с многовыводной первичной обмоткой.

Это делается для возможности регулировки тока. Но, как показали многолетние испытания, регулировка таким способом отрицательно сказывается на качестве свариваемого шва. Поэтому автор использовал сварочный реостат R2 (рис.4), который также применяется при сварке электродами.

Рис. 4. Принципиальная схема простого сварочного полуавтомата.

Изменение тока сварки с помощью реостата является наиболее простым и очень эффективным средством при регулировке сварочной дуги с разной толщиной металла. Автору удавалось сваривать изделия для швейной промышленности (оверлоков), имеющие размеры 5×5 мм с толщиной 0,5 мм, а также пруты для оконных решеток толщиной 1 см, и при этом никаких конструктивных изменений в СПА не вводилось.

Рис. 5. Схема подключения.

При нажатии SA1 (рис.4) вольтметр РА1 показывает напряжение Х.Х., на наконечнике рукава напряжение отсутствует. При нажатии SA2 включается подача проволоки, контакты SA2. 2 замыкаются, а SA2.1 размыкаются. Срабатывает реле К1, замыкаются контакты К1.1 — К1.3. Включается отсекатель тока КЗ, отсекатель газа К4, а К1.3 замыкает цепь питания двигателя М.

В данной схеме рассматривается двигатель с реверсивной обмоткой. Для двигателя подачи с электротормозом схема включения показана на рис.5 (где 1 — двигатель; 2 — электротормоз). Через К1.2 заряжается С11.

По окончании режима сварки (SA2 не нажата) цепь питания К1 разрывается, а к К2 через замкнутые контакты SA2.1 от С11 подводится напряжение питания. В результате K2.1 и К2.2 замыкаются. Включается обмотка реверса двигателя М. А так как отсекатель тока КЗ и отсекатель газа К4 остаются включены, благодаря контактам К2.1, то на наконечнике рукава присутствует напряжение питания и подается углекислота.

Это необходимо для того, чтобы подающая проволока отгорела в месте окончания сварки без ухудшения качества свариваемого шва. Одновременно реверсивный режим работы двигателя демпфирует инерционность редуктора и якоря двигателя. По окончании разряда конденсатора С11 реле К2 отключается и СПА переходит в начальное положение.

Элементы

Подающий механизм взят от сварочного полуавтомата типа А547УмПДГ-309. Реле K1, K2 типа ТКЕ-54ПД1 или аналогичные с максимальным током на контактах до 2 А. Реле КЗ КМ200Д-В, реле К4 — отсекатель газа (идет в комплекте с подающим).

Трансформатор TV1 любой сварочный с габаритной мощностью 3 кВт. Выключатель SA1 — пакетный на 380 В, 15 А или два спаренных типа ВДС 6320-75 на 15 А. Предохранитель РА1 на 15 А.

Силовой дроссель L1: сердечник из низкочастотного железа от трансформатора на габаритную мощность 1,5-3 кВт. Обмотка имеет 40-80 витков сечением 20 мм . Автор использовал стандартный дроссель от сварочного полуавтомата типа А547УмПДГ-309. L2 — ДФ2 или любой другой на ток 2 А.

В зазор установлена полоска из текстолита толщиной 7 мм (рис.6). Диоды VD1-VD4 типа ВЛ-200-90 или другие низкочастотные с током пропускания не менее 100 А. Радиатор стандартный 7x8x10 см.

Рис. 6. В зазор трансформатора установлена полоска из текстолита толщиной 7 мм.

VD9 — Д816Д на радиаторе с площадью рассеивания 100 см , VD5-VD8 — Д226 с любым буквенным индексом; C1, C2 — 0,1 на 400 В, любые металлобумажные; C3-С8 -10000 на100 В типа К50-32, можно К50-18,К50-19; С9-С11 — 100 на 100 В К50-27, можно другие; R1 — шунт типа 75ШС ММЗ-500; R2 — реостат сварочный, можно от регулятора аргонно-дуговой сварки; R3 — 20 Ом ПЭВ-5-77; R4 — 47 Ом, реостат переменный 22 Вт; R5- 12 Ом ПЗ-75; R6- 100 Ом ПЗ-75; РА1 — вольтметр с пределом шкалы 75-100 В типа М43300, М43100; РА2 — амперметр с пределом шкалы 300500 А типа М43300, М43100.

Провода, указанные на схеме утолщенной линией, должны иметь площадь сечения не менее 20 мм.

Конструкция

На рис. 7 (а — вид сбоку; б — вид сверху) показана конструкция сварочного полуавтомата в сборе: 1 — трансформатор; 2 — диодный мост; 3 — дроссель L1; 4 — реостат R2; 5 — баллон углекислоты; 6 — «масса»; 7 -редуктор; 8 — подающий механизм; 9 — рукав; 10 — предохранитель; 11 — пакетный выключатель SA1; 12 -вольтметр, амперметр РА1 и РА2; 13 — регулятор скорости подачи R4.

Рис. 7. Конструкция сварочного полуавтомата. а — вид сбоку; б — вид сверху.

Наладка СПА. От качества настройки СПА сильно зависит удобство пользования аппаратом, поэтому необходимо как можно внимательней отнестись к следующим рекомендациям. В данном простейшем варианте СПА «узким местом» является настройка подачи проволоки и настройка качества шва.

Настройка подачи проволоки

Подающий механизм следует включить без затяжки проволоки в рукав и без подсоединения углекислоты. Если углекислота подключена тумблером SA3 (он необходим для отключения отсекателя газа при затяжке проволоки в целях экономии С02), отключить отсекатель газа.

При нажатии SA2 должны сработать отсекатель тока, отсекатель газа (при включенном SA3) и двигатель подающего механизма М. Через 5 с отпустить SA2 , при этом двигатель должен включиться в обратном направлении.

Заправить проволоку от барабана 1 через подающий механизм в рукав и затянуть ролик подачи, чтобы проволока 5 прижималась роликом 3 к подшипнику 4 и входила в рукав 2 (рис. 8).

Рис. 8. Подающий механизм для проволоки.

Включить SA2 на 20 с, после чего выключить. Механика очень инерционна, поэтому проволока сначала движется медленно, а со временем ускоряется. При отпускании SA2 ток в двигателе через реверсивную обмотку должен быть достаточен для полного торможения проволоки. Ток регулируют подстроечным реостатом R5. Для торможения проволоки необходимо время.

Обмотка реверса включена в цепь питания на время, определяемое временем разряда С11 через К2 и R6. Для нормального торможения проволоки, чтобы проволоку не затягивало обратно в рукав или не выводило дольше наконечника более чем на 1 см, необходимо очень точно и терпеливо отрегулировать R5 и R6, режим торможения зависит на 20% также от реостата R2.

К сожалению, описать все подробности регулировки не позволяет объем статьи и, кроме того, невозможно учесть все нюансы разных серий подающих механизмов. Процесс сварки чаще всего будет прерывистым, т.е. с интервалом включения подачи проволоки примерно в 0,5-1 с. Настройка качества шва для проволоки диаметром 0,8-1 мм

Отрегулировать в процессе сварки подачу углекислоты в пределах 0,5-1 атм по манометру на редукторе. Установить в среднее положение реостат R2.

На чистом листе металла 0,7-0,8 мм при подсоединенной массе включить режим подачи проволоки. Если лист металла будет прожигаться, уменьшить подачу проволоки реостатом R4.

При дальнейшем прожигании листа увеличить сопротивление реостата R2. Если проволока не расплавляется, а краснеет и ложится на лист небольшими кучками, увеличить реостатом R4 подачу проволоки или уменьшить сопротивление реостата R2.

Эти все процессы необходимо наблюдать через маску для электросварки. Как только шов будет ложиться нормально на лист металла, необходимо отрегулировать зазор в дросселе. Для этого измеряют вольтметром переменную составляющую в режиме сварки непосредственно между плюсом на рукаве и «массой». Регулируя зазор в дросселе, а также количество витков, добиваются переменной составляющей напряжения в пределах 1,2-3 В.

Надо учитывать слишком большую индуктивность дросселя. При этом ток, необходимый для нормальной сварки, будет нарастать через определенный промежуток времени, а в начальный момент подаваемая проволока не будет даже расправляться. В этом случае необходимо уменьшить количество витков на дросселе.

Для безопасности автор рекомендует все операции настройки проводить в резиновых перчатках на резиновом коврике в сухом помещении. Все детали, находящиеся под напряжением, следует изолировать. Для сварщика лучше использовать специальный сварочный костюм, так как при работе образуется большое количество окалины (брызг раскаленного металла).

Литература:

  1. Пронский И.Н. Секреты сварочного трансформатора//Радиоаматор.- 1998.-№1 .-С..21-22
  2. Пронский И.Н. Секреты сварочного трансформатора//Радиоаматор.- 1998.-№3.- С.43-45.

Ответы на вопросы тех, кто хочет самостоятельно изготовить сварочный агрегат

Почему именно крутопадающая характеристика?

Большинство радиолюбителей при сборке СПА пользуются самодельными сварочными трансформаторами. Трансформаторы ручной сборки (не профессиональной) имеют низкий КПД и вследствие этого крутопадающую характеристику (рис.1, кривая А) [1].

Рис. 1. Трансформаторы ручной сборки (не профессиональной) имеют низкий КПД и вследствие этого крутопадающую характеристику.

Это выгодно сказывается при конструировании СПА, так как основная масса сварщиков имеет невысокие профессиональные навыки, а именно, умение правильно держать «рукав» (под правильным углом по отношению к свариваемой конструкции), правильно зажигать дугу и поддерживать ее горение.

Как видим из рис.1, дуга имеет разные характеристики при различной ее длине 11, 12 где 11 и 12 ~ расстояние между электродами. При этом изменение тока незначительное, что выгодно влияет на фильтрацию переменной составляющей, а также на однородность свариваемого шва.2. 

Как собрать трансформатор для СПА?

Этот вопрос является наиболее трудным, так как количество витков в трансформаторе напрямую зависит от свойств магнитного железа, применяемого в сердечнике трансформатора.

При расчете сварочного трансформатора в первую очередь необходимо учитывать габаритную мощность трансформатора, которая для нормального провара металла глубиной до 4 мм составляет примерно 3 кВт. Рассмотрим подробнее устройство трансформаторов [2].

Трансформатор состоит из следующих частей: сердечника, обмоток, каркаса и деталей, стягивающих сердечник. Сердечник трансформатора является магнитопроводом, который изготовляют из стальных листов толщиной 0,35…0,5 мм [3]. В настоящее время применяют два вида специальной электротехнической стали: горячекатаную с высоким содержанием кремния и холоднокатаную. Последняя имеет лучшие магнитные характеристики в направлении прокатки.

Стальные листы изолированы друг от друга бумажной, лаковой изоляцией (толщиной 0,04-0,6 мм) или окалиной, что позволяет уменьшить потери мощности в магнитопроводе за счет того, что вихревые токи замыкаются в плоскости поперечного сечения отдельного листа (рис.2). Чем меньше толщина листа, тем меньше сечение проводника, по которому протекает вихревой ток 1 В, и тем больше его сопротивление.

Рис. 2. Стальные листы трансформатора изолированы друг от друга бумажной, лаковой изоляцией.

В результате вихревой ток и потери мощности на нагрев магнитопровода уменьшаются (по этой причине автор не советует использовать сердечники от электродвигателей).

По типу или конфигурации магнитопровода трансформаторы подразделяют на стержневые и броневые.

В стержневых трансформаторах обмотки, насаженные на стержень магнитопровода, охватывают его (рис.3,а) В броневых трансформаторах магнитопровод частично охватывает обмотки и как бы «бронирует» их (рис.3,6).

Рис. 3. В стержневых трансформаторах обмотки, насаженные на стержень магнитопровода, охватывают его.

Горизонтальные части магнитопровода, не охваченные обмотками, называются нижним и верхним ярмом. Трансформаторы большой и средней мощностей обычно изготовляют стержневыми, так как они проще по конструкции, имеют лучшие условия для охлаждения обмоток, что особенно важно в мощных трансформаторах, имеющих большие габариты. Магнитопровод таких трансформаторов набирают из отдельных пластин прямоугольной формы (рис.4,а, автор применил именно такую сборку трансформатора).

Рис. 4. Магнитопровод трансформаторов большой и средней мощностей набирают из отдельных пластин прямоугольной формы.

Для уменьшения магнитного сопротивления их набирают так, чтобы стыки пластин в двух соседних слоях были в разных местах. Аналогично выполняют магнитопроводы с двумя стержнями. Магнитопроводы броневого типа применяют для сухих трансформаторов средней мощности и используют в электросварке. Наружные броневые стержни этого магнитопровода частично защищают обмотки трансформатора от механических повреждений.

Трансформаторы малой мощности могут иметь магнитопровод, собранный из пластин, выполненных в форме буквы «Ш», и прямоугольных полос (рис.4,6) Магнитопроводы стержневых и броневых трансформаторов малой мощности можно навивать из узкой ленты электротехнической стали (рис.5).

Рис. 5. Магнитопроводы стержневых и броневых трансформаторов малой мощности можно навивать из узкой ленты электротехнической стали.

Это позволяет уменьшить воздушные зазоры в магнитопроводе и снизить магнитное сопротивление, а следовательно, и ток холостого хода. В большинстве случаев ленточные магнитопроводы разрезают, чтобы на них легче посадить заранее намотанные обмотки.

Затем половинки магнитопроводов соединяют. Из ленточных магнитопроводов чаще всего для электросварки применяют кольцевые тороидальные (рис.5,в). КПД таких тороидальных трансформаторов очень высок. Поэтому количество наматываемых витков на сердечник меньше, чем в стержневых и броневых трансформаторах.

При изготовлении трансформаторов используют каркасы для намотки обмоток (рис.6). Как правило, их изготовляют из листовых электроизоляционных материалов (гетинакс или электроизоляционный картон). Размеры каркаса зависят от размера сердечника.

Рис. 6. Каркас для намотки обмоток трансформаторов.

У тороидальных трансформаторов каркас отсутствует, сердечник обматывают специальной лакотканью (стеклоткань или искусственная высоковольтная электротехническая ткань, пропитанная электротехническим лаком). Сердечник обматывают в два-три слоя тканью в натяжку и фиксируют нитками или пропитывают лаком. После высыхания лака наматывают обмотку.

Для изготовления обмоток трансформаторов и дросселей применяют круглые медные провода с эмалевой изоляцией (в первичной обмотке можно использовать указанные провода, при этом провода укладывают как можно ближе друг к другу, одновременно провод изолируют лакотканью (можно стеклотканью с пропиткой лаком), в случае намотки первичной обмотки двумя проводами каждый провод изолируют отдельно).

Начало намотки фиксируют ниткой (рис.7). При этом провод должен выходить сбоку трансформатора, а не внутри его. Вторичную обмотку (силовую) наматывают прямоугольным проводом (изоляция провода аналогична рассмотренной выше).

Рис. 7. Начало намотки фиксируют ниткой.

Расчет трансформатора

Рассмотрим наиболее простой метод расчета сварочного трансформатора. Начальные данные: Ргаб=3 кВт; Uxx=45 В при Ih=0; Uh=30 В при 1н=100 А; исети=220 В; Рсети=50 Гц; допустимый КПД=0,85.

Автор использовал табличные данные из разных источников, поэтому они приближенные.

Рис. 8. Магнитопроводы трансформаторов.

Воспользуемся методикой, предложенной в [4]. Имеем формулу:

Как видим, полученное значение Км меньше табличного (табл.2). В этом случае полезно на 10% увеличить диаметр провода первичной обмотки, поскольку она расположена внутри и хуже охлаждается. В большинстве случаев конструирования сварочных трансформаторов число витков на 1 В достигает 0,7.

Прежде чем наматывать вторичную обмотку, желательно собрать трансформатор и проверить ток холостого хода по методике, рассмотренной в [2].

Остановимся немного на технологии сборки трансформатора. Каркас изготовляем с внутренним окном (рис.6,б) не 10-20% больше размеров сечения сердечника. После сборки трансформатора в оставшиеся промежутки между каркасом и сердечником забиваем расклинивающие деревянные клинья для снижения уровня шума.

При намотке на каркас обмотки (особенно вторичной) в окно каркаса вставляем деревянный брусок, а обмотку прибиваем к каркасу деревянным молотком (лучше через текстолитовую пластину, чтобы не повредить изоляцию проводов). Обмотки изолируем друг от друга специальным изоляционным материалом (табл.4)

Диэлектрическая проницаемость Епр не должна быть менее (в межобмоточной изоляции) 10 кВ/мм. Как правило, первичную обмотку наматываем первой, а вторичную -сверху первичной, изоляция между обмотками должна быть двойной.

Если необходимого провода нет, то обмотку можно наматывая двойным проводом (одновременно), причем суммарная площадь сечения проводов должна быть на 10-20% больше расчетной.

Сердечник трансформатора стягиваем шпильками через отверстия (рис.4), при этом саму шпильку изолируем от сердечника электроизоляционной бумагой (табл.4). Для стяжки сердечника используем также бандаж или брусья (стальная лента шириной 40 мм, толщиной 1-3 мм) из маломагнитной стали.

Как правило, верхнюю ярмовую балку стягиваем с обеих сторон пластинами, а нижнюю — уголками, которые играют роль шасси. От активной стали магнитопровода эти пластины изолируем с помощью полосы электротехнического картона толщиной 23 мм. Активную сталь магнитопровода и ярмовых балок заземляем в одной точке с помощью медной луженой ленты.

Автор:  И.Н. Пронский, г. Киев. Украина.

Литература:

  1. Пронский И.Н. Секреты сварочного трансформатора // Радиоаматор. — 1998.- №1.
  2. Зызюк А.Г. О трансформаторах // Радиоаматор.- 1998.- №2.
  3. Иванов И.И., Равдоник B.C. Электротехника — М.: Высш. шк., 1984.
  4. Мезель К.Б. Трансформаторы электропитания — М.: Энергоиздат, 1982.

Схема самодельного сварочного полуавтомата. | Самодельные сварочные аппараты, полуавтоматы, схемы

Представляем вам схему самодельного сварочного аппарата, собранного в домашних условиях и показавшего не плохие результаты.

Данная схема работает в ручном режиме сварки и автоматическом (точеном), то есть можно варить точками.

Перебрав много схем сварочных аппаратов мы пришли к выводу, что сварочный полуавтомат должен работать следующим образом:

  • при нажатии кнопки управления сначала должен податься углекислый газ, это делается для того, что бы горелка наполнилась газом.
  • после задержки 1..3 секунды автоматически включается ток сварки и  подача проволоки.
  • после отпускания кнопки управления отключается подача проволоки.
  • затем через 1…3 сек отключается подача углекислого газа, это нужно для того, что бы расславленный метал не окислился при остывании, и отключается сварочный ток.

В результате такой работы сварочного полуавтомата шов получается качественный.

Исходя из этих требований нами была разработана схема сварочного полуавтомата, представленная на рисунке.

Схема работает следующим образом:

1. Ручной режим.

Переключатель SB1 в замкнутом состоянии.

При нажатии кнопки управления SA1 срабатывает реле К2, своими контактами К 2.1, К 2.2, К 2.3 включает реле К1 и К3.

Реле К1 контактами К1.1 включает подачу углекислого газа, К1.2 включает цепь питания электродвигателя, К1.3 отключает тормоз двигателя.

В это же время  реле К3 своими контактами К3. 1 отключает цепь питания двигателя и К3.2 отключает реле К5, которое отвечает за включение тока сварки, на время заданное резистором R2 (1…3 сек).

На данном этапе подается газ, двигатель подачи проволоки и ток сварки отключены.

Далее.. после разряда конденсатора С2 через цепь резистора R2 отключается реле К3 и своими контактами К3.1 включает двигатель подачи проволоки и контактами К3.2 включает реле К5, которое своими контактами К5.1 включает ток сварки.

В это время идет процесс сварки.

Далее..  При отпускании кнопки управления SA1 реле К2 отключается, своими контактами К 2.1, К 2.2 отключает реле К1.

Реле К1 контактами К1.2 отключает двигатель подачи проволоки, контактами К1.3 включает тормоз двигателя (так как любой двигатель имеет инертность — это необходимо, что бы после окончания сварки сварочная проволока моментально останавливалась), контакты К1.1 размыкают цепь питания конденсатора С3.

На данном сварка прекращена, двигатель подачи проволоки остановлен, ток сварки включен и подача углекислого газа продолжается.

Далее.. после разряда конденсатора С3 через резистор R3 (1…3 сек) отключается реле К4 отвечающее за подачу газа и реле К5 отвечающее за включение тока сварки.

2. Автоматический режим.

Переключатель SB1 в разомкнутом состоянии.

При нажатии кнопки управления SA1 все процессы в схеме происходят, так же как и в ручном режиме, только время сварки задается не удержанием кнопки управления SA1, а цепочкой С1R1 (1…10 сек).

Для чего нужен автоматический режим? Представьте, что нужно приварить крыло автомобиля. Если использовать ручной режим, то сварные швы по размеру  будут разными и придется долго выравнивать все неровности.

Другое дело это автоматический режим, вам нужно будет настроить время сварки и силу тока, попробовать на какой нибудь опытной детали и можно варить не задумываясь о времени сварки. В этом случае все сварные швы будут одинаковые (точки).

Работает все просто, нажимаете на кнопку управления, держите ее и варите, схема после определенного времени, заданного резистором R1 отключит процесс сварки.

В аппарате можно использовать  любые реле на ток коммутации (К1 и К3) — 5..10А, остальные реле (К2, К4, К5)  — 400 мА.

Все элементы схемы не критичны, вместо силовых диодов можно использовать любые на ток  200 А, Тиристор управления сварочным током тоже любой на ток  200 А.

Для сглаживания пульсации и уменьшения брызг во время сварки нужно использовать сглаживающий дроссель  L1. ( сварочный дроссель ) В качестве магнитопровода сварочного дросселя использован сердечник от лампового телевизора. В зазоры магнитопровода вставлены пластины из текстолита толщиной 2 мм. Способ намотки сварочного дросселя показан на рисунке.

Сварочный трансформатор мощностью 3 кВт намотан на кольцевом магнитопроводе и имеет следующие характеристики:

Сначала наматывается первичная обмотка трансформатора, делаются отводы начиная с напряжения 160 в, далее 170 в, 180 в , 190 в, 200 в, 210 в, 220, в, 230 в, 240 в. проводом из меди сечением 5 мм. кв.

Вторичная обмотка наматывается по верх первичной проводом из меди сечением 20 мм. кв. Номинальное напряжение обмотки 20 вольт.

Таким образом мы имеем сварочный трансформатор с жесткой характеристикой (что очень важно для сварочного полуавтомата) и имеем 6 ступеней регулирования сварочного тока в форсированном режиме, 1 ступень нормальной работы трансформатора (220 в. превичная, 20 вольт вторичная) и 2 ступени пассивного режима работы трансформатора.

Ступени регулирования тока вторичной обмотки:

17 в, 19 в, 20 в, 22 в, 23 в, 24 в, 25 в, 27 в, 28 вольт.

Двигатель подачи сварочной проволоки можно использовать любой редуктор стеклоочистителя автомобиля например от ВАЗ 2110.

Важно отметить, при проектировании протяжного механизма нужно учитывать, что максимальная скорость протяжки проволоки должна обеспечиваться на уровне 11 метров в минуту, минимальная 0.7 метра в минуту. Для этого нужно рассчитать диаметр ведущего колеса механизма подачи проволоки.

Клапан газа можно использовать от клапана подачи воды от омывателя заднего стекла автомобиля ВАЗ 2109. Другие типы клапанов автомобилей использовать не рекомендуется, например воздушный от ВАЗ 2105, так как после некоторого времени работы они начинают пропускать (нарушается герметичность клапана).

Данный полуавтомат сварка работает уже 3 года, зарекомендовал себя очень надежным.


Ответы на комментарии:

Топология печатной платы, не хотел выкладывать из за того что ни чего не понятно.. но заставили..   

В качестве реле  К1, К2, К3 можно использовать реле типа HJQ-22F-3Z с тремя группами контактов.

На фото такое же реле, только с четырьмя группами контактов HJQ-22F-4Z (показываю как выглядит).


Так как сам сварочный полуавтомат был утрачен, то по моей просьбе фото этого сварочного аппарата были любезно предоставлены посетителем сайта Андреем, который повторил эту схему.

Большое спасибо ему за это.   

Внешний вид полуавтомата:

Компоновка, вид сверху:

Компоновка, вид сбоку:

Компоновка, вид сбоку, вид подающего механизма:

Протяжный механизм:

Плата управления сварочным полуавтоматом:

Диодный мост, дроссель, трансформатор питания схемы управления:

Автор фото полуавтомата:  Андрей.


Фото блока управления и печатная плата присланная посетителем сайта Николаем (комментарий 100)

Печатную плату в формате программы  Sprint-layout 5 можно скачать по этой ссылке:

Печатная плата453


Если возникнут вопросы, задавайте их в комментариях.

Автор статьи: Admin Svapka.Ru

Полуавтоматический сварочный аппарат

– лучший выбор

Готовы оптимизировать процесс ручной сварки, сделать его более эффективным и постоянно улучшать конечные продукты? Обновление ваших методов сварки с помощью полуавтоматического сварочного аппарата выведет ваш производственный процесс на новый уровень, увеличив при этом вашу прибыль.

Роботизированная или полностью автоматизированная сварка не идеальна для каждого проекта — ожидаемый срок службы, стоимость инструментов и требуемая гибкость — все это факторы, которые следует учитывать. При этом полуавтоматические сварочные системы являются отличным вариантом, поскольку они могут удвоить производительность квалифицированного сварщика вручную, сохраняя при этом высокий уровень контроля.

   

Что такое полуавтоматическая сварка?

Полуавтоматическая сварка — это форма ручной сварки, при которой используется соответствующее оборудование, которое автоматически контролирует один или несколько режимов сварки. Оператор машины манипулирует органами управления машины, чтобы начать сварку, и наблюдает за процессом и конечным результатом для обеспечения качества. Это полезно для рабочих, поскольку требует гораздо меньше физических усилий, чем ручная сварка.

 

Преимущества полуавтоматических сварочных аппаратов

Области применения, в которых полуавтоматическое оборудование дает наибольшую выгоду. прошли дополнительные процессы до начала сварки. Полуавтоматические сварочные системы предлагают множество преимуществ для различных областей применения:

  • Повышает безопасность рабочих
  • Обеспечивает высокое качество сварки — целостность и воспроизводимость
  • Увеличивает общий выход продукта
  • Сокращение производства брака
  • Дешевле, чем роботизированная сварка
  • Может использоваться с различными методами, включая сварку TIG и сварку MIG

Готовы перейти на систему автоматической сварки? Свяжитесь с нашими инженерами по сварке сегодня.

 

Типы сварочных аппаратов для любого применения  

Bancroft Engineering специализируется на надежных полуавтоматических сварочных аппаратах — как типовые, так и нестандартные решения. Независимо от того, какой тип сварки у вас есть, полуавтоматические сварочные аппараты обеспечивают повторяемость одним нажатием кнопки!

Токарно-сварочные станки :  Наша линейка токарно-сварочных станков создана для обеспечения скорости и качества. Мы также предлагаем токарные станки со встроенными дополнительными операциями, такими как сверление, фрезерование и резка, чтобы еще больше увеличить производительность вашей производственной линии.

Вращательное сварочное оборудование : Экономичная, компактная и надежная, наша линейка ротационных сварочных аппаратов Welda-Round является отличным вариантом для сварки различных деталей и материалов.

Машины для сварки швов : Сварка швов распространена во многих отраслях промышленности после формирования из материалов цилиндров или труб. Полуавтоматические сварочные аппараты способны обеспечить равномерную консистенцию по всей длине материала.

Линейные сварочные аппараты :  Системы линейной сварки предназначены для автоматизации операций прямой сварки. Эти машины обычно используются как для небольших, так и для крупных проектов.

 

Полуавтоматические сварочные системы Изготовлено в Ваукеша, Висконсин

Наша команда предлагает сварочное оборудование от простых машин с вращающимся и линейным приводом до многоосевых сервосистем с роботизированной интеграцией. Хотите узнать больше о Bancroft Engineering и о том, что мы можем сделать для вашего сварочного процесса? Свяжитесь с нами, чтобы обсудить ваш проект!

ЗАПРОСИТЬ ЦЕНУ

Все, что вам нужно знать о полуавтоматической сварке

Введение: Что такое полуавтоматическая сварка?

Полуавтоматическая сварка — это тип сварки, при котором используется машина для управления дугой и скоростью сварки. Этот тип сварки используется для MIG, TIG, SAW и плазменной дуговой сварки. Это популярный выбор для многих сварочных проектов, поскольку он обеспечивает большую точность и аккуратность, чем ручная сварка. Полуавтоматическая сварка также имеет то преимущество, что она быстрее ручной сварки. Таким образом экономя время и деньги в крупных проектах. Автоматизированная дуговая сварка может использоваться для соединения различных металлов. Например, алюминий, нержавеющая сталь, медные сплавы и чугун.

Как полуавтоматическая сварка может помочь в различных проектах.

Полуавтоматическая сварка — это процесс, в котором используются машины для соединения двух металлических частей. Это отличный способ для сварщиков сэкономить время и деньги при работе над различными проектами. Полуавтоматические сварочные аппараты используются во многих отраслях промышленности, от автомобильной до аэрокосмической и других. Разработанные, чтобы быть быстрыми и точными, они помогают сварщикам быстро выполнять свои проекты. При этом добиваясь желаемых результатов. Существуют различные типы сварочных полуавтоматов. Каждый подходит для разных типов проектов и приложений. Используя одну из этих машин, сварщики могут быть уверены, что их работа выполняется безопасно и эффективно.

Преимущества использования полуавтоматической сварки по сравнению с ручной сваркой.

Полуавтоматическая сварка — это процесс, который имеет ряд преимуществ по сравнению с ручной сваркой. К ним относятся повышенная скорость и точность. Процесс предполагает использование сварочного полуавтомата. Который способен выполнять те же сварные швы, что и ручной сварочный аппарат, но с большей точностью и скоростью. Этот тип сварки идеально подходит для применений, требующих точности и короткого времени производства. Он также обеспечивает более стабильные результаты по сравнению с ручной сваркой. В результате уменьшается количество дефектов и улучшается качество продукции. Кроме того, полуавтоматические сварочные аппараты просты в эксплуатации, для начала работы требуется минимальное обучение.

Какие бывают полуавтоматические сварочные аппараты?

Полуавтоматическая сварка — это процесс, в котором используются передовые технологии для соединения металлических деталей. Это экономичный способ создания прочных и долговечных сварных швов с меньшим количеством ручного труда. Существует три основных типа сварочных полуавтоматов. Включая аппарат для сварки MIG, аппарат для сварки TIG и аппарат для дуговой сварки с флюсовой проволокой. Каждый тип имеет свои уникальные преимущества и недостатки. Поэтому важно понять, какой из них лучше всего подойдет для вашего проекта, прежде чем совершать покупку. Решения для полуавтоматической сварки включают в себя сварочные тележки, системы круговой сварки и токарные станки. Плюс машины для сварки продольных швов и манипуляторы колонн и стрел.

Меры предосторожности при использовании полуавтоматического сварочного аппарата.

При использовании сварочного полуавтомата безопасность имеет первостепенное значение. Важно принять меры предосторожности, чтобы обеспечить безопасное завершение процесса сварки. Некоторые из наиболее важных мер предосторожности включают:

  • ношение защитного снаряжения и СИЗ
  • проверка надежности всех электрических соединений
  • , убедитесь, что в зоне сварки нет горючих материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *