Транзистор схема включения: СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Содержание

Схемы включения транзистора. » Хабстаб

При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.

Существуют три схемы включения биполярного транзистора:
  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой;

Начнём со схемы, с общим эмиттером.
  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с коллектора;

Схема с общим эмиттером обладает следующими свойствами:
  • большим коэффициентом усиления по току;
  • большим коэффициентом усиления по напряжению;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.

Во всех осциллограммах в статье первый канал - входной сигнал, второй канал - выходной сигнал. Входной сигнал берется после разделительного конденсатора, иначе конденсатор вносит сдвиг фазы.
На осциллограмме видно, что амплитуда выходного сигнала в несколько раз превышает амплитуду входного, при этом сигнал на выходе инвертирован относительно входного сигнала, это значит, что когда сигнал входе возрастает на выходе он убывает и наоборот. На схеме пунктирной линией изображен конденсатор, его можно подключить если надо увеличить коэффициент усиления. Давайте подключим его.

Видим, что выходной сигнал увеличился примерно на порядок, то есть в 10 раз. Такая схема включения транзистора применяется, в усилителях мощности.
При включении конденсатора входное сопротивление схемы уменьшилось, что привело к искажениям сигнала генератора, а следовательно и выходного сигнала.

Схема с общим коллектором.

  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с эмиттера;

Схема с общим коллектором обладает следующими свойствами:
  • большим коэффициент усиления по току;
  •  напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуды сигналов равны потому, что осциллограф отображает только переменную составляющую, если включить осциллограф на отображение постоянной составляющей, то разница между сигналом на входе и выходе составит 0,6 V. Схема сигнал не инвертирует и применяется в качестве буфера или для согласования каскадов.
Под буфером в электронике понимается схема, которая увеличивает нагрузочную способность сигнала, то есть сигнал остается такой же формы, но способен выдать больший ток.

Схема с общей базой.

  • входной сигнал подаётся на эмиттер;
  • выходной сигнал снимается с коллектора;

Схема с общей базой обладает следующими свойствами:
  •  большим коэффициентом усиления по напряжению;
  •  близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуда выходного сигнала примерно в десять раз превышает амплитуду входного сигнала, также сигнал на выходе не инвертирован относительно входного сигнала. Применяется такая схема включения транзистора в радиочастотных усилителях. Каскад с общей базой обладает низким входным сопротивлением, поэтому сигнал генератора искажается, следовательно и выходной сигнал тоже.
Возникает вопрос, почему не использовать для усиления радиочастот схему с общим эмиттером ведь она увеличивает амплитуду сигнала? Все дело в ёмкости перехода база-коллектор, её ещё называют ёмкостью Миллера. Для радиочастот эта ёмкость обладает малым сопротивлением, таким образом, сигнал вместо того, чтобы течь через переход база-эмиттер проходит через эту ёмкость и через открытый транзистор стекает на землю. Как это происходит показано на рисунке ниже.

Пожалуй, это всё, что хотелось рассказать про схемы включения транзистора.  

Схемы включения транзистора – для новичков в радиоделе

Рассматривая схемы разных электронных устройств, можно увидеть, что транзисторы далеко не всегда включены так, как нарисовано выше Действительно, мы использовали для входного сигнала выводы транзистора база и эмиттер А для выходного  сигнала использовали выводы коллектор и эмиттер Такое включение транзистора называется включением с общим эмиттером Эмиттер служит общим выводом и для входного, и для выходного сигнала

Уберём из схемы эксперимента приборы и источник питания Полученная схема выглядит так:

У транзистора три вывода Их назначение определяется конструкцией транзистора Но мы не обязаны использовать общим выводом для входного и выходного сигнала только эмиттер

Посмотрим, нельзя ли использовать в качестве общего  вывода, скажем, коллектор

С этой целью перенесём резистор R2 из цепи коллектора в цепь эмиттера

Рис 57 Основная схема включения транзистора

Мы уже говорили, что транзистор работает как усилитель тока Мы видели, что он усиливает и напряжение То есть, в конечном счёте, он усиливает мощность входного сигнала У схемы включения с общим эмиттером то преимущество, что сигнал усиливается и по току, и по напряжению Запомним это

На многих схемах источник сигнала включён между базой и общим проводом (землёй)

В этом случае может создаться впечатление, что коллектор не является общим для входного и выходного сигнала

Но это не так Батарейка в цепи питания (между общим проводом и коллектором) имеет такое маленькое внутреннее сопротивление, что можно считать, что общий провод и коллектор (в данной схеме) – это один и то же провод

Рис 58 Схема включения транзистора с общим коллектором

Рассмотрим в этой схеме включения напряжения на выходе и входе Мы прикладываем входное напряжение между базой и общим проводом, а снимаем выходное напряжение с эмиттера и общего провода Таки образом для входного напряжения (пусть это будет источник ЭДС) можно записать: Uвх = Uб-э + UR2 (которое будет Uвых)

Рис 59 Распределение входного напряжения в схеме с общим коллектором

Из распределения напряжений следует, что входное напряжение всегда будет оставаться больше выходного А из этого можно сделать вывод, что в схеме с общим коллектором нет усиления по напряжению, но только усиление по току Зачем тогда нужна такая схема включения, если мы проигрываем в усилении по мощности

Кроме усиления любой усилитель характеризуется рядом других параметров, которые могут быть важнее, чем усиление по напряжению Благодаря резистору R2 входное сопротивление (сопротивление схемы для входного сигнала) становится гораздо больше, чем для схемы с общим эмиттером Иногда большое входное сопротивление столь важно, что можно мириться с худшими усилительными свойствами каскада Благо мы можем добавить ещё один каскад, который включим по схеме с общим эмиттером, получив максимальное усиление по мощности

Мы использовали выводы эмиттер и коллектор в качестве общих выводов Осталась база Этот вывод транзистора тоже может дать включение транзистора, которое называется включением с общей базой Аналогично рассмотрению распределения  напряжения для  схемы с общим коллектором,  рассмотрим  распределение  токов  для схемы  с  общей  базой  Для  неё  входным

током будет ток эмиттера, а выходным ток коллектора Но мы знаем, что Iэ = Iк + Iб То есть, ток эмиттера всегда больше, чем ток коллектора, а, значит, усиления по току мы при таком включении транзистора не получим Что же мы выиграем

Вы помните верхнюю частоту среза для схемы с общим эмиттером Проделаем этот же опыт для схемы с общей базой

Рис 510 Амплитудно-частотная характеристика каскада с общей базой

Обычно схему с общей базой рисуют несколько иначе, но сейчас нас интересуют её частотные свойства Вы видите, что верхняя граничная частота для транзистора 2N2222 стала близка к 14 МГц (против 370 кГц) Такое включение, с общей базой, используют, например, при создании антенного усилителя для телевизора

Рис 511 Схема антенного усилителя для телевизора

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

схемы включения.

Схема включения биполярного транзистора с общим эмиттером

Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

Рис.8. Схема

измерений статических

параметров транзистора с ОЭ.

Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:

I Б = f (U БЭ) при U ЭК = const.

Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис. 9а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

Выходная статическая характеристика – это зависимость выходного тока I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:

I К = f (U КЭ) при I Б = const.

Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера I Э .

Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис. 10).


Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

Входная динамическая характеристика – это зависимость входного тока I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:

I Б = f (U БЭ)

Поскольку в статическом режиме для U КЭ

> 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).

Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б ):

U КЭ = E К – I К R К

Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А , В на Рис. 11б .

Координаты точки А [U КЭ = 0; I K = Е К R К ] – на оси I K .

Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.

Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.

Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.

Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.

Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.

Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.


У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.


Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.


Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.


В итоге мы получаем два тока: маленький — от базы к эмиттеру I BE , и большой — от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.


2. Расчет входного тока базы I b

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно — I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:


2. Расчет выходного тока коллектора I С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).


3. Расчет выходного напряжения V out

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.


Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

Страница 1 из 2

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).

Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.

Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K p = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90...0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой

I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».

На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

В ней выходным током, как и в схеме ОБ, является ток коллектора I К , незначительно отличающийся от тока эмиттера I э , а входным — ток базы I Б , значительно меньший, чем коллекторный ток. Связь между токами I Б и I К в схеме ОЭ определяется уравнением: I К = h 21 Е I Б + I КЭО
Коэффициент пропорциональности h 21 Е называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е = h 21Б / (1 —h 21Б )
Если h 21Б находится в пределах 0,9...0,998, соответствующие значения h 21 Е будут в пределах 9...499.
Составляющая I кэо называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е раз больше, чем I КБО , т. е.I КЭО =(1+ h 21 Е) I КБО. Обратные токи I КБО и I КЭО не зависят от входных напряжений U ЭБ и U БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей - электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками - основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика - работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC - V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Сравнение схем включения транзисторов | Основы электроакустики

Сравнение схем включения транзисторов

 

Схемы включения биполярных транзисторов.  Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ приведены в табл. 132. В схеме с общей базой эмиттерный переход включен в прямом направлении, поэтому при незначительных изме­нениях напряжения ДUэ сильно меняется ток ДIэ, вследствие чего входное сопротивление транзистора rвх = ДUэ/ДIэ при UK=const мало (десятки омов). Коллекторный переход включен в обратном направлении, поэтому изменения напряжения на этом переходе ДUк незначительно влияют на изменения тока ДIк, вследствие чего вы­ходное сопротивление гвых = ДUк/ДIк при Iэ=const велико (до не­скольких мегаомов). Большое различие входных и выходных сопро­тивлений затрудняет согласование каскадов в многокаскадных уси­лителях. 

Таблица 132

Параметры

Сравнительные показатели свойств транзисторов в схемах

с общей базой

с общим эмитте­ром

с общим коллек­тором

Коэффициенты передачи по току

0,6 — 0,95

 

Десятки — сотни

Больше, чем в схеме с ОЭ

усиления по напря

жению

Тысячи

Меньше, чем в схеме с ОБ

0,7 — 0,99

усиления по мощности

Менее чем на  схеме с ОЭ

Большое (тысячи)

Меньше, чем в схеме с ОЭ

Сопротивление:

 

 

 

входное

 

 

Малое (единицы — десятки омов)

Большое (десятки —тысячи омов)

Большое (сотни килоомов)

 

выходное

 

Большое (тысячи омов - единицы мегаомов)

Сотни омов, —

десятки килоомов

Единицы омов — десятки килоомов

Сдвиг фаз

180°

В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, по­этому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следователь­но, и тока Iк происходят без фазового сдвига (Ф=0°).

В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектиру­емых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) уси­ление по мощности.

Напряжение в схеме с ОЭ на входе U3 и выходе UK одного по­рядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и до­стигает десятков — тысяч омов. В этой схеме напряжение коллектор­ного источника Ек частично приложено к эмиттерному переходу, по­этому изменения ДUк вызывают большие изменения тока ДIк, вслед­ствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.

В схеме с ОЭ положительные полуволны подводимого напряже­ния сигнала действуют в противофазе с напряжением смещения, по­этому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смеще­ния, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к об­щей точке схемы) противофазным с напряжением подводимого сиг­нала (т. е. ф=180°).

В схеме с общим коллектором входным является ток Iб, а вы­ходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).

Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для полу­чения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напря­жению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.

В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводи­мого сигнала, т. е. Ф=0 (эмиттерный повторитель). 

Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи). Входная емкость СВх.и = Сзи+СэС, проход­ная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характе­ристики Iс=Ф(Uз) представляет собой внешнюю проводимость пря­мой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэф­фициент усиления каскада &»5Rн достигает десятков единиц. Вход­ное сопротивление (если пренебречь областями очень низких и вы­соких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на па­раметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).

Схема с ОЗ подобно схеме с ОБ не изменяет полярности сиг­нала и обеспечивает его-усиление по напряжению аналогично уси­лению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно боль­шого тока Iст=Iит=SUзот оказывается незначительным. Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной об­ратной связи по току (элементом которой является внутреннее со­противление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтиро­вана сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.

Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным со­противлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивле­нием r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.

Схемы составных транзисторов. Составной транзистор пред­ставляет собой комбинацию двух (и более) транзисторов, соеди­ненных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, об­ладает большим коэффициентом передачи тока hzi=hziVihziVz, име­ет большое входное и малое выходное сопротивления.

Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема пред­ставляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приве­денный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного тран­зистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов, VI и V2 схема обладает свой­ствами р-n-р-транзистора.

Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалент­на одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обла­дает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот

Три схемы включения биполярного транзистора с ненулевым сопротивлением нагрузки

Рис. 3.5. Схема включения транзистора с общей базой (ОБ)

Рис. 3.6. Схема включения транзистора с общим эмиттером (ОЭ)

        Схема с общим эмиттером (ОЭ) (рис. 3.6). Так как , а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх, следовательно, схема обеспечивает усиление и тока, и напряжения.

       Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.

               Схема с общим коллектором (ОК) (рис. 3.7). При определении переменных составляющих токов и напряжений источники постоянного напряжения u1 и u2 заменяют закоротками (закорачивают).

Рис. 3.7. Схема включения транзистора с общим коллектором (ОК)

     После этого к коллектору оказываются подключенными и источник входного напряжения uвх, и сопротивление нагрузки. Отсюда и название – схема с общим коллектором.

       Напряжение uбэ и особенно его переменная составляющая достаточно малы, поэтому амплитуда переменной составляющей напряжения uвх примерно равна амплитуде переменной составляющей напряжения uвых. Поэтому схемы с общим коллектором называют эмиттерным повторителем.

       Учитывая, что , можно отметить, что схема усиливает ток, но не усиливает напряжение.

       Схема отличается повышенным входным сопротивлением, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение как напряжения uбэ, так и напряжения uвых.

       На практике наиболее часто используется схема с общим эмиттером.

Схема включения биполярного транзистора с общей базой

Биполярные транзисторы: схемы включения. Схема включения биполярного транзистора с общим эмиттером

Одним из типов трехэлектродных полупроводниковых приборов являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения биполярных транзисторов способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток Iб. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: Iэ = Iб + Iк.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению Uэк/Uбэ и току: β = Iк/Iб (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения биполярного транзистора с общим коллектором: сигнал поступает на резистор RL, который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.

Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения VБЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания VCC, а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: IC = (VCC — VCE)/RC. Из рисунка следует, что рабочая точка, определяющая ток коллектора IC и напряжение VCE, будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы IВ.

Зона между осью VCE и первой характеристикой выхода (заштрихована), где IВ = 0, характеризует режим отсечки. При этом обратный ток IC ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью IC и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Транзисторные ключи предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Схемы включения биполярного транзистора.

1) С общим эмиттером

При схеме включения биполярного транзистора с общим эмиттером (ОЭ) входной сигнал подаётся на базу, а снимается с коллектора. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Каскад усиливает и ток, и напряжение. Данное включение транзистора позволяет получить наибольшее усиление по мощности, поэтому наиболее распространено. Однако при такой схеме нелинейные искажения сигнала значительно больше. Кроме того, при данной схеме включения на характеристики усилителя значительное влияние оказывают внешние факторы, такие как напряжение питания, или температура окружающей среды. Обычно для компенсации этих факторов применяют отрицательную обратную связь, но она снижает коэффициент усиления.

Биполярные транзисторы управляются током. В схеме с ОЭ — током базы. Напряжение на переходе база-эмиттер при этом остаётся почти постоянным и зависит от материала полупроводника, для германия около 0,2 В, для кремния около 0,7 В, но на сам каскад подаётся управляющее напряжение. Ток базы, коллектора и эмиттера и другие токи и напряжения в каскаде можно вычислить по закону Ома и правилам Кирхгофа для разветвлённой многоконтурной цепи.

Токи в транзисторе связаны нижеследующими соотношениями:

по правилу Кирхгофа для узлов алгебраическая сумма всех трёх токов (

, , ) равна нулю.отсюда (только для случая с общим эмиттером)

2) С общим коллектором

Эмиттерный повторитель — частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.

отсюда (только для случая с общим коллектором)

3) С общей базой

Усилительный каскад с общей базой (ОБ) — одна из трёх типовых схем построения электронных усилителей на основе биполярного транзистора. Характеризуется отсутствием усиления по току (коэффициент передачи близок к единице, но меньше единицы), высоким коэффициентом усиления по напряжению и умеренным (по сравнению со схемой с общим эмиттером) коэффициентом усиления по мощности. Входной сигнал подаётся на эмиттер, а выходной снимается с коллектора. При этом входное сопротивление очень мало, а выходное — велико. Фазы входного и выходного сигнала совпадают.

Особенностью схемы с общей базой является минимальная среди трёх типовых схем усилителей «паразитная» обратная связь с выхода на вход через конструктивные элементы транзистора. Поэтому схема с общей базой наиболее часто используется для построения высокочастотных усилителей, особенно вблизи верхней границы рабочего диапазона частот транзистора.

— коэффициент усиления, ,

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10266 —

| 7604 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Схемы включения биполярных транзисторов

Усилительные свойства биполярного транзистора

Независимо от схемы включения транзистор характе­ризуется тремя коэффициентами усиления:

Назва­ния схемы включения транзисторов зависит от того, какой из выводов транзисторов будет являться общим для входной и выходной цепей.

Схема включения с общей базой

Любой усилительный транзисторный каскад харак­теризуется двумя основными показателями:

1. коэффициентом усиления по току, равным отношению выходного тока к входному току Iвых/Iвх, для каскада по схеме с общей базой коэффициент усиления по току

причем α меньше 1;

2. входным сопротивлением, равным отношению в­ходного напряжения к входному току

Входное сопротивление для каскада по схеме с общей базой (ОБ) (рис. 7.4) мало и составляет десятки ом ввиду того, что входная цепь в этом случае представляет собой открытый эмиттерный переход транзистора.

Рис.7.4. Включение транзистора по схеме с общей базой

Если сопротивление Rн достаточно велико, то амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх, так как iвых ≈ iвх. При этом можно утверждать, что схема обеспечивает усиления напряжения, но не обеспечивает усиления тока. Входной ток такой схемы достаточно большой, а соответствующее входное сопротивление мало.

Для схемы с общей базой:

Недо­статки усилительного каскада по схеме с общей базой:

1. каскад не усиливает ток α

Коэффициент усиления по току β такого каскада представляет собой отношение выходного переменного тока (или действую­щего значения) к входному переменнному току (или действую­щего значения), т. е. переменных составляющих токов коллектора и базы:

Коэффициент усиления по току β каскада обычно составляет от десятков до сотен для транзисторов ма­лой и средней мощности, а для мощных приборов часто находится в пределах от единиц до десятков.

Входное сопротивление каскада по схеме с ОЭ можно найти по формуле

Обычно входное сопротивление каскада с ОЭ мало и составляет от сотен до тысяч ом. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Коэффициент усиления каскада по напряжению равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является переменное напряжение база-эмиттер транзистора Uбэ, а выходным — переменное напряжение на резисторе нагрузки Rн или, что то же самое, между коллектором и эмиттером биполярного транзистора Uкэ. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное напряжение при достаточном сопротивлении резистора нагрузки и напряжении источ­ника Ек достигает единиц, а иногда десятков вольт. Поэтому коэффициент усиления каскада по напряжению имеет значение от десятков до сотен. Отсюда следует, что коэффициент усиления каскада по мощности полу­чается равным сотням, тысячам или даже десяткам тысяч. Этот коэффициент представляет собой отношение выходной мощности к мощности, потребляемой входной цепью каскада. Каскад по схеме ОЭ при усилении переворачивает фазу напряжения, т. е. между выход­ным и входным напряжением образуется сдвиг фазы величиной в 180 °. Так как iвых >> iвх, а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх, следовательно, схема обеспечивает усиление и тока, и напряжения. Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.

Для схемы с общим эмиттером:

Достоинства каскада по схеме с общим эмиттером:

1. большой коэффициент усиления по току;

2. большее, чем у схемы с общей базой, входное со­противление;

3. для питания каскада по такой схеме включения требуются два однополярных источника, что поз­воляет на практике обходиться одним источником питания.

Недостатки усилительного каскада по схеме с общим эмиттером заключаются в худших, чем у каскада по схеме с общей базой, температурных и частотных свойствах. Следует заметить, что каскады по схеме с ОЭ применя­ются наиболее часто за счет своих преимуществ.

Схема включения с общим коллектором

В схеме с общим коллектором (ОК) (рис. 7.6) коллек­тор является общей точкой

Рис.7.6. Включение транзистора по схеме с общим коллектором

входа и выхода, поскольку источники питания базы Еб и коллектора Ек всегда шунтированы конденсаторами большой емкости и для переменного тока могут считаться замкнутыми нако­ротко.

Особенность этой схемы в том, что входное напря­жение полностью передается обратно на вход. Входной ток уси­лительного каскада с ОК — ток базы транзистора, выход­ной — ток эмиттера транзистора, входное напряжение — напряжение, приложенное к переходу база-коллектор, выходное напряжение на переходе коллектор-эмиттер. Отношение выходного тока к входному току каскада можно найти по формуле

Коэффициент усиления по току каскада с ОК обычно составляет от 10 до 100. Входное сопротивление каскада с ОК можно найти по формуле

Из формулы, можно сделать вывод, что чем меньше ток базы транзистора и больше напряже­ние база-коллектор, тем выше входное сопротивление. Входной ток минимальной величины можно получить, соединив два или более транзисторов по схеме Дарлинг­тона. В общем случае составной транзистор состоит из нескольких транзисторов. Соеди­нение электродов следующее: эмиттер каж­дого последующего транзистора соединен с базой предыдущего, а коллекторы всех транзисторов соединены между собой. Эмит­тером составного транзистора является эмиттер первого транзистора, а базой — база последнего транзистора. На рис. 7.7 показано распределение токов в транзисторе, состоящем из двух транзисторов.

Рис. 7.7. Схема состав­ного транзистора

Коэффициент усиления по току составного тран­зистора можно выразить

Входное сопротивление составного транзистора также увеличивается.

Для обеспечения состояния насыщения первого транзистора в его коллекторную цепь вклю­чено сопротивление Rк, величина которого должна быть такой, чтобы падение напряжения на этом сопротивлении превышало падение напряжения на втором транзисторе, находящемся в со­стоянии насыщения, т. е.

Составной транзистор аналогичен обычному транзистору с повышенным коэффициентом усиления по току.

Преимуществом использования составного транзистора является чрез­вычайно маленький ток базы, а следовательно, весьма высокое входное сопротивление усилительного каскада по схеме с ОК, недостатком — низкое быстродействие. Низкое быстродействие составного транзистора в линей­ных усилителях звуковой частоты является несуществен­ным, но в высокочастотных и тем более в импульсных устройствах данный недостаток может иметь решающее значение.

Нетрудно увидеть, что входное напряжение равно сум­ме переменного напряжения база-эмиттер транзистора Uбэ и выходного напряжения. Коэффициент усиления по току каскада с общим коллектором почти такой же, как и в каскаде по схеме с ОЭ, т. е. равен нескольким десяткам, однако в отличие от каскада с ОЭ, коэффициент усиления по напряжению каскада по схеме с ОК близок к 1, при­чем всегда меньше ее, т. е. есть каскад не дает усиления по» напряжению. Коэффициент усиления по мощности, поданной на вход транзистора, равен, как и в каскаде по схеме с ОЭ, примерно нескольким десяткам. Рассмотрев полярность переменных напряжений в усилительном каскаде, можно установить, что нет фа­зового сдвига на относительно низких частотах между выходным напряжением Uвых и входным напряжением Uвх, значит, выходное напряжение совпадает по фазе с входным и почти равно ему, т е. выходное напряжение повторяет входное. Данный каскад обычно называют эмиттерным повторителем, потому, что резистор нагрузки включен в вывод эмиттера и выходное напря­жение снимается с эмиттера (относительно корпуса). Так как входная цепь представляет собой закрытый коллекторный переход, входное сопротивление каскада по схеме ОК составляет сотни тысяч ом, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение напряжения uвых, что является важным достоинством такого включения транзистора.

Выходное сопротивление каскада по схеме с ОК, наоборот, получается сравнительно небольшим, обычно единицы килоом или сотни ом. Эти достоинства каскада по схе­ме с ОК побуждают использовать его для согласования различных устройств по входному сопротивлению.

Недостатком каскада по схеме с ОК является то, что он не усиливает напряжение — коэффициент усиления чуть меньше 1.

Для схемы с общим коллектором:

Дата добавления: 2014-01-05 ; Просмотров: 2150 ; Нарушение авторских прав? ;

Схема с общей базой (каскад с общей базой)

Усилитель представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общей базой — это усилитель, где база транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с ОБ приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общей базой

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. Для питания транзистора в схеме с общей базой может подойти любая из рассмотренных нами схем: схема с фиксированным током базы, схема с фиксированным напряжением на базе, схема с коллекторной стабилизацией или схема с эмиттерной стабилизацией. Расчет резисторов, входящих в эти схемы не зависит от схемы включения транзистора и для схемы с общей базой проводится точно так же как и для схемы с общим эмиттером. На рисунке 3 показана принципиальная схема каскада на биполярном npn-транзисторе, выполненного по схеме с ОБ.


Рисунок 3 Принципиальная схема включения транзистора с общей базой

В усилительном каскаде, изображенном на рисунке 3, используется схема эмиттерной стабилизации тока коллектора, обладающая наилучшими характеристиками по стабильности режима транзистора. В ряде случаев достаточно коллекторной стабилизации. Схема каскада усиления с коллекторной стабилизацией и схемой включения транзистора с общей базой приведена на рисунке 4.


Рисунок 4 Принципиальная схема включения транзистора с ОБ (коллекторная стабилизация режима)

Отличительной особенностью схемы с общей базой является малое входное сопротивление. Входным сопротивлением этого усилительного каскада является эмиттерное сопротивление транзистора. Его можно определить по следующей формуле:

(1)

При токе эмиттера 5 мА входное сопротивление каскада с общей базой составит 5 Ом. Это накладывает определенные ограничения на применение данной схемы. Сопротивление источника сигнала должно быть малым. Это может быть полезным для реализации высокочастотных усилителей. Часто приходится использовать на входе схемы с ОБ трансформатор сопротивления. Это может быть как обычный широкополосный трансформатор, так и фильтр с различными входным и выходным сопротивлением.

По току схема усилительного каскада с общей базой усилением не обладает. Более того, коэффициент передачи этой схемы меньше единицы! Коэффициент усиления по току схемы включения транзистора с общей базой можно определить по следующей формуле:

(2)

Коэффициент усиления по напряжению усилительного каскада, собранного по схеме с общей базой совпадает с коэффициентом усиления по напряжению схемы с общим эмиттером. Его можно определить по следующей формуле:

(3)

Учитывая, что коэффициент усиления по току h21б схемы с общей базой близок к единице, то коэффициент усиления по напряжению будет равен отношению сопротивления нагрузки Rн к входному сопротивлению этого транзисторного каскада rэ. Отсюда следует вывод: если вы нагрузите усилительный каскад с ОБ, на точно такой же каскад усиления, то коэффициент усиления первого каскада будет равен единице (он не будет усиливать, так как ).

Учитывая, что ток коллектора в схеме с общей базой протекает по сопротивлению R1, включенному параллельно источнику сигнала, получается, что данный усилительный каскад охвачен 100% параллельной отрицательной обратной связью по току. Это приводит к расширению полосы пропускания усилителя. Малое входное сопротивление усилительного каскада не позволяет шунтировать входной сигнал паразитными емкостями печатной платы и других электронных компонентов схемы. Кроме того, малая проходная емкость Cкэ, образованная последовательным включением эмиттерного и коллекторного переходов, уменьшает значение входной паразитной емкости схемы с общей базой. Все эти факторы приводят к исключительной широкополосности амплитудно-частотной характеристики данного каскада.

Схема включения транзистора с общей базой используется обычно в высокочастотных усилителях. Для приведения входного и выходного сопротивления транзистора к стандартному волновому сопротивлению линий передачи 50 Ом обычно используются фильтры нижних или верхних частот. При индуктивном сопротивлении базы и коллектора транзистора в рабочем диапазоне частот усилителя, эти реактивности могут быть включены в состав индуктивности фильтра, как это показано на рисунке 5


Рисунок 5 Принципиальная схема усилительного каскада с транзистором с общей базой (коллекторная стабилизация)

В схеме усилителя, изображенной на рисунке 5, индуктивность L1 служит для обеспечения пути протекания эмиттерного тока, а индуктивность L2 служит для обеспечения пути протекания коллекторного тока, поэтому дополнительных сопротивлений, таких как R1 и R2 в схеме на рисунке 3 не требуется. Резисторы R1 и R2 образуют схему коллекторной стабилизации режима работы. Еще один вариант высокочастотного усилителя, выполненного по схеме с общей базой, приведен на рисунке 6.


Рисунок 6 Принципиальная схема усилительного каскада с транзистором с общей базой (эмиттерная стабилизация)

В настоящее время в СВЧ усилителях в основном используются SiGe, GaAs, GaN МОП-транзисторы, однако их схемы включения практически совпадают со схемами включения биполярных транзисторов. Схеме включения транзистора с общей базой соответствует схема усилительного каскада с общим затвором. В этих схемах для стабилизации режима работы транзистора применяется схема истоковой стабилизации (аналог эмиттерной стабилизации). Схема усилительного каскада с общим затвором приведена на рисунке 7.


Рисунок 7 Принципиальная схема усилительного каскада с транзистором с общим затвором (истоковая стабилизация)

По подобным схемам ряд зарубежных фирм выпускает готовые СВЧ усилители. Границы усилителя показаны на рисунках 6 и 7 пунктирной линией. В качестве примера на рисунке 8 показана схема высокочастотного интегрального усилителя радиочастоты.


Рисунок 8 Принципиальная схема высокочастотного интегрального усилителя радиочастоты

Подобные усилители широко применяются для увеличения уровня сигнала GPS, GSM, WiFi и др. систем связи и беспроводного интернета. В качестве примера подобных усилителей можно назвать усилители радиочастоты фирмы MAXIM, VISHAY или RF Micro Devices.

Дата последнего обновления файла 30.06.2019

  1. Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
  2. Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
  3. Схемы включения транзистора

Вместе со статьей «Схема с общей базой (каскад с общей базой)» читают:

Схемы включения биполярного транзистора.

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Схема включения с общей базой.

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера

, на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению ) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (вот она), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратной связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту

. Тут все понятно А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания

) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо ) Поэтому необходимо создать смещение. Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу Если резисторы

и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы )

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот ) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя, но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Схема включения биполярного транзистора с общей базой

Биполярный транзистор – полупроводниковый элемент с двумя pn переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают pnp и npn типа. На рис. 1, а и б показаны их условные обозначения.

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p— или n— слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Транзисторы npn типа подчиняются следующим правилам (для транзисторов pnp типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:
  1. Каждый транзистор характеризуется максимальными значениями IК,IБ,UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуре, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

где α = 0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

Ток коллектора зависит от тока базы в соответствии с выражением:

где β = α/(1–α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора

Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Схемы включения транзистора

В зависимости от того, какой из выводов транзистора является общим для входа и выхода, различают схему включения транзистора с общим эмиттером (ОЭ), рис. 2, общей базой (ОБ) рис. 3, а, и общим коллектором (ОК) рис. 3, б.

В случае включения транзистора в схему с ОЭ входным током является ток базы, выходным – ток коллектора. Схема с ОЭ является самой распространенной, так как она дает наибольшее усиление по мощности. Усилительные свойства транзистора при включении его по схеме с ОЭ характеризует один из главных его параметров – коэффициент передачи тока базы – β. Коэффициент β для разных транзисторов лежит в диапазоне от десятков до тысяч, а реальный коэффициент усиления по току каскада всегда меньше, так как при включении нагрузки ток коллектора транзистора уменьшается.

Важная величина, характеризующая транзистор – его входное сопротивление. Для схемы с ОЭ оно составляет от сотен до единиц кОм, что является сравнительной малой величиной. Это существенный недостаток биполярных транзисторов. Выходное сопротивление схемы составляет от единиц до десятков кОм.

К недостаткам схемы с ОЭ относятся также меньший по сравнению со схемой ОБ частотный диапазон и меньшая температурная стабильность.

В схеме с ОБ выходным током является ток коллектора, а входным – ток эмиттера. Хотя эта схема дает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление, чем схема с ОЭ, все же ее иногда применяют, так как по своим частотным и температурным свойствам она значительно лучше схемы с ОЭ. Коэффициент усиления по току каскада несколько меньше единицы, по напряжению – такой же, как и в схеме с ОЭ. Входное сопротивление для схемы с ОБ получается в десятки раз меньше, чем в схеме с ОЭ, выходное сопротивление в этой схеме получается до 100 кОм. Следует отметить, что каскад с ОБ вносит при усилении меньшие искажения, чем каскад по схеме с ОЭ.

В схеме с ОК (рис. 3, б) коллектор является общей точкой входа и выхода, поскольку источники питания Е1 и Е2 всегда шунтированы конденсаторами большой емкости и для переменного тока могут считаться короткозамкнутыми. Особенность этой схемы в том, что входное напряжение полностью передается обратно на выход, т.е. сильна отрицательная обратная связь. Именно поэтому такой каскад называют эмиттерным повторителем.

Коэффициент усиления по напряжению схемы с ОК близок к единице, причем всегда меньше ее, коэффициент усиления по току почти такой же, как в схеме с ОЭ, коэффициент усиления по мощности равен нескольким десяткам. Входное сопротивление каскада в схеме с ОК составляет десятки килом, выходное – единицы килом и сотни Ом, что является важным достоинством схемы.

Схема с ОК называется эмиттерным повторителем и используется для согласования источников сигналов и нагрузок.

Транзистор как активный нелинейный четырехполюсник

Основными параметрами, характеризующими транзистор как активный нелинейный четырехполюсник (при любой схеме включения), являются коэффициенты усиления:

Для удобства сравнения параметры трех схем включения транзисторов сведены в табл. 1.

Таблица. 1 Важнейшие параметры основных схем включения транзисторов

naf-st >> Радиокомпоненты >> Схемы включения биполярных транзисторов

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.


Рис. 1 - Схема включения транзистора с общим эмиттером

Усилительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току β. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:



при Uк-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является переменное напряжение uб-э, а выходным - переменное напряжение на резике, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает единиц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:


и составляет обычно от сотен Ом до единиц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например, в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.


Рис. 2 - Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше единицы:


т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:



при uк-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.


Рис. 3 - Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное - сравнительно небольшое. Это является немаловажным достоинством схемы.

Транзисторный переключатель на стороне низкого и высокого уровня

Обычная задача транзистора - это включение и выключение устройства. Существует две конфигурации транзисторного переключателя: со стороны низкого и высокого уровня. Расположение транзистора определяет тип схемы и ее название. Любая конфигурация транзистора может использовать BJT или MOSFET.

В этом посте я рисую конфигурацию для обоих типов транзисторов, рассказываю о том, для чего требуется драйвер, и объясняю, почему вы должны использовать любой из них. Если вы плохо знакомы с транзисторами, ознакомьтесь с ссылками на ресурсы внизу.У меня есть несколько видеороликов, которые я снял, и некоторые из «Учебной схемы element14», которые отлично справляются с внедрением транзисторов.

Конфигурация транзисторов нижнего плеча

Когда транзистор заземлен, это означает, что нагрузка находится между + V и транзистором. Поскольку транзистор переключает путь на землю или находится на стороне низкого напряжения нагрузки, он называется переключателем низкого уровня.

Обычно они используют NPN BJT или N-канальный MOSFET.

Примеры транзисторов нижнего уровня (обратите внимание, что полевой транзистор имеет понижающий резистор.)

Для NPN BJT эмиттер подключается к земле, а коллектор подключается к отрицательной стороне нагрузки. В качестве переключателя BJT работает в режиме насыщения. Насыщение означает, что ток базы достаточен для полного включения транзистора.

Для N-канального MOSFET исток подключается к земле, а сток подключается к отрицательной стороне нагрузки. Хотя вы можете использовать JFET для этой схемы, MOSFET в режиме улучшения работает лучше.

Переключатель на транзисторах верхнего плеча

Переключатель со стороны высокого давления противоположен переключателю со стороны низкого давления.Этот транзистор соединяет + V и нагрузку. Из-за того, как работают транзисторы, их может быть немного сложнее использовать в схеме Arduino или Raspberry Pi.

Обычно они используют PNP BJT или MOSFET с P-каналом.

Транзисторы со стороны верхнего плеча (обратите внимание, что полевой транзистор имеет подтягивающий резистор.)

Для PNP BJT эмиттер подключается к источнику напряжения, а коллектор подключается к положительной стороне нагрузки. Глядя на схематический рисунок для NPN и PNP, PNP может выглядеть так, как будто он перевернут.Как и NPN, PNP BJT должен работать в области насыщения, чтобы полностью включить транзистор.

Для МОП-транзистора с P-каналом, исток подключается к источнику напряжения, а сток подключается к положительной стороне нагрузки. Как и в случае с нижней стороной, вы, вероятно, захотите использовать полевой МОП-транзистор в режиме улучшения. Имейте в виду, что вы никогда не найдете P-Channel в режиме истощения. Они существуют только в учебниках и как ошибки при вводе данных.

МОП-транзистор с каналом P с одинаковым напряжением нагрузки

При использовании транзистора P-типа при напряжении нагрузки, которое имеет тот же уровень напряжения, что и сигнал, управляющий транзистором, приведенная выше схема работает нормально.Ну, логика перевернута, но в остальном все в порядке. Для подробного объяснения ознакомьтесь с этим сообщением, которое я написал в Учебном пособии по P-канальным MOSFET только с положительным напряжением.

Когда напряжение нагрузки ВЫШЕ, чем напряжение сигнала, вам нужен драйвер. Затем давайте посмотрим, как драйвер используется с транзисторными переключателями низкого и высокого уровня.

Транзистор управляет другим транзистором

Схема задающего транзистора - это схема, которая управляет другим транзистором. Эта схема отличается от пары Дарлингтона BJT, которая представляет собой BJT с высоким коэффициентом усиления.Вместо этого используется драйвер транзистора, когда напряжение (или ток) управляющего сигнала несовместимо с нагрузочным транзистором. Ниже приведены два случая, когда вам может потребоваться драйвер транзистора. Это ни в коем случае не единственные. Поэтому, если вы знаете о каком-либо случае или подозреваете, что он вам нужен, оставьте комментарий.

Примеры транзисторных драйверов

Сильноточные полевые МОП-транзисторы имеют значительный порог Vgs. Хотя 5 вольт на выводе Arduino GPIO может быть достаточно для включения транзистора, этого недостаточно для его насыщения.Пока полевой транзистор не будет насыщен, его Rds-ON может быть относительно высоким, ограничивая максимальный ток, который он может выдержать.

Часто используется драйвер NPN с PNP BJT или P-канальным MOSFET, когда напряжение нагрузки выше, чем напряжение сигнала. Без драйвера транзистор может никогда не выключиться. Драйвер, по сути, повышает управляющее напряжение до достаточно высокого уровня, чтобы не смещать переход Vbe или Vgs транзистора. Мой учебник по ШИМ-вентилятору для ПК - это пример того, как Arduino управляет вентилятором на 12 В с помощью PNP.

Зачем вообще заморачиваться с транзисторами верхнего плеча?

Как для BJT, так и для MOSFET транзисторов их P-тип обычно имеет большее сопротивление (или более низкую допустимую нагрузку по току), чем их аналоги N-типа. По этой причине некоторые могут прийти к выводу, что вам всегда следует использовать N-тип в конфигурации низкого уровня.

Однако сделайте шаг назад и подумайте на секунду, что делают два разных типа схем. Переключатель нижнего плеча подключает массу, в то время как выключатель верхнего плеча подключает источник напряжения.Как правило, в цепи вы хотите, чтобы земля оставалась подключенной, а питание переключалось. Одна из причин заключается в том, что даже когда транзистор полностью открыт, на нем все еще есть небольшое падение напряжения. Это падение напряжения означает, что заземление этого устройства не равно 0 вольт. Для чего-то простого, например, светодиода, не имеет значения, что вы переключаете. Однако активное устройство, такое как микроконтроллер, нуждается в заземлении! Поэтому, когда у вас есть нагрузка, которая требует заземления, вам НЕОБХОДИМО использовать переключатель высокого напряжения.

Как простое практическое правило, если вы включаете и выключаете устройство, переключатель нижнего уровня является простым решением.Однако, если вы подаете питание на всю цепь или устройство, чувствительное к напряжению, вам следует использовать переключатель высокого напряжения.

Между прочим, есть готовые компоненты, называемые «выключателем нагрузки». Это ИС, которые имеют полевой МОП-транзистор с P-каналом в качестве переключающего транзистора со встроенным драйвером для этого P-канала. Для компонентов этого типа не требуется внешний драйвер.

Ссылки по основам транзисторов (для справки)

  • Схема обучения, как работают транзисторы.Карен объясняет с нуля, как работают биполярные переходные транзисторы (BJT). В сети есть много объяснений физики транзисторов, но Карен - самая ясная из тех, с которыми мне приходилось сталкиваться.
  • Цепь обучения, обратная связь BJT. В этом эпизоде ​​TLC я присоединился к Карен и рассмотрел некоторые заблуждения сообщества (и я подозреваю, что другие) в видео, указанном выше.
  • AddOhms, BJTs. Видео, которое я сделал о БЮТ. Я не буду вдаваться в подробности того, как работают электроны, но вместо этого покажу, как их использовать в цепи.
  • AddOhms, MOSFETs. Вторая часть моих видео о транзисторах. В этом выпуске я объясню, как использовать полевые МОП-транзисторы. (Это видео является самым популярным на моем канале YouTube с миллионом просмотров.)

BJT устройство как коммутатор [Analog Devices Wiki]

Цель:

Транзистор с биполярным соединением (BJT) может использоваться во многих конфигурациях схем, таких как усилитель, генератор, фильтр, выпрямитель, или просто как двухпозиционный переключатель.Если транзистор смещен в линейную область, он будет работать как усилитель или другая линейная схема, если смещен поочередно в областях насыщения и отсечки, то он используется в качестве переключателя, позволяя току течь или не течь. в других частях схемы. Это лабораторное задание описывает BJT, работающий как переключатель.

Примечания:

Как и во всех лабораториях ALM, мы используем следующую терминологию при описании подключений к разъему M1000 и настройке оборудования.Зеленые закрашенные прямоугольники обозначают подключения к разъему аналогового ввода-вывода M1000. Контакты аналогового канала ввода / вывода обозначаются как CA и CB. При настройке для принудительного измерения напряжения / измерения тока - В, добавляется, как в CA-, В , или при настройке для принудительного измерения тока / измерения напряжения добавляется -I, как в CA-I. Когда канал настроен в режиме высокого импеданса только для измерения напряжения, -H добавляется как CA-H.

Следы осциллографа аналогичным образом обозначаются по каналу и напряжению / току.Например, CA- V , CB- V для сигналов напряжения и CA-I, CB-I для сигналов тока.

Фон:

Цепи переключения существенно отличаются от линейных цепей. Их также легче понять. Прежде чем исследовать более сложные схемы, мы начнем с представления дискретных твердотельных переключающих схем: построенных на основе BJT.

Переключатель состоит из BJT-транзистора, который попеременно управляется между областями насыщения и отсечки.Простая версия переключателя показана на рисунке 1. Когда входное напряжение равно - В, , в , переход база-эмиттер смещен в обратном направлении или отключен, поэтому ток в коллекторе не течет. Это иллюстрируется красной линией нагрузки, показанной на рисунке. Когда BJT находится в отключенном состоянии, схема (в идеале) имеет следующие значения:

Это состояние похоже на разомкнутый переключатель.

Когда входной сигнал равен + В в , транзистор переводится в состояние насыщения и возникают следующие условия:

Это состояние аналогично замкнутому переключателю, соединяющему нижнюю часть R C с землей.

Рисунок 1 Переключатель NPN BJT и его линия нагрузки.

Характеристики переключателя BJT предполагают, что:

  1. - В в достаточно мало, чтобы перевести транзистор в режим отсечки.
  2. + В в должен обеспечивать достаточный базовый ток через R B , чтобы перевести транзистор в состояние насыщения.
  3. Транзистор - идеальный компонент.

Эти условия можно обеспечить, спроектировав схему так, чтобы:

  1. + V дюйм = V BE + I B R B ( V CC - хороший максимум)
  2. I B > I Csat / ß

Условие 1 гарантирует, что схема будет переведена в область отсечки входом.Условия 2 и 3 гарантируют, что транзистор будет переведен в область насыщения. Настоящий переключатель BJT отличается от идеального переключателя по нескольким аспектам. На практике даже в режиме отсечки через транзистор возникает небольшой ток утечки. Кроме того, при насыщении на внутреннем сопротивлении транзистора всегда падает некоторое напряжение. Обычно это значение составляет от 0,2 до 0,4 В в зависимости от тока коллектора и размера устройства. Эти отклонения от идеала обычно незначительны для устройства правильного размера, поэтому мы можем предположить, что условия близки к идеальным при анализе или проектировании схемы переключателя BJT.

Материалы:

Аппаратный модуль ADALM1000
Макетная плата без пайки
Резистор 1 - 6,8 кОм (R B )
Резистор 1 - 100 Ом (R C )
Светодиод 1 - 5 мм (любого цвета)
1 - NPN-транзистор малой мощности (2N3904)

Направление:

Одним из распространенных применений переключателя BJT (или любого другого) является управление светодиодом. Драйвер светодиода показан на рисунке 2. Драйвер, показанный на этом рисунке, используется для соединения слаботочной части схемы с относительно сильноточным устройством (светодиодом).Когда на выходе из слаботочной цепи низкий уровень (0 В ), транзистор отключен и светодиод не горит. Когда на выходе из слаботочной цепи появляется высокий уровень (+3 В ), транзистор переводится в состояние насыщения и загорается светодиод. Драйвер используется, потому что слаботочная часть схемы может не иметь возможности по току для подачи 20 мА (типично), необходимых для освещения светодиода на полную яркость.

Постройте схему переключателя светодиодов, показанную на рисунке 2, на беспаечной макетной плате.R C служит для ограничения тока, протекающего в светодиоде от источника питания +5 V . Переключатель управляется выходным напряжением канала А с разъема ввода / вывода. В канале осциллографа B будет отображаться напряжение на переключающем транзисторе Q 1 ( В, CE ) или напряжение на светодиоде, как показано зелеными стрелками.

Настройка оборудования:

Генератор CA должен быть настроен на прямоугольную волну 100 Гц с максимальным напряжением 3 вольта и минимальным напряжением 0 вольт.Канал осциллографа B подключен для измерения напряжения на транзисторе или в верхней части светодиода. Ток, протекающий через транзистор, можно рассчитать как разницу напряжений между питанием +5 В и CB- В , деленную на номинал резистора (100 Ом). Трасса тока в канале A измеряет ток в R B .

Процедура:

Сохраните кривую напряжения на коллектор-эмиттер транзистора (пунктирная зеленая линия канала B) и на светодиодах (сплошная зеленая линия канала B) и включите их в описание своей лаборатории.

Вопросы:

Какой ток протекает через резисторы R C и R B , когда светодиод горит и когда светодиод не горит?

Вычислите ß, когда Q 1 насыщен. Как это значение соотносится со спецификацией , указанной в таблице данных?

Параллельных переключателей:

Два NPN-транзистора могут быть соединены с их коллекторами и эмиттерами параллельно, рисунок 3, что обеспечивает возможность включения нагрузки от двух разных сигналов.Любой из входов может включить нагрузку, но оба должны быть выключены, чтобы нагрузка отключилась. Это называется логической функцией «ИЛИ».

Рисунок 3, два переключателя параллельно

Измените схему на макетной плате, чтобы она выглядела как показано на рисунке 3. Добавьте второй транзистор NPN, Q 2 , и второй базовый резистор, R B2 , как показано. Теперь подключите другие концы R B1 и R B2 к контактам цифрового порта ввода / вывода PIO 0 и PIO 1 соответственно.Откройте окно цифрового управления и установите PIO 0 и PIO 1 на все четыре комбинации логических 0 и 1. Обратите внимание, какие комбинации включают светодиод. Напряжение на светодиоде и резисторе коллектора можно контролировать с помощью входа осциллографа CHB, как и раньше.

Переключателей серии:

Два NPN-транзистора могут быть соединены последовательно с коллектором нижнего транзистора, подключенным к эмиттеру верхнего транзистора, рис. 4, что позволяет отключать нагрузку от двух разных сигналов.Любой из входов может выключить нагрузку, но для включения нагрузки должны быть включены оба. Это называется логической функцией «И».

Рисунок 4, два переключателя последовательно

Измените схему на макетной плате, чтобы она выглядела как на рисунке 4. Теперь второй NPN-транзистор включен последовательно с эмиттером Q 1 . Снова другие концы R B1 и R B2 подключены к контактам цифрового порта ввода / вывода PIO 0 и PIO 1 соответственно. Опять же, установите PIO 0 и PIO 1 на все четыре комбинации логических 0 и 1.Обратите внимание, какие комбинации включают светодиод. Напряжение на светодиоде и резисторе коллектора можно контролировать с помощью входа осциллографа CHB, как и раньше. Вы также должны измерить напряжение на соединении между эмиттером Q 1 и коллектором Q 2 для каждого из четырех условий. Прокомментируйте напряжения, наблюдаемые на коллекторе Q 2 в вашем лабораторном отчете, и почему.

BJT Транзисторная реализация затвора XNOR

Однотранзисторный инверторный каскад вместе с несколькими входными резисторами можно комбинировать для создания более сложных логических функций.Конфигурация, показанная на рисунке 5, реализует двухвходовую исключительную логическую функцию ИЛИ (XNOR). Всего вам понадобится 5 транзисторов NPN, 13 резисторов и один светодиод.

Резисторы, используемые в качестве входов на базах 5 NPN-транзисторов, не имеют одинакового номинала, и теоретически все они должны иметь одинаковое значение. Но диапазон значений по-прежнему будет работать, учитывая относительно высокую бета транзисторов 2N3904, и показанные значения были выбраны таким образом, чтобы не требовалось больше пяти из любого одного значения, входящего в комплект аналоговых деталей.Вы можете поэкспериментировать с другими номиналами резисторов, чтобы найти диапазон минимальных и максимальных значений.

Рис. 5. Резистор и затвор XNOR на NPN-транзисторе.

Снова установите PIO 0 и PIO 1 на все четыре комбинации логических 0 и 1. Обратите внимание, какие комбинации включают светодиод. Напряжение на светодиоде и коллекторном резисторе Q 5 можно контролировать с помощью входа осциллографа CH-B, как и раньше. Вы также можете использовать вход CH-B (и / или CH-A) для контроля напряжений на коллекторах Q 1 - Q 4 при изменении PIO 0 и 1.

Ресурсов:

Для дальнейшего чтения:

Транзистор
Светодиод
Схема светодиода

Вернуться к содержанию "Введение в лабораторные работы по электротехнике"
Вернуться к содержанию лабораторных работ по схемам
Вернуться к содержанию "Работа в лаборатории электроники".

Схема транзисторного переключателя

- Электронная информация от PenguinTutor

Транзистор представляет собой усилитель, который может увеличивать ток, протекающий по цепи.Его можно использовать в качестве переключателя, используя только транзистор в выключенном состоянии или во включенном состоянии, используя область насыщения транзистора. В качестве переключателя транзистор часто используется для получения сигнала от цифровой схемы и использования его для переключения нагрузок с большей нагрузкой, чем может обеспечить интегральная схема (ИС).

На схеме ниже показана обычная простая конфигурация схемы транзисторного переключателя. Он состоит из одного транзистора NPN и изображает два резистора. Резистор R L не обязательно является резистором, но представляет значение сопротивления переключаемого устройства.Это может быть лампа, реле или какое-либо другое устройство, которому требуется больший ток, чем может подаваться напрямую входом. Резистор может потребоваться, если коммутируемое устройство не имеет достаточного собственного сопротивления (например, светодиоды). Резистор на базе R b - это резистор, используемый для предотвращения повреждения базы транзистора. Он должен быть достаточно большим, чтобы предотвратить повреждение транзистора, но при этом должен пропускать ток, достаточный для включения транзистора. Подробная информация о том, как определить размер резистора, объясняется ниже.

Как работает схема

Чтобы транзистор действовал как переключатель, он должен быть активирован как область насыщения. При включении в режиме насыщения транзистор действует как замкнутый переключатель, пропускающий ток через нагрузку.

Если переключаемая нагрузка представляет собой индуктивное устройство, такое как двигатель, соленоид или реле, то диод должен быть подключен в обратном направлении через нагрузку, чтобы предотвратить повреждение транзистора обратной ЭДС.

Хотя цель этого состоит в том, чтобы свести математику к минимуму, нам нужно использовать некоторую простую формулу, чтобы определить соответствующее значение для базового резистора R b . Ключевое уравнение, используемое здесь, - это закон Ома.

Расчеты

Чтобы определить соответствующий уровень резистора, необходимо рассчитать соответствующий входной ток для насыщения транзистора. Вход обычно управляется гораздо более высоким током, чтобы гарантировать, что он находится в этой области насыщения (например,В 10 раз превышающий минимальный базовый входной ток насыщения).

Для начала необходимо определить ток, протекающий через резистор R L . В зависимости от типа устройства его можно будет взять из таблицы данных на основе тока, необходимого для активации или работы устройства. Если это неизвестно - или нам нужно ограничить этот ток для защиты устройства, тогда сопротивление можно рассчитать с помощью закона Ома.

V cc - напряжение питания, V ce - падение напряжения между коллектором и эмиттером при насыщении.Значение V ce можно найти в паспорте транзистора.

Необходимо проверить техническое описание транзистора, чтобы убедиться в том, что через транзистор проходит максимальный ток. На транзисторе с меньшей мощностью это значение может быть довольно низким, например 100 мА на BC546, но на транзисторе высокой мощности оно может достигать 15 А на TIP3055. Если значение I c max слишком мало, то необходимо использовать другой транзистор или добавить резистор для ограничения этого тока (если остальная часть схемы может работать с уменьшенным током).

После определения тока коллектора минимальный базовый ток можно найти, посмотрев на коэффициент усиления транзистора. Коэффициент усиления указан в техническом паспорте как hFE или β

.

Формула соотношения между током коллектора и током базы:

, которую мы транспонируем как:

Коэффициент усиления транзистора не является постоянным, но для переключателя, использующего наименьшее значение, транзистор будет находиться в области насыщения. Примерные значения усиления составляют от 200 до 450 для транзистора BC546 или 45 для транзистора TIP3055.

Чтобы обеспечить полное включение транзистора даже при изменении нагрузки, мы обычно умножаем базовый ток в 10 раз. Если базовый ток, в десять раз превышающий требуемый базовый ток, превышает максимальный базовый ток, то значение ниже максимального. Вместо этого следует использовать базовый ток.

Чтобы подобрать резистор подходящего размера, воспользуемся следующей формулой.

Где V I - напряжение на входе базового резистора.

Практический пример

См. Мои примеры проектов с использованием транзисторных ключей

Расчетный транзистор как переключатель

Хотя транзисторы (BJT) широко используются для создания схем усилителя, их также можно эффективно использовать для коммутации.

Транзисторный ключ - это схема, в которой коллектор транзистора включается / выключается с относительно большим током в ответ на соответствующий сигнал включения / выключения низкого тока на его базовом эмиттере.

В качестве примера следующую конфигурацию BJT можно использовать в качестве переключателя для инвертирования входного сигнала для логической схемы компьютера.

Здесь вы можете обнаружить, что выходное напряжение Vc противоположно потенциалу, приложенному к базе / эмиттеру транзистора.

Кроме того, база не связана с каким-либо фиксированным источником постоянного тока, в отличие от схем на основе усилителя. Коллектор имеет источник постоянного тока, который соответствует уровням питания системы, например, 5 В и 0 В в этом случае компьютерного приложения.

Мы поговорим о том, как эта инверсия напряжения может быть спроектирована для обеспечения правильного переключения рабочей точки с отключения на насыщение вдоль линии нагрузки, как показано на следующем рисунке:

Для настоящего сценария на приведенном выше рисунке мы имеем предполагается, что IC = ICEO = 0 мА, когда IB = 0 мкА (отличное приближение в отношении улучшения стратегии строительства).Кроме того, предположим, что VCE = VCE (sat) = 0 В вместо обычного уровня от 0,1 до 0,3 В.

Теперь, при Vi = 5 В, BJT включится, и при рассмотрении конструкции необходимо обеспечить высокую степень насыщения конфигурации на величину IB, которая может быть больше, чем значение, связанное с кривой IB, видимой вблизи насыщения. уровень.

Как видно из приведенного выше рисунка, для этих условий требуется, чтобы IB было больше 50 мкА.

Расчет уровней насыщения

Уровень насыщения коллектора для показанной схемы можно рассчитать по формуле:

IC (sat) = Vcc / Rc

Величина базового тока в активной области непосредственно перед уровнем насыщения может быть рассчитывается по формуле:

IB (max) ≅ IC (sat) / βdc ---------- Уравнение 1

Это означает, что для реализации уровня насыщения должно выполняться следующее условие:

IB> IC (sat) / IC (sat) / βdc -------- Уравнение 2

На приведенном выше графике, когда Vi = 5 В, результирующий уровень IB может быть оценен в следующий метод:

Если мы проверим уравнение 2 с этими результатами, мы получим:

Это, по-видимому, полностью удовлетворяет требуемому условию.Несомненно, любое значение IB, превышающее 60 мкА, будет допущено к проникновению через точку Q над линией нагрузки, расположенной очень близко к вертикальной оси.

Теперь, если обратиться к сети BJT, показанной на первой диаграмме, в то время как Vi = 0 В, IB = 0 мкА и предположить, что IC = ICEO = 0 мА, падение напряжения на RC будет по формуле:

VRC = ICRC = 0 В.

Это дает нам VC = +5 В для первой диаграммы выше.

В дополнение к приложениям для переключения логики компьютера, эта конфигурация BJT также может быть реализована как коммутатор с использованием тех же крайних точек линии нагрузки.

Когда происходит насыщение, ток IC имеет тенденцию становиться довольно высоким, что, соответственно, снижает напряжение VCE до самой низкой точки.

Это приводит к возникновению уровня сопротивления на двух клеммах, как показано на следующем рисунке и рассчитывается по следующей формуле:

R (sat) = VCE (sat) / IC (sat), как показано на следующем рисунке.

Если мы предположим типичное среднее значение для VCE (sat), такое как 0,15 В в приведенной выше формуле, мы получим:

Это значение сопротивления на клеммах коллектора-эмиттера выглядит довольно маленьким по сравнению с последовательным сопротивлением в килоомах на коллекторные клеммы БЮТ.

Теперь, когда вход Vi = 0 В, переключение BJT будет отключено, в результате чего сопротивление на коллекторе-эмиттере будет:

R (отсечка) = Vcc / ICEO = 5 В / 0 мА = ∞ Ω

Это приводит к возникновению разрыва цепи на выводах коллектора-эмиттера. Если мы рассмотрим типичное значение 10 мкА для ICEO, значение сопротивления отсечки будет таким, как указано ниже:

Rcutoff = Vcc / ICEO = 5 В / 10 мкА = 500 кОм

Это значение выглядит значительно большим и эквивалент разомкнутой цепи для большинства конфигураций BJT в качестве переключателя.

Решение практического примера

Рассчитайте значения RB и RC для транзисторного переключателя, сконфигурированного как инвертор ниже, учитывая, что ICmax = 10 мА

Формула для выражения насыщения коллектора:

ICsat = Vcc / Rc

∴ 10 мА = 10 В / Rc

∴ Rc = 10 В / 10 мА = 1 кОм

Также в точке насыщения

IB ≅ IC (насыщ.) / Βdc = 10 мА / 250 = 40 мкА

Для гарантированного насыщения выберем IB = 60 мкА, а по формуле

IB = Vi - 0.7 В / RB, получаем

RB = 10 В - 0,7 В / 60 мкА = 155 кОм,

Округляя полученный результат до 150 кОм и снова оценивая приведенную выше формулу, получаем:

IB = Vi - 0,7 V / RB

= 10 В - 0,7 В / 150 кОм = 62 мкА,

, так как IB = 62 мкА > ICsat / βdc = 40 мкА

Это подтверждает, что мы должны использовать RB = 150 кОм

Расчет Коммутационные транзисторы

Вы найдете специальные транзисторы, называемые переключающими транзисторами, из-за их высокой скорости переключения с одного уровня напряжения на другой.

На следующем рисунке сравниваются периоды времени, обозначенные как ts, td, tr и tf, с током коллектора устройства.

Влияние периодов времени на характеристику скорости коллектора определяется характеристикой тока коллектора, как показано ниже:

Общее время, необходимое транзистору для переключения из состояния «выключено» в состояние «включено», обозначено как t (on) и может быть установлено по формуле:

t (on) = tr + td

Здесь td определяет задержку, происходящую, когда входной сигнал переключения меняет состояние, а транзисторный выход реагирует на изменение.Время tr указывает окончательную задержку переключения от 10% до 90%.

Общее время, затраченное bJt из включенного состояния в выключенное состояние, обозначается как t (выключено) и выражается формулой:

t (выключено) = ts + tf

ts определяет время хранения, в то время как tf определяет время спада с 90% до 10% от исходного значения.

Ссылаясь на приведенный выше график, для BJT общего назначения, если ток коллектора Ic = 10 мА, мы можем видеть, что:

ts = 120 нс, td = 25 нс, tr = 13 нс, tf = 12 нс

, что означает t (вкл.) = Tr + td = 13 нс + 25 нс = 38 нс

t (выкл.) = Ts + tf = 120 нс + 12 нс = 132 нс

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как переключать большие нагрузки с помощью микроконтроллера с помощью транзисторов

Микроконтроллеры

отлично подходят для реализации интеллектуальных функций данного продукта. В этой статье вы узнаете, как обойти некоторые из их основных ограничений.

Опубликовано , John Teel

Микроконтроллеры не могут напрямую управлять чем-либо, кроме, может быть, одного светодиода.Это связано с тем, что выходной ток большинства микроконтроллеров может напрямую подавать или потреблять только около 10 мА.

Давайте рассмотрим несколько способов переключения более тяжелых нагрузок на низкую нагрузку с типичного выхода микроконтроллера. Для определения типичных значений компонентов требуется несколько простых математических вычислений, которые будут представлены в легко доступных форматах. Однако такой подход означает, что были приняты некоторые вольности с техническими требованиями.

Одним из простейших подходов к управлению большими нагрузками, работающими от постоянного тока, является переключатель насыщения.Фактический электронный переключающий элемент поставляется в двух вариантах: биполярные переходные транзисторы, или BJT, и MOSFET.

Прежде чем перейти к собственно самому переключателю, давайте определим, что означает переключение нижнего уровня . На рисунке 1 показан этот тип переключения нагрузки.

Рисунок 1 - Реле нагрузки нижней стороны

Переключатель контролирует отрицательную сторону нагрузки. Это означает, что когда переключатель разомкнут, нагрузка по существу плавающая по отношению к минусу источника питания, который обычно является опорным заземлением в большинстве конструкций.

Если этот тип коммутационного устройства приемлем, то переключатель нижнего уровня обычно является самым дешевым способом переключения нагрузки.

Переключатель низкого уровня BJT

BJT может использоваться в качестве переключателя нагрузки и бывает двух видов: NPN и PNP. Для переключения на стороне низкого напряжения используются транзисторы NPN, а для переключения на стороне высокого уровня используется PNP.

Прежде чем перейти к реальным методам, давайте определим некоторую номенклатуру, которая используется при работе с NPN-транзисторами.

На рис. 2 показаны соответствующие соглашения об именах напряжения и тока.Начиная с тока, I B является базовым током и показан входящим в базу NPN. Те же аргументы применимы к I C и I E , причем I E показан выходящим из транзистора.

Видно, что: I E = I C + I B

Для напряжений V CE - это напряжение между коллектором и эмиттером и обычно является положительным значением для NPN-транзисторов. Другими словами, для NPN-транзистора напряжение коллектора обычно выше, чем напряжение эмиттера.

Согласно тому же соглашению, V BE - это напряжение между базой и эмиттером. В целом это положительно для NPN.

Рисунок 2 - Напряжение и ток NPN BJT

Ключом к пониманию того, как транзистор может управлять большой нагрузкой, является следующее уравнение:

I C = βI B, , где β - коэффициент усиления постоянного тока, который может составлять от 20 до 300 или более.

Это говорит о том, что ток коллектора равен значению β, умноженному на ток базы.Итак, если β = 100, то ток коллектора будет в 100 раз больше базового тока.

Значение β указано в техническом описании данного транзистора как h FE. Для целей данной статьи они означают одно и то же. Обратите внимание, что это не фиксированное значение для данного транзистора, но несколько зависит от значения тока коллектора и температуры, но это не имеет большого значения для целей данной статьи.

Когда BJT используются в качестве переключателей нагрузки, они используются в двух режимах: Cutoff и Saturation.Рассмотрим рисунок 3 ниже. Как было сказано ранее, I C = βI B. Итак, если I B = 0, то I C также должен быть 0. В этом состоянии транзистор находится в режиме отсечки. Обратите внимание, что, поскольку в транзисторе не течет ток, он не рассеивает мощность; также в этом случае V C совпадает с V CC .

Для следующей части предположим, что V CC = 10 В, R = 10 Ом и β = 100. Давайте посмотрим, что произойдет, когда I B = 1 мА.В этом случае I C = 100 мА, поскольку β = 100. Напряжение на резисторе I C x R L , или 1 В. Это означает, что тогда V C должно быть 9 В, поскольку V CC составляет 10 В, а падение напряжения на R L составляет 1 В. Тот же аргумент применим, если I B = 2 мА и так далее.

А что будет, если I B = 20 мА. По расчетам это означает, что I C = 2000 мА, или 2А. Однако этого не может быть.Поскольку V CC = 10 В и R L = 10 Ом, максимальный ток, который может протекать через R L , составляет 1 А.

Другими словами, максимальное значение I C также равно 1A. Это происходит, когда V C = 0, что означает, что транзистор полностью замкнут на землю.

В этом состоянии транзистор находится в режиме насыщения. В этом режиме ток коллектора транзистора является максимальным, который позволяют условия схемы, и увеличение тока базы не приведет к его увеличению.

Итак, уравнение I C = βI B выполняется только до насыщения транзистора. Обратите внимание, что если в только что описанном примере V CC теперь увеличивается, скажем, до 25 В или R L изменяется на 1 Ом, транзистор больше не будет насыщаться. Таким образом, насыщение определяется в зависимости от условий внешней цепи.

Наконец, обратите внимание, что настоящие транзисторы не могут полностью замыкать свои коллекторы и эмиттеры, если они не неисправны.Когда реальный транзистор насыщен, его V CE будет иметь значение V CEsat . Это значение указано в таблице данных транзистора и обычно составляет от 0,2 В для небольшого транзистора до более 1 В для большого.

В CEsat также зависит от тока коллектора и температуры. Эта зависимость обычно приводится в виде набора кривых в таблице данных.

В режиме насыщения транзистор рассеивает некоторую мощность, заданную параметром

.

Рассеиваемая мощность = I C x V CEsat

Однако, поскольку V CEsat обычно довольно низок, рассеиваемая мощность также будет низкой.Таким образом, отсечка и насыщение - это два состояния, при которых транзистор будет рассеивать наименьшую мощность.

Сфокусируясь теперь на базе транзистора, быстрый способ установить I B состоит в том, чтобы предположить, что V BE составляет 0,7 В. Это значение подходит для большинства транзисторов.

Итак, в данном случае по закону Ома

I B = (V BB - 0,7) / R B

Если необходимо заданное значение I B , то B можно рассчитать как:

R B = (V BB - 0.7) / I B

Для насыщения транзистора требуется минимальное значение I B , которое вызовет максимальное значение I C , учитывая значение β транзистора и условия схемы.

На практике это значение I B должно быть больше этого минимума примерно на 10–15%, чтобы учесть изменение значения β от устройства к устройству.

Рисунок 3 - Работа транзистора

Управление BJT от микроконтроллера

То, что было только что описано, на самом деле является переключателем NPN BJT нижнего уровня.Если бы V BB был выходным контактом микроконтроллера, то, зная его высокое логическое значение, требуемый ток нагрузки и значение β транзистора, можно легко вычислить значение R B .

Еще несколько вещей, которые нужно проверить, это убедиться, что:

Вычисленное значение I B не превышает допустимого управляющего тока микроконтроллера.

Ток нагрузки не превышает максимального тока коллектора транзистора.

Рассеиваемая мощность в режиме насыщения не превышает максимальной рассеиваемой мощности транзистора.

Напряжение V CC не превышает максимального значения V CE транзистора.

Для обеспечения надежной работы в приведенный выше пример также должны быть включены некоторые запасы безопасности и снижения номинальных характеристик. Около 20% - это разумно.

Перемещение тяжелых грузов с помощью Darlington

Поскольку ток возбуждения вывода GPIO микроконтроллера редко превышает 10 мА, а минимальное значение β транзистора обычно не превышает около 50 для силового транзистора, то максимальный ток, которым можно управлять, составляет около 500 мА.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Для управления более высокими токами можно использовать схему Дарлингтона. Есть Дарлингтоны, доступные в одном корпусе, или он может быть собран с использованием двух транзисторов, как показано на рисунке 4.

Рисунок 4 - NPN Darlington

В этой схеме Q1 обычно представляет собой транзистор малой мощности с высоким коэффициентом усиления, а Q2 - транзистор большой мощности.Если предположить, что резистор R на данный момент отсутствует, то видно, что весь ток эмиттера Q1 течет в базу Q2.

Как указывалось ранее, ток эмиттера - это сумма тока коллектора и тока базы.

Итак, I E = I C + I B

Таким образом, I E = β x I B + I B , или I E = (β + 1) I B

Поскольку β довольно велико, (β + 1) близко к β.

Это означает:

I E ≈ I C

Теперь, поскольку I E Q1 течет непосредственно в базу Q2, это означает, что I C2 , ток коллектора Q2 определяется как:

I C2 = β1 x β2 x I B1 .

Итак, небольшой входной базовый ток может вызвать большой выходной ток коллектора. Однако следует отметить несколько моментов. Во-первых, V BE этого составного транзистора теперь является суммой значений V BE двух транзисторов.Это необходимо учитывать при расчете номинала базового резистора, как описано ранее.

Что касается резистора R, то он влияет на время выключения Q2. Когда Q2 проводит, в его базу текут заряды. Теперь, когда на входе Q1 становится низкий уровень, Q1 отключается, и заряд, хранящийся в Базе Q2, некуда деваться.

В конечном итоге он исчезнет в результате внутреннего процесса, называемого рекомбинацией носителей, но до тех пор, пока это не произойдет, Q2 останется в проводящем состоянии. Это может длиться от нескольких микросекунд до десятков микросекунд в зависимости от транзистора.

По сути, микроконтроллер отключает свой выход, но после этого нагрузка остается включенной еще некоторое время. R используется для ускорения выключения Q2 путем стравливания сохраненного базового заряда.

Для таких приложений, как ШИМ, рекомендуется использовать этот резистор. Для большинства встроенных приложений подходят значения от 1 кОм до 5 кОм.

R также шунтирует часть базового тока Q2 при нормальной работе. Этот ток равен (V BE2 / R) или приблизительно 0.7 / Р. Чтобы компенсировать этот ток, просто увеличьте базовый ток Q1. Поскольку этот базовый ток x β1 должен быть равен 0,7 / R, из этого следует, что базовый ток в Q1 должен быть увеличен на (0,7 / (β1 x R)).

Переключатель нижнего уровня на полевом МОП-транзисторе

Как и BJT, MOSFET бывает двух основных видов: N-канал и P-канал. N-канальный MOSFET похож на NPN и используется для переключения нижнего уровня. Аналогичным образом, полевой МОП-транзистор с P-каналом похож на PNP BJT и используется для переключения высокого уровня.

N-канальный MOSFET-транзистор относительно легко подключить к выходному выводу GPIO микроконтроллера при соблюдении определенных условий.

На рисунке 5 показан этот тип полевого МОП-транзистора вместе с некоторыми из его наиболее важных аспектов, когда это устройство рассматривается как переключатель низкого уровня.

Рисунок 5 - MOSFET расширения с N-каналом

Когда напряжение подается между затвором и источником, ток начинает течь между стоком и источником, если напряжение выше порогового напряжения, V th , которое указано в его техническом описании.

Выше этого порогового значения, чем выше V GS , тем больше ток стока I D , пока V GS не достигнет V GSMax , что опять же указано в таблице данных.Сравнение I D и V GS определяется набором кривых в таблице данных, и, как и в случае BJT, полевой МОП-транзистор насыщается, когда ток стока является максимальным, что позволяют условия схемы.

Поскольку полевой МОП-транзистор является устройством, управляемым напряжением, для его включения почти не требуется ток. Таким образом, GPIO от микроконтроллера может управлять полевым МОП-транзистором, который затем может управлять очень большими токами. Нет необходимости в аранжировках Дарлингтона. Доступны полевые МОП-транзисторы с низким напряжением и , которые полностью усилены приводом 5V Gate, которые, в свою очередь, могут управлять несколькими усилителями.

Еще одно преимущество MOSFET перед BJT состоит в отсутствии V DS sat. Вместо этого, когда полевой МОП-транзистор является проводящим, соединение сток-исток ведет себя как резистор со значением R DS , которое является функцией V GS и может быть очень низким значением для мощного полевого МОП-транзистора.

Таким образом, рассеиваемая мощность полевого МОП-транзистора, когда он является проводящим или увеличенным, представляет собой просто значение (I D ) 2 , где I D - ток стока, умноженный на R DS , То же, что и мощность, рассеиваемая в резисторе R, пропускающем ток I, определяется выражением P = I 2 R.

Таким образом, во многих случаях мощность, рассеиваемая насыщенным MOSFET, будет меньше, чем мощность эквивалентного BJT. Это особенно актуально, если у меня D довольно высокий.

Следует отметить, что все N-канальные МОП-транзисторы имеют встроенные диоды-подложки, как показано на рисунке 5. Это заложено в конструкции МОП-транзистора. На практике это означает, что Утечка должна быть более положительной, чем Источник; в противном случае этот диод будет проводить.

Наконец, одна большая проблема с полевыми МОП-транзисторами - это емкость затвор-исток.Он может быть довольно большим для мощного полевого МОП-транзистора - 3 нФ и более не редкость. Фактически это означает, что перед тем, как МОП-транзистор сможет начать проводить, эта емкость затвора должна сначала зарядиться. Учитывая, что большинство микроконтроллеров могут подавать ограниченный ток, для зарядки этого конденсатора потребуется время.

Итак, при непосредственном управлении выходом микроконтроллера MOSFET просто не может переключаться очень быстро. Таким образом, использование полевого МОП-транзистора для быстрой ШИМ, вероятно, не сработает.

В таких ситуациях драйвер полевого МОП-транзистора, такой как TI UCC27511, должен использоваться между выводом GPIO и затвором полевого МОП-транзистора.Это, конечно, добавляет еще больше стоимости к и без того более высокой стоимости MOSFET по сравнению с BJT.

Наконец, не забудьте загрузить бесплатно PDF : Окончательное руководство по разработке и продаже вашего нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который вам может понравиться:

Транзистор

как переключатель - принципиальная схема, работа и применение

В основном транзистор - это тип полупроводникового устройства.Эти устройства состоят из трех номеров клемм. Взаимодействие между двумя терминалами будет таким, что в нем образуются два соединения. Эти переходы и в целом клеммы отвечают за генерацию тока, который либо регулируется током, либо спроектированы соответствующие устройства с регулируемым напряжением. В этой статье ниже рассматривается транзистор как коммутатор, а также его работа и приложения.

Основное приложение, которое часто используется, - это устройство, работающее как коммутатор.Основная концепция его функционирования зависит от его режимов работы. Устройство, которое предпочитает низкое значение напряжения постоянного тока, может быть включено или выключено с помощью транзисторов.

Транзистор в качестве переключателя

В основном, в соответствии с поколениями электронных схем, которые революционизировались и улучшались для лучшей и комфортной жизни, транзисторы сыграли заметную роль, заменив себя электронными лампами.

Это приводит к повышению эффективности и сжатия по размеру.Основные функции транзистора можно наблюдать либо путем использования его для усиления, либо для основного применения в цифровой схеме переключения.

Основная причина использования этого транзистора в качестве переключателя заключается в том, что ток на базе напрямую контролирует ток, присутствующий на коллекторе. Если ток на базе превышает минимальное значение отсечки напряжения, тогда поведение транзистора похоже на закрытый переключатель, в противном случае он останется в состоянии открытого переключателя.

Транзистор как переключатель

Путем приложения смещения к базе транзистора оба типа биполярного переходного транзистора могут использоваться в качестве переключателей. Области, в которых работа переключателя является предпочтительной: либо он должен полностью находиться в области, называемой насыщением, либо в рабочей области отключения. Основная идея использования этих регионов заключается в том, что режим переключения должен быть полностью включен или выключен.

Как работают транзисторы?

Работа транзистора зависит от рабочих регионов.В области отсечки базовый ток будет равен нулю. Поскольку вход равен нулю, ток коллектора также будет равен нулю, поддерживая максимальное напряжение на коллекторе.

Это для транзистора N-P-N, тогда как для транзистора P-N-P значение напряжения на эмиттере должно быть отрицательным. Поскольку в этом состоянии нет потока носителей, ширина области, называемой истощением, увеличивается, указывая на то, что в этом состоянии нет очевидного протекания тока. Этот тип области называется зоной отсечения.

Следующее условие, при котором работает переключатель, - это насыщение токов на базе и на коллекторе до максимума, поддерживая минимальное напряжение на коллекторе. Это рабочее состояние заставляет транзистор работать в полностью открытом режиме. Это для транзистора N-P-N, тогда как для P-N-P значение напряжения эмиттера должно оставаться положительным по сравнению с базовым.

Эта операция транзистора известна как однополюсный однопроходный (SPST). Это указывает на то, что когда на базу подается нулевой сигнал, транзистор будет включен, в противном случае он будет выключен.

Транзистор N-P-N как переключатель

После того, как напряжение было приложено к области базы на его основе, выполняется операция переключения. Как и в случае с диодом, присутствует напряжение включения. Между областью эмиттера и базой подаваемое напряжение должно достигать напряжения включения. Если он пересекает его, транзистор считается включенным, в противном случае - выключенным.

Когда транзистор находится в состоянии ВКЛ, генерируемый ток стремится течь от источника к нагрузке.Нагрузкой может быть либо светодиод, либо резистор, нагрузка зависит от требований.

Транзистор P-N-P как переключатель

Условия работы транзисторов P-N-P и N-P-N различаются в зависимости от применения положительного или отрицательного напряжения. Но критерии операции остались прежними. Если он находится в состоянии ВКЛ, наблюдается протекание тока, в противном случае - ВЫКЛ.

Здесь нагрузка подключается к заземлению транзистора, а затем транзистор P-N-P переключает питание.В этом случае клеммная база соединена с землей.

Выше показано основное применение транзистора в качестве переключателя для биполярных переходных транзисторов P-N-P и N-P-N.

Приложения

Применения транзистора, используемого в качестве переключателя, следующие:

  1. Наиболее часто используемым практическим приложением, которое используется для транзистора в качестве переключателя, является функционирование светодиода.
  2. Работой реле можно управлять путем внесения необходимых изменений в схему, чтобы любое внешнее устройство было подключено к реле и стало управляемым.
  3. Двигатели постоянного тока можно контролировать и контролировать с помощью этой концепции транзисторов. Это приложение используется для включения и выключения двигателя. Изменяя значения частот транзистора, можно изменять скорость двигателя.
  4. Один из примеров таких выключателей - лампочка. Это облегчает включение света при ярком окружении и выключает при темном окружении. Это делается с помощью светозависимого резистора (LDR).
  5. Компонент, называемый термистором, который определяет температуру окружающей среды, можно контролировать с помощью этой техники переключения.Термистор называется резистором. Это сопротивление имеет тенденцию к увеличению, когда измеренная температура низкая, и уменьшение сопротивления наблюдается, когда измеряемая температура высокая.

В практическом мире существует множество приложений, касающихся реле, двигателей и т. Д., При этом каждое практическое участие играет важную роль в переключении устройств. Это может быть как переменное, так и прямое питание. В настоящее время в стремлении обеспечить комфортное и безопасное проживание при проектировании систем автоматизации или систем обнаружения пожара эта техника переключения устройств играет доминирующую роль.Можете ли вы объяснить основную цель использования реле в схемах автоматики?

Теория коммутации транзисторов

В другое важное применение транзистора - как выключатель. в отличие механические переключатели и реле не изнашиваются, и ими можно управлять в электронном виде. Однако они не может безопасно и экономично переключаться на нагрузки более 50 А.
Автоматизация систем возможна, поскольку компьютеры
могут быть запрограммированы для управления транзисторами, которые затем управляют другие маломощные нагрузки или устройства, такие как реле, которые управляют более высокими текущие силовые нагрузки.

закрытие переключателя вперед смещает транзистор, который затем запитывает светодиод


Когда пиво Duff N.O. бесконтактный переключатель закрытый транзистор смещен в прямом направлении, это возбуждает
катушку реле, замыкающую Н.О. контакт. Теперь цепь светодиода замкнута и Светодиод горит.
(диод рядом с реле катушка устраняет часть индуктивной отдачи катушки)

Цифровой логика стала возможной благодаря транзисторным переключателям и лежит в основе логические вентили, входящие в состав ВСЕХ цифровых устройств.
Чрезвычайная скорость, на которой твердотельные устройства можно переключать, включив ЦП, маршрутизаторы и другие устройства, которые делают возможными компьютеры и Интернет

Возраст ВОЗМОЖНОСТИ управляется транзистором!


Цифровое применение транзистора Переключение


В двоичном числе в системе всего 2 числа ... ноль и один
0 = Lo
1 = Hi



H - это транзистор с активированным светом выключатель.

а) свет падает на фоторезистор, и сопротивление падает

b) ток затем течет из базовой цепи с прямым смещением E-C

c) E-C смещается в прямом направлении, и ток течет, возбуждая цепь светодиода.


В зуммер с транзисторным управлением цепь активируется, когда нормально закрыто (NC) кнопка открыта.

Когда кнопка закрыта зажимы переход E-B при 0 вольт предотвращение смещения цепи E-C

Открытие переключатель позволяет току течь через цепь E-B вперед смещение транзистора


P Фототранзисторы иметь открытую базу

W курица подвергается воздействию света фотоэлектричество, генерируемое вперед, смещает переход
включает транзистор

P фототранзисторы используются в оптических изоляторах, которые передают сигналы между двумя ступенями. и предотвратить смешивание разных напряжений


H раньше это прекращение Оптоволоконный кабель
подключен к фототранзистору, где цифровой световой сигнал
будет преобразован в электронный сигнал



ОПТОКУПЛЕРЫ

Оптопара выше используется для изоляции цепи управления низкого напряжения (оставил) от цепи управления высоковольтным двигателем (справа)

Схема цепи оптопары: когда S1 закрыт -
закрыт, он включает светодиод D1, свет которого смещает вперед транзистор Q1
Чип оптического изолятора
Входящий сигнал электрически изолирован от исходящий сигнал

Большинство цифровых Электроника основана на переключении транзисторов для выполнения двоичных функций на высоких скорость.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *