Трехфазный двигатель схема: Схемы подключения трехфазных электродвигателей

Содержание

Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

Подключение трехфазного двигателя к трехфазной сети: существующие схемы

Автор Aluarius На чтение 5 мин. Просмотров 14.6k. Опубликовано

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт.

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При  использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.


Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Схемы подключения электродвигателя, подключение трехфазного двигателя к трехфазной сети 380 В

На производственном предприятии регулярно возникает необходимость подключения или переподключения трехфазного электродвигателя к трехфазной сети 380 В, 660 В или однофазной 220 В, но не всегда есть опыт грамотно работать со всеми возможными схемами подключения трехфазного электродвигателя. В зависимости от цели эксплуатации электродвигателя, ниже приведены схемы подключения трехфазного двигателя со всеми достоинствами и недостатками. При покупке электродвигателя не всегда обращают внимание на схему подключения на именной табличке или на задней крышке клемной коробки, а подключают новый двигатель по привычке как старый и это является чуть ли не основной причиной сгоревших моторов. Следует отметить что трехфазные электродвигатели встречаются трех модификаций по возможности подключения:

  • 380 В — 3 вывода, схема «звезда» (Y)
  • 220 / 380 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
  • 380 / 660 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)

 

ВНИМАНИЕ! Работа с электрическими двигателями без заземления, пусковой и защитной автоматики запрещена. Неквалифицированное обращение с высоким напряжением может нанести вред здоровью и летальному исходу.

Схема подключения электродвигателя 380В — 3 вывода

Это самый простой тип подключения, когда заводом изготовителем заранее собрано схему «звезда» (Y)  и в клемной коробке предстоит подсоединить всего три провода (3 фазы) без наличия перемычек меж клеммами.

 

Преимущество данной схемы:

  • Простота подключения электродвигателя.
  • Надежная работа с максимальным КПД и мощностью в номинальном режиме.

 

Недостаток такого исполнения:

  • Невозможность использовать электродвигатель от однофазной сети 220 В с максимальной мощностью до 70%
  • Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.

Схема подключения электродвигателя «220/380В» треугольник / звезда — 6 выводов

Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и подключается в трехфазную сеть 380 Вольт по схеме (Y) «звезда» см. Рис.1, которая собрана по умолчанию на заводе изготовителе. В таком исполнении завод изготовитель выпускает чаще всего маломощные трехфазные электродвигатели от 0,12 кВт до 7,5 кВт или же габариты двигателей от АИР 56 до АИР 112.

 

Преимущества схемы «звезда» (Y) для 220/380 В:

  • Высокая надежность работы электромотора.
  • Максимальное КПД двигателя.
  • Устойчивость к кратковременным перегрузам электродвигателя.

 

Преимущества схемы «треугольник» (Δ) для 220/380 В:

  • При необходимости данный электродвигатель может быть использован подключением от сети 220 В по схеме «треугольник» (Δ) с использование рабочего конденсатора и если потребуется дополнительно пускового конденсатора. В этом случае двигатель будет работать на 70% от заявленной мощности. Этот вариант подключения со всеми преимуществами и недостатками подробно разберем в следующей статье.

 

Недостатки исполнения электродвигателя 220/380 В:

  • Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.

Схемы подключения трехфазных электродвигателей «380/660В» треугольник / звезда — 6 выводов

Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и чаще всего в новом электродвигателе в заводском исполнении производителем заранее собрана по умолчанию схема «звезда» (Y) см. Рис.1. Исполнение 380/660 чаще всего идет на средней и большой мощности электродвигателей от 4 кВт до 315 кВт и более или от габарита АИР 132 до АИР 355 и более. В связи с универсальностью в эксплуатации данного исполнения электродвигателей средней и высокой мощности низковольтного оборудования можно смело заявить о достоинствах без недостатков. Трехфазные электродвигатели можно подключать к трехфазной сети 380/660 В по следующим схемам:

  • схема «звезда» (Y) или 660В используется для плавного пуска избегая тяжелого пуска (высокий пусковой момент) и высоких пусковых токов.
  • схема «треугольник» (Δ) работа от стандартной сети 380В в номинальном режиме эксплуатации электродвигателя.
  • схема «звезда-треугольник» (Y/Δ) комбинированная схема подключения для автоматического перехода с плавного пуска на 660В на рабочий режим 380В

 

Схема «звезда» для 380/660 В

Подключение звездой применяют для того, чтобы пуск электродвигателя сделать плавным за счет снижения пусковых токов. Но в ней есть один существенный минус для продолжительной работы: двигатель будет работать с мощностью на 30% меньшей от указанной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда» показано на Рис.1.

 

Схема «треугольник» для 380/660 В

Подключение треугольником к сети 380 В позволяет использовать всю заявленную мощность электродвигателя. Но и она имеет недостаток для пускового момента: во время пуска мотора сила тока очень высока и как результат в двигателе под тяжелой пусковой нагрузкой может подгореть изоляция обмоток. Как подключить трехфазный асинхронный электродвигатель по схеме «треугольник» показано на Рис.1.

 

Схема «звезда-треугольник» для 380/660 В

Комбинированная схема подключения звезда-треугольник позволяет использовать все преимущества двух отдельных схем и обойти их недостатки. Чаще всего так подключают электродвигатели с большой мощностью. Суть этого решения заключается в том, что двигатель запускается по схеме «звезда», а при достижении оптимального числа оборотов переключается на схему «треугольник». Таким образом пуск электродвигателя получается плавным с небольшими пусковыми токами, а после переключения схем его мощность увеличивается на 30% и полностью соответствует заявленной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда-треугольник» показано на Рис.2. Электродвигатель подключен по схеме «звезда», если замкнуты ключи K1 и K3, а по схеме «треугольник» – если замкнуты ключи K1 и K2. Переключение с одной схемы на другую происходит автоматически или вручную, в зависимости от предустановленного автоматического оборудования. Для этого используют чаще всего магнитный пускатель, пусковое реле или пакетный переключатель.

Схемы подключения трехфазного двигателя. к 3-х и 1-о фазной сети

Различные схемы подключения асинхронных двигателей к сети 380 вольт

Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

Как правильно подключить трехфазный двигатель «звездой»

Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

Выполняем соединение по схеме «треугольник»

Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

Виды электродвигателей

Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.

Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.

Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.

Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам

Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей

различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).

Однофазный

Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

Схема однофазного асинхронного двигателя

Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат

Если нужен реверс, то он делается по такой схеме:

Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

Электродвигатели постоянного тока

Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

  • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
  • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
  • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
  • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
  • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
  • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

ДПТ различают по способу возбуждения, они бывают:

  • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
  • С электромагнитным возбуждением.

Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

  • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
  • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
  • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
  • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы

Теперь важно не перепутать

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо

А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Как работает трёхфазный асинхронный двигатель?

Прежде всего, для работы трёхфазного асинхронного двигателя, необходимо создать вращающееся магнитное поле.

Создание вращающегося магнитного поля

Обмотки, которые расположены на статоре, равномерно смещены на 120 градусов относительно друг друга. Обмотка каждой фазы смещена относительно двух других на угол 120 градусов, то есть по обе стороны через 120 градусов расположены соседние фазы. Статор представляет собой полый цилиндр, который в сечении представляет собой кольцо. Внутри такого цилиндра расположен ротор. Три источника тока, отличатся друг от друга фазовым сдвигом. Этот сдвиг также составляет 120 градусов. В итоге, при прохождении трёхфазного переменного тока в обмотках статора, внутри статора образуется вращающееся магнитное поле.

В чем секрет создания вращения магнитного поля? Так как ток переменный, то создаваемое каждой фазой магнитное поле будет также переменным. Магнитный поток, который порождается прохождением тока в каждой обмотке, будет изменяться во времени точно также как породивший его ток. В то время когда один магнитный поток от первой фазы будет возрастать по величине, магнитный поток от второй фазы достигнет своего максимального значения и начнёт убывать по величине, магнитный поток от третьей фазы будет всё более уменьшаться, пока не достигнет своего минимального значения.

Магнитный поток переменного синусоидального тока любой из фаз изменяется по величине и направлению, тем самым чередуясь и пульсируя. Там где ранее был северный магнитный полюс, становится южный, а там где был южный полюс, там на его месте образуется северный полюс. Магнитное поле как бы пульсирует, но не вращается. Если пространственно равномерно по окружности расположить три катушки (соленоиды) так, чтобы их сердечники были направлены к центру окружности, а затем соединить в один общий магнитопровод наружные концы соленоидов (катушек), то мы получим прототип статора трёхфазного асинхронного двигателя. Подключив каждую катушку к источнику переменного тока, а именно к трём разным фазам, которые сдвинуты относительно друг друга на 120 градусов, мы получим не пульсирующее, а вращающееся магнитное поле.

По той причине, что магнитопровод будет общим, пульсирующие магнитные потоки от каждой катушки будут складываться с учётом направления и величины, тем самым образуя вращающийся вектор магнитного потока. Это удивительно, потому как статор неподвижен, но представляет собой магнит, поле такого магнита вращается, но статор остаётся неподвижен!!!

Как же преобразуется в дальнейшем электрическая энергия в механическую энергию? Если в статор, по обмоткам которого протекает трёхфазный ток и, соответственно, внутри него сосредоточено вращающееся магнитное поле, внести металлический предмет, то на него будет действовать механическая сила, которая будет пытаться этот предмет выкинуть из поля статора.

Как такое происходит? Магнитный поток статора индуцирует в короткозамкнутом роторе асинхронного двигателя ЭДС, так как цепь ротора замкнута, то по ней будет протекать электрический ток, который создаст второй магнитный поток – поток ротора. Взаимодействие двух встречных потоков ротора и статора создаст крутящий момент на роторе, и он начнёт вращаться. В соответствии с законом Ленца, ротор будет вращаться в том направлении, которое позволяет уменьшить магнитный поток статора.

Следует заметить, что принцип работы асинхронного двигателя не допускает синхронной скорости ротора с магнитным полем статора. В этом случае исчезнет ЭДС индукции в роторе, и ротор начнёт останавливаться. Синхронизация не достижима для асинхронного электродвигателя, скорость ротора в двигательном режиме может быть меньше скорости вращения магнитного поля.

Если ротору придать дополнительный крутящий момент от внешнего механического источника, так, чтобы его скорость стала больше чем скорость вращающегося магнитного поля статора, тогда электрическая машина перейдёт в генераторный режим работы, при котором происходит преобразование механической энергии в электрическую энергию.

Разница скоростей между статором и ротором позволяет говорить о таком явлении как скольжение ротора в магнитном поле статора. Необходимо помнить, что асинхронная электрическая машина переменного тока – это обратимая машина, которая может работать как в генераторном, так и двигательном режимах.

Производители электродвигателей

Российские производители электродвигателей

РегионПроизводительАсинхронный двигательСинхронный двигательУДКДПТ
СДОВ СДПМ, серво СРД, СГДШаговый
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИМосковский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • СГД — синхронный гистерезисный двигатель
  • УД — универсальный двигатель
  • КДПТ — коллекторный двигатель постоянного тока
  • КДПТ ОВ —
  • КДПТ ПМ —

Производители электродвигателей ближнего зарубежья

СтранаПроизводительАсинхронный двигательСинхронный двигательУДКДПТ
СДОВ СДПМ, серво СРД, СГДШаговый
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

СтранаПроизводительАсинхронный двигательСинхронный двигательУДКДПТ
СДОВ СДПМ, серво СРД, СГДШаговый
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
СШАGeneral Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
ГерманияSiemens AG
Бразилия WEG

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.

Подключение к однофазной сети

Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.

Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения до -90˚ а с помощью конденсатора на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.

Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.

Резистор на схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.

Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.

Или посчитать по формулам:

Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.

Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).

Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.

Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:

Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.

Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:

  1. Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
  2. Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!

Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.

Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.

Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Материалы по теме:

  • Подключение магнитного пускателя на 380 и 220в
  • Как собрать трехфазный щит
  • Как выбрать частотный преобразователь

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Устройство электродвигателя

Основные элементы, из которых состоит типичный трехфазный двигатель таковы:

  • Корпус, имеющий ножки, которыми он крепится к фундаменту;
  • Статор, напоминающий по строению простой трансформатор. Имеет сердечник и обмотку При подаче тока создается вихревое электромагнитное поле.
  • Ротор. Основная вращающаяся часть.
  • Вал, на который жестко насажен ротор. Передняя часть выходит наружу, имеет шпоночную борозду под шестерни или шкив. На заднюю часть, выходящую за пределы корпуса насаживается крыльчатка для охлаждения и обдува.
  • Подшипки, находящиеся в нишах передней и задней крышки.
  • Герметичная клеммная коробка.

Подключение трехфазного двигателя к сети 220 или 380 В по схеме

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить  подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках.  Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Схемы подключения обмоток двигателя

В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

  • Звезда;
  • Треугольник;
  • Звезда и треугольник.

Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

Пример обозначения на шильде

Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.

Звезда

Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется  в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:

Схема подключения звезда

Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам  A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.

Если рассматривать данную схему на примере борна, выглядеть оно будет так:

Соединение обмоток звездой

Треугольник

Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.

Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:

Схема подключения треугольник

Как видите, соединение производится от A2 к B1, от B2 к C1,  от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.

Соединение обмоток треугольником

Варианты подключения

Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

В однофазную сеть

Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети.  Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°,  а вот однофазный конденсатор, наоборот, в положительную до +90°.

Графически функция отставания напряжения от тока будет выглядеть следующим образом:

Изменение тока и напряжения на емкости и индуктивности

Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:

Схема включения в однофазную сеть

Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения  SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

Расчет конденсаторного пуска производится по формуле:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

В трёхфазную сеть

В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.

Схема включения в трехфазную сеть

На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

  • подача напряжения на двигатель от сети производится через рубильник 1.
  • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
  • после чего двигатель начинает вращение, а пусковая кнопка  6 шунтируется через повторитель 5;
  • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
  •  защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте: https://www.asutpp.ru/elektromagnitnyj-puskatel.html

Видео по теме

Схема реверса трехфазного двигателя

Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Типовые схемы подключения трехфазного двигателя к однофазной сети

Начала и концы обмоток (различные варианты) Схемы подключения трехфазного двигателя в однофазную сеть

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора.

В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

Подключение трехфазного двигателя по схеме треугольникРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник

  • В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Положение контактов в распределительной коробке трехфазного двигателяПодключение трехфазного двигателя по схеме звездаРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора.

Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д.

Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника».

В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Таблички трехфазных электродвигателей

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода).

В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник».

В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов.

В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю.

В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления).

Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой.

Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Определение пар проводов относящихся к одной обмотке

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону.

Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В.

Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов.

Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Табличка разбираемого электродвигателяКлеммная колодка

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода.

Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5).

Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто.

Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Статор электродвигателяПрипаянные проводаПрипаянные проводаВывод проводов в клеммную коробкуПодключение проводов к клеммной колодке

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме «треугольник». В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной.

Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.Подключение трехфазного двигателя к однофазной сети по схеме треугольникПодключение трехфазного двигателя к однофазной сети по схеме треугольник

Обеспечение пуска.

Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже).

Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Подключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Выключатель

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Реверс трехфазного двигателя

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Cр = 2800•I/U

  1. Для соединения «треугольником»:

Cр = 4800•I/U

  • Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73•U•n•cosф)

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой.

Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким.

Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется.

Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Клиноременная передача мотоблока Салют 5

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя.

Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения.

Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + … + Сn.

Параллельное соединение конденсаторов

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Конденсаторы При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами. Литература

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?» Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.

В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока: 1. Однофазная сеть 220 В,
2.

Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода. Как определить напряжение в вашей сети?
Очень просто.

Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.

В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными.

В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

  • Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.

2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4.

Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах.

Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:

— использование автоматического выключателя или автомата защиты электродвигателя

Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты. — использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида). Устройство электромагнитного пускателя: Магнитный пускатель устроен достаточно просто и состоит из следующих частей: (1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания). При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5). Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.

Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя.

При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к.

для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт. Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В. Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В.

То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения: — регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях), — при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток. Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя. Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя. Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя. Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях. Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Технический директор
ООО «Насосы Ампика»

Моисеев Юрий.

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

  • У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
  • Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
  • Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

  1. Определим емкость рабочего конденсатора:
  2. Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

  • Теперь нам необходимо, применив навыки электротехники , собрать из этих конденсаторов необходимую нам емкость.
  • Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

  1. Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в х, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Введение в основные схемы управления трехфазным двигателем

Типичные трехфазные двигатели используют большой ток при большем напряжении, чем большинство других двигателей. В таких ситуациях имеет смысл разработать системы управления, которые изолируют оператора как можно дальше от опасного напряжения. Эта изоляция может быть в форме цифрового частотно-регулируемого привода или устройства плавного пуска, но может быть даже более простой с использованием реле и контакторов.

Каждому большому двигателю требуется цепь для включения и выключения.Это может быть простое включение / выключение барабанного переключателя или сложное устройство частотно-регулируемого привода. Тем не менее, необходима цепь управления.

В этой статье объясняется несколько общих схем управления для наиболее типичных требований к трехфазным двигателям. Если двигателю необходимо двигаться вперед и назад или если ему требуется регулирование скорости, тогда должна быть определенная схема, используемая для управления таким приложением.

Рисунок 1.Управление трехфазными двигателями требует учета как схемы управления, так и потребляемой мощности. К счастью, если принять во внимание безопасность, это довольно простой процесс.

Безопасность прежде всего!

Не рекомендуется использовать ручной переключатель для прямого включения трехфазного источника питания, за исключением низковольтных приложений, таких как реверсивный барабанный переключатель на фрезерном или токарном станке. При высоком напряжении размыкание и замыкание переключателя может вызвать искру, которая может травмировать оператора и воспламенить находящиеся поблизости частицы воздуха.

При разработке схемы управления обычно лучше управлять схемой управления низким напряжением, а затем позволить схеме управления управлять собственными силовыми устройствами, такими как контакторы. Если вы планируете использовать ручной переключатель с прямым приводом, убедитесь, что он установлен правильно и работает в надлежащих пределах.

Одномоторный двигатель только с двухпозиционным управлением

В этом самом простом приложении одна кнопка включает двигатель, другая выключает его (вероятно, они должны быть зеленого и красного цвета соответственно).Кнопки приводят в действие контактор двигателя с реле перегрузки или без него.

Если пускатель двигателя содержит вспомогательный (вспомогательный) контакт, то схема может быть построена следующим образом:

  • И зеленая кнопка (NO), и вспомогательный контакт (NO) будут подключены к источнику питания. Для катушки контактора 120 В переменного тока это будет напряжение L.
  • Эти зеленые кнопки и дополнительные контакты будут соединены вместе с красной (NC) кнопкой.
  • Эта красная кнопка подключится к катушке контактора, которая вернется в положение -V или нейтраль.Реле OL также может быть подключено последовательно с катушкой.

Рис. 2. Схема простой пусковой цепи, обеспечивающей включение / выключение.

Если у двигателя нет вспомогательного контакта и нет возможности его установки, то цепь необходимо немного отрегулировать.

У вас должен быть доступ к двухполюсному реле либо с двойным ходом, либо с обоими нормально разомкнутыми контактами.

Используйте реле для точной замены контактора в предыдущей схеме.Зеленая и красная кнопки включают реле, при этом один из контактов реле параллелен зеленой кнопке.

Второй контакт реле будет приводить в действие контактор, для которого больше не требуется установка вспомогательного контакта.

Рис. 3. Без вспомогательного контакта на стартере необходимо использовать реле для управления блокировкой.

В даже более простых приложениях может быть достаточно переключателя на четверть оборота.Переключатель с удержанием может выполнять функцию пуска / останова, и если переключатель имеет пружинный возврат в центр, управление будет отображаться как функция JOG. Любой из них может быть полезен в некоторых ситуациях.

Рис. 4. Простой четвертьоборотный переключатель может включить катушку стартера, если кнопки пуска / останова не нужны.

Управление реверсом

Для предыдущих схем единственный способ изменить направление вращения — это поменять местами провода для клемм стартера.Это неэффективно и опасно! Если вам нужно, чтобы двигатель реверсировал, есть схемы, которые сделают эту работу за вас!

Концепция трехфазного электричества позволяет просто заменить две трехфазные линии на двигатель. Это может быть выполнено с помощью пары контакторов или специального связующего набора контакторов, который уместно называется «реверсивным контактором».

Хотя в этой схеме используются два контактора, важно, чтобы они НИКОГДА не включались одновременно.И если они это сделают, по какой-то странной случайности, им следует механически запретить закрытие обоих одновременно.

В этой схеме потребуются два реле DPDT — одно для включения / выключения, другое для управления направлением. В приложении управление направлением будет переключаться между катушками стартера.

Два реле будут запитаны таким же образом, как и две предыдущие цепи. Реле 1 обеспечивает возможность фиксации и позволяет питанию достигать любой из катушек пускателя.Если это первое реле выключено, то оба стартера будут отключены.

Второе реле включается четвертьоборотным переключателем с фиксацией. В обесточенном состоянии реле 2 разрешает подачу питания только на стартер 2. При включении реле 2 подает питание только на стартер 1.

При таком расположении возможны только три комбинации:

  1. Оба стартера ВЫКЛЮЧЕНЫ
  2. Только стартер 1
  3. Только стартер 2

Нет работы цепи, в которой могут быть включены оба пускателя.

Рис. 5. С двумя реле и двумя блокированными пускателями можно построить простую реверсивную схему.

Использовать два стартера для изменения направления просто, но их расположение может сбивать с толку.

Пример схемы показан ниже. Три входящие фазовые линии подключаются к каждой из входных клемм обоих пускателей. Прочитай внимательно.

  • На выходной стороне пускателей первый полюс первого пускателя соединен с третьим полюсом второго пускателя.
  • Второй полюс обоих подключен.
  • Наконец, третий полюс первого пускателя подключается к первому полюсу второго пускателя.

Рисунок 6. Расположение фазных линий в полюсах контактора. Две катушки стартера являются частью схемы управления, показанной ранее.

Как видите, если оба пускателя будут запитаны одновременно, фазы с первой по третью будут закорочены вместе и вызовут сбой в цепи.Убедитесь, что оба стартера не могут включиться одновременно.

Таким образом можно поменять местами любые две из трехфазных линий. Если вы перепутаете все три линии, изменения направления не произойдет — только потенциальная опасность короткого замыкания.

Установки с трехфазными двигателями



ЗАДАЧИ

  • для нескольких типов трехфазных асинхронных двигателей переменного тока определяют:
        • размер проводов, необходимых для трехфазного, трехпроводного ответвленные цепи.
        • типоразмеров предохранителей, обеспечивающих пусковую защиту.
        • средства отключения, необходимые для данного типа двигателя.
        • размер блоков тепловой перегрузки, необходимых для работы по перегрузке по току защита. размер главного питателя к моторной установке.
        • Требуется максимальная токовая защита главного фидера.
        • главное разъединяющее средство для моторной установки.
  • используйте Национальный электротехнический кодекс.

Работа промышленного электрика требует знания Национального Требования электрического кодекса, регулирующие установку трехфазных двигателей, и возможность применения этих требований к установкам. Элементы схемы двигателя показаны на 1.

В этом блоке описывается процедура определения размера провода и надлежащая защита от перегрузки и пуска для типичного трехфазного двигателя установка. Пример установки двигателя состоит из фидерной цепи. питание трех параллельных цепей.Каждая из трех ответвленных цепей подключена к трехфазному двигателю указанной мощности. Фидерная цепь и ответвленные цепи имеют необходимую защиту от перегрузки по току. Национальным электротехническим кодексом.


ил. 1 Линейная схема системы управления двигателем.

НАГРУЗКА ТРЕХФАЗНОГО ДВИГАТЕЛЯ


ил. 2 Ответвительная цепь на каждый двигатель

Установка промышленного двигателя, описанная в этом примере, подключена к сети 230 В, трехфазной, трехпроводной сети (2).Загрузка Эта система состоит из следующих цепей.

1. Одна ответвленная цепь, питающая трехфазную индукционную цепь с короткозамкнутым ротором. двигатель на 230 вольт, 28 ампер, 10 л.с., с маркировкой буквой F.

2. Одна ответвленная цепь, питающая трехфазную индукционную цепь с короткозамкнутым ротором. двигатель на 230 вольт, 64 ампера, 25 л.с., с маркировкой буквой B.

3. Одна ответвленная цепь, питающая трехфазную индукционную систему с фазным ротором. двигатель рассчитан на 230 вольт, 54 ампер и 20 л.с.Ток ротора при полной нагрузке составляет 60 ампер.

РАЗЪЕМНАЯ ЦЕПЬ ДЛЯ КАЖДОГО ДВИГАТЕЛЯ

Значения, приведенные в таблицах NEC 310-16, 310-17, 310-18 и 310-19, включая примечания, должны использоваться с кодовой книгой тока для двигателей при определении допустимой нагрузки. сечения проводника и предохранителя.

Три конкретных факта должны быть определены для каждой из трех параллельных цепей. составляющая нагрузку установки.

1. Размер жил для каждой трехфазной трехпроводной ветви. схема.

2. Размер предохранителя, который будет использоваться для защиты от короткого замыкания. Предохранители защищают проводку и двигатель от любых неисправностей или коротких замыканий в проводке или обмотки двигателя.

3. Размер блоков тепловой перегрузки, которые будут использоваться для защиты от работы. Блоки защиты от перегрузки защищают двигатель от возможного повреждения из-за продолжающегося перегрузка мотора.

ПРИМЕЧАНИЕ: Значения ампер при полной нагрузке следует брать из паспортной таблички двигателя. только для расчета единиц тепловой перегрузки (см. статью 430-6 NEC).Другой расчеты основаны на номинальных значениях кодовой книги из 430-148, 149, 150.

ФИЛИАЛ ЦЕПЬ 1

Первая ответвленная цепь питает трехфазную индукционную цепь с короткозамкнутым ротором. мотор. Данные паспортной таблички этого двигателя следующие:

Асинхронный двигатель с короткозамкнутым ротором

Вольт 230

Этап 3

Кодовое письмо F

10 л.с.

Ампер 28

Скорость 1735 об / мин

Частота 60 Гц

Температурный диапазон 40 ° Цельсия

Размер проводника

Раздел 430-22 (а) Кодекса гласит, что проводники ответвленной цепи, один двигатель должен иметь грузоподъемность не менее 125 процент от номинального тока полной нагрузки двигателя.Это общее правило может быть измененным в соответствии с Таблицей 430-22 (a) Исключение для некоторых специальных классификации услуг.

Для определения сечения проводников используется следующая процедура. ответвительной цепи, питающей двигатель мощностью 10 л.с.

а. Двигатель мощностью 10 л.с. имеет номинальный ток полной нагрузки 28 ампер. Согласно в Раздел 430-152:

28 x 125% = 35 ампер

г. Используя ток 35 ампер и обращаясь к Таблице 310–16, подберите провод надлежащего размера. выбрано.Этот процесс требует, чтобы электрик определил температуру. номиналы каждой используемой оконечной нагрузки, а также номинальная мощность оборудования схема. Согласно Статье 110-14 (c) NEC, номинальная температура провод, используемый для определения амперной емкости (токовой нагрузки), не должен превышают допустимую температуру любого из соединений. Если все окончания отмечены на более высокую температуру, столбец в 310—16 отмеченный 60-градусный выбран, чтобы определить допустимую нагрузку проводника.Даже при использовании стандартного строительного провода THHN размер проводника составляет # 8 в Колонна с температурой 60 градусов.

г. В таблице C1 раздела C NEC указано, что 3 проводника THHN №8 будут поместиться в кабелепровод 1/2 дюйма.

Асинхронный двигатель с короткозамкнутым ротором подключается непосредственно через номинальное сетевое напряжение через пускатель двигателя. Ответвительная цепь, Защита от короткого замыкания и замыкания на землю для этого двигателя состоит из трех стандартные плавкие предохранители без выдержки времени, заключенные в предохранительный выключатель, расположенный на линейная сторона магнитного пускателя.Согласно разделу 430-1 09 Закона Код, этот переключатель должен быть переключателем цепи двигателя с номинальной мощностью в лошадиных силах, автоматический выключатель или выключатель в литом корпусе и должны быть внесены в список.

ПРИМЕЧАНИЕ: The Underwriters ’Laboratories, Inc. Электротехнические строительные материалы В списке указано, что «некоторые закрытые переключатели имеют двойную номинальную мощность, больший из которых основан на использовании предохранителей с соответствующей выдержкой времени для пусковых характеристик двигателя.Переключатели с такой мощностью рейтинги отмечены, чтобы указать на это ограничение, и проверяются на больших из двух оценок ».

Защита параллельной цепи двигателя

Защита от короткого замыкания и замыкания на землю для трехфазной, Асинхронный двигатель с короткозамкнутым ротором, обозначенный кодовой буквой F, приведен в Таблица 430-152. Для рассматриваемого двигателя параллельной цепи 1 двигатель устройство максимального тока цепи не должно превышать 300 процентов от полной нагрузки ток двигателя (предохранители без выдержки времени).Статья 430-52 с исключениями. относится к Таблице 430-152.

Плавкий предохранитель параллельной цепи для параллельной цепи, питающей двигатель с короткозамкнутым ротором:

Поскольку двигатель мощностью 10 л.с. имеет номинальный ток полной нагрузки 28 ампер и соответствующее значение из таблицы 430-152:

28 x 300% = 84 ампера

Раздел 430-52 гласит, что если значения для защиты параллельной цепи устройства, определенные с использованием процентных соотношений в Таблице 430-1 52, не соответствуют к стандартным размерам или номиналам устройства, затем к следующему большему рейтингу размера или следует использовать настройку.

Однако в Разделе 240-6 Кодекса указывается, что следующий более крупный стандарт номинал предохранителя свыше 84 ампер равен 90 амперам. Стандартный картридж без задержки предохранители номиналом 90 ампер могут использоваться в качестве защиты параллельной цепи. для этой схемы двигателя.

Защита параллельной цепи, короткого замыкания и замыкания на землю также может рассчитываться с использованием предохранителя с выдержкой времени. Ссылаясь на Таблицу 430–152, выбирается второй столбец и вычисляется 175% от 28 ампер (1.75 х 28 = 49 ампер). Используется следующий больший размер: в этом примере предохранители на 50 ампер. был бы выбор. Код позволяет электрику увеличить размер предохранителя по исключениям 430—52 с (1).

Трехполюсный, трехпредохранительный, Выключатели безопасности переменного тока 230 В

Ампер

Приблизительные значения мощности в лошадиных силах производителя

Стандартный

Максимум

30

60

100

200

400

3

7 1/2

15

25

50

7 1/2

15 *

30 *

60 *

100 *

ил.3 Столик для выключателей безопасности

Средства отключения

Согласно таблице для выключателей безопасности (3) отключающие означает, что для этого двигателя мощностью 10 л.с. предусмотрен предохранительный выключатель мощностью 15 л.с. и 100 ампер, установлены предохранители на 90 ампер.

Поскольку эти предохранительные выключатели имеют двойную номинальную мощность, допускается установка предохранительный выключатель на 60 ампер с максимальной мощностью 15 л.с., если выдержка времени предохранители соответствуют пусковым характеристикам двигателя.В размер предохранителей с выдержкой времени, установленных в выключателе безопасности, зависит от желаемая степень защиты и требуемый тип обслуживания мотор. Предохранители с выдержкой времени номиналом от 35 до 60 ампер могут быть установлен в выключателе безопасности.

Максимальная токовая защита при работе

Защита от перегрузки по току состоит из трех мониторов тока, обычно тепловой, размещенный в пускателе двигателя.(См. примечание после Таблицы 430-37 Кодекса для исключения из этого утверждения.)

Раздел 430-32 (а) (1) Кодекса гласит, что рабочая перегрузка по току защита (защита двигателя и параллельной цепи от перегрузки) для двигателя должен срабатывать при не более 125% тока полной нагрузки (как показано на паспортной табличке) для двигателей с отмеченным превышением температуры не более 40 градусов Цельсия.

Ток отключения тепловых блоков, используемых в качестве максимальной токовой защиты. это:

28 x 125% = 35 ампер

Когда выбранного реле перегрузки недостаточно для запуска двигателя или для перевозки груза, Раздел 430-3 4 разрешает использование следующего более высокого размер или номинал, но должен срабатывать не более чем на 140 процентов полной нагрузки ток двигателя.

ФИЛИАЛ ЦЕПЬ 2

Вторая ответвленная цепь питает трехфазный асинхронный двигатель с короткозамкнутым ротором. Данные паспортной таблички этого двигателя следующие:

Асинхронный двигатель с короткозамкнутым ротором

Вольт 230

Этап 3

Буквенный код B

Ампер 64

Скорость 1740 об / мин

Частота 60 Гц

25 л.с.

Температурный режим 40 градусов Цельсия

Размер проводника

Для определения сечения проводников используется следующая процедура. параллельной цепи, питающей 25-сильный двигатель.

а. Двигатель мощностью 25 л.с. имеет номинальный ток полной нагрузки 68 ампер (см. NEC Таблица 430-150). (Согласно разделу 430-22 (а) Кодекса 125% необходимо для емкость):

68 x 125% = 85 ампер

г. В таблице 310-1 6 указано, что медный провод № 3 типа TW или THHN или провод № 3 типа THW. (Предположим, что клеммы 60 ° C).

г. Таблица C1 раздела C показывает, что три проводника № 3 TW или THW может быть установлен в кабелепровод диаметром 1 1/4 дюйма.Требуется 1-дюймовый кабелепровод для трех проводов № 3 THHN.

ПРИМЕЧАНИЕ: Раздел 360-4F (c) Кодекса требует, чтобы проводники Размер № 4 или больше входит в корпус, изолирующую втулку или эквивалент должен быть установлен на кабелепроводе.

Защита параллельной цепи двигателя

Асинхронный двигатель с короткозамкнутым ротором мощностью 25 л.с. запускается с помощью автотрансформатора. Максимальная токовая защита параллельной цепи для этой цепи двигателя состоит из трех предохранителей без задержки времени, расположенных в предохранительном выключателе, установленном на линейная сторона пускового компенсатора.

Для асинхронного двигателя с короткозамкнутым ротором, который обозначен кодовой буквой B и который используется с пусковым компенсатором, таблица 430-152 Кодекс требует, чтобы максимальная токовая защита параллельной цепи не превышала 300 процентов от тока полной нагрузки двигателя.

Максимальная токовая защита параллельной цепи для питания параллельной цепи этот мотор:

Поскольку двигатель мощностью 25 л.с. имеет номинальный ток полной нагрузки 68 ампер (NEC Таблица 43 0-150),

68 x 300% = 204 ампера

Раздел 240-6 не показывает 204 ампера в качестве стандартного номинала предохранителя.Однако Раздел 430-52 разрешает использование предохранителя следующего большего размера. если рассчитанный размер не является стандартным. В этом случае 200 ампер следует попытаться. Таким образом, три предохранителя без задержки на 200 ампер могут использоваться в качестве защиты параллельной цепи для этого двигателя.

Средства отключения

Согласно таблице для предохранительных выключателей на рис. 2 1–3, отключающие Средство для двигателя мощностью 25 л.с. — это предохранительный выключатель мощностью 25 л.с., 200 ампер, в котором установлены предохранители на 200 ампер.

Предохранители с выдержкой времени могут быть установлены в выключатели безопасности. В этом примере 175% x 68A = 11 9A. 125 предохранителей являются следующим по величине размером и могут использоваться по исключениям к 430-52. Аварийный выключатель будет таким же размер.

Защита от перегрузки по току (перегрузка двигателя и параллельной цепи Защита)

Защита от перегрузки по току состоит из трех магнитных перегрузок. расположен в пусковом компенсаторе.Согласно паспортной табличке, мотор имеет номинальный ток полной нагрузки 64 ампера. Текущая настройка магнитные блоки перегрузки настроены на срабатывание на

64 x 125% = 80 ампер (ток отключения)

ФИЛИАЛ ЦЕПЬ 3

Третья ответвленная цепь питает трехфазный асинхронный двигатель с фазным ротором. Данные на заводской табличке этого двигателя следующие:

Асинхронный двигатель с фазным ротором

Вольт 230

Этап 3

Частота 60 Гц

Амперы статора 54

Ампер ротора 60

20 л.с.

Температурный режим 40 градусов Цельсия

Размер проводника (статор)

Для определения сечения проводников используется следующая процедура. параллельной цепи, питающей 20-сильный двигатель.

а. Двигатель мощностью 20 л.с. имеет номинальный ток полной нагрузки 54 ампера. Согласно согласно разделу 430-22 (a) NEC и таблице 430-150, 54 x 125% = 67,5 ампер

г. В таблице 310-1 6 указано, что проводник № 4 типа TW, THW, THHN (70 амперы).

г. Таблицы C1 раздела C показывают, что три проводника № 4 TW или THW или THHN может быть установлен в кабелепровод диаметром 1 дюйм.

ПРИМЕЧАНИЕ: Статья 300-4F (c) требует, чтобы проводники размера № 4 или большего размера, чтобы войти в корпус, должна быть установлена ​​изолирующая втулка или эквивалент. установлен на водоводе.

Защита параллельной цепи двигателя

Асинхронный двигатель с фазным ротором мощностью 20 л.с. запускается с помощью Поперечный магнитный выключатель двигателя. Этот пускатель двигателя применяет номинальное трехфазное напряжение на обмотку статора. Предусмотрен контроль скорости ручным барабанным контроллером, используемым в роторе или вторичной цепи. Все сопротивления контроллера вставляется в цепь ротора, когда мотор запускается. В результате пусковой ток двигателя меньше, чем если бы двигатель запускался на полном напряжении.

МТЗ в параллельной цепи асинхронного двигателя с ротором согласно Таблице 430-152 Кодекса не должно превышать 150 процентов от рабочий ток двигателя при полной нагрузке.

Максимальная токовая защита параллельной цепи для питания параллельной цепи этот мотор:

Ток полной нагрузки равен 54 А для двигателя с фазным ротором мощностью 20 л.с.

54 x150% = 81 ампер

Раздел 240-6 не показывает 81 ампер в качестве стандартного предохранителя.Статья 430-52 позволяет использовать следующий больший размер. Следует выбрать предохранитель на 90 А.

Средства отключения

Согласно таблице для предохранительных выключателей на рис. 14-3, отключающие Средство для двигателя мощностью 20 л.с. — это аварийный выключатель на 25 л.с., 200 ампер. Редукторы должен быть установлен в этот выключатель для установки требуемых 90-амперных предохранителей. для защиты параллельной цепи двигателя. Из-за двойного рейтинга эти предохранительные выключатели, допустимо использовать выключатель на 100 ампер, имеющий максимальный рейтинг 30 лс.В этом случае стандартная 90-амперная безвременная задержка могут быть установлены предохранители или предохранители с выдержкой времени на 90 ампер.

Защита от перегрузки по току (защита двигателя)

Максимальная токовая защита состоит из трех тепловых перегрузок. блоки, расположенные в пускорегулирующем аппарате магнитного двигателя (за исключением указано в примечании после таблицы 430-3 7). Согласно паспортной табличке, двигатель имеет номинальный ток полной нагрузки 54 ампера.Номинальная поездка ток каждого теплового агрегата:

54 x125% = 67,5 ампер

Размер проводника (ротор)

Обмотка ротора асинхронного двигателя с фазным ротором мощностью 20 л.с. 60 ампер. Следующая процедура используется для определения размера проводники вторичной цепи от контактных колец ротора к барабану контроллер.

а. Раздел 430-23 (а) требует, чтобы проводники, соединяющие вторичный асинхронного двигателя с фазным ротором к его контроллеру имеют токоведущий мощность не менее 125 процентов вторичного тока полной нагрузки мотор для продолжительного режима.

60 x125% = 75 ампер

г. Таблица 310-1 6 показывает, что несколько типов медных проводников могут могут использоваться: № 3 Тип TW, Тип THW или Тип THHN, при условии, что заделки 60 °.

г. Таблица C1 раздела C показывает, что три проводника TW № 3 могут быть установлен в кабелепровод диаметром 1¼ дюйма. Требуется 1¼-дюймовый кабелепровод, если три Используются проводники № 3 THW. Требуется 1-дюймовый кабелепровод для трех No. 3 провода THHN.

ПРИМЕЧАНИЕ: Статья 300-4F (c) требует использования изоляционных втулок или аналогичных. на всех кабелепроводах, содержащих проводники №Вход 4 размера и больше вольеры. Если резисторы установлены вне регулятора скорости, текущая емкость проводников между контроллером и резисторами не должно быть меньше значений, указанных в таблице 430-23 (c).

Например, ручной регулятор скорости, используемый с ротором мощностью 20 л.с. асинхронный двигатель должен использоваться в тяжелой периодической работе. Раздел 430-23 (c) требует, чтобы проводники, соединяющие резисторы с регулятором скорости иметь допустимую нагрузку не менее 85 процентов номинального тока ротора.

60 x 85% = 51 ампер

Таблица 310-1 6 показывает, что 51 ампер может безопасно переноситься с помощью № 6. провод. В результате температура, возникающая в месте расположения резистора являются важным соображением.

Раздел 430-32 (d) гласит, что вторичные цепи индукции с фазным ротором двигатели, включая проводники, контроллеры и резисторы, должны рассматриваться как защита от перегрузки за счет максимальной токовой защиты во время работы двигателя в первичных цепях или цепях статора, поэтому нет защиты от перегрузки по току необходимо во вторичном контуре ротора.

ГЛАВНЫЙ ФИДЕР

Когда по проводам фидера питаются два или более двигателей, требуется размер провода определяется согласно правилам Кодекса. Раздел 430-24 Кодекса гласит: что питатель должен иметь допустимую нагрузку не менее 125 процентов ток полной нагрузки двигателя с наивысшей номинальной мощностью плюс сумма номинальных значений тока полной нагрузки остальных двигателей в группе. Ток полной нагрузки двигателя взят из таблицы 430-150 NEC.

Двигатель с наибольшим рабочим током при полной нагрузке — это двигатель мощностью 25 л.с. Этот двигатель имеет номинальный ток полной нагрузки 68 ампер. Главный питатель размер, то в соответствии с разделом 430-24, составляет:

68 x 125% = 85 ампер

Тогда: 85 + 54 + 28 = 167 ампер.

Таблица 310-1 6 показывает, что медные проводники № 4/0 типа TW или THHN может использоваться при использовании заделки 600.

Таблица C1 раздела C показывает, что три No.Возможна установка проводников 4/0 TW в 2-дюймовом кабелепроводе. Три проводника № 4/0 THHN могут быть установлены в 2-дюймовый канал.

Защита главного фидера от короткого замыкания

Раздел 430-62 (а) гласит, что питатель, который питает двигатели, должен быть с максимальной токовой защитой. Максимальная токовая защита фидера не должен быть больше, чем наибольший номинальный ток параллельной цепи. защитное устройство для любого двигателя из группы, согласно Таблице 430-152, плюс сумма токов полной нагрузки других двигателей группы.

Ответвительная цепь, питающая двигатель мощностью 25 л.с., имеет наибольшее значение перегрузки по току. защита. Это значение, как определено из таблицы 430-152, составляет 170 ампер. (68 x 300 или 200 ампер.)

Номинальный ток полной нагрузки двигателя мощностью 20 л.с. составляет 54 ампера, а номинальный ток номинальный ток полной нагрузки двигателя мощностью 10 л.с. составляет 28 ампер. Размер предохранители, устанавливаемые в цепи главного фидера, не должны быть больше чем сумма 200 + 54 + 28 = 282 ампер.

Таким образом, для фидера используются три плавких предохранителя на 250 ампер. схема. Эта процедура должна соответствовать Примеру 8, раздел 9 Кодекса. Исключения могут быть сделаны, если предохранители не позволяют двигателю для запуска или запуска.

Главное средство отключения

Раздел 430-1 09 перечисляет несколько исключений из постановления о том, что отключение средством должен быть выключатель цепи двигателя, рассчитанный в лошадиных силах, или цепь выключатель.Средства отключения должны иметь грузоподъемность не менее 115 процентов от суммы номинальных значений тока двигателей, Раздел 430-110 (c1 и 2). Следовательно, предохранители на 250 ампер, необходимые для защиты от сверхтока. Защита главного фидера установлена ​​в предохранителе на 400 ампер.

Типы и размеры проводов подбираются в зависимости от температуры окружающей среды в месте. установки и экономики всей установки, такой как минимальный размер трубы, стоимость сечения проводов и стоимость рабочей силы. для установки различных вариантов.

РЕЗЮМЕ

Установка двигателя — один из самых сложных расчетов для выполнения и получения всех компонентов в правильном месте, в правильном месте и в правильном месте. размер. Кодовая книга проведет вас по основным компонентам расчета. но вы должны знать, где искать и как применять правильные коды. Там Есть много аспектов для правильной установки, включая устройство подачи и устройство подачи защита, защита ответвлений и ответвлений, сечения проводов и перегрузки по току защита, максимальная токовая защита и защита вторичной цепи.

ВИКТОРИНА ОБЗОР

Фидерная цепь питает три ответвленные цепи двигателя. Отводная цепь двигателя № 1 имеет нагрузку, состоящую из асинхронного двигателя со следующей паспортной табличкой данные:

№ 1:

Асинхронный двигатель с короткозамкнутым ротором

230 В

3 фазы

5 л.с.

15 Ампер

60 Гц

Код классификации D

Температурный диапазон 40 ° Цельсия

№ цепи электродвигателя ответвления2 имеет нагрузку, состоящую из асинхронного двигателя. со следующими данными паспортной таблички: (Этот двигатель оснащен автотрансформатором пусковой компенсатор.):

№ 2:

Асинхронный двигатель с фазным ротором

230 В

3 фазы

7,5 л.с.

40 Ампер

60 Гц

Код классификации F

Температурный диапазон 40 ° Цельсия

№ цепи электродвигателя ответвления3 имеет нагрузку, состоящую из индуктора с фазным ротором. двигатель со следующими данными паспортной таблички:

Асинхронный двигатель с короткозамкнутым ротором

230 В

3 фазы

15 л.с.

22 Амперы статора

26 Ампер ротора

60 Гц

Температурный диапазон 40 ° Цельсия

1.См. Следующую схему.

а. Определите защиту от перегрузки в амперах, необходимую для электродвигатель в параллельной цепи №1.

г. Определите подходящий размер провода (TW). (Вставьте ответы в диаграмма.)


Рис. Q1 ПРИНЯТЬ СОЕДИНЕНИЯ ДЛЯ ЦЕПИ УПРАВЛЕНИЯ СДЕЛАНЫ; МАГНИТНЫЙ ПУСКАТЕЛЬ ДВИГАТЕЛЯ НА ПРОТЯЖЕНИИ

2. См. Следующую схему.

а. Определите защиту от перегрузки в амперах, необходимую для электродвигатель в параллельной цепи No.2.

г. Определите подходящий размер медных проводов TW. Примечание что в этой цепи запущен асинхронный двигатель с короткозамкнутым ротором мощностью 15 л.с. с помощью пускового компенсатора.

(Вставьте ответы в схему.)


ил. 2 квартал

3. См. Следующую схему.

а. Определите защиту от перегрузки в амперах, необходимую для электродвигатель в параллельной цепи №3.

г.Определите подходящий размер медных проводников. (Вставлять ответы на схеме.)

г. Определите сечение проводников, необходимых для вторичной цепи. асинхронного двигателя с фазным ротором в параллельной цепи №3. или цепь ротора проходит между контактными кольцами намотанного ротора и регулятор скорости. Укажите размер кабелепровода. Используйте провода TW.


ил. 3 квартал

4.См. Следующую схему.

а. Определите номинальный ток предохранителей в амперах (без выдержки времени). используется в качестве защиты от перегрузки для главной цепи фидера, показанной на схеме.

г. Определите размер провода TW для главного выключателя фидера. (Вставлять ответы на схеме.)


ил. 4 квартал

5. См. Следующую схему.

а. Используя медные проводники типа 1W, определите размер проводов и кабелепровода, необходимых для основной цепи фидера, которая питает три ответвленные цепи двигателя.Укажите размеры на схеме.

г. Определите номинал предохранителей в амперах, необходимых для пусковой перегрузки. защита каждой из параллельных цепей.

Цепь двигателя № 1 ______

Цепь двигателя № 2 ______

Цепь двигателя № 3 ______

(Вставьте ответы в схему.)

г. Используя медные проводники типа 1W, определите размер жесткого кабелепровода. требуется для каждой из трех цепей.

Цепь двигателя № 1 _____

Цепь двигателя № 2 _____

Цепь двигателя № 3 _____

(Вставьте ответы в схему.)


ил. q5

Основы трехфазных пускателей двигателей

Трехполюсные (трехфазные) электромагнитные пускатели двигателей (рис. 1) обычно используются для управления трехфазными асинхронными двигателями переменного тока с интегральной мощностью. Этот тип трехполюсного пускателя двигателя обычно описывается как трехфазный пускатель двигателя с прямым подключением или полным напряжением, поскольку полное линейное напряжение подается на соответствующие выводы двигателя, когда на катушку соленоида пускателя двигателя подается питание.

Трехфазный электромагнитный пускатель двигателя состоит из силового контактора и реле перегрузки, как показано на Рисунке 2. Механическое замыкание силовых контактов осуществляется электромагнитным полем, которое создается катушкой с проводом, находящейся в соленоид. Катушка соленоида может быть активирована электрическим сигналом из удаленного места.

Контактор

В конструкции трехполюсного электромагнитного пускателя двигателя контактор является силовым контактором (рисунок 2).Он использует соленоид для электромеханического включения (путем создания линейного движения) всех трех контактов переключения мощности одновременно, когда катушка находится под напряжением. Линейное движение катушки соленоида в трехполюсном пускателе электромагнитного двигателя заменяет ручку переключателя, используемого в трехполюсном ручном пускателе.

Вспомогательные контакты управления

Трехполюсный электромагнитный пускатель двигателя обычно поставляется (приобретается) как минимум с одним комплектом замыкающих (нормально разомкнутых) вспомогательных контактов (рис. 2), которые активируются с помощью силовых контактов.Эти вспомогательные замыкающие контакты могут использоваться в качестве переключателя для управления световыми индикаторами, другими трехполюсными электромагнитными пускателями двигателей или необходимыми герметичными контактами в трехпроводной цепи управления.

Рисунок 2. Компоновка компонентов обычного пускателя двигателя. Силовые контакторы некоторых трехполюсных электромагнитных пускателей двигателей снабжены (снабжены) комплектом замыкающих и замыкающих вспомогательных контактов. Оба типа контактов активируются (удерживаются замкнутыми и открытыми, соответственно), когда силовые контакты замкнуты.

Вспомогательные контакты NC можно использовать для выключения света при работающем двигателе (пускатель двигателя активирован). Их также можно использовать для отключения другой функции управления, такой как блокировка (отключение) катушки противоположного направления на реверсивном трехполюсном электромагнитном пускателе двигателя (двигатель не может работать в обоих направлениях одновременно).

Вспомогательные контакты NC можно дополнительно использовать для блокировки трехполюсного электромагнитного пускателя второго двигателя, когда два двигателя не могут работать одновременно.Эти управляющие контакты называются вспомогательными контактами, потому что основная функция трехполюсного электромагнитного пускателя двигателя заключается в переключении его силовых контактов, которые контролируют мощность, подаваемую на обмотки двигателя.

Реле перегрузки

Как и в случае с трехполюсным ручным пускателем двигателя, реле перегрузки трехполюсного пускателя двигателя с параллельным подключением (электромагнитным или полным напряжением) состоит из трех последовательно соединенных нагревательных элементов, по одному каждый, с тремя двигателями. -поставка приводит.Три клеммы питания реле перегрузки обычно прикрепляются болтами непосредственно к клеммам нагрузки трехполюсного силового контактора. Клеммы нагрузки реле перегрузки, обозначенные T1, T2 и T3, являются клеммами питания двигателя. С помощью проводов цепи двигателя эти клеммы реле перегрузки должны быть подключены к выводам трехфазного двигателя переменного тока T1, T2 и T3 в корпусе клемм двигателя.

Элементы защиты от перегрузки (нагреватели) в реле перегрузки трехполюсного электромагнитного пускателя двигателя, размеры которых указаны в соответствии с таблицей нагревателей изготовителя и имеют ограниченный процент превышения фактического тока полной нагрузки двигателя (заводская табличка), должны быть установлены в соответствующие гнезда на реле перегрузки (по одному последовательно с каждым из трех выводов двигателя).

Реле перегрузки для трехполюсных электромагнитных пускателей двигателя со встроенной мощностью меньше номинальной обычно содержат один набор управляющих контактов, которые удерживаются замкнутыми посредством механической связи со всеми тремя нагревательными элементами. Если какая-либо ветвь (фаза питания) двигателя должна потреблять ток, превышающий номинальный ток нагревательного элемента, этот соответствующий нагреватель отключит управляющие контакты. Эти контакты, если они правильно подключены в цепи управления, прервут подачу управляющего напряжения на соленоид пускателя двигателя.

Трехполюсные электромагнитные пускатели двигателей со встроенной мощностью в лошадиных силах могут иметь отдельные реле перегрузки, установленные в каждом проводе питания двигателя. Управляющие контакты NC трех отдельных (отдельных) реле перегрузки обычно подключаются последовательно на заводе-изготовителе. На некоторых схемах могут быть показаны все три контакта перегрузки. Остальные покажут только одно. Оба средства приемлемы, если в цепи управления идентифицированы управляющие контакты реле перегрузки NC.

Требования NEC

Для соответствия нормам NE Code, которые не позволяют устанавливать переключатель или переключающие контакты последовательно с заземленным проводом, управляющие контакты реле перегрузки должны быть установлены в качестве последнего управляющего компонента перед выводом на стороне линии. трехполюсный электромагнитный пускатель электродвигателя в заданной ступени управления или линии лестничной диаграммы.

Поскольку цепь управления двигателем является схемой с ограничением мощности (отдельно производной системой), Кодекс NE конкретно не запрещает подключение нормально замкнутых контактов реле перегрузки последовательно с катушкой соленоида пускателя двигателя на ее заземленной обратной стороне. Большинство новых трехполюсных электромагнитных пускателей двигателей подключаются на месте производства с нормально замкнутыми контактами реле перегрузки последовательно с катушкой соленоида на ее общей или обратной стороне. Вместо этого Кодекс NE предусматривает, что цепь управления двигателем должна быть подключена или устроена таким образом, чтобы непреднамеренное (случайное) заземление любого проводника цепи управления не запускало двигатель автоматически или не обходило любые устройства ручного отключения или любые устройства автоматического аварийного отключения в системе управления. схема.

Управление двигателем для 3-фазных асинхронных двигателей

Управление двигателем для 3-фазных асинхронных двигателей

ЗНАТЬ

Программное обеспечение для Образование и промышленность


Как управлять трехфазными асинхронными двигателями



Трехфазные асинхронные двигатели — это рабочая лошадка в промышленности. Было подсчитано, что от 70% до 80% всей электроэнергии в мир поглощен этими моторами.Они действительно элегантны машины, в которых нет движущихся частей, кроме ротора, и нет изнашиваемых щеток, коммутаторов или контактных колец.

Эта компьютерная программа объясняет, как Легко понять, как управлять 3-фазными асинхронными двигателями текст, графика и изображения. Программа объясняет:

  • Пускатели двигателя ручные
  • Магнитные пускатели двигателей
  • Через линию, начиная с
  • Как реверсировать мотор
  • Пускатели двигателей NEMA
  • Электродвигатели многоскоростные
  • Преобразователи частоты (ЧРП)
  • Пусковой ток двигателя при пуске
  • Пусковой крутящий момент двигателя
  • Пускатели первичные резисторы
  • Пускатели автотрансформаторные
  • Стартеры звезда-треугольник
  • Пускатели с частичной обмоткой
  • Пускатели твердотельные
Программа рекомендована электрикам, техникам, инженерам, и всем, кто интересуется, как управлять 3-фазной индукцией Моторы.

Эта программа не требует установки на вашем компьютер. Просто дважды щелкните Таблицу Файл Contents.html или любой другой файл .html на компакт-диске и в Интернете. браузер запустит программу.


Пример экрана с содержанием программа.

Содержание

Глава

1.Введение

2. Почему бы просто не использовать коммутатор?

3. Ручные пускатели двигателя

4. Пускатели электродвигателей NEMA

5. Магнитные пускатели двигателей

6. Цепь запуска двигателя

7. Объяснение цепи запуска двигателя

8. Реверсивные пускатели электродвигателей

9. Схема реверсивного стартера двигателя

10. Контроль скорости двигателя

11. Пускатели многоскоростных двигателей

12.Пускатели электродвигателей с регулируемой скоростью

13. Приводы с регулируемой скоростью (ЧРП)

14. Характеристики привода с регулируемой скоростью

15. Пусковые характеристики двигателя

16. Пускатели пониженного напряжения

17. Первичный резистор стартера

18. Автотрансформаторные пускатели

19. Стартеры звезда-треугольник

20. Пускатели с частичной обмоткой

21. Твердотельные пускатели


Пример экрана с магнитным цепь запуска двигателя.
Электрические чертежи обычно представляют собой схематические схемы, а не графические изображения. диаграммы. Графическая диаграмма ниже такая же, как и на рисунке. видел на предыдущей странице.

Диаграмма

На принципиальной схеме ниже показано, как будет выглядеть та же схема. показано на электрическом чертеже. Кроме того, контроль в схему добавлен трансформатор, так что кнопка и катушка пускателя двигателя 120 В переменного тока вместо 480 В переменного тока, потому что обычно считается более безопасным иметь 120 В переменного тока на кнопка, чем 480VAC.

Принципиальная схема


Пример экрана, показывающий управление реверсивным двигателем схематический.

Когда вперед кнопка нажата, катушка F под напряжением, передавая мощность на двигатель через зеленый силовые контакты.Фазы A, B и C являются применяется к двигателю, как показано ниже:



Когда Реверс кнопка нажата, катушка R под напряжением, посылая мощность на двигатель через красный силовые контакты.Фазы A, B и C являются применяется к двигателю, как показано ниже, изменение направления двигателя вращение.





Пример экрана, показывающего переменную Частотные приводы

Другой способ варьировать скорость двигателя должна варьироваться частота мощности, подаваемой на двигатель.

Упакованные диски, называется VFD ( v ariable ф рекенси д заклепки) как показано ниже от Аллена Брэдли обеспечивать переменную частоту мощность асинхронных двигателей так что скорость моторов можно варьировать.кликните сюда чтобы увидеть больше переменной скорости диски от Аллена Брэдли.


Эти диски имеют становятся доступными только в последние несколько лет из-за разработка БТИЗ (изолированные ворота биполярные транзисторы) как один показано ниже.

q

IGBT по сути силовой транзистор, способный переключения на очень высокие скорости.


Аппаратное / программное обеспечение Требования:

  • IBM.486 или выше совместимый компьютер
  • Веб-браузер, например Интернет Проводник, Firefox, Chrome, Кромка и др.
  • Экран 800 x 600 или выше возможность видео.

стандартных схем управления двигателем — журнал IAEI

Время считывания: 6 минут

Однофазные и трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором нуждаются в некоторой цепи для запуска функции запуска или остановки.Обычно однофазные двигатели и трехфазные двигатели меньшей мощности могут запускаться при полном напряжении на линии. Однако трехфазные двигатели большей мощности требуют методов пуска с пониженным напряжением.

Силовые цепи и цепи управления

Обычно в управлении двигателем используются два типа цепей — цепь питания линейного напряжения и цепь управления . Силовая цепь при пуске от сети при полном напряжении состоит из устройства защиты от сверхтоков (OCPD), будь то предохранители или автоматический выключатель; линейные проводники, заканчивающиеся на клеммах L1, L2 и L3; магнитный пускатель двигателя или твердотельное устройство; и проводники нагрузки, которые заканчиваются на клеммах T1, T2 и T3.

Цепь управления состоит из компонентов лестничной диаграммы, таких как кнопки пуска и останова, катушки реле, контрольные лампы и любые другие разнообразные устройства замыкания контактов, такие как концевые выключатели, реле давления, контроллеры температуры, датчики приближения или поплавковые выключатели. Схема управления может быть дополнительно классифицирована как двухпроводная или трехпроводная в зависимости от области применения. Также важно отметить, что мощность силовой цепи рассчитана в соответствии с номинальным напряжением нагрузки двигателя: 115 В, 200 В, 230 В, 460 В или 575 В.Схема управления может работать при том же напряжении, что и силовая цепь, но также может работать и при более низких напряжениях, используя трансформатор станка для понижения напряжения до более безопасных уровней.

Схема типичной цепи запуска при полном напряжении через линию показана на рисунке 1. На этой схеме показаны как силовая цепь , так и схема управления . Обратите внимание, что схема управления представляет собой схему управления с трехпроводной лестничной схемой, которая хорошо работает с трехфазными двигателями меньшей мощности.Электроэнергетика будет иметь правила, определяющие, насколько большой двигатель может быть запущен через линию. Если мощность двигателя превышает это значение, необходимо использовать методы пуска при пониженном напряжении. Двигатели — индуктивные нагрузки; поэтому они имеют очень высокие пусковые токи в диапазоне от 2,5 до 10 раз превышающие рабочий ток двигателя при полной нагрузке. Этот чрезмерный пусковой ток, также называемый током заторможенного ротора, вызывает колебания напряжения в линиях. Вы, вероятно, наблюдали эффект броска тока всякий раз, когда свет в здании опускается при подключении оборудования HVAC.Когда этот чрезмерный пусковой ток потребляется от источника напряжения в течение нескольких секунд, это вызывает падение напряжения. Это падение напряжения означает, что для оборудования доступно более низкое напряжение; и осветительные приборы, в частности, будут мерцать.

Рисунок 1. Трехпроводное управление полным напряжением

Пускатели пониженные

В основном существует шесть типов пускателей пониженного напряжения: первичный резистор, реактор, автотрансформатор, неполная обмотка, звезда-треугольник и твердотельный. Твердотельные пускатели пониженного напряжения очень распространены, поскольку они хорошо взаимодействуют с частотно-регулируемыми приводами (VFD) и программируемыми логическими контроллерами (PLC).

Пускатели с первичным резистором используют резисторы, включенные последовательно с выводами двигателя во время функции пуска. Поскольку теперь это последовательная цепь, приложенное напряжение падает между последовательным резистором и обмоткой двигателя, вызывая более низкий пусковой ток. Реле времени управляет реле управления, контакты которого замыкают последовательные резисторы после запуска.

Пускатели реакторов работают аналогично, за исключением того, что вместо резисторов используются реакторы.Пускатели реакторов встречаются гораздо реже, чем раньше.

В пускателях автотрансформаторов используются автотрансформаторы с ответвлениями, которые обычно устанавливаются на 50%, 65% от 80% доступного сетевого напряжения. Опираясь на концепцию «коэффициента трансформации» в трансформаторе, этот тип пускателя допускает меньшие токи на стороне сети, с точки зрения электросети, и большие токи на стороне нагрузки, с точки зрения двигателя во время запуска. Автотрансформатор отличается от двухобмоточного трансформатора тем, что он не обеспечивает гальванической развязки между первичной и вторичной обмотками.Повышающий автотрансформатор часто называют «повышающим» автотрансформатором, а понижающий автотрансформатор — «компенсирующим» автотрансформатором.

Помните «коэффициент трансформации» трансформатора? Когда вы смотрите на напряжение, вы полагаетесь на следующую формулу:

В первичный / В вторичный = N первичный / N вторичный

Для тока вы полагаетесь на эту формулу:

I первичный / I вторичный = N вторичный / N первичный

Для иллюстрации возьмем простой пример.Трансформатор на 1 кВА имеет первичную обмотку 240 В и вторичную обмотку 120 В. Первичный ток составляет 4,17 А при 240 В, а вторичный ток составляет 8,33 А при 120 В. Трансформатор имеет соотношение 2: 1. Напряжение понижается в два раза, а ток увеличивается в два раза. Этот принцип позволяет работать пускателю автотрансформаторного типа.

Пускатель с частичной обмоткой разработан для работы с электродвигателем с частичной обмоткой, который имеет два набора идентичных обмоток. Вы можете использовать двигатели с двойным напряжением 230/460 В, но вы должны проявлять особую осторожность.Идея заключается в том, что двигатель 230/460 В работает от 230 В с параллельными обмотками. Следовательно, половина обмоток двигателя находится в цепи во время пуска; затем, через несколько секунд, в цепь подключается другая половина обмоток двигателя. Серьезные проблемы могут возникнуть, если схема синхронизации не подключает другую половину обмоток двигателя сразу после запуска.

Пускатель звезда-треугольник работает, позволяя двигателю запускаться по схеме звезды и затем работать по схеме треугольник.Использование этой конфигурации позволяет снизить пусковой ток во время запуска при сохранении пускового момента примерно на 33%. Разомкнутый переход — важное соображение, о котором следует помнить при пуске по схеме звезда-треугольник, потому что между конфигурацией звезды для пуска и конфигурацией треугольником для работы будет период времени, когда обмотки двигателя будут отключены. Пускатели с закрытым переходом преодолевают этот недостаток, но имеют гораздо более высокую стоимость.

Твердотельные пускатели часто называют пускателями с плавным пуском, потому что они используют кремниевые выпрямители (SCR) для выполнения этой задачи.Газонаполненные вакуумные лампы, называемые тиратронами, были ранней версией семейства твердотельных тиристоров, которое включает в себя триаки, диаки и UJT (однопереходные транзисторы). SCR состоит из трех элементов: анода, катода и затвора. Подавая сигнал на элемент затвора точно в нужное время, вы можете контролировать, какой ток SCR будет пропускать или блокировать в течение цикла; это известно как фазовый контроль. Способность этого устройства обеспечивать частичную или полную проводимость в течение цикла дает проектировщику большую гибкость.Эта возможность позволяет точно контролировать ток нагрузки двигателя во время запуска.

Релейные схемы управления

Обычно используются два типа лестничных цепей управления: двухпроводная схема управления и трехпроводная схема управления. Двухпроводная схема управления использует устройства с поддерживаемым контактом для управления пускателем магнитного двигателя. В трехпроводной схеме управления используются устройства с мгновенным контактом, управляющие магнитным пускателем двигателя.

Двухпроводная схема управления показана на рисунке 2.Он состоит из нормально разомкнутого устройства с поддерживаемыми контактами, которое, будучи замкнутым, приводит в действие катушку магнитного пускателя двигателя, которая, в свою очередь, питает подключенную нагрузку двигателя. Двухпроводная схема управления обеспечивает так называемый «расцепитель низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. После восстановления питания магнитный пускатель двигателя автоматически возобновит подачу питания при условии, что ни одно из поддерживаемых контактных устройств не изменило свое состояние. Это может быть очень полезно в таких приложениях, как охлаждение или кондиционирование воздуха, где вам не нужно, чтобы кто-то перезапускал оборудование после сбоя питания.Однако это может быть чрезвычайно опасно в приложениях, где оборудование запускается автоматически, подвергая опасности оператора.

Рисунок 2. Двухпроводное управление полным напряжением

Трехпроводная схема управления показана на рисунке 1. Она состоит из нормально замкнутой кнопки останова (СТОП), нормально разомкнутой кнопки пуска (ПУСК), уплотнительного контакта (М) и катушки пускателя магнитного двигателя. При нажатии нормально разомкнутой кнопки пуска катушка магнитного пускателя двигателя (M) находится под напряжением.Вспомогательный контакт (M) уплотняется вокруг кнопки пуска, обеспечивая фиксацию цепи. Нажатие нормально замкнутой кнопки останова приводит к нарушению цепи. Трехпроводная схема управления обеспечивает так называемую «защиту от низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. Однако в этом случае, как только питание будет восстановлено, магнитный пускатель двигателя не включится автоматически. Оператор должен нажать кнопку пуска, чтобы снова запустить последовательность операций.

По сравнению с двухпроводной схемой управления трехпроводная схема управления обеспечивает гораздо большую безопасность для оператора, поскольку оборудование не запускается автоматически после восстановления подачи электроэнергии. На рисунке 3 показана схема управления с несколькими кнопками пуска и останова. В этой схеме несколько нормально замкнутых кнопок останова размещены последовательно, а несколько нормально разомкнутых пусковых кнопок размещены параллельно для управления пускателем магнитного двигателя. Это обычное применение трехпроводной схемы управления, в которой вам необходимо запускать и останавливать один и тот же двигатель из разных мест на предприятии.Трехпроводная схема управления может использоваться различными способами для соответствия конкретному применению схемы.

Рисунок 3. Схема управления несколькими остановками / пусками

Управление двигателями переменного тока

— очень интересный и специализированный сегмент нашей отрасли. Электромеханические магнитные пускатели двигателей были стандартом на протяжении многих лет. Твердотельные устройства позволили лучше контролировать параметры схемы, обеспечивая при этом полную интеграцию с частотно-регулируемыми приводами и программируемыми логическими контроллерами.

Цепи управления прямым / обратным ходом — базовое управление двигателем

Если трехфазный двигатель должен приводиться в движение только в одном направлении, и при его первоначальном включении оказывается, что он вращается в противоположном направлении от желаемого, все, что необходимо, — это поменять местами любые два из трех линейных проводов, питающих двигатель. . Это можно сделать на пускателе двигателя или на самом двигателе.

Вращение трехфазного двигателя

После того, как две линии были переключены, направление магнитных полей, созданных в двигателе, теперь заставит вал вращаться в противоположном направлении.Это известно как реверсирование чередования фаз , .

Если двигатель должен приводиться в движение в двух направлениях, то для него потребуется пускатель прямого / обратного хода, который имеет два трехполюсных контактора с номинальной мощностью в лошадиных силах, а не один, как в обычном пускателе. Каждый из двух стартеров двигателя приводит в действие двигатель с различным чередованием фаз.

Когда контактор прямого хода находится под напряжением, силовые контакты соединяют линию L1 с T1, линию L2 с T2 и линию L3 с T3 на двигателе.Когда обратный контактор находится под напряжением, силовые контакты соединяют линию L1 с T3, линию L2 с T2 и линию L3 с T1 на двигателе.

Силовая цепь прямого / обратного хода

Поскольку два пускателя двигателя управляют только одним двигателем, необходимо использовать только один комплект нагревателей реле перегрузки. Обратные пути для обеих катушек стартера соединяются в серии с нормально замкнутыми контактами реле перегрузки , так что при возникновении перегрузки в любом направлении катушки стартера будут обесточены, и двигатель перейдет в нормальное состояние. останавливаться.

Обратите внимание, что два контактора должны быть электрически, и , механически заблокированы , чтобы на них нельзя было подавать питание одновременно. Если обе катушки стартера будут запитаны одновременно, произойдет короткое замыкание с потенциально опасными последствиями.

Пускатели прямого / обратного хода

поставляются с двумя наборами нормально разомкнутых вспомогательных контактов , которые действуют как удерживающие контакты в каждом направлении. Они также будут поставляться с двумя наборами нормально замкнутых вспомогательных контактов, которые действуют как электрические блокировки.

Пускатели прямого / обратного хода никогда не должны замыкать свои силовые контакты одновременно. Лучший способ обеспечить это — использовать электрические блокировки, которые предотвращают подачу питания на одну катушку, если задействована другая. Неисправность электрической блокировки может привести к одновременному включению обеих катушек.

Если обе находятся под напряжением, требуется какая-то механическая блокировка для предотвращения втягивания обоих якоря . На схематических диаграммах изображенная пунктирной линией между двумя катушками, механическая блокировка представляет собой физический барьер, который вставляется в путь якоря одной катушки за счет движения соседней катушки.Это означает, что даже если обе катушки находятся под напряжением, только один якорь сможет втягиваться полностью. Катушка, которая не втягивается, будет издавать ужасный дребезжащий звук, пытаясь замкнуть магнитную цепь.

На механические блокировки следует полагаться как на последнее средство защиты.

Электрическая блокировка достигается путем установки нормально замкнутого контакта катушки одного направления последовательно с катушкой противоположного направления, и наоборот. Это гарантирует, что при включении прямой катушки нажатие кнопки реверса не активирует обратную катушку.Такая же ситуация имеет место, когда обратная катушка находится под напряжением. В обеих ситуациях необходимо будет нажать кнопку останова, чтобы обесточить работающую катушку и вернуть все ее вспомогательные контакты в исходное состояние. Тогда может быть задействована катушка противоположного направления.

Схема управления прямым / обратным ходом

При разработке схемы управления для цепей прямого / обратного хода мы начинаем со стандартной трехпроводной схемы , добавляем вторую нормально разомкнутую кнопку и добавляем ответвление удерживающего контакта для второй катушки.Одной кнопки останова достаточно, чтобы отключить двигатель в обоих направлениях.

Две катушки механически блокируются, а нормально замкнутые контакты мгновенного действия обеспечивают электрическую блокировку.

Если нажать кнопку прямого направления, пока обратная катушка не задействована, ток найдет путь через нормально замкнутый обратный контакт и возбудит прямую катушку, в результате чего все контакты , связанные с этой катушкой, изменят свое состояние. Удерживающий контакт 2-3 замкнется, и нормально замкнутая электрическая блокировка разомкнется.Если нажать кнопку реверса, когда задействована прямая катушка, ток не сможет пройти через прямой нормально замкнутый контакт, и ничего не произойдет.

Для того, чтобы двигатель вращался в обратном направлении, передняя катушка должна быть обесточена. Для этого необходимо нажать кнопку останова, тогда кнопка реверса сможет активировать обратную катушку.

Независимо от направления вращения двигателя, эта схема будет работать как стандартная трехпроводная схема, обеспечивающая защиту от низкого напряжения (LVP) до тех пор, пока не будет нажата кнопка останова или не произойдет перегрузка .

Блокировка кнопок прямого / обратного хода

Блокировка кнопок требует использования четырехконтактных кнопок мгновенного действия, каждая из которых имеет набор нормально разомкнутых и нормально замкнутых контактов.

Чтобы добиться блокировки кнопок, просто соедините нормально замкнутые контакты одной кнопки последовательно с нормально разомкнутыми контактами другой кнопки, и удерживающие контакты будут соединены параллельно с нормально разомкнутыми контактами соответствующей кнопки.

Эта схема все еще требует установки электрических блокировок.

Блокировка кнопок не требует, чтобы катушки двигателя были отключены перед изменением направления, потому что нормально замкнутые передние контакты включены последовательно с нормально разомкнутыми обратными контактами, и наоборот. Нажатие одной кнопки одновременно отключает одну катушку и запускает другую. Это внезапное реверсирование (, загораживающий ) может сильно повлиять на двигатель, но если требуется быстрое реверсирование мотора, эта схема может быть решением.

Трехэтапная процедура тестирования — Global Electronic Services

Электродвигатели, как известно, сложно диагностировать. Когда двигатель не запускается, перегревается, постоянно отключается или издает брызги, существует множество возможных причин. Некоторые компании могут решить проблему, просто заменив двигатель полностью. Однако это не рентабельное решение — большинство проблем с электродвигателями можно полностью устранить с помощью решений, которые стоят значительно меньше, чем новый двигатель.Но как определить, как рентабельно отремонтировать двигатель?

Хотя электродвигатели могут быть сложными, их не нужно диагностировать. Понимание основ электродвигателей может помочь вам понять, в чем может быть проблема, а надлежащие диагностические инструменты могут помочь вам выявить и прояснить проблему. В этой статье мы специально обсудим трехфазные системы и способы их диагностики при возникновении проблем.

Содержание

О 3-фазных системах
Типы испытаний для 3-фазных двигателей
Что делать дальше
Свяжитесь с Global Electronic Services Repair для 3-фазных испытаний

О трехфазных системах

Фазные системы — это блоки питания переменного тока, которые определяются количеством фаз в блоке питания.Однофазное питание обеспечивает одну фазу на 120 вольт, а двухфазное или двухфазное питание состоит из двух переменных токов, подаваемых по двум проводам. Трехфазное питание — это тип силовой цепи, которая характеризуется тремя источниками однофазного переменного тока. Система разделяет обратный путь, разделяя каждую фазу на 120 градусов, что приводит к постоянной мощности в течение каждого цикла и большей мощности в целом. По сравнению с однофазным питанием, трехфазные схемы питания обеспечивают в 1,732 раза больше мощности при том же токе, что приводит к более экономичной системе в целом.

Трехфазные системы разработаны по-разному, чтобы соответствовать различным потребностям. Например, звездообразная конфигурация может использоваться в случаях, когда источник питания должен питать как однофазные, так и трехфазные нагрузки, такие как лампы и нагреватели, соответственно. Количество мощности также может отличаться. В большинстве коммерческих зданий используются схемы 208 Y / 120 В для повышения гибкости при питании как мощных, так и маломощных нагрузок, в то время как промышленные предприятия используют схему 480 Y / 277 В для максимального увеличения мощности, доступной для мощного оборудования.

Типы испытаний трехфазных двигателей

Если трехфазный двигатель обнаруживает проблемы, такие как сбой при запуске, перегрев или нестабильное питание, в вашем распоряжении есть несколько диагностических инструментов и методов. Эти инструменты и методы обсуждаются ниже. Однако перед тестированием обязательно примите соответствующие меры безопасности. К ним относятся:

  • Использование защитного снаряжения: Это защитное снаряжение может включать в себя заземляющие ремни, перчатки и любое другое подходящее защитное снаряжение для окружающей среды.
  • Наличие всех инструментов под рукой: Некоторые распространенные диагностические инструменты включают в себя универсальные мультиметры, клещи-клещи, датчики температуры и осциллографы. Эти инструменты помогут вам не оставлять двигатель без присмотра.
  • Отключение двигателя от питания: Когда вы будете готовы, переведите выключатель двигателя трансформатора, чтобы отключить его от питания. Будьте осторожны, чтобы убедиться, что питание действительно отключено — на некоторых двигателях выключатель такой же, как выключатель включения / выключения, поэтому переключение выключателя в положение включения приводит в действие двигатель.Кроме того, обязательно отключите все оборудование и проводку, которые не будут включены в процесс тестирования.
  • Разряд до и после испытания: Перед началом испытаний и после каждого электрического испытания обязательно разрядите двигатель, так как он обладает определенной емкостью. Это можно сделать, зашунтировав проводники на землю и друг на друга перед повторным подключением.
  • Проверьте заводскую табличку: Паспортная табличка или характеристики двигателя содержат ценную информацию о двигателе, например, предполагаемую силу тока двигателя.Эта информация может использоваться для оценки исправности двигателя по сравнению с его предполагаемой конструкцией.

На этом этапе подготовьте мультиметр к тестированию. Это включает в себя настройку мультиметра на определение напряжения переменного тока и установку диапазона напряжения на разумный уровень, основанный на технических характеристиках коробки. В следующих нескольких тестах в основном используется этот инструмент, поэтому мы объясним, как проверить трехфазный двигатель с помощью мультиметра.

1. Общие проверки

Самый простой осмотр — это визуальный осмотр.Как только двигатель будет отключен и вы будете готовы начать осмотр, снимите крышку двигателя. Как только он будет удален, вы можете начать проверять двигатель на наличие визуальных признаков повреждения. Вот некоторые вещи, на которые следует обратить внимание во время этого процесса:

  • Общие повреждения: Общие повреждения обычно легко обнаружить. Это может появиться в виде следов ожогов или вмятин. По всему двигателю проверьте, нет ли признаков перегрева или повреждения окружающей среды.
  • Состояние вала: Вручную проверните вал двигателя, чтобы оценить его состояние.Это должно быть легко, если только двигатель не очень большой. Вал должен вращаться плавно, без заеданий и незакрепленных деталей. Более новые двигатели могут испытывать трудности с вращением из-за жестких допусков, неиспользования или влажности окружающей среды, которые необходимо будет устранить путем смазки и дальнейшего осмотра. Однако старые двигатели могут иметь более серьезные препятствия, которые требуют ремонта или замены.
  • Качество соединения: Осмотрите все соединения внутри двигателя на предмет признаков износа или повреждения и оцените любые провода вне двигателя на предмет возможных обрывов.С любыми оборванными проводами следует обращаться с осторожностью и заменять их.

После того, как двигатель прошел общий осмотр, дважды проверьте свои инструменты для осмотра и приступайте к поиску и устранению неисправностей электрических свойств двигателя.

2. Проверка целостности цепи

Проверка целостности цепи — проверка сопротивления между двумя точками. Если сопротивление низкое, две точки электрически соединены. Если сопротивление выше, цепь разомкнута. Проверка целостности заземления определяет, подключен ли двигатель к земле.

Чтобы завершить проверку целостности заземления, установите мультиметр в режим непрерывности. Как только это будет сделано, поместите одну точку на раму двигателя, а другую точку на известное соединение с землей, предпочтительно в области, близкой к установке двигателя. Хороший двигатель должен давать показания менее 0,5 Ом. Однако, если значение превышает 0,5 Ом, это означает, что изоляция двигателя нарушена и может вызвать поражение электрическим током. Для определения причин этого отказа может потребоваться дальнейшее тестирование.

3. Тест источника питания

Следующим тестом, который необходимо завершить, является тест источника питания. Это проверяет, соответствует ли входящий источник питания ожидаемому и соответствует проектным характеристикам двигателя. Тест источника питания можно выполнить, проверив напряжение, подаваемое на двигатель, с помощью мультиметра. Сравните это со спецификациями, указанными на паспортной табличке. Если подаваемое напряжение значительно ниже или выше указанного, это может быть одним из источников ваших проблем.

В дополнение к этому тесту проверьте, что клемма источника питания находится в хорошем состоянии. Повреждение и плохое соединение также могут быть причиной каких-либо отклонений или проблем с производительностью.

Услуги по ремонту источников питания

4. Проверка целостности обмотки электродвигателя переменного тока

Затем осмотрите двигатель изнутри и провода, участвующие в трехфазном токе. Настройте и откалибруйте мультиметр на напряжение и найдите шесть проводов трехфазного двигателя.

Если вы посмотрите на коробку, вы увидите шесть проводов, по три с каждой стороны.На каждой стороне коробки должны быть клеммы, к которым подключаются эти провода. На одной стороне будут клеммы с маркировкой L1, L2 и L3 или линия 1, линия 2 и линия 3. На другой стороне будут клеммы с маркировкой T1, T2 и T3 или нагрузка 1, нагрузка 2 и нагрузка 3. Клеммы L обозначают линейные провода с входом. ток, а клеммы T обозначают отходящие провода. Исключением являются европейские двигатели, которые будут иметь обозначения U, V и W. Эти провода следует проверить, чтобы определить исправность источника питания двигателя.Это можно проверить следующими методами:

  • Тест на отсутствие питания: Для проверки входящего напряжения поместите щупы мультиметра в разные положения клемм L, когда питание блока выключено. Снимите показания для соединения L1-L2, соединения L1-L3 и соединения L2-L3. Эти показания должны быть такими же, если мотор работает нормально. Для системы 230/400 В ожидаемое напряжение должно быть 400 В между каждой из трехфазных линий питания.
  • Проверка линии на нейтраль: Если имеется доступная клемма нейтрали, поместите один щуп мультиметра на нее, а другой — на каждую клемму линии. Значение напряжения должно составлять половину от значения напряжения, полученного во время предыдущего теста.
  • Проверка отсутствия питания на выходе: Этот тест аналогичен приведенному выше, но проверяет исходящее напряжение. Пока коробка выключена, снимите показания между выводами T1 и T2, выводами T1 и T3 и выводами T2 и T3.В этом случае показание напряжения должно быть нулевым для каждого теста.
  • Тест исходящего питания: Осторожно включите блок и повторите те же тесты, что и выше, проверяя каждую перестановку Т-выводов. Между каждой комбинацией отведений не должно быть никаких различий.

Если показания отличаются от ожидаемых результатов и проверка блока питания не выявила проблем, это может указывать на проблемы с исправностью трехфазного двигателя переменного тока. Чаще всего это говорит о том, что мотор перегорел.

Ремонтные услуги AC / DC

5. Испытание сопротивления изоляции

Проверка сопротивления изоляции — это следующий тест, который необходимо провести для определения общего состояния двигателя. Это делается путем сравнения сопротивления между каждой парой фаз двигателя и между каждой фазой двигателя и корпусом. Это можно сделать с помощью тестера изоляции или мегомметра. Тесты должны быть заполнены следующим образом:

  • Фазовое сопротивление: Возьмите тестер изоляции и установите его на 500 В.Возьмите каждый конец и поместите его в разные перестановки L1, L2 и L3 и запишите каждое показание.
  • Сопротивление между фазой и землей: Возьмите тестер изоляции, используя ту же настройку, и проверьте каждый провод от фазы к корпусу двигателя. Минимальное значение сопротивления изоляции должно составлять 1 МОм. Если значение меньше 0,2 МОм, замените двигатель.

Любые ошибки во время этого цикла тестирования могут указывать на проблемы с изоляцией, что является проблемой, когда речь идет о безопасности и функциональности двигателя.

6. Тест рабочего тока

Этот последний тест определяет, сколько энергии потребляется для привода двигателя. Более мощные двигатели потребляют больше тока, измеряемого в амперах. Перед тестированием важно проверить силу тока, необходимую вашему двигателю — обычно это указано на паспортной табличке.

Когда вы будете готовы, выполните следующие действия, которые помогут вам измерить трехфазный ток:

  • Подготовка к тесту: Настройте мультиметр на измерение ампер и установите его на правильный диапазон ампер для вашего двигателя в соответствии со спецификациями, указанными на паспортной табличке.Во время теста обязательно надевайте резиновые перчатки, чтобы защитить себя от поражения электрическим током.
  • Включите двигатель: Включите двигатель и найдите клеммы. Положительный вывод будет помечен знаком плюс, и к нему будет подключен красный провод. Отрицательная клемма будет помечена знаком минус, и к ней будет подключен черный провод.
  • Размещение датчиков: Поместите отрицательный датчик мультиметра на отрицательную клемму двигателя, затем поместите положительный датчик на положительную клемму.Во избежание травм всегда держите руки подальше от движущихся частей.

Когда датчики подключены, снимите показания в амперах и выключите двигатель. Показание в амперах должно быть в пределах допустимого диапазона, если он работает правильно. Показание в амперах не должно превышать спецификацию производителя, но должно быть на уровне или немного ниже указанного значения силы тока. Если показание в амперах значительно ниже спецификации или вне допустимого диапазона, это может указывать на проблемы с двигателем.

Что делать дальше

Если вы завершите тесты и обнаружите одну или несколько проблем с двигателем, вы можете сделать несколько вещей в зависимости от решаемой проблемы.Некоторые проблемы, такие как неисправная проводка или поврежденный вал, могут потребовать замены проблемных деталей. Однако более серьезные проблемы, такие как проблемы с изоляцией, могут потребовать полностью нового двигателя. Однако, если вы не совсем уверены, что делать или откуда возникла проблема, возможно, стоит позвонить в службу ремонта электроники, чтобы оценить двигатель. Global Electronic Services может помочь.

Компания Global Electronic Services специализируется на ремонте промышленной электроники. Мы работали с более чем 60 000 крупнейших и наиболее передовых производителей и дистрибьюторов в мире, охватывающих широкий спектр отраслей.Независимо от того, связана ли ваша проблема с электродвигателем, серводвигателем, гидравлической системой или пневматической системой, мы можем помочь вам найти решение.

Выбирая Global, вы выбираете высококачественное обслуживание клиентов и круглосуточную поддержку. Наши обученные на заводе и сертифицированные технические специалисты обеспечивают отличные сроки выполнения работ — от одного до пяти дней, и мы даже предлагаем двухдневное срочное обслуживание. Также мы предоставляем 10-процентную гарантию стоимости ремонта.

Если вы заинтересованы в том, чтобы Global работала с вашим трехфазным двигателем, свяжитесь с нами сегодня по телефону или воспользуйтесь нашей простой онлайн-формой, чтобы запросить ценовое предложение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *