Варистор схема: Как работают варисторы? Характеристики, параметры, схемы подключения

Содержание

Как работают варисторы? Характеристики, параметры, схемы подключения

В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.



Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность.

Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

  • возможность работы под значительными нагрузками, а также на высокой частоте;

  • большой спектр применения;

  • простота использования;

  • надежность;

  • доступная стоимость.

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

  • классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

  • максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

  • максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

  • максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

  • допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

  • время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

  • максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

  • отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

  • поставить переключатель тестера в режим замера сопротивления на максимум;

  • прикоснуться щупами прибора к выводам проверяемой детали;

  • снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».


Варистор. Принцип работы и применение

Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.

Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.

Держатель для платы

Материал: АБС + металл, размер зажима печатной платы (max): 20X14 см…

Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.

В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.


Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.

Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.

Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.

Форма волны переменного тока в переходном процессе

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Варисторы подключаются непосредственно к цепям электропитания (фаза — нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения.

Статическое сопротивление варистора

 

При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.

Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.

Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:


Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.

Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.

Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.

При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.

Емкость варистора

Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.

При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.

Подбор варистора

Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт.

Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние.

Варианты подключения варистора

 

Подведем итог

В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер.

Классификационное напряжение варистора — это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков.

Скачать справочные материалы по зарубежным варисторам (3,0 MiB, скачано: 5 300)

Варистор: принцип действия, проверка и подключение

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Замена и проверка варистора на плате + видео

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.


 

Стандартная схема подключения варистора

 

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

 

Принцип действия варистора

 

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.
Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

 

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке.
Например маркировка варисторов CNR:

 

CNR-07D390K, где:

  • CNR-серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D — дисковый
  • 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

 

Как же найти на плате варистор?

 

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.


 

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

 

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

 

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

 

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Варисторы TMOV со встроенной тепловой защитой в цепях переменного напряжения

24 октября 2019

Быстрое срабатывание встроенного терморазмыкателя TMOV-варистора производства Littelfuse позволяет отключать его при более низких температурах, что уменьшает вероятность обугливания и задымления по сравнению со стандартным варистором MOV-типа. В схемах, где критично знать, сработал ли терморазмыкатель, можно применять варисторы iTMOV со светодиодной индикацией состояния.

Металл-оксидные варисторы (MOV-варисторы) используются для подавления выбросов напряжения во многих устройствах, например, в модулях защиты от перенапряжений и сетевых фильтрах (SPD-устройствах), источниках бесперебойного питания (ИБП), в тройниках и удлинителях, в электросчетчиках и так далее. Источниками выбросов напряжения могут стать молнии, коммутации индуктивной нагрузки или переключения конденсаторных батарей. При работе в штатном режиме напряжение в сети не должно превышать максимальное рабочее напряжение MOV-варистора. Однако при возникновении помехи напряжение на MOV-варисторе может превысить напряжение срабатывания. В таких случаях прибор включается и ограничивает выброс напряжения при условии, что мощность помехи не превышает мощность, которую способен рассеять MOV-варистор.

Иногда возможна ситуация, когда перенапряжение имеет не импульсный, а долговременный или постоянный характер. Если варистор будет долгое время находиться под таким напряжением при условии ограничения тока (как требует стандарт безопасности UL 1449), то он начнет разогреваться. Неограниченный разогрев может вызвать тепловой пробой и, как следствие, задымление и даже пожар. Чтобы устройство защиты соответствовало требованиям UL 1449, MOV-варистор должен иметь дополнительную защиту от таких катастрофических перегревов. До сих пор данная задача традиционно решалась с помощью термопредохранителей (TCO).

UL1449: Перенапряжения с ограничением тока

Для устройств, работающих в сетях переменного напряжения, обрыв соединения «ноль-земля» является опасной аварийной ситуацией. В таких случаях MOV-варистор может оказаться под напряжением, которое существенно превышает номинальное рабочее значение. Если ток в цепи будет неограниченным, то варистор сначала перейдет в низкоомное состояние (сопротивление упадет до нескольких Ом), а потом из-за мгновенного перегрева попросту сгорит, разорвав цепь. Однако если в цепи будет нагрузка, которая ограничит ток, то нагрев MOV-варистора окажется не таким стремительным, из-за чего нагреваться будет все устройство, возникнет задымление, а при неблагоприятном развитии ситуации возможен пожар.

В США используется сетевое напряжение 120 В AC. Силовые линии 120 В AC работают с фазовым сдвигом напряжения 180° и обычно подключены к трансформатору со средней точкой (рисунок 1). Предположим, что в верхней цепи 120 В присутствует MOV-варистор с номинальным рабочим напряжением 150 В, а в нижней цепи 120 В имеется некоторая нагрузка. И MOV, и нагрузка подключены к средней точке трансформатора (цепь «ноль-заземление»). Если на центральном отводе трансформатора (X-X) произойдет разрыв, то нагрузка в нижней фазе будет ограничивать ток, и сетевой предохранитель может не сработать. В этом сценарии MOV-варистор, рассчитанный на 150 В, окажется под повышенным напряжением (вплоть до 240 В) при ограниченном токе, что может привести к его тепловому разрушению.

Рис. 1. Вариант аварийной ситуации, в которой MOV-варистор испытывает перенапряжение при одновременном ограничении тока

Рассмотренный вариант аварийной ситуации определен в стандарте UL 1449 (таблица 1). По этой причине во многих приложениях требуется, чтобы MOV-варисторы имели дополнительную тепловую защиту.

В таблице 1 представлены уровни испытательных напряжений для SPD-устройств с различным рейтингом напряжения. Испытательное напряжение последовательно прикладывается к каждой паре проводников, после чего подаются кратковременные импульсы тока 10 А для устройств Type 1 и Type 2, и 5 А, 2,5 А, 0,5 А и 0,125 А для устройств Type 3. Поскольку этот тест приводит к необратимым разрушениям, то для проверки устойчивости к каждому из пяти токов короткого замыкания потребуется пять устройств. Устройства должны находиться под напряжением в течение 7 часов либо до тех пор, пока ток или температура в устройстве не достигнут равновесия или пока SPD не отключится.

Таблица 1. Испытательные напряжения для различных устройств

Рейтинг устройства*Подключение фазТестовое
напряжение**
Рейтинг напряжения проводящих линий, В
110…120 ВОднофазное240Все
110…120 В/220…240 ВТрансформатор со средней точкой240110…120
120 В/208 В«Звезда»208120
220…240 ВОднофазное415Все
220…240 В/380…415 В«Звезда»415220…240
240 В«Треугольник»240120
254…277 ВОднофазное480Все
254…277 В/440…480 В«Звезда»480254…277
480 В«Треугольник»480254-277
347 ВОднофазное600Все
347 В/600 В«Звезда»600347
Примечания:
* – Под устройством понимается конечный продукт: источник бесперебойного питания, сетевой фильтр и так далее.
** – Для устройств, рейтинг которых не указан в данной таблице, в качестве тестового напряжения должно использоваться максимальное фазное напряжение или удвоенное напряжение между проводниками, при условии, что оно не превышает 1000 В.

Как показано на рисунке 1, при испытании устройств, работающих в стандартной сети 120 В AC, необходимо подавать испытательное напряжение 240 В AC на все пары проводников. В данном случае есть три пары: «фаза-ноль» (L-N), «фаза-заземление» (L-G) и «ноль-заземление» (N-G). Здесь стоит еще раз отметить, что испытательное напряжение 240 В AC выбрано потому что в США линии сети 120 В AC обычно подключены к центральному трансформатору 240 В со средней точкой. В таких случаях MOV-варисторы, как правило, выбираются исходя из номинального рабочего напряжения 130…150 В. При возникновении аварии они могут перегреваться с катастрофическими последствиями в виде задымления или пожара.

MOV-варисторы с тепловой защитой

На рисунке 2 представлена простейшая схема защиты от выбросов напряжения, обеспечивающая требования UL 1449 при возникновении постоянных перенапряжений в условиях ограничения тока. В данной схеме между всеми линиями включены MOV-варисторы (или несколько параллельных MOV-варисторов): L-N, L-G и N-G. Это обеспечивает максимальную защиту от помех, возникающих во время переходных процессов в сети. Обычный последовательный плавкий предохранитель используется для защиты от перегрузки по току. Как правило, номинальный ток этого предохранителя выше, чем амплитуда испытательного тока, согласно UL 1449. Таким образом, при проведении испытаний на соответствие стандарту UL 1449 предохранитель не будет разрывать цепь. По этой причине MOV-варисторы должны быть дополнительно защищены от термического разрушения. Для этого последовательно с каждым варистором включается термопредохранитель TCO. В большинстве случаев для защиты от перенапряжений используют дисковые варисторы с диаметром 14 или 20 мм.

Рис. 2. Типовая схема защиты от перенапряжений с дополнительными TCO

На рынке присутствуют термопредохранители TCO с различной температурой срабатывания. Важно понимать, что положение и ориентация TCO имеет огромное значение для обеспечения тепловой защиты MOV-варистора. Под действием постоянного перенапряжения MOV-варистор может быть пробит в случайной точке на диске, после чего начнет быстро нагреваться, если ток в цепи ограничен. Тепло передается от MOV-варистора к TCO с помощью излучения, конвекции и тепловой проводимости. Однако, как показывает практика, именно теплопроводность имеет решающее значение. Таким образом, расстояние и взаимное расположение источника тепла и TCO определяют скорость срабатывания терморазмыкателя. Считается, что наиболее эффективная тепловая связь присутствует между выводом варистора и изолированным выводом TCO. Механизмы передачи тепла с помощью конвекции и излучения оказываются эффективными только в том случае, если источник тепла находится в непосредственной близости от TCO. Несмотря на то, что проводимость является наиболее эффективным средством передачи тепла, в большинстве случаев MOV-варистор и TCO не находятся в непосредственном контакте. Выводы компонентов мешают размещению TCO достаточно близко от MOV, что ограничивает передачу тепла. Кроме того, эффективность передачи тепла в каждом случае оказывается различной.

Пример взаимного расположения MOV и TCO показан на рисунке 3. Обратите внимание, что TCO не касается варистора.

Рис. 3. Взаимное расположение TCO и MOV (один из варисторов был удален, чтобы не мешать обзору)

Время срабатывания тепловой защиты может оказаться достаточно большим, если TCO размещен слишком далеко от MOV. В таких случаях при возникновении аварийной ситуации вполне вероятно обугливание варистора и реальная возможность пожара. Использование термоусадочных трубок или других теплопроводящих материалов позволяет увеличить эффективность тепловой связи, но с другой стороны, эти изделия сами достаточно горючи и могут только ухудшить ситуацию.

Несмотря на описанные недостатки, терморазмыкатели позволяют эффективно отключать MOV-варисторы от сети, тем самым предотвращая их тепловое разрушение. В то же время TCO оказываются не очень удобными компонентами с точки зрения монтажа на печатную плату. Из-за низких температур срабатывания пайка TCO должна выполняться крайне аккуратно. При ручной пайке жало паяльника не должно находиться в долгом контакте с выводами TCO. Иногда для отвода тепла от терморазмыкателя используют клипсы и плоскогубцы.

Так как TCO, используемые для защиты MOV-варисторов, обычно имеют невысокую температуру срабатывания, то их автоматизированный монтаж затруднен. При попытке пайки волной TCO срабатывают из-за перегрева в ванне с припоем. В большинстве случаев монтаж TCO оказывается преимущественно ручным процессом.

Компанией Littlefuse была разработана новая технология, которая, с одной стороны, позволяет обеспечить требования UL 1449, в том числе при испытаниях устойчивости к постоянным перенапряжениям в условиях ограничения тока, а с другой – лишена большинства недостатков, характерных для традиционных комбинированных схем MOV/TCO. Новые защитные компоненты TMOV представляют собой комбинацию из терморазмыкателя и MOV-варистора, объединенных в одном корпусе. В TMOV используется запатентованная технология, которая позволяет встраивать тепловой элемент непосредственно в MOV. В результате терморазмыкатель находится в прямом контакте с диском варистора, тем самым обеспечивая оптимальную теплопередачу. Так как эффективность передачи тепла оказывается высокой, то для защиты варистора может быть использован терморазмыкатель с более высокой температурой срабатывания. Это делает возможным использование автоматизированных технологий для монтажа TMOV, что существенно упрощает процесс сборки. Благодаря конструктивным особенностям, TMOV не уступают традиционным варисторам по основным параметрам: амплитуде пиковых токов, уровню рассеиваемой мощности, значениям напряжений ограничения и прочему, и при этом имеют встроенную тепловую защиту. Суть предлагаемого решения поясняется на рисунке 4.

Рис. 4. Схема защиты от перенапряжений, использующая новые варисторы TMOV со встроенной тепловой защитой

Сравнение методов тепловой защиты MOV-варисторов

TMOV-варисторы со встроенной тепловой защитой решают большую часть проблем, характерных для комбинации MOV/TCO. Использование встроенного терморазмыкателя, размещенного в центре диска MOV-варистора, обеспечивает несколько преимуществ:

  • оптимизирует передачу тепла между диском MOV и терморазмыкателем, так как терморазмыкатель оказывается максимально близко к точке нагрева. Это значительно уменьшает время срабатывания;
  • позволяет использовать терморазмыкатели с более высокой температурой срабатывания, чем у большинства TCO, притом, что сам терморазмыкатель оказывается защищен от внешних источников тепла.

Благодаря этому для монтажа TMOV-варисторов может использоваться пайка волной (подробнее об этом рассказывается в следующем разделе).

Чтобы сравнить время срабатывания TMOV-варисторов и комбинации MOV/TCO, были проведены испытания с привлечением стандартных MOV (серия UltraMOV 20 мм, 130 Vacrms), работающих в связке с TCO с различными температурами срабатывания (Tf), и TMOV со встроенной тепловой защитой (TMOV20R130, 20 мм, 130 Vacrms).

Все схемы подвергались одинаковому испытанию: к ним прикладывалось постоянное перенапряжение 240 В при ограничении тока 5 А. Как и ожидалось, у TCO с более высокой температурой Tf время срабатывания было выше (таблица 2). С другой стороны, при пайке TCO с температурой срабатывания 73°C было сложно избежать включения, несмотря на использование соответствующего радиатора. В таблице 3 представлены значения времени срабатывания для TMOV со встроенной тепловой защитой. Очевидно, что по этому показателю TMOV превзошли все комбинации MOV/TCO, принявшие участие в испытаниях.

Таблица 2. Время срабатывания тепловой защиты для различных комбинаций MOV/TCO при ограничении тока на уровне 5 А

TCO Tf, °CВремя отключения, с
Среднее значениеДиапазон
733011…52
943420…46
1213616…56

Таблица 3. Время срабатывания тепловой защиты варисторов TMOV при ограничении тока на уровне 5 А

TCO Tf, °CВремя отключения, с
Среднее значениеДиапазон
TMOV-варистор132…25

На рисунке 5 представлены временные диаграммы нагрева варисторов при проведении испытаний на устойчивость к постоянным перенапряжениям с ограничением тока UL 1449 (240 В rms, 5 А) для трех схем защиты:

  • одиночный MOV – модель V20E130, 20 мм, 130 В ср.кв.;
  • комбинация MOV/TCO – модель V20E130, 20 мм, 130 В ср.кв. и TCO с Tf = 94°C;
  • варистор TMOV – модель TMOV20R130, 20 мм, 130 В ср.кв.

Рис. 5. Температура поверхности варисторов для различных схем защиты

На диаграммах показан характер изменения температуры поверхности варистора с течением времени для всех трех схем. Как видно из диаграммы, температура корпуса стандартного MOV-варистора без тепловой защиты будет расти до тех пор, пока варистор не загорится. В комбинации MOV/TCO варистор быстро нагревается до температуры 220°C, после чего срабатывает TCO. Варисторы TMOV со встроенной тепловой защитой отключаются значительно быстрее – срабатывание терморазмыкателя происходит при температуре около 150°C менее чем за 20 с. Обратите внимание, что температура варистора продолжает повышаться даже после срабатывания терморазмыкателей. Это связано с тем, что тепло передается от диска варистора наружу к эпоксидной заливке не мгновенно. Для того чтобы температура диска и заливки выровнялась, требуется некоторое время.

На рисунках 6а-6в показаны последствия перегрева варисторов для каждой из испытываемых схем защиты. На рисунке 6а показан результат перегрева стандартного MOV-варистора, на 6б изображено последствие перегрева MOV-варистора при использовании термопредохранителя TCO, рисунок 6в демонстрирует перегрев TMOV-варистора. Не сложно заметить, что в случае TMOV степень обугливания оказывается существенно ниже, чем при использовании одиночных варисторов или комбинации MOV / TCO.

Рис. 6. Результаты перегрева различных типов варисторов

Поскольку при производстве MOV- и TMOV-варисторов используются диски оксида цинка одинакового размера, то TMOV обеспечивают такой же уровень защиты от перенапряжений, что и MOV аналогичного размера, и соответствуют требованиям стандарта IEC 60950-1 (Приложение Q). Так как варисторы TMOV имеют встроенную защиту от перегрева, то при их использовании не требуется каких-либо внешних терморазмыкателей, которые необходимы при работе с обычными MOV-варисторами, согласно требованию пункта 1.5.9.2, МЭК 60950-1.

Использование пайки волной при монтаже TMOV

На рисунке 7 показан температурный профиль пайки волной, который можно использовать при монтаже TMOV-варисторов. Температурные показатели этого профиля являются типовыми для данного способа автоматизированного монтажа. В то же время допустимый температурный профиль для монтажа TCO оказывается существенно ниже. Фактически профиль, представленный для TCO, соответствует предельному варианту, при котором TCO выходит из строя (срабатывает). Это говорит о том, что для монтажа TCO (даже с высоким значением Tf, например, 142°C) не может использоваться пайка волной.

Уход от ручной пайки TCO позволяет обеспечить существенное снижение стоимости изделия.

Рис. 7. Температурные профили пайки волной для варистора TMOV и TCO (Tf = 142°C)

Надежное размыкание тепловой защиты

Срабатывание терморазмыкателя происходит из-за пробоя и дальнейшего нагрева диска варистора. После того как встроенный терморазмыкатель в TMOV сработает, важно, чтобы он оставался разомкнутым, а его повторные коммутации были исключены.

Чтобы проверить надежность размыкания цепи при срабатывании терморазмыкателя, было проведено испытание, состоящее из нескольких этапов. На первом этапе TMOV-варисторы подвергались воздействию перенапряжения с ограничением тока, в результате чего срабатывала тепловая защита. На втором этапе на выводы варисторов подавались импульсы 6 кВ, 3 кА (8×20 мкс). На третьем этапе на выводы TMOV-варисторов подавалось постоянное напряжение смещения, и при этом выполнялось измерение токов утечки. Наличие высокого тока утечки сигнализировало бы о ненадежном срабатывании терморазмыкателя или о его возвращении в замкнутое состояние. В ходе испытаний значительных токов утечки обнаружено не было. На заключительном, четвертом этапе TMOV-варисторы несколько часов выдерживались под напряжением 1000 В (ср.кв.) с параллельным контролем тока утечки. И на этот раз значительных токов утечки обнаружено не было, что свидетельствует о надежной работе терморазмыкателя.

Индикация срабатывания тепловой защиты: iTMOV-варисторы

Мы тщательно проанализировали преимущества TMOV-варисторов, но остается один вопрос: как узнать, что терморазмыкатель сработал?

При работе в диапазоне рабочих напряжений сопротивление ТMOV-варистора остается чрезвычайно высоким. Таким образом, сложно понять обусловлено ли высокое сопротивление собственным сопротивлением варистора или высокое сопротивление является следствием срабатывания тепловой защиты. Если данный вопрос является критичным, следует обратить свое внимание на серию варисторов iTMOV с дополнительным выводом индикации.

Варистор iTMOV имеет дополнительный, третий индикаторный вывод, который подключен к точке соединения терморазмыкателя и варистора. Доступ к этой точке существенно упрощает индикацию состояния терморазмыкателя. На рисунке 8 показана типовая схема включения iTMOV.

На рисунке 8 показано, как варистор iTMOV используется для защиты устройства, питающегося от бытовой сети 120 В AC в США. Светодиод включен между индикаторным выводом и нулем. Последовательный резистор R1 используется для задания тока через светодиод. В данном случае был выбран резистор с сопротивлением 47 кОм и предельной мощностью 0,5 Вт. Расчет параметров резистора должен производиться с учетом характеристик используемого светодиода и параметров сети.

Рис. 8. Схема индикации состояния iTMOV (светодиод нормально включен)

Как правило, светодиоды не допускают подачи обратного напряжения, поэтому для обрезания отрицательной полуволны обычно используется дополнительный выпрямительный диод D1. Кроме того, для защиты от перегрузки по току необходим предохранитель. В данном случае это Littelfuse 3AG, 10 A (313010). Выбор номинала предохранителя должен производиться, исходя из характеристик нагрузки.

В нормальных условиях светодиод находится в нормально включенном состоянии (светит). Ток течет от фазы к нулю через терморазмыкатель и индикаторную цепь. Если терморазмыкатель срабатывает, цепь размыкается, а светодиод выключается. Также светодиод выключится, если сгорит предохранитель.

Варистор iTMOV можно использовать для индикации состояния нескольких параллельно включенных TMOV-варисторов. Это связано с тем, что после отключения одного варистора, как правило, происходит отключение и остальных.

Заключение

Стандарт UL 1449 был создан для обеспечения защиты конечных устройств и пользователей от аварийных ситуаций, связанных с обрывом нуля. В таких случаях MOV-варисторы оказываются под постоянным перенапряжением в условиях ограничения тока. Перенапряжение может привести к неконтролируемому разогреву варистора и его тепловому пробою.

Существует несколько способов защиты MOV-варисторов от теплового разрушения. Чаще всего для этих целей используют термопредохранители TCO. Несмотря на то, что TCO в большинстве случаев справляются с поставленной задачей и предотвращают катастрофический перегрев варистора, у них есть значительные ограничения. При выполнении испытаний даже при срабатывании термопредохранителя MOV-варистор перегревается, из-за чего наблюдается задымление и обугливание. Еще одним недостатком TCO является сложность автоматизированного монтажа, так как в большинстве случаев пайка волной оказывается невозможна.

Новые TMOV-варисторы со встроенной тепловой защитой позволяют сократить количество компонентов, сэкономить место на плате и при этом обеспечить выполнение требований UL 1449. TMOV-варисторы обеспечивают повышенную эффективность по сравнению с другими методами защиты при воздействии постоянных перенапряжений с ограничением тока. Быстрое срабатывание встроенного терморазмыкателя TMOV позволяет отключать варистор при более низких температурах, что уменьшает вероятность обугливания и задымления. Остальные характеристики TMOV-варисторов оказываются такими же, как и у стандартных MOV-варисторов, включая пиковый импульсный ток, номинальную мощность и напряжение ограничения. В отличие от TCO, при монтаже TMOV-варисторов можно избежать ручных операций и использовать пайку волной. Это приводит к снижению стоимости производства и упрощению процесса сборки.

Важные примечания

Стоит отметить, что все представленные данные были получены при испытании ограниченной выборки компонентов. Результаты могут отличаться из-за разброса электрических и механических параметров. При выполнении проектирования разработчики должны учитывать разброс характеристик компонентов и закладывать соответствующие допуски.

В некоторых случаях TMOV-варисторы могут существенно нагреваться перед срабатыванием тепловой защиты. Конструкция конечного устройства должна учитывать эту особенность.

Перед выпуском на рынок рекомендуется выполнять тщательное тестирование устройств.

Литература

  1. Surge Protective Devices – UL1449, April 19, 2010
  2. Littelfuse Datasheet, Thermally Protected Metal Oxide Varistor (TMOV Varistor), March 2001
  3. TMOV®25S Varistor Series
  4. TMOV®34S Varistor Series
  5. Paul Traynham and Pat Bellew, Using Thermally Protected MOVs in TVSS or Power Supply Applications, Power Systems World, Intertec Exhibition Proceedings, September 2001
  6. Information Technology Equipment – Safety, IEC60950-1, Amendment 1, December 2009

Дополнительные материалы

Оригинал статьи

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

•••

Наши информационные каналы

Варисторы как средство защиты радиоэлектронной аппаратуры

   Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одного периода) и так далее. На рис. 1 показаны наиболее часто встречающиеся неполадки в электросети и их процентное соотношение.

   Особенно опасны высоковольтные импульсы амплитудой до нескольких киловольт и длительностью от десятков наносекунд до сотен микросекунд. Именно они могут приводить к серьезным сбоям электронной аппаратуры и выходу ее из строя, а также быть причиной пробоя изоляции проводов и даже их возгорания.

   Импульсы напряжения, которые можно отнести к внешним сетевым помехам (рис. 2), возникают в различных цепях аппаратуры, в первую очередь, в проводах питания.

   Во-первых, они могут наводиться электромагнитными импульсами искусственного происхождения от передающих радиостанций, высоковольтных линий электропередач, сетей электрифицированных железных дорог, электросварочных аппаратов.

   Идентифицировать и систематизировать причины таких помех практически невозможно. Однако для бытовых электрических сетей напряжением 220 В приняты следующие ориентировочные параметры внешних импульсных напряжений:

  • амплитуда — до 6 кВ;
  • частота — 0,05…5 МГц;
  • длительность — 0,1…100 мкс.

   Во-вторых, они могут быть естественного происхождения и наводиться мощными грозовыми разрядами.

Рис. 2

   В-третьих, они могут создаваться статическим напряжением, разряд которого достигает 25 кВ. Высоковольтные импульсы способны возникать и в самой аппаратуре при ее функционировании в результате переходных процессов, при срабатывании электромагнитов, размыкании контактов реле, коммутации реактивных нагрузок и так далее. Наибольшую угрозу представляют импульсы, возникающие при отключении индуктивной нагрузки.

   По указанным причинам радиоэлектронная аппаратура должна быть защищена от высоковольтных импульсных помех. Чтобы аппаратура могла быть сертифицирована, она должна пройти проверку на устойчивость к воздействию импульсных помех. Например, ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95) распространяется на электротехнические, электронные и радиоэлектронные изделия и устанавливает требования и методы их испытаний на устойчивость к наносекундным импульсным помехам (НИП).

   В настоящее время для защиты радиоэлектронной аппаратуры от внешних импульсных воздействий применяются различные виды экранировки, RC- и LC-фильтры, газоразрядные приборы (разрядники) и полупроводниковые ограничители напряжения (ПОН). К сожалению, разрядники не обладают необходимым быстродействием, а быстродействующие ПОН, с высокой нелинейностью вольтамперной характеристики (ВАХ) не способны рассеивать большую мощность из-за малого объема p-n-перехода. Это обуславливает резкое уменьшение допустимого тока в импульсе, протекающем через прибор.

   В последнее время наиболее эффективным средством защиты аппаратуры от любых импульсных напряжений признаны оксидно-цинковые варисторы. Варисторы [англ. varistor, от vari (able) — переменный и (resi) stor — резистор] — это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения. Отличительной чертой варистора является двухсторонняя симметричная и резко выраженная нелинейная ВАХ (рис. 3).

Рис. 3

   Электрические характеристики варистора определяются большим сопротивлением утечки и емкостью, которая незначительно изменяется под воздействием напряжения и температуры.

   При больших напряжениях на варисторе, и соответственно, больших токах, проходящих через него, плотность тока в точечных контактах оказывается также большой. Разогрев точечных контактов приводит к уменьшению их сопротивления и, как следствие, к нелинейности ВАХ. Малые объемы активных областей обеспечивают малую инерционность тепловых процессов, что определяет их высокое быстродействие. Наряду с этим варисторы способны хорошо поглощать высокоэнергетические импульсы напряжения, так как тепловая энергия рассеивается не на отдельных зернах полупроводника, а на всем его объеме.

   Особенностью ВАХ варистора является наличие участка малых токов (условно от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов, который определяет защитные свойства и, в частности, напряжение ограничения. В области малых токов ВАХ описывается выражением:

   I=AUβ,
где I — ток, A; U — напряжение, В; А — коэффициент, значение которого зависит от типа варистора и от температуры; β — коэффициент нелинейности, который характеризует крутизну ВАХ и определяется отношением статического сопротивления варистора (R = U/I) к дифференциальному (r = dU/dI) в определенной точке:

β=R/r = U/l·dl/dU.

   Экспериментально коэффициент нелинейности можно оценить по формуле:

   β= lgI2-lgI1/lgU2-lgU1 = lgI2/I1/lgU2/U1.

   Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, поэтому:

   β=1/lgU2/U1.

   Для варисторов на основе оксида цинка коэффициент нелинейности обычно составляет 20…60. Варисторы имеют достаточно большую емкость (100…50000 пф) в рабочем режиме (когда нет импульсов напряжения). При воздействии импульса их емкость падает практически до нуля.

   Одной из важнейших характеристик варистора является классификационное напряжение — Uкл — напряжение на варисторе при токе, равном 1 мА. Иногда приводится коэффициент защиты варистора — отношение напряжения на варисторе при токе 100 А к напряжению при токе 1 мА (то есть к классификационному напряжению). Он характеризует способность варистора ограничивать импульсы перенапряжения и для варисторов на основе оксида цинка находится в пределах 1,4…1,6. Таким образом, при росте напряжения в 1,4…1,6 раза ток через них возрастает в 100 000 раз.

   Важной характеристикой варистора является допустимая мощность рассеивания, определяемая его геометрическими размерами и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, играющие роль радиатора.

   При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения (рис. 4).

   Выбор типа варистора осуществляется на основе анализа его работы в двух режимах: в рабочем и импульсном. Рабочий режим определяется классификационным напряжением Uкл, а импульсный — рассеиваемой мощностью. Для ориентировочных расчетов рекомендуется, чтобы рабочее постоянное напряжение на варисторе не превышало 0,85 Uкл, а при переменном токе действующее значение рабочего напряжения не превышало 0,6 Uкл.

   В импульсном режиме через варистор протекает большой ток, вследствие чего необходимо опасаться выхода его из строя из-за перегрева. С этой целью необходимо использовать варисторы с рассеиваемой мощностью большей, чем расчетная.

   Для расчета варисторов, защищающих те или иные цепи от грозового разряда, иногда приводят сведения о напряжении на варисторе при воздействии стандартного грозового импульса. На рис. 5 показана форма этого импульса, который часто называют «импульсом 8/20 мкс».

   Очевидно, что варисторы могут работать и при последовательном включении. При этом в них протекает одинаковый ток, а общее напряжение делится пропорционально сопротивлениям (в первом приближении — классификационным напряжениям), в той же пропорции разделится поглощаемая энергия. Сложнее обеспечить параллельную работу варисторов — необходимо строгое совпадение их ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения — т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом подбором варисторов обеспечивают совпадение ВАХ столбов, которые собираются в блоки с нужными параметрами. Варисторы изготавливаются в обычном исполнении (дисковые, прямоугольные), в виде блоков различной формы и в виде чипов, что позволяет существенно экономить место на печатной плате (рис. 6).

   Отечественные предприятия выпускают варисторы для различных сфер применения, это серии СН, ВР, МЧВН/ВС, МОВН/ВС и другие.

   Из зарубежных производителей варисторов большую номенклатуру выпускает компания EPCOS. Ее приборы имеют следующую систему обозначений:

Чип и прямоугольные варисторы


SIOV- CN 1210 M 4 G

Варистор_________________________|
Тип варистора(CN,CU,SR)_______________|
Размер__________________________________|
Точность: K-10%, M-20%_______________________|
Классификационное напряжение__________________|
Тип упаковки_____________________________________|

Дисковые варисторы


SIOV S 14 K 250 G5 S6

Варистор________________________|
Тип варистора(S,B25 и др.)___________|
Диаметр варисторного диска_____________|
Точность: K-10%, M-20%__________________|
Классификационное напряжение______________|
Тип упаковки_________________________________|
Тип формовки выводов___________________________|

   Другие зарубежные компании-производители часто используют следующую систему обозначений выпускаемых варисторов:

DNR 0,5 D 181 M R S

Производитель________________________________________________|
Диаметр в мм, может быть 0,5;0,7;10;14;20______________________________|
Дисковый варистор____________________________________________________|
Классификационное напряж. (расшиф.»18″ и «0»= 180 В)_______________________|
Точность:J=5%, K-10%, M-20%________________________________________________|
Упаковка(R-катушка, В-россыпь)________________________________________________|
Выводы (S-прямые, К-формованные)______________________________________________|

Рис. 6

Таблица 1

Типы варисторов
Параметры
ЧипДисковыеАвтомобильные
CNCUSSRCN-
AUTO
SU-
AUTO
S-
AUTO
SR-
AUTO
Импульсный ток (8/20 мкс), кА1,21012
Поглощаемая энергия, Дж234101225100
Средняя рассеиваемая мощность, Вт0,251,00,030,2
Время срабатывания, нс
Рабочая температура,
°С
-55..125-40..85-40..+85-55..125-40..85-55..125-40..85
Типоразмер0603..220
0
3225; 032SO5..S2O1210; 22200805..2220S07..S201210; 1812; 2200

   В табл. 1, 2 приведены параметры оксидно-цинковых варисторов, выпускаемых компанией EPCOS.

Рис. 7

Таблица 2

Типы варисторов
Параметры
Для тяжелых условийБлокиКомбинированные
В25; ВЗО; 40; LS40В6ОВ80PD80Е32SHCV-SR1, SR2
Импульсный ток (8/20 мкс), кА4070100100651
Поглощаемая энергия, Дж120030006000600012
Средняя рассеиваемая мощность, Вт1,41,62,02,00,03
Время срабатывания, нс
Рабочая температура °С-40…85-40…85-40…85-40…85-25…60-40…85

   В заключение следует отметить, что для эффективной защиты аппаратуры от воздействия различных сетевых помех необходимо использовать сетевые фильтры с многоступенчатой защитой. Например, в сетевом фильтре «АРС PowerManager» (рис. 7) массивные стержневые индукторы 1 обеспечивают фильтрацию электромагнитных помех, оксидно-цинковые варисторы 2 обеспечивают общий и нормальный режимы защиты от высоковольтных импульсов, а конденсаторы 3 фильтруют радиочастотные помехи и выравнивают слабые и средние колебания напряжения.

Варистор

и Учебное пособие по металлооксидному варистору

В отличие от предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перегрузки по напряжению посредством фиксации напряжения аналогично стабилитрону.

Слово «Варистор» представляет собой комбинацию слов VARI-совместимый resi-STOR, использовавшихся для описания их режима работы еще в первые дни их разработки, что немного вводит в заблуждение, поскольку варистор не может быть изменен вручную, как потенциометр или реостат.

Варистор

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет свое значение сопротивления с изменением напряжения на нем, что делает его зависимым от напряжения нелинейным резистором или, для краткости, VDR.

В настоящее время резистивный корпус варистора изготавливается из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор похож по размеру и конструкции на конденсатор, и его часто путают с конденсатором. Однако конденсатор не может подавлять скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для схемы, поэтому варистор играет важную роль в защите чувствительных электронных схем от скачков переключения и переходных процессов перенапряжения.

Переходные перенапряжения возникают из различных электрических цепей и источников независимо от того, работают они от источника переменного или постоянного тока, поскольку они часто генерируются внутри самой цепи или передаются в цепь от внешних источников.Переходные процессы в цепи могут быстро нарастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти всплески напряжения должны быть предотвращены от появления на чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных процессов напряжения является эффект L (di / dt), вызванный переключением индуктивных катушек и токов намагничивания трансформатора, переключением двигателей постоянного тока и скачками напряжения при включении цепей люминесцентного освещения или другими скачками напряжения питания. .

Переходные процессы сигнала переменного тока

Варисторы

подключаются в цепях с питанием от сети по схеме «фаза-нейтраль», «фаза-фаза» для работы на переменном токе или положительно-отрицательной полярности для работы на постоянном токе, и имеют номинальное напряжение, соответствующее их применению. Варистор также может использоваться для стабилизации постоянного напряжения и особенно для защиты электронных схем от импульсов перенапряжения.

Статическое сопротивление варистора

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя не затрагивать более низкие пороговые напряжения.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варистора, его эффективное сопротивление сильно уменьшается с увеличением напряжения, как показано.

Из закона Ома мы знаем, что вольт-амперная характеристика (ВАХ) постоянного резистора представляет собой прямую линию при условии, что R остается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но ВАХ варистора не является прямой линией, так как небольшое изменение напряжения вызывает значительное изменение тока.Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Кривая характеристик варистора

Сверху видно, что варистор имеет симметричные двунаправленные характеристики, то есть варистор работает в обоих направлениях (квадрант Ι и) синусоидальной формы волны, ведя себя так же, как два стабилитрона, подключенных спина к спине. . В отсутствие проводимости ВАХ показывает линейную зависимость, поскольку ток, протекающий через варистор, остается постоянным и низким при токе утечки всего в несколько микроампер.Это связано с тем, что его высокое сопротивление действует как разомкнутая цепь и остается постоянным, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или ограничивающее напряжение — это напряжение на варисторе, измеренное при заданном постоянном токе 1 мА. То есть уровень постоянного напряжения, приложенного к его клеммам, позволяет току в 1 мА протекать через резистивный корпус варистора, который сам зависит от материалов, используемых в его конструкции.На этом уровне напряжения варистор начинает переходить из изолирующего состояния в проводящее.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень маленьким, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Небольшой ток утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено до уровня чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение на нем, позволяя протекать через него большему току, и из-за крутой нелинейной кривой ВАХ он может пропускать широко изменяющиеся токи в узком диапазоне напряжений, ограничивая любые скачки напряжения. .

Значения емкости варистора

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже своего напряжения ограничения варистор действует как конденсатор, а не резистор.Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что подаваемое напряжение не превышает уровень напряжения ограничения и резко падает ближе к максимальному номинальному постоянному напряжению постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в непроводящей области утечки его ВАХ.Поскольку они обычно подключаются параллельно к электрическому устройству, чтобы защитить его от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой и результирующим параллельным сопротивлением, его реактивное сопротивление по переменному току, Xc, может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем с увеличением частоты увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников, варисторы на основе оксидов металлов были разработаны для преодоления некоторых ограничений, связанных с их собратьями из карбида кремния.

Металлооксидный варистор

Варистор из оксида металла или MOV , для краткости, представляет собой резистор, зависимый от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), спрессованный в материал, подобный керамике. Варисторы на основе оксидов металлов состоят примерно на 90% из оксида цинка в качестве керамического основного материала и других материалов-наполнителей для образования стыков между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройств ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов.Использование оксида металла в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных процессов напряжения и имеют более высокие возможности управления энергией.

Как и обычный варистор, металлооксидный варистор начинает проводить при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового значения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки через материал оксида цинка MOV представляет собой очень малый ток при нормальных рабочих условиях, а его скорость работы при ограничении переходных процессов намного выше.

MOV

обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую конструкцию:

Конструкция металлооксидного варистора

Чтобы выбрать правильный MOV для конкретного приложения, желательно иметь некоторые сведения об импедансе источника и возможной импульсной мощности переходных процессов.Для входящей линии или переходных процессов, передаваемых по фазе, выбор правильного MOV немного сложнее, поскольку обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения питания часто является не более чем обоснованным предположением.

Однако металлооксидные варисторы доступны в широком диапазоне напряжений варисторов, от примерно 10 вольт до более 1000 вольт переменного или постоянного тока, поэтому выбор может быть облегчен, зная напряжение питания.Например, при выборе варистора MOV или кремниевого варистора для напряжения его максимальное постоянное среднеквадратичное значение напряжения должно быть чуть выше самого высокого ожидаемого напряжения питания, скажем, 130 вольт для источника питания 120 вольт и 260 вольт для источника питания 230 вольт. поставка.

Максимальное значение импульсного тока, которое принимает варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно сделать предположения о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если пикового значения импульсного тока недостаточно, варистор может перегреться и выйти из строя. Таким образом, чтобы варистор мог работать без каких-либо сбоев или деградации, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.

Применение варистора

Варисторы

обладают множеством преимуществ и могут использоваться во многих различных областях применения для подавления переходных процессов в электросети от бытовых приборов и освещения до промышленного оборудования в линиях электропередач как переменного, так и постоянного тока.Варисторы можно подключать непосредственно к источникам питания и через полупроводниковые переключатели для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Применение варистора

Обзор варистора

В этом руководстве мы увидели, что основная функция резистора, зависимого от напряжения , или VDR, заключается в защите электронных устройств и электрических цепей от скачков и всплесков напряжения, например, возникающих при переходных процессах индуктивного переключения.

Поскольку такие варисторы используются в чувствительных электронных схемах, чтобы гарантировать, что если напряжение внезапно превысит заданное значение, варистор фактически станет коротким замыканием, чтобы защитить цепь, которую он шунтирует, от чрезмерного напряжения, поскольку они способны выдерживать пиковые токи сотни ампер.

Варисторы

— это тип резистора с нелинейной неомической токовой характеристикой напряжения, который является надежным и экономичным средством защиты от переходных процессов и скачков напряжения.

Они достигают этого, действуя как блокирующее устройство с высоким сопротивлением при более низких напряжениях и как хорошее проводящее устройство с низким сопротивлением при более высоких напряжениях. Эффективность варистора в защите электрической или электронной схемы зависит от правильного выбора варистора в отношении напряжения, тока и рассеиваемой энергии.

Варисторы на основе оксида металла

или MOV обычно изготавливаются из металлического оксида цинка в форме небольшого диска. Они доступны во многих значениях для определенных диапазонов напряжения.Номинальное напряжение MOV, называемое «напряжением варистора», — это напряжение на варисторе, когда через устройство проходит ток 1 мА. Этот уровень напряжения варистора по существу является точкой на кривой ВАХ, когда устройство начинает проводить. Металлооксидные варисторы также могут быть подключены последовательно для увеличения номинального напряжения зажима.

В то время как металлооксидные варисторы широко используются во многих схемах силовой электроники переменного тока для защиты от переходных перенапряжений, существуют также другие типы твердотельных устройств подавления напряжения, такие как диоды, стабилитроны и ограничители, которые все могут использоваться в некоторых цепях переменного или постоянного тока. Приложения для подавления напряжения вместе с варисторами .

Варистор | Металлооксидный варистор

Обзор варистора

Для обеспечения надежной работы подавление переходных напряжений следует учитывать на ранних этапах процесса проектирования. Это может быть сложной задачей, поскольку электронные компоненты все более чувствительны к паразитным электрическим переходным процессам. Разработчик должен определить типы временных угроз и определить, какие приложения необходимы, соблюдая нормы и стандарты продуктового агентства.

Варисторы

все чаще используются в качестве передового решения для защиты от импульсных перенапряжений. Littelfuse предоставляет разработчикам знания и опыт и предлагает на выбор самый широкий спектр технологий защиты цепей.

Варисторы

Littelfuse доступны в различных формах для широкого спектра применений. Опции включают в себя сверхмалые многослойные подавители (MLV) для поверхностного монтажа для небольших электронных устройств, а также традиционные металлооксидные варисторы (MOV) среднего уровня и осевые металлооксидные варисторы для защиты небольшого оборудования, источников питания и компонентов.Littelfuse также предлагает более крупные MOV с клеммным креплением для промышленного применения.

Являясь более поздним нововведением в линейке продуктов Littelfuse, MLV обращаются к определенной части спектра переходных напряжений — среде на уровне печатной платы, где, несмотря на меньшую энергию, переходные процессы от электростатического разряда, индуктивного переключения нагрузки и даже остатков грозовых перенапряжений могли бы в противном случае достигают чувствительных интегральных схем. Каждое из этих событий может относиться к электромагнитной совместимости продукта (ЭМС) или к его невосприимчивости к переходным процессам, которые могут вызвать повреждение или неисправность.

Littelfuse предлагает пять различных версий MLV, включая подавитель электростатических разрядов серии MHS ​​для высоких скоростей передачи данных, серию ML, которая поддерживает самый широкий диапазон приложений, серию MLE, предназначенную для электростатического разряда, одновременно обеспечивающую функции фильтрации, серию MLN Quad Array в 1206 и 0805 микросхема и серия AUML, предназначенная для специфических переходных процессов, встречающихся в автомобильных электронных системах.

Устройства MOV (металлооксидный варистор) для поверхностного монтажа упрощают процесс сборки SMT и решают проблему ограничения места на печатной плате.Они подходят для пайки оплавлением и волной пайки и включают серии CH, SM7, SM20, MLE, MHS, ML и MLN.

Традиционные устройства MOV (металлооксидный варистор) с радиальным сквозным отверстием доступны в диаметрах 5 мм, 7 мм, 10 мм, 14 мм, 20 мм и 25 мм. Они подходят для обеспечения защиты от перенапряжения для самых разных приложений и включают серии C-III, iTMOV, LA, TMOV, RA, UltraMOV, UltraMOV25S и ZA.

Варисторы неизолированные дисковые — это промышленные высокоэнергетические элементы. Они разработаны для специальных применений, требующих уникальных электрических контактов или методов упаковки, которые запрашивают заказчики.Ограничители импульсных перенапряжений серии CA представляют собой промышленные высокоэнергетические дисковые варисторы (MOV), предназначенные для специальных применений, требующих уникальных электрических контактов или методов упаковки, предоставляемых заказчиком.

Термозащитные металлооксидные варисторы (TMOV)

разработаны в соответствии с требованиями UL 1449 к аномальным перенапряжениям. Их можно припаять волной припоя без каких-либо специальных или дорогостоящих процессов сборки и включают серии iTMOV, TMOV, TMOV25S и TMOV34S.

Промышленные высокоэнергетические варисторы обеспечивают гораздо более высокие показатели перенапряжения и энергопотребления, чем обычные MOV (металлооксидные варисторы), а также имеют различные клеммы для различных требований и условий сборки.К ним относятся серии BA, BB, CA, DA, HA, HB34, HC, HF34, HG34, TMOV34S, UltraMOV25S, C-III, FBMOV и TMOV25S.

Специальные варисторы

(металлооксидные варисторы) доступны в уникальной форме и обладают различным диапазоном напряжения и возможностями перенапряжения. К ним относятся серии C-III, FBMOV, MA и RA.

Интегрированные варисторы состоят из конструктивного блока варистора (MOV) на 40 кА со встроенным термически активируемым элементом. Эти устройства признаны UL как независимые SPD типа 1.

Термозащищенный и нефрагментирующий варистор серии Littelfuse FBMOV представляет собой новую разработку в области защиты цепей. Он состоит из блока варистора (MOV) на 40 кА со встроенным термически активируемым элементом, предназначенным для размыкания в случае перегрева из-за аномального перенапряжения и условий ограничения тока.

Установки Littelfuse для устройств PolySwitch сертифицированы по ISO / TS 16949: 2009 и ISO 9001: 2008.

Введение в систему подавления перенапряжения

Переходные процессы напряжения определяются как кратковременные скачки электрической энергии и являются результатом внезапного высвобождения энергии, которая была ранее сохранена или вызвана другими способами, такими как большие индуктивные нагрузки или удары молнии.В электрических или электронных схемах эта энергия может выделяться предсказуемым образом посредством контролируемых переключающих действий или произвольно индуцироваться в цепи от внешних источников.

Повторяющиеся переходные процессы часто вызваны работой двигателей, генераторов или переключением компонентов реактивной цепи. Случайные переходные процессы, с другой стороны, часто вызываются молнией (рисунок 1) и электростатическим разрядом (ESD) (рисунок 2). Молнии и электростатические разряды обычно возникают непредсказуемо, и для их точного измерения может потребоваться тщательный мониторинг, особенно если они индуцируются на уровне печатной платы.Многочисленные группы стандартов электроники проанализировали возникновение переходных напряжений с использованием общепринятых методов мониторинга или тестирования. Ключевые характеристики нескольких переходных процессов показаны ниже в таблице 1.

Рис. 1. Форма волны переходного процесса при молнии

НАПРЯЖЕНИЕ ТОК ВРЕМЯ НАСТРОЙКИ ПРОДОЛЖИТЕЛЬНОСТЬ
Освещение 25кВ 20кА 10 мкс 1 мс
Переключение 600 В 500A 50 мкс 500 мс
EMP 1кВ 10A 20нс 1 мс
ESD 15кВ 30A <1 нс 100 нс

Таблица 1.Примеры кратковременных источников и магнитуд

Характеристики скачков напряжения в переходных процессах

Переходные скачки напряжения обычно имеют форму волны «двойной экспоненты», показанную на Рисунке 1 для молнии и на Рисунке 2 для ESD. Время экспоненциального нарастания молнии находится в диапазоне от 1,2 мкс до 10 мкс (по существу, от 10% до 90%), а продолжительность находится в диапазоне от 50 мкс до 1000 мкс (50% пиковых значений). С другой стороны, ESD — это событие гораздо меньшей продолжительности. Время нарастания было охарактеризовано как менее 1 нс.Общая продолжительность составляет примерно 100 нс.

Рис. 2. Форма сигнала ESD-теста

Почему переходные процессы вызывают все большее беспокойство?

Миниатюризация компонентов привела к повышенной чувствительности к электрическим нагрузкам. Например, микропроцессоры имеют структуры и токопроводящие дорожки, которые не способны выдерживать высокие токи от переходных процессов электростатического разряда. Такие компоненты работают при очень низких напряжениях, поэтому нарушения напряжения необходимо контролировать, чтобы предотвратить прерывание работы устройства и скрытые или катастрофические отказы.Чувствительные устройства, такие как микропроцессоры, внедряются с экспоненциальной скоростью. Микропроцессоры начинают выполнять невидимые ранее прозрачные операции. Все, от бытовой техники, такой как посудомоечные машины, до промышленных устройств управления и даже игрушек, расширило использование микропроцессоров для повышения функциональности и эффективности.

В автомобилях сейчас используется множество электронных систем для управления двигателем, климатом, тормозами и, в некоторых случаях, системами рулевого управления. Некоторые из нововведений предназначены для повышения эффективности, но многие из них связаны с безопасностью, например, системы ABS и контроля тяги.Многие функции бытовой техники и автомобилей используют модули, которые представляют временные угрозы (например, электродвигатели). Не только окружающая среда в целом является враждебной, но и оборудование или устройства также могут быть источниками угроз. По этой причине тщательная разработка схемы и правильное использование технологии защиты от перенапряжения значительно улучшат надежность и безопасность конечного приложения. В таблице 2 показаны уязвимости различных компонентных технологий.

Тип устройства Уязвимость (вольт)
VMOS 30-1800
МОП-транзистор 100-200
GaAsFET 100-300
СППЗУ 100
JFET 140-7000
КМОП 250-3000
Диоды Шоттки 300-2500
Биполярные транзисторы 380-7000
SCR 680-1000

ТАБЛИЦА 2.ДИАПАЗОН УЯЗВИМОСТИ УСТРОЙСТВА.

Сценарии переходного напряжения

ESD (электростатический разряд)

Электростатический разряд характеризуется очень быстрым временем нарастания и очень высокими пиковыми напряжениями и токами. Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами.

Ниже приведены некоторые примеры напряжений, которые могут возникать в зависимости от относительной влажности (RH):

  • Ходьба по ковру:
    35 кВ при относительной влажности = 20%; 1.5 кВ при относительной влажности = 65%
  • Ходьба по виниловому полу:
    12кВ при относительной влажности = 20%; 250 В при относительной влажности 65%
  • Рабочий у верстака:
    6кВ при относительной влажности = 20%; 100 В при относительной влажности 65%
  • Виниловые конверты:
    7кВ при относительной влажности = 20%; 600 В при относительной влажности 65%
  • Полиэтиленовый мешок, взятый со стола:
    20кВ при относительной влажности = 20%; 1,2 кВ при относительной влажности = 65%

Обращаясь к таблице 2 на предыдущей странице, можно увидеть, что электростатический разряд, генерируемый повседневной деятельностью, может намного превзойти порог уязвимости стандартных полупроводниковых технологий.На рисунке 2 показана форма волны электростатического разряда, как определено в спецификации испытаний IEC 61000-4-2.

Индуктивное переключение нагрузки

Коммутация индуктивных нагрузок приводит к возникновению переходных процессов с высокой энергией, величина которых возрастает с увеличением нагрузки. Когда индуктивная нагрузка отключена, коллапсирующее магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника, эти переходные процессы могут достигать сотен вольт и сотен ампер с длительностью до 400 мс.

Типичными источниками индуктивных переходных процессов являются:

  • Генератор
  • Двигатель
  • Реле
  • Трансформатор

Эти примеры очень распространены в электрических и электронных системах. Поскольку размеры нагрузок меняются в зависимости от приложения, форма волны, продолжительность, пиковый ток и пиковое напряжение — все это переменные, которые существуют в реальных переходных процессах. После того, как эти переменные могут быть аппроксимированы, можно выбрать подходящую технологию подавления.

Рис. 3. Автомобильная разгрузка

Переходные процессы, индуцированные молнией

Хотя прямой удар явно разрушителен, переходные процессы, вызванные молнией, не являются результатом прямого удара. Когда происходит удар молнии, это событие создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях.

На рис. 4 показано, как удар от облака к облаку повлияет не только на кабели RHead, но и на проложенные кабели.Даже при ударе на расстоянии 1 мили (1,6 км) в электрических кабелях может возникнуть напряжение 70 В.

Рис. 4. Удар молнии из облака в облако

На рис. 5 на следующей странице показан эффект удара облака о землю: эффект, вызывающий переходные процессы, намного больше.

Рис. 5. Удар молнии между облаками и землей

На рисунке 6 показана типичная форма волны тока для индуцированных помех от молнии.

Рис. 6. Форма тестового сигнала пикового импульсного тока

Технологические решения для временных угроз

Из-за различных типов переходных процессов и приложений важно правильно согласовать решение по подавлению с различными приложениями.Littelfuse предлагает широчайший спектр технологий защиты цепей, чтобы гарантировать, что вы получите правильное решение для вашего приложения. Пожалуйста, обратитесь к нашей онлайн-библиотеке заметок по применению и заметок по дизайну для получения дополнительной информации о типичных проблемах дизайна, встречающихся на https://www.littelfuse.com.

Металлооксидные варисторы и многослойные варисторы

Варисторы — это нелинейные устройства, зависящие от напряжения, которые имеют электрические характеристики, аналогичные последовательно соединенным стабилитронам.Они состоят в основном из Z N O с небольшими добавками других оксидов металлов, таких как висмут, кобальт, магнезе и другие. Металлооксидный варистор или «MOV» спекается во время производственной операции в керамический полупроводник, что приводит к кристаллической микроструктуре, которая позволяет MOV рассеивать очень высокие уровни переходной энергии по всей массе устройства. Поэтому MOV обычно используются для подавления молний и других переходных процессов с высокой энергией, которые встречаются в промышленных приложениях или линиях переменного тока.Кроме того, MOV используются в цепях постоянного тока, таких как источники питания низкого напряжения и автомобильные приложения. Их производственный процесс допускает использование множества различных форм-факторов, наиболее распространенным из которых является диск с радиальными выводами.

Многослойные варисторы или MLV

изготовлены из материала Z N O, аналогичного стандартным MOV, однако они изготовлены с переплетенными слоями металлических электродов и поставляются в безвыводных керамических корпусах. Как и в случае стандартных MOV, многослойные устройства переходят из состояния с высоким импедансом в состояние проводимости при воздействии напряжений, превышающих их номинальное напряжение.MLV имеют чипы различных размеров и способны генерировать значительную импульсную энергию для своего физического размера. Таким образом, подавление линии передачи данных и источника питания достигается с помощью одной технологии.

Следующие параметры применимы к варисторам и / или многослойным варисторам и должны быть поняты разработчику схем, чтобы правильно выбрать устройство для конкретного применения.

Введение в варисторную технологию

Корпус варистора состоит из матрицы проводящих зерен Z N O, разделенных границами зерен, обеспечивающих полупроводниковые характеристики P-N перехода.Эти границы несут ответственность за блокировку проводимости при низких напряжениях и являются источником нелинейной электропроводности при более высоких напряжениях.

РИСУНОК 1. ХАРАКТЕРИСТИКА ТИПОВОГО ВАРИСТРА V-I

Симметричные, резкие характеристики пробоя, показанные на рисунке 1, позволяют варистору обеспечивать превосходные характеристики подавления переходных процессов. Под воздействием переходных процессов высокого напряжения импеданс варистора изменяется на много порядков величины от почти разомкнутой цепи до высокопроводящего уровня, тем самым ограничивая переходное напряжение до безопасного уровня.Потенциально разрушительная энергия входящего переходного импульса поглощается варистором, тем самым защищая уязвимые компоненты схемы.

Поскольку электрическая проводимость, по сути, возникает между зернами Z N O, распределенными по всей массе устройства, варистор Littelfuse по своей природе более прочен, чем его аналоги с одинарным P-N переходом, такие как стабилитроны. В варисторе энергия равномерно поглощается по всему корпусу устройства, в результате чего нагрев равномерно распространяется по его объему.Электрические свойства регулируются в основном физическими размерами корпуса варистора, который спечен в различных форм-факторах, таких как диски, микросхемы и трубки. Номинальная мощность определяется объемом, номинальным напряжением по толщине или длине пути прохождения тока, а допустимая нагрузка по току определяется площадью, измеренной перпендикулярно направлению прохождения тока.


Физические свойства

MOV

предназначены для защиты чувствительных цепей от внешних переходных процессов (молнии) и внутренних переходных процессов (переключение индуктивной нагрузки, переключение реле и разряды конденсаторов).И другие переходные процессы высокого уровня, встречающиеся в промышленных сетях переменного тока, или переходные процессы более низкого уровня, встречающиеся в автомобильных линиях постоянного тока с номинальным пиковым током от 20 до 500 А и номинальной мощностью от 0,05 Дж до 2,5 Дж.

Привлекательным свойством MOV является то, что электрические характеристики относятся к основной части устройства. Каждое зерно ZnO ​​в керамике действует так, как будто оно имеет полупроводниковый переход на границе зерен. Поперечное сечение материала показано на рисунке 2, который иллюстрирует микроструктуру керамики.Варисторы изготавливаются путем формования и спекания порошков на основе оксида цинка в керамические детали. Эти детали затем покрываются либо толстым слоем серебра, либо металлом, нанесенным дуговым / пламенным напылением.

Границы зерен ZnO хорошо видны. Поскольку нелинейное электрическое поведение возникает на границе каждого полупроводникового зерна ZnO, варистор можно рассматривать как «многопереходное» устройство, состоящее из множества последовательных и параллельных соединений границ зерен. Поведение устройства может быть проанализировано в отношении деталей керамической микроструктуры.Средний размер зерна и гранулометрический состав играют важную роль в электрических характеристиках.

РИСУНОК 2. ОПТИЧЕСКАЯ ФОТОМИКРОГРАФИЯ ПОЛИРОВАННОГО И ТРАВЛЕННОГО СЕЧЕНИЯ ВАРИСТОРА


Микроструктура варистора

Основная часть варистора между контактами состоит из зерен ZnO среднего размера « d », как показано на схематической модели на Рисунке 3. Удельное сопротивление ZnO составляет <0,3 Ом-см.

РИСУНОК 3.СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ МИКРОСТРУКТУРЫ ВАРИСТРА ОКСИДА МЕТАЛЛА
, ЗЕРНА ПРОВОДЯЩЕГО ZnO (СРЕДНИЙ РАЗМЕР
d) РАЗДЕЛЯЮТСЯ МЕЖГРАНУЛЯРНЫМИ ГРАНИЦАМИ.

Проектирование варистора для заданного номинального напряжения варистора ( В, N ), в основном, заключается в выборе толщины устройства таким образом, чтобы соответствующее количество зерен ( n ) располагалось последовательно между электродами. На практике материал варистора характеризуется градиентом напряжения, измеряемым по его толщине определенным значением вольт / мм.Контролируя состав и условия производства, градиент остается фиксированным. Поскольку существуют практические ограничения диапазона достижимой толщины, желательно более одного значения градиента напряжения. Изменяя состав добавок оксидов металлов, можно изменить размер зерна « d » и достичь желаемого результата.

Фундаментальным свойством варистора из ZnO является то, что падение напряжения на единственном интерфейсе «стык» между зернами почти постоянно.Наблюдения за диапазоном вариаций состава и условий обработки показывают фиксированное падение напряжения около 2–3 В на переход границы зерен. Также падение напряжения не меняется для зерен разного размера. Следовательно, напряжение варистора будет определяться толщиной материала и размером зерен ZnO. Отношения можно очень просто описать следующим образом:

Напряжение варистора ( V N ) определяется как напряжение на варисторе в точке его VI характеристики, где завершен переход ( v ) от низкоуровневой линейной области к сильно нелинейной. область.Для стандартных целей измерения это произвольно определяется как напряжение при токе 1 мА. Некоторые типичные значения размеров варисторов Littelfuse приведены в таблице 1.

ТАБЛИЦА 1.

ВАРИСТОР НАПРЯЖЕНИЯ СРЕДНИЙ РАЗМЕР ЗЕРНА n ГРАДИЕНТ ТОЛЩИНА УСТРОЙСТВА
ВОЛЬТ МИКРОН В / мм при 1 мА мм
150 В RMS 20 75 150 1.5
25 В RMS 80 (Примечание) 12 39 1,0

ПРИМЕЧАНИЕ: Состав для низкого напряжения.


Теория работы

Из-за поликристаллической природы металлооксидных полупроводниковых варисторов физическая работа устройства более сложна, чем у обычных полупроводников. Интенсивные измерения позволили определить многие электрические характеристики устройства, и прилагаются большие усилия, чтобы лучше определить работу варистора.Однако с точки зрения пользователя это не так важно, как понимание основных электрических свойств, поскольку они связаны с конструкцией устройства.

Ключ к объяснению работы металлооксидного варистора заключается в понимании электронных явлений, происходящих вблизи границ зерен или соединений между зернами Z N O. Хотя некоторые из ранних теорий предполагали, что электронное туннелирование происходит через изолирующий второй фазовый слой на границах зерен, работа варистора, вероятно, лучше описывается последовательно-параллельным расположением полупроводниковых диодов.В этой модели границы зерен содержат дефектные состояния, которые захватывают свободные электроны из полупроводниковых зерен Z N O n-типа, образуя, таким образом, слой обеднения объемного заряда в зернах ZnO в области, прилегающей к границам зерен. (См. Справочные примечания на последней странице этого раздела).

Признаки истощения слоев в варисторе показаны на рисунке 4, где величина, обратная квадрату емкости на границу, нанесена на график в зависимости от приложенного напряжения на границе. Это тот же тип поведения, наблюдаемая концентрация носителей, N , была определена как примерно 2 · 1017 на см 3 .Кроме того, ширина истощающего слоя была рассчитана примерно на 1000 единиц Ангстрема. Однопереходные исследования также подтверждают диодную модель.

Именно эти истощающие слои блокируют свободный поток носителей и отвечают за изоляционные свойства при низком напряжении в области утечки, как показано на рисунке 5. Ток утечки возникает из-за свободного потока носителей через барьер с пониженным полем, и термически активируется, по крайней мере, выше примерно 25 ° C. Для полупроводниковых диодов с резким P-N переходом.Отношения:

Где:
b ) = напряжение барьера,
(В) = приложенное напряжение,
(q) = заряд электрона,
(es) = диэлектрическая проницаемость полупроводника и
(Н ) = концентрация носителя.
Из этого соотношения определено, что концентрация носителей ZnO, N , составляет примерно 2 · 10 17 на см 3 .

Кроме того, ширина истощающего слоя была рассчитана примерно на 1000 единиц Ангстрема.Однопереходные исследования также подтверждают диодную модель.

РИСУНОК 4. ЕМКОСТЬ-НАПРЯЖЕНИЕ ПОВЕДЕНИЕ ВАРИСТОРНЫХ ОБРАЗЦОВ
ПЕРЕРЫВ ПОЛУПРОВОДНИКА ОБРАТНЫЙ
СМЕЩЕННЫЙ ДИОД Nd ˜ 2 x 10 17 / см 3

На рисунке 5 показана диаграмма энергетических зон для перехода ZnO-граница зерна-ZnO. Левое зерно смещено вперед, V L , а правая сторона смещено назад до V R .Ширина обедненного слоя составляет X L и X R , а соответствующие высоты барьера составляют f L и f R . Высота барьера со смещением нуля составляет f O . По мере увеличения напряжения смещения f L уменьшается, а f R увеличивается, что приводит к снижению барьера и увеличению проводимости.

Высота барьера f L варистора низкого напряжения была измерена как функция приложенного напряжения и представлена ​​на рисунке 6.Быстрое уменьшение барьера при высоком напряжении представляет собой начало нелинейной проводимости.

РИСУНОК 5. ЭНЕРГЕТИЧЕСКАЯ ДИАГРАММА ПЕРЕХОДА ZnO-ЗЕРНО-ГРАНИЦА-ZnO

РИСУНОК 6. ТЕПЛОВЫЙ БАРЬЕР в зависимости от ПРИЛОЖЕННОГО НАПРЯЖЕНИЯ

Транспортные механизмы в нелинейной области очень сложны и до сих пор являются предметом активных исследований. Большинство теорий черпают вдохновение из теории переноса полупроводников и не рассматриваются подробно в этом документе.


Конструкция варистора

Процесс изготовления варистора Littelfuse проиллюстрирован на блок-схеме на рис. 7. Исходный материал может отличаться по составу добавок оксидов, чтобы охватить диапазон напряжения продукта.

РИСУНОК 7. СХЕМА ПОТОКА ИЗГОТОВЛЕНИЯ МАЛЕНЬКОГО ВАРИСТРА

Характеристики устройства определяются при операции прессования. Порошок прессуют в форму заданной толщины, чтобы получить желаемое значение номинального напряжения.Для получения желаемых значений пикового тока и энергетической способности варьируются площадь электродов и масса устройства. Диапазон диаметров, доступных для дисковых продуктов, указан здесь:

Номинальный диаметр диска
Диаметр, мм
3 5 7 10 14 20 32 34 40 62

Конечно, другие формы, например, прямоугольники, также возможны при простой замене штампов пресса.Для изготовления различных форм можно использовать другие методы изготовления керамики. Например, стержни или трубки изготавливают путем экструзии и резки до нужной длины. После формования необожженные (т.е. необожженные) детали помещают в печь и спекают при пиковых температурах, превышающих 1200 ° C. Оксид висмута плавится при температуре выше 825 ° C, что способствует первоначальному уплотнению поликристаллической керамики. При более высоких температурах происходит рост зерен, образуя структуру с контролируемым размером зерен.

Электродирование радиальных устройств и устройств со стружкой осуществляется обжигом толстой пленки серебра на керамической поверхности.Затем припаиваются провода или зажимы для ленты. Проводящая эпоксидная смола используется для соединения выводов с осевыми 3-миллиметровыми дисками. Для более крупных промышленных устройств (диски диаметром 40 мм и 60 мм) контактный материал представляет собой алюминий, напыленный дуговым напылением, с дополнительным напылением меди, если необходимо, чтобы получить поверхность, пригодную для пайки.

При сборке различных корпусов варистора Littelfuse используется множество методов инкапсуляции. Большинство радиальных устройств и некоторые промышленные устройства (серия HA) имеют эпоксидное покрытие в псевдоожиженном слое, тогда как эпоксидная смола «наматывается» на осевое устройство.

Радиалы также доступны с фенольными покрытиями, наносимыми мокрым способом. Корпус серии PA состоит из пластика, залитого вокруг 20-миллиметрового дискового узла. Все устройства серий RA, DA и DB похожи тем, что все они состоят из дисков или микросхем с выводами или выводами, заключенных в формованный пластиковый корпус, заполненный эпоксидной смолой. Различные стили корпуса позволяют варьировать номинальную мощность, а также механический монтаж.

ТАБЛИЦА 2. РАЗМЕРЫ КЕРАМИКИ ПО ТИПАМ

УПАКОВКА
ТИП
СЕРИЯ РАЗМЕРЫ КЕРАМИКИ
Бесконтактный поверхностный монтаж CH, AUML †, ML †, MLE †, MLN † Серия Чип 5 мм x 8 мм, 0603, 0805, 1206, 1210, 1812, 2220
с осевыми выводами MA серии Диск диаметром 3 мм
С радиальными выводами ZA, LA, C-III, TMOV ® ,
i TMOV ® , UltraMOV , TMOV25S серии ®
Диски диаметром 5 мм, 7 мм, 10 мм, 14 мм, 20 мм
В штучной упаковке, низкопрофильный RA серии 5 мм x 8 мм, 10 мм x 16 мм, 14 x 22 микросхемы
Промышленные блоки BA, BB Series
DA, DB Series
DHB Series
HA, HB Series
HC, HF Series
HG Series
32 мм, диск диаметром 40 мм, квадратный диск 34 мм, диск диаметром 40 мм, диск диаметром 60 мм
Промышленные диски CA серии Диски диаметром 60 мм

На рис. 9A, 9B и 9C (ниже) показаны детали конструкции некоторых варисторных корпусов Littelfuse.Размеры керамики в зависимости от типа корпуса приведены выше в таблице 2.

РИСУНОК 9A. РАЗРЕЗ MA СЕРИИ

РИСУНОК 9B. РАЗРЕЗ РАДИАЛЬНОГО ВЫВОДА УПАКОВКИ

РИСУНОК 9C. ИЗОБРАЖЕНИЕ ВЫСОКОЭНЕРГЕТИЧЕСКОЙ СЕРИИ DA, DB И BA / BB


Электрические характеристики ВАХ варистора

Обращаясь теперь к области сильноточного подъема на рисунке 10, мы видим, что поведение V-I приближается к омической характеристике.Предельное значение сопротивления зависит от электропроводности тела полупроводниковых зерен ZnO, концентрация носителей которых находится в диапазоне от 10 17 до 10 18 на см 3 . Это снизит удельное сопротивление ZnO ниже 0,3 Ом · см.

РИСУНОК 10. ТИПИЧНАЯ ВАРИСТОРНАЯ КРИВАЯ V-I, ЗАПИСАННАЯ НА МАСШТАБЕ ЖУРНАЛА

Электрические характеристики варистора

удобно отображаются в логарифмическом формате, чтобы показать широкий диапазон кривой V-I.Формат журнала также более ясен, чем линейное представление, которое имеет тенденцию преувеличивать нелинейность пропорционально выбранному текущему масштабу. Типичная характеристическая кривая V-I показана на рисунке 10. Этот график показывает более широкий диапазон тока, чем обычно указывается в технических паспортах варисторов, чтобы проиллюстрировать три различных области электрического режима.


Модель эквивалентной цепи

Электрическая модель варистора может быть представлена ​​упрощенной схемой замещения, показанной на Рисунке 11.

РИСУНОК 11. ВАРИСТОРНАЯ МОДЕЛЬ ЭКВИВАЛЕНТНОЙ ЦЕПИ


Область утечки в рабочем состоянии

При низких уровнях тока кривая V-I приближается к линейной (омической) зависимости и показывает значительную температурную зависимость. Варистор находится в режиме высокого сопротивления (приближается к 10 9 Ом) и выглядит как разомкнутая цепь. Нелинейную составляющую сопротивления ( R X ) можно игнорировать, потому что ( R OFF ) будет преобладать параллельно.Кроме того, ( R ON ) будет незначительным по сравнению с ( R OFF ).

РИСУНОК 12. ЭКВИВАЛЕНТНАЯ ЦЕПЬ ПРИ НИЗКИХ ТОКАХ

Для данного варисторного устройства емкость остается примерно постоянной в широком диапазоне напряжения и частоты в области утечки. При подаче напряжения на варистор значение емкости уменьшается незначительно. Когда напряжение приближается к номинальному напряжению варистора, емкость уменьшается.Емкость остается почти постоянной при изменении частоты до 100 кГц. Точно так же изменение температуры невелико, значение емкости 25 ° C соответствует +/- 10% от -40 ° C до + 125 ° C.

Температурный эффект характеристической кривой V-I в области утечки показан на рисунке 13. Отмечается отчетливая температурная зависимость.

РИСУНОК 13. ЗАВИСИМОСТЬ ХАРАКТЕРИСТИКИ ОТ ТЕМПЕРАТУРЫ В ОБЛАСТИ УТЕЧКИ

Соотношение между током утечки (I) и температурой (T) равно

Фактически, изменение температуры соответствует изменению ( R OFF ).Однако ( R OFF ) сохраняет высокое значение сопротивления даже при повышенных температурах. Например, он все еще находится в диапазоне от 10 МОм до 100 МОм при 125 ° C.

Хотя ( R OFF ) имеет высокое сопротивление, оно зависит от частоты. Отношение приблизительно линейно с обратной частотой.

Если, однако, параллельная комбинация ( R OFF ) и ( ° C ) является преимущественно емкостной на любой интересующей частоте.Это связано с тем, что емкостное реактивное сопротивление также изменяется примерно линейно с 1 / f .

При более высоких токах, в диапазоне мА и выше, изменение температуры становится минимальным. График температурного коэффициента ( dV / dT ) приведен на рисунке 14. Следует отметить, что температурный коэффициент отрицательный (-) и уменьшается с ростом тока. В диапазоне напряжения фиксации варистора ( I> 1A ) температурная зависимость приближается к нулю.

РИСУНОК 14. ОТНОШЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА DV / DT К ВАРИСТОРНОМУ ТОКУ


Номинальная область действия варистора

Характеристика варистора соответствует уравнению:

I = кВ a , где ( k ) — постоянная величина, а показатель степени ( a ) определяет степень нелинейности. Альфа — это показатель качества, который можно определить по наклону кривой V-I или рассчитать по формуле:

В этой области варистор является проводящим, и R X будет преобладать над C , R ON и R OFF . R X становится на много порядков меньше, чем R OFF , но остается больше, чем R ON .

РИСУНОК 15. Эквивалентная цепь при варисторной проводимости

Во время проводимости напряжение варистора остается относительно постоянным при изменении тока на несколько порядков. Фактически, сопротивление устройства R X изменяется в зависимости от тока. Это можно наблюдать, исследуя статическое или динамическое сопротивление как функцию тока.Статическое сопротивление определяется по формуле:

.

Графики типичных значений сопротивления в зависимости от тока ( I ) приведены на рисунках 16A и 16B.

РИСУНОК 16A. R X СТАТИЧЕСКОЕ ВАРИСТОРНОЕ СОПРОТИВЛЕНИЕ РИСУНОК

РИСУНОК 16B. Z X ДИНАМИЧЕСКОЕ ВАРИСТОРНОЕ СОПРОТИВЛЕНИЕ


Верхний регион деятельности

При больших токах, приближающихся к максимальному значению, варистор приближается к короткому замыканию.Кривая отклоняется от нелинейной зависимости и приближается к значению объемного сопротивления материала, примерно 1–10 Ом. Подъем происходит, когда значение R X приближается к значению R ON . Резистор R ON представляет собой объемное сопротивление зерен Z N O. Это сопротивление является линейным (которое проявляется как более крутой наклон на графике) и возникает при токах от 50 до 50 000 А, в зависимости от размера варистора.

РИСУНОК 17.ЭКВИВАЛЕНТНАЯ ЦЕПЬ ПРИ ПОВОРОТЕ ВАРИСТОРА


Скорость реакции и скорость воздействия

Действие варистора зависит от механизма проводимости, аналогичного механизму других полупроводниковых приборов. По этой причине проводимость происходит очень быстро, без видимой задержки по времени — даже в наносекундном (нс) диапазоне. На рисунке 18 показана составная фотография двух кривых напряжения с варистором, вставленным в импульсный генератор с очень низкой индуктивностью, и без него. Вторая кривая (которая не синхронизирована с первой, а просто накладывается на экран осциллографа) показывает, что эффект ограничения напряжения варистора возникает менее чем за 1.0 нс.

РИСУНОК 18. ОТКЛИК ZnO ВАРИСТОРА НА БЫСТРОЕ ВРЕМЯ НАРАСТЕНИЯ (500ps) ИМПУЛЬС

В обычных устройствах, установленных на выводах, индуктивность выводов полностью маскирует быстрое действие варистора; поэтому для испытательной схемы на Рисунке 18 потребовалось вставить небольшой кусок варисторного материала в коаксиальную линию, чтобы продемонстрировать собственный отклик варистора.

Испытания, проведенные на устройствах, установленных на выводах, даже с уделением особого внимания минимизации длины выводов, показывают, что напряжения, индуцируемые в контуре, образованном выводами, составляют значительную часть напряжения, возникающего на выводах варистора при высоком и быстром токе. повышаться.К счастью, токи, которые могут быть доставлены от источника переходных процессов, неизменно медленнее по времени нарастания, чем наблюдаемые переходные процессы напряжения. Варисторы чаще всего используют при времени нарастания тока более 0,5 мкс.

Скорость нарастания напряжения — не лучший термин для использования при обсуждении реакции варистора на быстрый импульс (в отличие от искровых разрядников, где на переключение из непроводящего в проводящее состояние требуется конечное время). Время отклика варистора на переходный ток, который может выдать схема, является подходящей характеристикой, которую следует учитывать.

Вольт-амперная характеристика на рисунке 19A показывает, как на отклик варистора влияет форма тока. Исходя из таких данных, эффект «выброса» может быть определен как относительное увеличение максимального напряжения, возникающего на варисторе во время быстрого нарастания тока, с использованием в качестве эталона стандартной волны тока 8/20 мкс. На рисунке 19B показано типичное изменение напряжения фиксации в зависимости от времени нарастания для различных уровней тока.

РИСУНОК 19. РЕАГИРОВАНИЕ ВАРИСТОРОВ, УСТАНОВЛЕННЫХ НА ВЫВОДКЕ, НА ТЕКУЩУЮ ВОЛНОВУЮ ФОРМУ

РИСУНОК 19A.ХАРАКТЕРИСТИКИ V-I ДЛЯ РАЗЛИЧНЫХ ВРЕМЕНИ НАРАБОТКИ ТОКА

РИСУНОК 19B. ОПРЕДЕЛЕНИЕ ОБСЛУЖИВАНИЯ НА ОСНОВЕ ОСНОВНЫХ 8/20 ТОК ИМПУЛЬСА


Как подключить варистор Littelfuse

Подавители переходных процессов могут подвергаться воздействию высоких токов в течение коротких промежутков времени от наносекунд до миллисекунд.

Варисторы

Littelfuse подключаются параллельно нагрузке, и любое падение напряжения на выводах варистора снижает его эффективность.Наилучшие результаты достигаются при использовании коротких проводов, которые расположены близко друг к другу, чтобы уменьшить наведенные напряжения, и низкого омического сопротивления, чтобы уменьшить падение I • R.

Однофазный

РИСУНОК 23.

Это наиболее полная защита, которую можно выбрать, но во многих случаях выбираются только Варистор 1 или Варистор 1 и 2.

РИСУНОК 24.

трехфазный

РИСУНОК 25A. 3 ФАЗА 220В / 380В, НЕЗЕМЛЯЮЩАЯ

РИСУНОК 25B.3 ФАЗА 220 В ИЛИ 380 В, НЕЗЕМЛЯЮЩАЯ

РИСУНОК 25C. 3 ФАЗА 220 В, ОДНА ФАЗА ЗАЗЕМЛЕННАЯ

РИСУНОК 25D. 3 ФАЗА 220 В

РИСУНОК 25E. 3 ФАЗЫ 120 В / 208 В, 4 ПРОВОДА

РИСУНОК 25F. 3 ФАЗА 240 В / 415 В

Для более высоких напряжений используйте те же соединения, но выбирайте варисторы для соответствующего номинального напряжения.

Приложение постоянного тока

Для приложений

постоянного тока требуется соединение между плюсом и минусом или плюсом и землей, а также минусом и землей.

Например, если переходный процесс к земле существует на всех трех фазах (переходные процессы синфазного режима), только подавители переходных процессов, соединенные фазой с землей, будут поглощать энергию. Подавители переходных процессов, подключенные между фазой, не будут эффективны.

РИСУНОК 26. ПЕРЕХОДНОЕ И ПРАВИЛЬНОЕ РЕШЕНИЕ ДЛЯ ОБЩЕГО РЕЖИМА

С другой стороны, если существует дифференциальный режим переходного процесса (фаза к фазе), то подавители переходных процессов, соединенные между фазами, будут правильным решением.

РИСУНОК 27. ПЕРЕХОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ РЕЖИМ И ПРАВИЛЬНОЕ РЕШЕНИЕ

Это лишь некоторые из наиболее важных вариантов подключения ограничителей переходных процессов.

Логический подход состоит в том, чтобы подключить подавитель переходных процессов между точками разности потенциалов, создаваемых переходным процессом. Подавитель затем уравняет или уменьшит эти потенциалы до более низких и безопасных уровней.


Варистор: термины и определения

Определения (Стандарт IEEE C62.33, 1982)

Характеристика — это неотъемлемая и измеряемая характеристика устройства. Такое свойство может быть электрическим, механическим или тепловым и может быть выражено как значение для указанных условий.

Рейтинг — это значение, которое устанавливает либо ограничивающую способность, либо ограничивающее условие (максимальное или минимальное) для работы устройства. Он определен для заданных значений окружающей среды и эксплуатации. Рейтинги указывают уровень нагрузки, которая может быть приложена к устройству, не вызывая ухудшения характеристик или выхода из строя.Символы варистора определены на линейном графике V-I, показанном на рисунке 20.

РИСУНОК 20. СИМВОЛЫ И ОПРЕДЕЛЕНИЯ НА ГРАФИКЕ НА ГРАФИКЕ


Устройство фиксации напряжения

Зажимное устройство, такое как MOV, относится к характеристике, при которой эффективное сопротивление изменяется с высокого на низкое состояние в зависимости от приложенного напряжения. В проводящем состоянии между зажимным устройством и сопротивлением источника цепи устанавливается действие делителя напряжения.Зажимные устройства обычно являются «рассеивающими» устройствами, преобразующими большую часть переходной электрической энергии в тепло.

Выбор наиболее подходящего подавителя зависит от баланса между приложением, его работой, ожидаемыми угрозами переходного напряжения и уровнями чувствительности компонентов, требующих защиты. Также необходимо учитывать форм-фактор / стиль упаковки.


Тестовая форма волны

При высоких уровнях тока и энергии характеристики варистора обязательно измеряются с помощью формы импульса.На рисунке 21 показана форма волны стандарта ANSI C62.1, экспоненциально затухающая форма волны, представляющая грозовые скачки и разряд накопленной энергии в реактивных цепях.

Волна тока 8/20 мкс (нарастание 8 мкс и спад от 20 мкс до 50% пикового значения) используется в качестве стандарта, основанного на отраслевых практиках, для описанных характеристик и номинальных значений. Единственным исключением является класс энергопотребления (W TM ), в котором используется более длинная форма волны 10/1000 мкс. Это состояние более характерно для высоких скачков энергии, обычно возникающих при индукционном разряде двигателей и трансформаторов.Варисторы рассчитаны на максимальный импульс энергии, который приводит к сдвигу напряжения варистора (V N ) менее чем на +/- 10% от начального значения.

РИСУНОК 21. ОПРЕДЕЛЕНИЕ ВОЛНЫ ИМПУЛЬСНОГО ТОКА


Номинальные параметры рассеиваемой мощности

Когда переходные процессы происходят в быстрой последовательности, средняя рассеиваемая мощность равна энергии W TM (ватт-секунды) за импульс, умноженной на количество импульсов в секунду. Разрабатываемая таким образом мощность должна соответствовать спецификациям, указанным в таблице характеристик и характеристик конкретного устройства.Некоторые параметры должны быть снижены при высоких температурах.

РИСУНОК 22. НОМИНАЛЬНЫЕ ХАРАКТЕРИСТИКИ И ХАРАКТЕРИСТИКИ УСТРОЙСТВА

ТАБЛИЦА 3. ХАРАКТЕРИСТИКИ ВАРИСТОРА (СТАНДАРТ IEEE C62.33-1982, ПОДРАЗДЕЛЕНИЯ 2.3 И 2.4)

Термины и описания Символ
Напряжение зажима. Пиковое напряжение на варисторе, измеренное в условиях заданного пикового значения импульсного тока V C и заданной формы волны.ПРИМЕЧАНИЕ. Пиковое напряжение и пиковые токи не обязательно совпадают по времени. В С
Номинальные пиковые переходные токи одиночных импульсов (варистор). Максимальный пиковый ток, который может быть приложен для одиночного импульса 8/20 мкс с номинальным линейным напряжением, не вызывая отказа устройства. I TM
Расчетные импульсные токи на срок службы (варистор). Пониженные значения I TM для длительности импульса, превышающей длительность волны 8/20 мкс, а также для нескольких импульсов, которые могут применяться в течение номинального срока службы устройства.
Номинальное среднеквадратичное напряжение (варистор). Максимальное допустимое продолжительное действующее синусоидальное напряжение. В M (переменный ток)
Номинальное напряжение постоянного тока (варистор). Максимальное допустимое продолжительное напряжение постоянного тока. В M (постоянный ток)
Постоянный ток в режиме ожидания (варистор). Ток варистора, измеренный при номинальном напряжении, В M (DC) . I D
Для некоторых приложений могут быть полезны некоторые из следующих терминов.
Номинальное напряжение варистора. Напряжение на варисторе, измеренное при заданном импульсном постоянном токе I N (DC) определенной длительности. I N (DC) определенной продолжительности. I N (DC) указывается производителем варистора. В Н (постоянный ток)
Пиковое номинальное напряжение варистора. Напряжение на варисторе, измеренное при заданном пиковом переменном токе I N (AC) определенной продолжительности. I N (AC) указывается производителем варистора. В N (переменный ток)
Номинальное рекуррентное пиковое напряжение (варистор). Максимальное повторяющееся пиковое напряжение, которое может применяться для указанного рабочего цикла и формы волны. В PM
Номинальная переходная энергия одиночного импульса (варистор). Энергия, которая может рассеиваться для одиночного импульса максимального номинального тока с заданной формой волны, с приложенным номинальным среднеквадратичным напряжением или номинальным постоянным напряжением, не вызывая отказа устройства. Вт TM
Расчетная средняя рассеиваемая мощность в переходных процессах (варистор). Максимальная средняя мощность, которая может рассеиваться из-за группы импульсов, возникающих в течение определенного изолированного периода времени, не вызывая отказа устройства.
Напряжение варистора. Напряжение на варисторе, измеренное при заданном токе IX. В X
Коэффициент ограничения напряжения (варистор). Показатель эффективности зажима варистора, определяемый символами
(V C ) ÷ (V M (AC) ), (V C ) ÷ (V M (DC) ) .
В С / В PM
Нелинейная экспонента. Мера нелинейности варистора между двумя заданными рабочими токами, I 1 и I 2 , как описано как I = kV a , где k — постоянная устройства, I 1 ≤ I ≤ I 2 , и 12 = (logI 2 / I 1 ) ÷ (logV 2 / V 1 )
Динамическое сопротивление (варистор). Мера полного сопротивления слабого сигнала в данной рабочей точке, как определено следующим образом:
Z X = (dV X ) ÷ (dI X )
Z X
Сопротивление (варистор). Статическое сопротивление варистора в данной рабочей точке, определяемое следующим образом: R X = (V X ) ÷ (I X ) R X
Емкость (варистор). Емкость между двумя выводами варистора, измеренная при указанной частоте C и смещении. С
Резервное питание переменного тока (варистор). Рассеиваемая мощность переменного тока варистора, измеренная при номинальном среднеквадратичном напряжении V M (AC) . П Д
Превышение напряжения (варистор). Превышение напряжения над напряжением фиксации устройства для заданного тока, которое возникает при приложении токовых волн длительностью виртуального фронта менее 8 мкс. Это значение может быть выражено в% от напряжения ограничения (V C ) для волны тока 8/20. В ОС
Время отклика (варистор). Время между точкой, в которой волна превышает уровень напряжения ограничения (V C ), и пиком выброса напряжения. Для целей этого определения напряжение ограничения определяется формой волны тока 8/20 мкс с той же пиковой амплитудой тока, что и форма волны, используемая для этого времени отклика.
Продолжительность перерегулирования (варистор). Время между точкой уровня напряжения (V C ) и точкой, в которой выброс напряжения снизился до 50% от своего пика.Для целей этого определения напряжение ограничения определяется формой волны тока 8/20 мкс с той же пиковой амплитудой тока, что и форма волны, используемая для этой длительности выброса.

Варистор | Типы резисторов | Руководство по резистору

Что такое варистор?

Варистор — это резистор, зависящий от напряжения (VDR). Сопротивление варистора переменное и зависит от приложенного напряжения. Слово состоит из частей слов « var iable res istor .Их сопротивление уменьшается при увеличении напряжения. В случае чрезмерного увеличения напряжения их сопротивление резко падает. Такое поведение делает их пригодными для защиты цепей во время скачков напряжения. Причины скачка напряжения могут включать удары молнии и электростатические разряды. Наиболее распространенным типом VDR является металлооксидный варистор или MOV.

Определение

Варисторы — это нелинейные двухэлементные полупроводники, сопротивление которых падает с увеличением напряжения. Резисторы, зависящие от напряжения, часто используются в качестве ограничителей перенапряжения для чувствительных цепей.

Пакеты

Вот несколько примеров различных корпусов варисторов. Пакеты блоков используются для более высоких номинальных мощностей.

Диск

Блок

С радиальными выводами

с осевыми выводами

Характеристики

Резистор, зависящий от напряжения, имеет нелинейно изменяющееся сопротивление, зависящее от приложенного напряжения.Импеданс высокий в условиях номинальной нагрузки, но резко упадет до низкого значения при превышении порогового значения напряжения, напряжения пробоя. Они часто используются для защиты цепей от чрезмерных переходных напряжений. Когда схема подвергается воздействию переходного процесса высокого напряжения, варистор начинает проводить и ограничивает переходное напряжение до безопасного уровня. Энергия падающего импульса частично передается и частично поглощается, защищая цепь.

Наиболее распространенным типом является варистор на основе оксида металла (MOV).Они состоят из спеченной матрицы зерен оксида цинка (ZnO). Границы зерен обеспечивают полупроводниковые характеристики P-N-перехода, аналогичные диодному переходу. Матрицу из случайно ориентированных зерен можно сравнить с большой сетью диодов, включенных последовательно и параллельно. Когда прикладывается низкое напряжение, протекает лишь очень небольшой ток из-за обратной утечки через переходы. Однако при приложении высокого напряжения, превышающего напряжение пробоя, в переходах происходит лавинный пробой, и может протекать большой ток.{\ alpha} $$

Член α описывает степень нелинейности. На рисунке ниже показаны характеристические кривые варистора MOV (высокий α) и SiC (низкий α).

Важными параметрами выбора являются напряжение фиксации, пиковый ток, максимальная энергия импульса, номинальное напряжение переменного / постоянного тока и ток в режиме ожидания. При использовании в линиях связи паразитная емкость также является важным параметром. Высокая емкость может действовать как фильтр для высокочастотных сигналов или вызывать перекрестные помехи, ограничивая доступную полосу пропускания линии связи.

Варисторы

используются для кратковременной защиты в случае высоких переходных скачков напряжения порядка 1-1000 микросекунд. Однако они не подходят для выдерживания длительных скачков напряжения. Если энергия переходного импульса, измеренная в джоулях (Дж), значительно превышает абсолютные максимальные значения, они могут расплавиться, гореть или взорваться.

MOV деградируют под воздействием повторяющихся скачков напряжения. После каждого скачка напряжения зажима MOV немного ниже; насколько зависит от рейтинга джоулей MOV по отношению к пульсу.По мере того, как напряжение ограничения падает все ниже и ниже, возможный режим отказа представляет собой частичное или полное короткое замыкание, при котором напряжение ограничения падает ниже напряжения защищаемой линии. Эта ситуация может привести к возгоранию. Во избежание возгорания их часто подключают последовательно с плавким предохранителем, который отключает MOV в случае перегрева. Чтобы ограничить деградацию, рекомендуется использовать напряжение фиксации настолько высокое, насколько позволяет защищаемая цепь, чтобы ограничить степень воздействия скачков напряжения.

Приложения

Нелинейная характеристика варистора делает их идеальными для использования в качестве устройств защиты от перенапряжения. Источниками переходных процессов высокого напряжения могут быть удары молнии, электростатический разряд (ESD) или индукционный разряд от двигателей или трансформаторов. Поэтому варисторы часто используются в удлинителях для защиты от перенапряжений. Специальные типы с малой емкостью защищают линии связи. Эти VDR полезны для самых разных приложений, в том числе:

  • Защита телефонных и других линий связи
  • Аппаратура радиосвязи подавления переходных процессов
  • Сетевые фильтры для защиты от перенапряжений
  • Сетевые фильтры для систем кабельного телевидения
  • Защита источника питания
  • Защита микропроцессора
  • Защита электронного оборудования
  • Защита уровня платы низкого напряжения
  • Ограничитель импульсных перенапряжений (TVSS)
  • Защита автомобильной электроники
  • Промышленная защита переменного тока высокой энергии

Типы

Наиболее важные типы:

  • Варистор из оксида металла — Описанный выше MOV представляет собой нелинейный ограничитель переходных процессов, состоящий из оксида цинка (ZnO)
  • Варистор из карбида кремния — Одно время это был самый распространенный тип, прежде чем MOV появился на рынке.В этих компонентах используется карбид кремния (SiC). Они интенсивно используются в приложениях с высокой мощностью и высоким напряжением. Недостатком этих устройств является то, что они потребляют значительный ток в режиме ожидания. Следовательно, требуется последовательный разрыв для ограничения энергопотребления в режиме ожидания.

Альтернативные типы устройств для подавления перенапряжения включают:

  • Селеновые элементы — в этих подавителях используются селеновые выпрямители, обеспечивающие высокоэнергетический обратный ток пробоя. Некоторые селеновые элементы обладают самовосстанавливающимися свойствами, что позволяет им выдерживать разряды высокой энергии.Однако они не обладают зажимной способностью современных MOV.
  • Стабилитроны — устройство подавления переходных процессов, в котором используется кремниевый выпрямитель. У них очень постоянное напряжение зажима. Основным недостатком стабилитронов является ограниченная способность рассеивать энергию.
  • Устройства лома — Устройство лома замыкает скачок напряжения на землю. Это короткое замыкание будет продолжаться до тех пор, пока ток не опустится ниже определенного очень низкого уровня. Создание эффекта запаздывания или следования за усилением.Примеры ломовых устройств:
    • Газоразрядная трубка (GDT) или искровой разрядник. Эти устройства проводят после образования проводящей искры, недостаток в том, что они срабатывают относительно долго, преимуществом является большая пропускная способность по току.
    • Тиристорное устройство защиты от перенапряжения (TSPD) — имеет характеристики, аналогичные GDT, но может действовать намного быстрее.

Обозначение варистора

Для варистора используется следующий символ.Он изображен как переменный резистор, зависящий от напряжения, U.

Обозначение варистора (стандарт IEC)

ресурсов

Книги

Онлайн

Металлооксидный варистор (MOV) — работа, применение, советы по проектированию и руководство по выбору

Металлооксидный варистор или MOV — это круглый компонент синего или оранжевого цвета, который обычно можно обнаружить на стороне входа переменного тока любой цепи источника питания . Варистор из оксида металла можно рассматривать как еще один тип переменного резистора, который может изменять свое сопротивление в зависимости от приложенного к нему напряжения.Когда через MOV проходит большой ток, его сопротивление уменьшается и действует как короткое замыкание. Следовательно, MOV обычно используются параллельно с предохранителем для защиты цепей от скачков высокого напряжения. В этой статье мы узнаем больше о MOV Working и о том, как использовать его в своих проектах, чтобы защитить ваши схемы от скачков напряжения . Мы также узнаем об электрических свойствах MOV и о том, как выбрать MOV в соответствии с вашими проектными требованиями, так что давайте начнем.

Что такое MOV (металлооксидный варистор)?

MOV — это просто переменный резистор, но, в отличие от потенциометров, MOV может изменять свое сопротивление в зависимости от приложенного напряжения . Если напряжение на нем увеличивается, сопротивление уменьшается, и наоборот. Это свойство полезно для защиты цепей от скачков высокого напряжения; следовательно, они в основном используются как устройства защиты от перенапряжения в электронной сети. Простой MOV показан на рисунке ниже

.

Как работает MOV?

В нормальных условиях эксплуатации сопротивление MOV будет высоким, и они будут потреблять очень небольшой ток, но при скачке напряжения в сети напряжение поднимется выше изгиба или напряжения ограничения , и они потребляют больше тока, это рассеивает перенапряжения и защищает оборудование.MOV могут использоваться только для защиты от коротких перенапряжений , они не выдерживают длительных перенапряжений. Если MOV подвергаются повторяющимся скачкам, их свойства могут немного ухудшиться. Всякий раз, когда они испытывают скачок напряжения, напряжение зажима падает немного ниже, что через некоторое время может даже привести к их разрушению. Чтобы избежать подобных рисков, MOV обычно подключаются последовательно с термовыключателем / предохранителем, который может сработать при подаче большого тока. Давайте подробнее обсудим, как MOV работает в цепи.

Как использовать MOV в вашей цепи? Варисторы

MOV, также известные как варисторы, обычно используются вместе с предохранителями, включенными параллельно защищаемой цепи. На изображении ниже показано, как использовать MOV в электронной схеме .

Когда напряжение находится в пределах номинальных значений, сопротивление MOV будет очень высоким, и, следовательно, весь ток течет через цепь, а ток через MOV не течет. Но когда в основном напряжении возникает скачок напряжения, он появляется непосредственно на MOV, поскольку он размещен параллельно сети переменного тока.Это высокое напряжение снизит значение сопротивления MOV до очень низкого значения, что сделает его похожим на короткое замыкание.

Это вызывает прохождение большого тока через MOV, который приведет к срабатыванию предохранителя и отключению цепи от сетевого напряжения. Во время скачков напряжения неисправное высокое напряжение очень скоро вернется к нормальным значениям, в этих случаях продолжительность протекания тока будет недостаточно высокой, чтобы сгорел предохранитель, и схема вернется в нормальный режим работы, когда напряжение станет нормальным.Но каждый раз, когда обнаруживается всплеск, MOV на мгновение отключает цепь, закорачивая себя и повреждая себя каждый раз большим током. Так что, если вы обнаружите, что MOV поврежден в какой-либо силовой цепи, возможно, это связано с тем, что в цепи было много скачков напряжения.

MOV Строительство

Варистор на основе оксида металла — это резистор , зависимый от напряжения , который изготовлен из керамических порошков оксидов металлов, таких как оксид цинка, и некоторых других оксидов металлов, таких как оксиды кобальта, марганца, висмута и т. Д.MOV состоит приблизительно из 90% оксида цинка и небольшого количества оксидов других металлов. Керамические порошки оксидов металлов остаются неповрежденными между двумя металлическими пластинами, называемыми электродами.

Гранулы оксидов металлов создают диодный переход между каждым ближайшим соседом. Итак, MOV — это большое количество последовательно соединенных диодов. Когда вы прикладываете небольшое напряжение к электродам, через переходы появляется обратный ток утечки . Первоначально генерируемый ток будет небольшим, но когда на MOV подается большое напряжение, пограничные переходы диодов выходят из строя из-за туннелирования электронов и лавинного пробоя.Внутренняя структура MOV показана на рисунке ниже.

Конструкция металлооксидного варистора

Варистор MOV начинает проводить, когда на соединительные провода подается определенное напряжение, и перестает проводить, когда напряжение падает ниже порогового напряжения . MOV доступны в различных форматах, таких как дисковый формат, устройства с осевыми выводами, блоки и винтовые клеммы, а также устройства с радиальными выводами. MOV всегда следует подключать параллельно, для увеличения мощности передачи энергии, и если вы хотите получить более высокое номинальное напряжение, вы должны подключать их последовательно.

Электрические характеристики MOV

Давайте рассмотрим различные электрические характеристики MOV, чтобы лучше понять свойства MOV .

Статическое сопротивление

Кривая статического сопротивления MOV строится со значением сопротивления MOV по оси X и значением напряжения по оси Y.

Кривая статического сопротивления

Приведенная выше кривая представляет собой кривую напряжения и сопротивления MOV, при нормальном напряжении сопротивление находится на пике, но по мере увеличения напряжения сопротивление варистора уменьшается.Эту кривую можно использовать, чтобы понять, какое сопротивление будет на вашем MOV при разных уровнях напряжения.

Характеристики V-I

Согласно закону Ома, ВАХ линейного резистора всегда представляет собой прямую линию, но мы не можем ожидать того же от переменного резистора. Как вы можете видеть на изображении ниже, если есть даже небольшое изменение напряжения, то также значительно изменится ток.

MOV может работать в обоих направлениях, следовательно, он имеет симметричные двунаправленные характеристики.Кривая будет похожа на характеристическую кривую двух последовательно соединенных стабилитронов. Когда MOV не проводит, он имеет высокое сопротивление до определенного напряжения, скажем, 0-200 вольт, кривая имеет линейную зависимость, где ток, протекающий через варистор, почти равен нулю. Когда мы увеличиваем приложенное напряжение в диапазоне 200–250 В, сопротивление уменьшается, варистор начинает проводить ток, и начинает течь ток в несколько микроампер, что не имеет большого значения для кривой.

Как только возрастающее напряжение достигает номинального или ограничивающего напряжения (250 В), варистор становится очень проводящим, через варистор начинает течь ток около 1 мА. Когда переходное напряжение на варисторе равно или превышает напряжение ограничения, сопротивление варистора становится небольшим, что превращает его в проводник из-за лавинного эффекта полупроводникового материала.

Емкость МОВ

Как мы уже знаем, MOV состоит из двух электродов, он действует как диэлектрическая среда и обладает эффектами конденсатора, которые могут повлиять на работу системы, если это не будет принято во внимание.Каждый полупроводниковый варистор будет иметь значение емкости, зависящее от площади, которая также обратно пропорциональна его толщине.

Значение емкости не имеет большого значения, когда речь идет о цепи постоянного тока, поскольку емкость будет оставаться почти постоянной, пока напряжение устройства не достигнет напряжения ограничения. Когда напряжение достигает предельного напряжения, никакого эффекта емкости не будет, так как варистор начнет свое нормальное функционирование.

Когда дело доходит до цепей переменного тока, емкость MOV может влиять на общее сопротивление корпуса MOV, что вызывает ток утечки .Поскольку варистор подключен параллельно защищаемому устройству, сопротивление утечки варистора быстро падает с увеличением частоты. Значение реактивного сопротивления MOV можно рассчитать по формуле

Хс = 1 / 2πfC

Где Xc — емкостное реактивное сопротивление, а f — частота источника переменного тока. Если частота увеличивается, ток утечки также будет увеличиваться, как показано в области непроводящей утечки на кривой V-I, обсужденной выше.

Выбор правильного MOV для защиты

Вы должны знать о различном количестве параметров MOV, чтобы выбрать правильное устройство для вашего оборудования. Спецификация MOV зависит от следующих

  • Максимальное рабочее напряжение: Это установившееся постоянное напряжение, до которого типичный ток утечки будет меньше указанного значения.
  • Напряжение ограничения: Это напряжение, при котором MOV начинает проводить и рассеивать импульсный ток.
  • Импульсный ток: Это максимальный пиковый ток, который может быть передан устройству без повреждения устройства; в основном это выражается в «текущем состоянии в данный момент». Хотя устройство может выдерживать импульсный ток, производители рекомендуют заменять его в случае возникновения импульсного тока.
  • Сдвиг помпажа: Каждый раз, когда устройство испытывает скачок, номинальное напряжение ограничения уменьшается, изменение напряжения после скачка называется смещением помпажа.
  • Поглощение энергии: Максимальное количество энергии, которое MOV может рассеять в течение указанного пикового времени импульса определенной формы волны во время всплеска. Это значение можно определить, запустив все устройства в определенной управляемой цепи с определенными значениями. Энергию обычно выражают в стандартных переходных процессах x / y, где x — переходные процессы, а y — время достижения половины пикового значения.
  • Время отклика: Это время, в которое варистор начинает проводить ток после выброса, во многих случаях точное время отклика отсутствует.Типичное время отклика всегда равно 100 нс.
  • Максимальное напряжение переменного тока: Это максимальное среднеквадратичное линейное напряжение, которое может постоянно подаваться на варистор. Максимальное среднеквадратичное значение должно быть выбрано таким, чтобы оно было немного выше фактического среднеквадратичного линейного напряжения. Пиковое напряжение синусоидальной волны не должно перекрываться с минимальным варистором, в противном случае это может сократить срок службы компонентов. Производители указывают максимальное напряжение переменного тока, которое мы можем подать на устройство в самом описании продукта.
  • Ток утечки: Это величина тока, потребляемого варистором, когда он работает ниже напряжения ограничения, то есть когда в сети нет скачков напряжения. Обычно ток утечки указывается при заданном рабочем напряжении на устройстве.

Применение MOV

MOV могут использоваться для защиты различных типов оборудования от различных типов неисправностей. Они могут использоваться для защиты однофазной линии от линии и защиты от однофазной линии к линии и между линией и землей в электрических цепях переменного / постоянного тока.Они могут использоваться для защиты переключения полупроводников в транзисторах, полевых МОП-транзисторах или тиристорах, а также для защиты контактов от электрической дуги в устройствах с моторным приводом.

Когда дело доходит до применения, MOV могут использоваться в цепях, где когда-либо существует риск скачков напряжения или скачков напряжения. MOV в основном используются в адаптерах и полосах с защитой от перенапряжения, в источниках питания, подключенных к сети, в телефонных и других линиях связи, в защите промышленных линий переменного тока высокой энергии, в системах передачи данных или системах питания, в защите общего электронного оборудования, такого как сотовые телефоны. , цифровые фотоаппараты, персональные цифровые помощники, MP3-плееры и ноутбуки.

MOV

также используются в некоторых случаях, например, в микроволновых смесителях, для модуляции, обнаружения и преобразования частоты, которые не являются наиболее известными приложениями MOV.

Схема защиты MOV — Советы по проектированию

Теперь, когда мы обсудили, что такое MOV и как он используется для защиты вашей схемы от скачков напряжения, давайте закончим статью несколькими советами по проектированию, которые пригодятся вам при проектировании схемы.

  1. Первым шагом при выборе MOV является определение непрерывного рабочего напряжения, которое будет обеспечиваться на варисторе, вы должны выбрать варистор с максимальным напряжением переменного или постоянного тока, которое соответствует приложенному напряжению или немного выше него.Выбор варистора, у которого максимальное номинальное напряжение на 10-15% выше, чем фактическое линейное напряжение, является обычным делом, поскольку линии питания всегда имеют допуск по отклонению напряжения. Это соотношение будет включено в их значения напряжения. В некоторых случаях, если вы предпочитаете добиться чрезвычайно низкого тока утечки, несмотря на минимально возможный уровень защиты, вы можете использовать варистор с более высоким рабочим напряжением.
  2. Узнайте количество энергии, поглощаемой варистором в случае перенапряжения. Это можно определить, используя всю абсолютную максимальную нагрузку варистора во время перенапряжения в окружающей среде и спецификации, представленные в техническом паспорте.Вы должны выбрать варистор, который может рассеивать больше энергии, что эквивалентно или немного больше, чем рассеиваемая энергия, необходимая во время выброса, который может произвести схема.
  3. Рассчитайте пиковый переходный ток или импульсный ток через варистор. Вы должны выбрать варистор с номинальным импульсным током, равным или немного большим, чем номинальный ток, требуемый при событии, которое может возникнуть в цепи, чтобы убедиться, что он функционирует должным образом.
  4. Подобно всем вышеупомянутым свойствам, вы также должны определить требуемую рассеиваемую мощность и выбрать варистор, который имеет эквивалентную номинальную мощность или в идеале превышает мощность, требуемую в случае, когда цепь может производить.
  5. Мощность, импульсный ток и номинальная мощность всегда выбираются таким образом, чтобы они превышали ожидаемое событие. Если вы не уверены в факторах события, разумным решением будет выбрать устройство с более высокой мощностью, импульсным перенапряжением. текущие и энергетические рейтинги.
  6. Последний и самый важный шаг — это выбор модели, которая может обеспечить необходимое напряжение фиксации. Вы можете выбрать напряжение ограничения на основе приблизительного максимального значения напряжения, которое вы позволите входу или выходу вашей схемы видеть во время события.Вы должны убедиться, что ваша цепь сможет выдержать это напряжение, это будет самое высокое напряжение, которое будет испытывать ваша цепь ниже по линии.

Каковы функции и применение варистора?


Введение

Варистор, резистивное устройство с нелинейными вольт-амперными характеристиками, которое в основном используется для ограничения напряжения и поглощения избыточного тока для защиты чувствительных устройств, когда цепь находится под повышенным напряжением.Его английское название — «резистор, зависящий от напряжения», сокращенно «VDR». Материал резистора — полупроводник, так что это своего рода полупроводниковый резистор.

Варистор — это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым реализуя защиту более поздней схемы.

В этой статье мы подробно расскажем о варисторе, его функциях, применении, параметрах и так далее.


Каталог

9174 мА

Расчет номинального тока разряда

Введение

I Структурные характеристики варистора

II Базовые характеристики

II Базовые характеристики 9167

2.2 Ударопрочность

2.3 Срок службы

III Параметры варистора

IV Типы варистора

4.1 Классификация по компоновке

4.2 Классификация по применяемым материалам

4.3 Классификация по вольт-амперным характеристикам

В Выбор варисторов

5.2 Выбор расхода

5.3 Выбор напряжения зажима

5.4 Выбор CP

5.5 Согласование сопротивления

VI Расчет напряжения варистора

6.1 Обычно рассчитывается с U1mA = KUac

6.3 Параллельное соединение варисторов

VII Функции варистора

VIII Основные области применения варисторов

8.1 Молниезащита

8.2 Защита цепи

8.3 Защита переключателя

8.4 Защита устройства


1 Структура Структура В арристор

В отличие от обычных резисторов варисторы изготавливаются на основе нелинейных характеристик полупроводниковых материалов.

Рисунок 1. Форма варистора, а его внутренняя структура показана на рисунке 2.

Рисунок 1.

Рисунок 2.

Обычные резисторы подчиняются закону Ома, а напряжение и ток Варисторы имеют особую нелинейную зависимость. Когда напряжение на обоих концах варистора ниже номинального номинального напряжения, значение сопротивления варистора близко к бесконечному, и через внутреннюю часть варистора почти не протекает ток.Когда напряжение на обоих концах варистора немного выше номинального номинального напряжения, варистор выйдет из строя и быстро включится, а рабочий ток резко возрастет от состояния с высоким импедансом к состоянию с низким импедансом. Когда напряжение на обоих концах ниже номинального номинального напряжения, варистор может вернуться в состояние высокого импеданса. Когда напряжение на обоих концах варистора превышает максимальное предельное напряжение, варистор полностью выходит из строя и не восстанавливается.

На рисунке ниже показана типовая схема применения варистора.

Типовая схема применения варистора


II Базовая C характеристики V aristor

2,1 Защита

2,1 Защита C Характеристики62 Когда интенсивность удара (или импульсный ток Isp = Usp / Zs) источника удара не превышает заданного значения, ограничивающее напряжение варистора не должно превышать импульсное выдерживаемое напряжение (Urp) защищаемого объекта.

2,2 Удар R esistance

Сам варистор должен выдерживать указанный ударный ток, энергию удара и среднюю мощность при многократных ударах друг за другом.

2,3 Срок службы C Характеристики

Один из них — это срок службы при непрерывном рабочем напряжении, то есть варистор должен надежно работать в течение определенного времени (часов) при указанной температуре окружающей среды и напряжении системы. условия; другой — это срок службы при ударе, то есть количество раз, когда указанное воздействие может быть надежно выдержано.

2,4 После включения варистора в систему, помимо выполнения защитной роли «предохранительного клапана», он будет вызывать некоторые дополнительные эффекты, которые называются «вторичным эффектом». Это не должно снижать нормальную работу системы. В настоящее время необходимо учитывать три основных фактора. Первый — это емкость самого варистора (от десятков до десятков тысяч пФ), второй — ток утечки при системном напряжении, а третий — влияние нелинейного тока варистора на другие цепи через связь сопротивление источника.


III P Параметры варистора

Основными параметрами варистора являются номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток разряда, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, сопротивление изоляции, статическая емкость и т. д.

3.1 Номинальный A резистор В Напряжение

MYG05K предусматривает, что проходящий ток равен 0.1 мА, MYG07K, MYG10K, MYG14K и MYG20, а номинальное напряжение относится к напряжению на обоих концах варистора при прохождении через постоянный ток 1 мА.

3,2 Максимум P Допустимое В Напряжение

Это напряжение делится на переменное и постоянное. Если это переменный ток, это относится к действующему значению переменного напряжения, разрешенному варистором, которое выражается в ACrms. Поэтому варистор с максимально допустимым напряжением следует выбирать под действующее значение переменного напряжения.В цепях переменного тока должно быть: min (U1mA) ≥ (2,2 ~ 2,5) Uac, а «Uac» — это эффективное значение рабочего напряжения переменного тока в цепи. В цепях постоянного тока должно быть: min (U1mA) ≥ (1,6) Udc, а «Udc» — это номинальное рабочее напряжение постоянного тока в цепи. Вышеупомянутые принципы в основном предназначены для обеспечения соответствующего запаса прочности варистора при его включении в цепь источника питания.

3,3 D ischarge C urrent C apacity

Это относится к максимальному значению импульсного (пикового) тока, разрешенному для прохождения через варистор при определенных условиях (наложение стандартного импульсного тока на заданные временные интервалы и количество раз).Обычно перенапряжение — это импульс или серия импульсов. В экспериментальном варисторе используются два вида ударных волн: одна — волна 8/20 мкс, то есть импульсная волна с напором волны 8 мкс и временем хвоста волны 20 мкс, а другая — прямоугольная волна длительностью 2 мс, как показано ниже. рисунок:


3,4 Максимум L имитация В Напряжение

Это относится к максимальному напряжению, которое может выдерживаться на обоих концах варистора, и представляет собой напряжение, генерируемое на обоих концах. заканчивается, когда заданный импульсный ток Ip проходит через варистор.

3,5 Максимум E Энергия (допустимое отклонение энергии)

Энергия, поглощаемая варисторами, обычно рассчитывается по следующей формуле

W = kIVT (Дж)

I —— Пиковое значение текучести через варистор

В—— Напряжение на обоих концах варистора при протекании тока I через варистор

Т —— Длительность тока

к —— Коэффициент формы сигнала тока I

2 мс, прямоугольная волна k = 1

8/20 мкс волна k = 1.4

Волна 10/1000 мкс k = 1,4

При прямоугольной форме волны 2 мс варистор поглощает энергию до 330 Дж на квадратный сантиметр; когда волна 8/20 мкс, плотность тока может достигать 2000 А на кубический сантиметр, что указывает на то, что его пропускная способность и устойчивость к энергии очень велики.

В целом, чем больше диаметр кристалла варистора, тем больше его допуск по энергии и больше выдерживаемый ток. При использовании варисторов мы также должны учитывать перенапряжение, которое часто имеет меньшую энергию, но более высокую частоту, например, перенапряжение в течение нескольких десятков секунд, одной или двух минут.В это время мы должны учитывать среднюю мощность, которую могут поглотить варисторы.

3,6 В Напряжение R atio

Это отношение значения напряжения, генерируемого, когда ток варистора равен 1 мА, к значению напряжения, генерируемому, когда ток варистора равен 0,1 мА.

3,7 Номинальный P ower

Максимальная мощность, которая может потребляться при указанной температуре окружающей среды.

3.8 Максимальный пиковый ток

Один раз: максимальное значение тока со стандартной формой волны 8/20 мкс и скоростью изменения напряжения варистора все еще в пределах ± 10%. 2 раза: Максимальное значение тока двойного удара с током стандартной формы волны 8/20 мкс. Интервал времени между двумя ударами составляет 5 минут, при этом скорость изменения напряжения варистора все еще находится в пределах ± 10%.

3.9 Коэффициент остаточного напряжения

Когда ток, протекающий через варистор, имеет определенное значение, напряжение, генерируемое на обоих концах варистора, называется остаточным напряжением. Коэффициент остаточного напряжения относится к отношению остаточного напряжения к номинальному напряжению.

3.10 Ток утечки

Ток утечки, также известный как ток ожидания, относится к току, протекающему через варистор при заданной температуре и максимальном постоянном напряжении.

3.11 Температурный коэффициент напряжения

Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в указанном диапазоне температур (20 ~ 70 ℃). То есть относительное изменение двух концов варистора, когда ток через варистор остается постоянным, а температура изменяется на 1 ℃.

3.12 Текущий температурный коэффициент

Это относится к относительному изменению тока, протекающего через варистор, когда напряжение на обоих концах варистора остается постоянным, а температура изменяется на 1 ℃.

3.13 Коэффициент нелинейности напряжения

Это отношение значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

3.14 Сопротивление изоляции

Это значение сопротивления между выводным проводом (выводом) варистора и изолирующей поверхностью резистора.

3,15 Статическая емкость

Это относится к внутренней емкости самого варистора.


IV Тип s из V aristor

Варисторы можно классифицировать по компоновке, производственному процессу, применяемым материалам и вольт-амперным характеристикам.

4.1 Классификация по схеме

Его можно разделить на варистор перехода, варистор объемного типа, варистор с одним слоем частиц, варистор с тонкой пленкой и так далее.

4.2 Классификация по материалам применения

Его можно разделить на варистор из оксида цинка, варистор из карбида кремния, варистор из оксида металла, варистор из германия (кремния), варистор из феррита бария и т. Д.

4.3 Классификация по вольтамперным характеристикам

Его можно разделить на симметричный варистор (без полярности) и несимметричный варистор (с полярностью).


В Выбор s варисторов

При выборе варистора необходимо учитывать особые условия цепи. Как правило, следует соблюдать следующие принципы.

5.1 Выбор напряжения варистора V1mA

В зависимости от напряжения источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не может превышать значение «максимального непрерывного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), которое составляет VDC ≥ VIN; Для выбора варистора источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети, а для выбора значения напряжения варистора варистора должно быть достаточно допуска для выбора. варистора. Общее колебание внутренней электросети составляет 25%.Следует выбрать варистор с напряжением от 470 В до 620 В. Выбор варистора с более высоким напряжением может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

5.2 Выбор расхода

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан в соответствии со значением более 10 ударов на кривой долговечности варистора, что составляет около 30% (0.3IP) максимальной скорости импульсного потока.

5.3 Выбор напряжения фиксации

Напряжение фиксации варистора должно быть меньше максимального напряжения (безопасного напряжения), которое может выдержать защищаемый компонент или устройство.

5.4 Выбор CP

Для высокочастотных сигналов передачи Cp должно быть меньше, и наоборот.

5.5 Сопоставление сопротивлений

Соотношение между внутренним сопротивлением R (R≥2Ω) защищаемого компонента (цепи) и переходным внутренним сопротивлением Rv варистора: R≥5R.Для защищаемых компонентов с малым внутренним сопротивлением по возможности используйте варистор с большой емкостью, не влияя на скорость передачи сигнала.


VI Расчет В арристора В Напряжение

6,1 Обычно C рассчитано с U1mA = KUac

In U1 — коэффициент, связанный с качеством электроэнергии. Как правило, K = (2 ~ 3), города с лучшим качеством электроэнергии могут принимать меньшие, а сельские районы с низким качеством электроэнергии (особенно в горных районах) должны занимать более крупные; Uac — среднеквадратичное значение напряжения источника питания переменного тока.Для молниеотвода 220–240 В переменного тока подходит варистор на напряжение 470–620 В. Выбор варистора с более высоким напряжением может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

Общий расчет напряжения варистора

6,2 Расчет номинального тока разряда

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования.Номинальный ток разряда должен быть рассчитан в соответствии со значением более 10 ударов на кривой долговечности варистора, что составляет около 30% (0,3IP) от максимальной скорости импульсного потока.

Расчет номинального тока разряда

6,3 Параллельный C включение В арристор

Если варистор не соответствует требованиям номинального тока разряда, множественный варистор следует использовать параллельно.Иногда, чтобы снизить предельное напряжение и обеспечить соответствие номинального тока разряда требованиям, несколько варисторов также используются параллельно. Важно отметить, что при параллельном использовании варисторов необходимо строго выбирать параметры (например, ΔU1mA≤3V , Δα≤3) для согласования, чтобы обеспечить равномерное распределение тока.

Параллельное соединение варисторов


VII Функции варистора

Самая большая характеристика варистора заключается в том, что когда приложенное к нему напряжение ниже его порогового значения «UN», ток, протекающий через него, чрезвычайно мал , что эквивалентно закрытому клапану.Когда напряжение превышает UN, его значение сопротивления уменьшается, что вызывает скачок тока, протекающего через него, и мало влияет на другие цепи, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. С помощью этой функции можно подавить аномальные перенапряжения, которые часто возникают в цепях, и защитить цепи от перенапряжений.

Функция защиты варистора получила широкое распространение. Например, в цепи питания домашних телевизоров используется варистор для выполнения функции защиты от перенапряжения.Когда напряжение превышает пороговое значение, варистор отражает свою характеристику ограничения, снижает чрезмерно высокое напряжение и заставляет пост-каскадную схему работать в безопасном диапазоне напряжений.

Варисторы в основном используются для защиты от переходных перенапряжений в схемах, но из-за их вольт-амперных характеристик, аналогичных полупроводниковым регуляторам, они также имеют множество функций компонентов схемы. Например, варистор представляет собой своего рода стабилизатор постоянного тока высокого напряжения и небольшого тока, а стабильное напряжение может достигать тысяч вольт, что недостижимо для кремниевого регулятора; варистор можно использовать в качестве компонента обнаружения флуктуации напряжения; может использоваться как элемент сдвига уровня постоянного тока; может использоваться как флюоресцентный стартовый элемент; может использоваться как элемент выравнивания напряжения.


VIII Основные области применения варисторов

8.1 Молния P защита

Удары молнии могут вызвать атмосферные перенапряжения, которые в основном относятся к индуктивным перенапряжениям. Перенапряжение, создаваемое ударом молнии в линии передачи, называется прямым перенапряжением молнии, и его значение напряжения особенно велико, что может нанести большой вред при напряжении 102 ~ 104 В.Поэтому для наружных систем электроснабжения и электрооборудования необходимо принимать меры по предотвращению перенапряжения. Использование варисторных разрядников из ZnO очень эффективно для устранения атмосферных перенапряжений. Обычно он подключается параллельно к электрическому оборудованию. Если электрооборудование требует низкого остаточного напряжения, можно использовать многоуровневую защиту.

Ниже приведены несколько распространенных схем защиты, в которых используются разрядники из ZnO для устранения атмосферных перенапряжений: рис. (а) — способ подключения разрядника из ZnO для трехфазного электрооборудования, рис.(b) — способ подключения разрядника из ZnO для системы управления электромагнитным клапаном, а на рис. (c) — способ подключения разрядника из ZnO между источником питания и нагрузкой.

Молниезащита

8.3 Защита переключателя

Когда цепь с индуктивной нагрузкой внезапно отключается, ее перенапряжение может в несколько раз превышать напряжение источника питания. Перенапряжение может вызвать дугу и искровой разряд между контактами, что может повредить контакты, такие как контакторы, реле и электромагнитные муфты, и сократить срок службы устройства.Варистор имеет шунт для высоких напряжений, поэтому его можно использовать для защиты контактов, предотвращая искровые разряды в момент разрыва контакта. Способ подключения варисторного защитного выключателя или контакта показан на рисунке ниже. Когда варистор подключен параллельно катушке индуктивности, сухое напряжение переключателя и сухое напряжение варистора являются суммой остаточного напряжения варистора. Энергия, поглощаемая варистором, — это энергия, запасенная катушкой индуктивности. Когда варистор подключен параллельно переключателю, перенапряжение на переключателе равно остаточному напряжению варистора, а энергия, поглощаемая варистором, немного больше, чем энергия, запасенная в катушке индуктивности.

Защита переключателя

8.4 Защита устройства

Чтобы предотвратить возгорание полупроводниковых устройств из-за перенапряжения, возникающего по тем или иным причинам, для их защиты часто используются варисторы. На рисунке ниже показана схема применения транзистора защиты варистора. Повреждение транзистора из-за перенапряжения может быть эффективно подавлено между коллектором и эмиттером транзистора или варистором первичного шунта трансформатора.При нормальном напряжении варистор находится в состоянии высокого импеданса с минимальным током утечки. Под воздействием перенапряжения варистор быстро переходит в состояние с низким импедансом, и энергия перенапряжения поглощается варистором в виде тока разряда. После прохождения скачка напряжения, когда цепь или компонент подвергается действию нормального напряжения, варистор возвращается в состояние с высоким импедансом.

Защита устройства


Вам также может понравиться:

Как проверить различные типы резисторов с помощью мультиметра с указателем?

Как проверить сопротивление заземления?

Что такое гигантское магнитосопротивление (ГМС)?

Подтягивающий резистор и понижающий резистор

Что такое варистор? Определение, конструкция, работа, характеристики, преимущества, недостатки и области применения Варистор

Определение : Варистор — это двухконтактный полупроводниковый прибор, который защищает электрические и электронные устройства от переходных процессов перенапряжения.Его сопротивление зависит от приложенного входного напряжения.

Слово варистор образовано объединением , варистор и resi stor . Он также известен как резистор, зависящий от напряжения , VDR , сопротивление которого изменяется автоматически при соответствующем изменении напряжения на нем.

Он всегда подключается к защищаемому устройству. В основном это делается для защиты схемы от скачков напряжения.

На рисунке ниже показано символическое изображение варистора:

Они в основном используются для защиты схемы от колебаний высокого напряжения.

Конструкция варистора

Варисторы образуются при вдавливании кристаллов карбида кремния или оксидов металлов в керамический материал.

После высыхания материала производится спекание при высокой температуре. Электрические характеристики устройства зависят от температуры и атмосферных условий.

Для обеспечения хороших электрических контактов контакты материала металлизируются серебром или медью. Затем к контактам припаиваются выводы, комплектуются и кодируются варисторы.

На рисунке ниже показан варистор дискового типа:

В настоящее время это самые распространенные фиксаторы напряжения , которые могут использоваться в широком диапазоне напряжений. Это нелинейное устройство , поглощающее разрушительную энергию и рассеивающее ее в виде тепла, чтобы предотвратить повреждение системы.

Обычно при его производстве используется оксид цинка , , поэтому он также известен как варистор на основе оксида металла .

На рисунке ниже показана структура металлооксидного варистора:

Здесь варистор сформирован на 90% из оксида цинка, а остальная часть представляет собой присадочный материал , образующий переход.Стандартный карбид кремния отличается от варистора на основе оксида металла тем, что MOV имеет меньший ток утечки, а его рабочая скорость выше.

Работа и характеристики варистора

Прежде чем приступить к работе, давайте сначала поймем взаимосвязь между напряжением и сопротивлением варисторов.

На рисунке ниже показана кривая зависимости сопротивления от напряжения для варистора:

Варисторы проявляют необычное поведение в случае сопротивления.Как мы видим, когда напряжение низкое, сопротивление на нем высокое. Но сопротивление быстро падает с увеличением напряжения выше номинального.

Давайте теперь посмотрим на работу варистора в деталях:

Когда на устройство подается определенное низкое напряжение, оно создает высокое сопротивление, из-за чего через него протекает очень слабый ток. По мере того, как напряжение увеличивается и достигает напряжения фиксации, т. Е. Номинального напряжения, ток увеличивается.

В это время замечается изменение в работе варисторов. Таким образом, после этого напряжения устройство, которое до сих пор работало как изолятор, теперь начинает вести себя как проводник. Таким образом, после номинального напряжения сопротивление, предлагаемое им, станет очень низким, позволяя проходить через него очень сильному току.

Таким образом, говорят, что напряжение имеет нелинейную характеристику с током .

На рисунке ниже показана вольт-амперная характеристика варистора:

Здесь, как мы видим, пока не будет достигнуто напряжение фиксации, устройство остается в непроводящем состоянии.Таким образом, мы можем видеть линейную зависимость между напряжением и током. В это время через него протекает ток утечки очень небольшого значения. Из-за оказываемого им высокого сопротивления.

Однако, после этого конкретного уровня напряжения, проводящее состояние достигается варисторами. Таким образом, мы можем видеть, что сопротивление стало очень низким, и через него проходит большой ток даже после того, как напряжение ограничено после номинального напряжения.

Преимущества варистора

  • Обеспечивает отличную защиту от перенапряжения.
  • Поскольку не показывает полярного эффекта , таким образом легко достигается двунаправленность.

Недостаток варистора

Применение варистора

Он широко применяется в защите устройств, таких как защита линии связи, микропроцессора и защиты источников питания. В защите переменного тока, защите от перенапряжения кабельного телевидения и т. Д.

Строительство, работа и применение

Резистор — это электрический компонент, который используется для ограничения протекания тока в электрической цепи.Это в основном резистивный компонент. Имеет два вывода и используется практически во всех электрических цепях. Его также можно подать в суд для регулировки уровней сигнала и завершения линий передачи. Доступны разные типы резисторов, каждый из которых предназначен для определенной цели. Варистор — это один из таких резисторов, который используется для изменения сопротивления в цепи путем изменения напряжения. Его конструкция почти аналогична конструкции конденсатора. Обычно они бывают двух типов: оксид металла и карбид кремния.

Что такое варистор?

Варистор — это тип резистора, в котором мы можем изменять сопротивление, изменяя приложенное напряжение. Его еще называют резистором, зависящим от напряжения. Это нелинейный полупроводниковый прибор. Слово происходит от слова переменный резистор. Обычно они используются в качестве предохранительных устройств для предотвращения превышения переходного напряжения в цепи, чтобы компоненты цепей оставались защищенными. Он даже контролирует условия работы схемы. Конструкция этого компонента такая же, как и у обычного конденсатора.

Символ IEEE показан ниже.

IEEE-symbol

Этот символ ICE показан ниже.

ice-symbol

Принцип работы варистора

Варистор не подчиняется закону Ома и, следовательно, не похож на омический резистор. По сути, это неомический резистор, который не подчиняется закону Ома, поэтому его также называют нелинейным резистором или резистором, зависящим от напряжения. Основное различие между обычным резистором и резистором, зависящим от напряжения, заключается в том, что сопротивление резистора можно изменить только вручную, но мы можем изменить сопротивление, изменив напряжение.Принцип его работы аналогичен принципу работы диода с PN переходом во время работы с обратным смещением.

Конструкция варистора

В основном они бывают двух типов: оксид металла и карбид кремния. Тип металлического оксида является наиболее распространенным типом варистора. Это устройство состоит из матрицы из оксида металла, содержащей керамическую массу из оксида цинка. Некоторые из обычно используемых металлов — висмут, кобальт и марганец.

конструкция варистора

Слой оксида металла в основном содержит 90% оксида цинка и 10% других металлов.Слой оксида металла зажат между двумя металлическими электродами. Матрица действует как связующий агент, так что гранулы оксида цинка могут оставаться неповрежденными между двумя металлическими электродами. Граничная поверхность ведет себя как переход полупроводникового диода.

Работа и характеристики варистора

В нормальных условиях он не проводит ток. Но когда приложенное напряжение пересекает обратное напряжение пробоя, диод начинает проводить электрический ток.

В нормальных условиях у адвоката очень высокое напряжение.Однако, когда переходное напряжение в цепи начинает увеличиваться, тогда сопротивление начинает уменьшаться, так что переходное напряжение остается фиксированным на определенном уровне.

Сопротивление варистора

Работу варистора можно объяснить с помощью графика сопротивления. Это график между сопротивлением резистора и приложенным напряжением. График показывает, что в нормальных условиях сопротивление очень высокое. Однако, если приложенное напряжение превышает номинальное значение резистора, его сопротивление начнет уменьшаться.

варистор сопротивления

ВАХ

Из графика ВАХ видно, что даже небольшое изменение величины приложенного напряжения может привести к огромному изменению величины тока в цепи. На графике V-I характеристик мы видим, что варистор действует так, как если бы два стабилитрона были подключены друг к другу. Уровень напряжения, при котором начинает течь ток, составляет 1 мА.

В этом состоянии варистор переключается с изолятора на проводник.Это происходит из-за того, что приложенное напряжение становится больше или равно номинальному напряжению устройства. Это приводит к лавинообразному эффекту полупроводникового материала, превращая варистор из изолятора в проводник.

v-i-характеристики

Применения варистора

Применения

1). Их можно использовать для защиты электрических цепей от чрезмерно высокого напряжения. Следующая схема показывает, как металл оксидного типа можно подключить к цепи для защиты от высокого напряжения.

металлооксид

2). Устройства, включенные в электронную схему, чрезвычайно чувствительны к изменению напряжения. Таким образом, мы используем этот компонент в цепи для защиты различных компонентов электрической цепи. Здесь мы можем увидеть, как это можно использовать для защиты транзистора в схеме.

варистор для защиты транзистора

3). Его также можно использовать для защиты от перенапряжения в двигателях переменного и постоянного тока.

варисторы в переменном и постоянном токе

Преимущества

Преимущества варисторов:

  • Его можно использовать для защиты электрических компонентов электрической цепи.
  • Обеспечивает защиту от перенапряжения для двигателей переменного и постоянного тока.

Недостатки

Недостатки варисторов

  • Не может обеспечить защиту от тока при коротком замыкании.
  • Не может обеспечить защиту от скачков тока при запуске устройства.
  • Не может обеспечить защиту от провалов напряжения.

Часто задаваемые вопросы

1). Есть ли у варистора полярность?

В случае варистора на основе оксида металла слой оксида цинка в основном расположен между двумя металлическими электродами.В итоге полярности нет.

2). Что происходит при выходе из строя варистора?

Это может произойти по двум причинам: деградация и катастрофический отказ. Катастрофический отказ в основном происходит, когда мы не ограничиваем большой выброс и величина энергии выше, чем значение, с которым может справиться конденсатор. В результате выхода из строя в цепи может возникнуть неравномерный джоулевый нагрев.

3). Какое напряжение варистора?

Напряжение, генерируемое на выводах варистора, когда через него проходит ток 1 мА, называется напряжением варистора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *