Xl4015E1 5a dc cc cv схема: XL4015 понижающий DC-DC преобразователь/зарядка — MicroPi – Импульсный стабилизатор на микросхеме XL4015

Понижающий преобразователь DC-DC на XL4015

Однажды мне потребовался понижающий преобразователь с выходной мощностью до 30вт, хорошим КПД и возможностью ограничения тока. Погуглив по теме, я выбрал для себя плату преобразователя на XL4015. Обзор подобной платы уже был на mysku — mysku.ru/blog/aliexpress/46321.html или вот его упрощенная версия без регулировки тока mysku.ru/search/topics/?q=xl4015
В данном обзоре я хочу рассказать об измеренных параметрах устройства и его модификации для полноценной работы. Даташит нам говорит о хорошем КПД, возможности отдавать до 5А в нагрузку и хорошем диапазоне питающих напряжений. Параметры устройства от китайцев
  • Погрешность измерения входного/выходного напряжения ± 0.05 В
  • Входное напряжение 4.0 ~ 38 В
  • Выходное напряжение 1.25 В ~ 35 В
  • Выходной ток до 5А, рекомендуется 4.5A
  • Выходная мощность до 75 Вт

Далее стал изучать даташит — КПД довольно сильно зависит от параметров входного/выходного напряжения и тока нагрузки. Путем подсчетов обнаружил, что на самой микросхеме может выделяться до 5 ватт и выше. Очевидно, что слоев металлизации на этой платке не достаточно для нормального охлаждения микросхемы. Входящий в комплект радиатор выполняет декоративную роль — отводить тепло нужно с обратной стороны чипа. Сразу понял, что будет нужна доработка
Далее увидел, что вариантов этой платы несколько. В одном из вариантов увидел интересную особенность — с обратной стороны платы есть небольшой участок 1.5×0.8см с отверстиями сплошной металлизации

Площадка сразу напротив чипа. Эта площадка по мнению китайцев, видимо, должна была улучшить теплоотвод. Но мне пришла в голову интересная мысль — если мы не можем прикрепить к этой плате радиатор, то можно очистив эту площадку, его к ней припаять 🙂 А отверстия металлизации будут передавать на радиатор тепло. Правда работа достаточно ювелирная. Заказал две таких платы, дабы если одну поломаю после экспериментов, использовать другую. После получения плат замерил параметры преобразователя
  • Входное напряжение — минимум 4.5 вольт. Но нормально встроенный вольтметр начинает работать от 6 вольт. Ниже или не работает или врет. Но меня устраивает
  • Выходное напряжение — 1.25 — 32В (входное я ограничил безопасным уровнем в 36В из-за номиналов примененных компонентов, в т.ч. диода Шоттки на 40 В)
  • Ток действительно отдает до 5А. Но есть нюансы — я подал на вход 17 вольт постоянки и на выходе повесил два резистора по 20 ватт 4 Ома. Получил 2 Ома. Выходное напряжение установил 8 вольт. Итого получил ток нагрузки 4А, выходную мощность 32 ватта. Далее замерял температуру компонентов — довольно быстро микросхема нагрелась до 85 градусов, диод Шоттки на входе до 110. Этот же диод стал сильно разогревать расположенный рядом электролит. Индуктивность через некоторое время нагрелась до 80 градусов. В общем без переделки оно отдает 30 ватт. Но отдавать оно будет не долго 🙂 Все это быстро выйдет из строя. Путем экспериментов и измерений температуры обнаружил, что безопасно долговременно можно снимать с него не более 20 ватт. Чудес не бывает. Под 75 ваттами китайцы, видимо, понимали очень кратковременное увеличение мощности. КПД в этом режиме оказалось равным 86 процентам
  • По току — я бы не стал снимать с него более 4А. Дело не в микросхеме, а в том, что для больших токов нужно менять индуктивность
  • Пульсации — при нагрузке 4А и выходном напряжении 8В пульсации составляют порядка 120мВ

Очистил место под пайку радиатора

Приступил к изготовлению радиатора. Взял медную пластину толщиной 2мм, сделал несколько изгибов, отпилил на конце по выступу, что бы получить площадку для пайки. Замеров не делал, но на прилагаемых скриншотах понятно, как он изготовлен. Повторить просто


Теперь, если мы просто припаяем радиатор, то на месте пайки получим рычаг. Т.е. если надавим на радиатор, он оторвет эту площадку. Поэтому я изготовил брусок по диаметру изгиба, который уже использовал как опору и приклеил его эпоксидкой к плате и радиатору и сразу припаял радиатор


После застывания эпоксидки получилась монолитная прочная конструкция


Далее испытал все на той же нагрузке. Температура на чипе и радиаторе стала меньше 55 градусов. Тепло передается хорошо. Аналогичный результат и на второй плате. Следующая доработка — тот радиатор в комплекте — я убрал одну секцию и через теплопроводную пасту установил на диод Шоттки. Зафиксировал эпоксидкой

По замерам, температура упала со 110 до 79 градусов. И стал меньше греться электролит. В таком варианте уже вполне можно долговременно отдавать 30 ватт. Что нужно. Еще одна доработка — китайцы не поставили шунтирующий керамический конденсатор параллельно выходному электролиту. А он нужен по даташиту. Поставил 0.1uF 50v

Дальше больше. Захотел полноценный блок, со входом для переменного напряжения, дополнительной фильтрацией выходных пульсаций, нормальными разьемами, выходом для постоянного напряжения и для зарядки током. Сделал такую плату

Думаю тут все понятно. Единственный момент — дополнительно переключатель на схеме — это что бы не искрили разьемы при подключении переменного напряжения. Ток ограничивает терморезистор. Далее переключателем мы просто его шунтируем. Из опыта — искрение приводит к ухудшению контакта в разьеме. Плата в сборе



Пульсации на выходе при той же нагрузке упали со 120мВ до 40мВ
Понижающий преобразователь напряжения XL4015 DC-DC Step Down (5А) Понижающий преобразователь напряжения на базе микросхемы XL4015
Моторы и драйверы

На чтение 2 мин. Просмотров 1.6k. Опубликовано

XL4015 DC-DC Step Down — понижающий преобразователь напряжения для постоянного тока. Построен на микросхеме XL4015. Выходной ток в 5 А и мощность 75 Вт он держит непродолжительное время — для стабильной работы на больших токах нужна модернизация модуля и/или дополнительное охлаждение.

Отличительная особенность платы — возможность регулирования не только напряжения, но и тока. Для этого на плате есть два многооборотистых потенциометра. И… она может заряжать аккумуляторы!

В зависимости от производителя и модели принципиальная схема и электронные компоненты могут немного отличаться. Как на этой картинке.

Понижающий преобразователь напряжения на базе микросхемы XL4015
У разных производителей электронные компоненты на модуле могут немного отличаться

Режим зарядки аккумуляторов

Модуль имеет возможность заряжать некоторые виды аккумуляторов, для которых необходимы режимы зарядки от блока питания CC и CV. Например, литий-ионные, литий-полимерные и литий-марганцевые аккумуляторы. Но для каждого аккумулятора со своими характеристиками нужно выставлять свои зарядные токи.

Первый этап заряда — режим CC. Сonstant current (СС) — постоянный ток. На модуле будет гореть красный светодиод.

Второй этап заряда — режим CV. Constant voltage (CV) — постоянное напряжение. Красный светодиод погаснет.

Зарядка закончится, когда загорится зеленый светодиод.

Назначение элементов на модуле XL4015Назначение элементов на модуле XL4015

Характеристики

Тип преобразователя:DC-DC
Входное напряжение:8-36 В
Выходное напряжение:1,25-32 В
Максимальный регулируемый ток:5 А
Рекомендуемый ток:не более 4,5 А
Выходная мощность:до 75 Вт (кратковременно)
Частота преобразования:180 kГц
Режим зарядки аккумуляторов:есть, режимы CC-CV
Регулировка тока:есть
Защита от короткого замыкания:есть
Защита от перегрева:есть
КПД:до 95%
Рабочая температура:от -40°C до +85°C
Размеры:52 x 26,5 x 14 мм (ДхШхВ)

Литература:

ШИМ контроллер для DC-DC преобразователя XL4005E1

Продолжение истории об убиенном DC-DC преобразователе, начало тут:
mySKU.me/blog/aliexpress/32986.html
Был заказан десяток микросхем для продолжения жестоких экспериментов с получением заявленного тока.

Долетели всего за 3 недели

Пакетик


Содержимое


Итак, имеем:
Преобразователь со сгоревшей микросхемой

Новые микросхемы на замену
www.xlsemi.com/datasheet/XL4005%20datasheet.pdf

Принципиальная схема для медитации

Надо попытаться из всего этого получить что нибудь полезное.
Хронология событий соблюдена 🙂
Выпаял дохлую микросхему и сравнил с новыми

Оказались довольно похожи.
Запаял новую микросхему, заодно поменял клеммные колодки на более удобные лифтовые. Плата не отмыта и пока без дросселя.

Отмотал 4 витка с родного дросселя, т.к. по расчётам на ток 5А его требуемая индуктивность выходила менее 30мкГн во всём диапазоне входных и выходных напряжений, оставил 30мкГн (изначально было 42мкГн).

Приклеил с обратной стороны малюсенький радиатор 20х20х6мм в надежде хоть немного охладить пыл горячего устройства

Подал на вход 12,5В выставил на выходе 5В и нагрузил на 4A для прогрева. Примерно через 15 минут плата и радиатор очень сильно разогрелись, особенно расстроил нагрев входного конденсатора — свыше 100°С от рядом расположенного диода, в таком режиме он долго не проработает. Дроссель также нагрелся свыше 100°С.
Примерно через час такой работы, напряжение на выходе стало подозрительно снижаться и прыгать, решил понаблюдать чем это закончится (запас микросхем позволяет). Закончилось тепловым пробоем диода Шоттки SK86 🙁

Dc dc преобразователь на xl4015e1 схема

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием «5A Lithium Charger CV CC Buck Step Down Power Module LED Driver». Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

В сегодняшней статье хочу сделать небольшой обзор понижающего преобразователя на XL4015. Этот дешевый модуль на удивление очень мощный для своего маленького размера.

Модуль на XL4015 имеет КПД до 96%, мощность в нагрузке 75ВТ, при максимальном токе 5А. Питается модуль от 6В до 38В, выходное напряжение от 1,25В до 36В. Надо помнить, что разница между входящим и исходящим напряжением не менее 2В. В микросхеме есть защита от перегрева кристалла, а так же защита от короткого замыкания.

Выглядит модуль вот так

Размеры модуля 26*62*16ММ. Высота замерена по самой высокой детали, дросселю.
Пора перейти к схеме модуля с регулировкой напряжения и тока XL4015
Схема преобразователя XL4015

Основой всей схемы является XL4015. Которая чем то напоминает lm2596, но имеет на борту полевой транзистор, а так же выходной ток до 5А
Эта микросхема импульсный понижающий преобразователь. Управление микросхемой происходит через 2-ю ножку называемая FeedBack. Ножка FB это вход компаратора ошибки с фиксированным напряжением 1,25В.

Ограничение напряжения устанавливается переменным резистором CV 10к в составе резисторного делителя R3иCV
Ограничение выходного тока построено на датчике тока которым выступает шунт на 0,05Ом. Падение напряжения на нем сравнивается с напряжением на компараторе, установленным переменным резистором СС 1к. Индикация работы в режиме стабилизатора тока осуществляется красным светодиодом

На втором ОУ собран индикатор нагрузки. Если нагрузка меньше 9% от максимального тока, светится зеленый светодиод, если нагрузка больше- синий светодиод

Смысл от от этого индикатора в блоке питания считаю бесполезным, а вот сигнализатор токов удобно использовать как индикатор заряда аккумулятора.

Испытания XL4015
Пришло испытать модуль
На вход подаю напряжение 23В от конденсаторного фильтра лабораторного блока питания, нагрузка на модуле лампа 12В с мото фары ближний свет
Напряжение под нагрузкой просело до 18,6В при токе 4А, напряжение на выходе 12,3В ток 4А. Если мои расчеты верны то КПД этой схемы 65%.
Под такой нагрузкой за первые 5 минут схема хорошенько нагрелась, проработала еще пол часа и испустила дух.

Тот самый белым дым, на котором работают все микросхемы и транзисторы, микросхема выпустила. После замены микросхемы и диода все нормально заработало, но я больше ее та не нагружал. Скорее всего первым умер диод и увел за собой микросхему
Плата после замены, диод временно заменил на двойной диод с блока питания ПК
Микросхема выглядит вот так

Вывод напрашивается такой, модуль преобразователя XL4015 великолепно подходит для многих задач и несомненно найдет место в мастерской, но с отводом тепла надо что-то делать
Рекомендую посмотреть статью про универсальное зарядное плюс блок питания на Xl4015

Покупка модуля XL4015
Пару слов о том, где прикупить такой модуль. Естественно, лучшая цена за товар будет именно при заказе с Китая. Проблематично ждать месяц, но если уж экономить,то лучше при прямой покупке
Приобрести модули можно по этой ссылке цена за один 92 рубля, доставка бесплатна

  • Цена: $5.40 за 10шт
  • Перейти в магазин

Очередное включение, ток выставлен на 4А, начинает дико греться диодная сборка, что не удивительно. Устанавливаю её на первый попавшийся под руку радиатор, чтобы опять не запалить.

Плата работает нормально пару часов 🙂 Температура всех компонентов стала гораздо ниже, входной конденсатор перестал перегреваться, самым горячим элементом оставался дроссель, который действительно рассчитан на ток 3A.
Родное кольцо дросселя T50-26B, обмотка проводом всего 0,7мм
Беру ещё парочку колец побольше размером из такого-же материала (распылённое железо -26) и мотаю на 30-33мкГн.
Сразу замечу, что материал неудачен для работы на частотах свыше 100кГц из-за повышенных потерь в сердечнике. На требуемой частоте 300кГц лучше работают кольца из распылённого железа -52 (слева) либо из композитного материала (справа). В дальнейшем обязательно попробую их поставить.

Все 3 дросселя, родной слева.
T50-26B 30мкГн (27 витков 0,7мм, изначально был 31 виток)
T60-26 30мкГн (25 витков 0,9мм)
T80-26 33мкГн (25 витков 1,1мм)

Ставлю дроссель T60-26 30мкГн

На токе 4А сильного нагрева дросселя уже нет, преобразователь работает нормально.
Для выяснения наличия работающей внутренней термозащиты микросхемы, выставил выходной ток 2А и коснулся разогретым паяльником непосредственно до её металлической подложки. Через пару секунд микросхема полностью отрубилась. Убрал паяльник — через 3 секунды микросхема опять заработала. Так успешно повторил несколько раз. Вывод — термозащита работает, но видимо не на всех микросхемах или не во всех режимах.

Далее, был изготовлен и установлен более-менее нормальный радиатор на всё это безобразие. Радиатор — половинка от древнего процессорного кулера.

К плате прилепил на термоскотч. Если будет недостаточно, приклею на теплопроводящий клей

Диодную сборку отавил ту-же и прикрутил к радиатору через изолятор, чтобы не выносить ВЧ импульсы на него.

Ради эксперимента, попробовал поставить дроссель T80-26 33мкГн, но он оказался с огромным запасом по мощности и почти не грелся, смысла его оставлять не было, поставил назад T60-26 30мкГн

После переделок, с установленным радиатором и увеличенным дросселем проверил температуры основных компонентов (пирометром), КПД и пульсации в разных режимах работы.
5В 1А
Радиатор и диод 35°С
ШИМ контроллер 36°С
Дроссель 39°С
Шунт 33°С
КПД 88%

5В 2А
Радиатор и диод 39°С
ШИМ контроллер 42°С
Дроссель 44°С
Шунт 42°С
КПД 86 %

2В 3А
Радиатор и диод 47°С
ШИМ контроллер 51°С
Дроссель 51°С
Шунт 55°С
КПД 78%

5В 3А
Радиатор и диод 46°С
ШИМ контроллер 51°С
Дроссель 52°С
Шунт 55°С
КПД 85%

10В 3А
Радиатор и диод 45°С
ШИМ контроллер 57°С
Дроссель 51°С
Шунт 57°С
КПД 90%

5В 4А
Радиатор и диод 57°С
ШИМ контроллер 68°С
Дроссель 64°С
Шунт 73°С (реально еще выше)
КПД 82%

5В 5А
Радиатор и диод 67°С
ШИМ контроллер 81°С
Дроссель 79°С
Шунт 96°С (реально еще выше) — перегрев налицо.
КПД 78%

Размах пульсаций на выходе при максимальном токе 5А — всего 30мВ.

Это заслуга высокой частоты преобразования 300кГц и керамического конденсатора на выходе.
На рабочих токах более 4А очень желательна замена шунта на 0,025-0,03Ом, что снизит его нагрев и повысит КПД преобразования.
Либо можно обойтись улучшением теплосьёма с шунта при помощи толстого медного проводника:

На токе 5А температура шунта снизилась до безопасной величины.

Для снижения нагрева дросселя попробовал заменить кольцо из распылённого железа -26 на композитное высокочастотное T60 с материнской платы (материал неизвестен), провод 0,9мм 23 витка, индуктивность 18мкГн

Нагрев дросселя заметно снизился — его и оставил.

Добавил резистор 330 Ом последовательно в цепи обратной связи, чтобы токоограничение работало при минимальном выходном напряжении.

Окончательный вариант схемы получился такой:

Ради интереса, проверил форму напряжения на диоде при разном выходном напряжении, но одинаковом токе 1А








10В

12В

Примечательно, что ток нагрузки почти не меняет форму напряжения на диоде, поэтому нет смысла её показывать.
Переделанная плата успешно отработала сутки в режиме 5В 5А без заметной деградации и дрейфа параметров и настроек.

Дополнительно проверил работу схемы при входном напряжении 24V на выходном токе 5А при разных выходных напряжениях — проблем с перегревом и перегрузкой не обнаружено несмотря на выходную мощность до 110Вт (22В 5А).

Итоговые выводы:
— Без переделки и дополнительного охлаждения, плата безопасно вытянет максимум 2,5А-3А
— Штатный диод перегревается сильнее всех элементов и подогревает рядом расположенный конденсатор и микросхему, поэтому вынос его на радиатор очень помогает выжать из платы обещанные амперы.
— Хоть микросхема по спецификации и тянет 5A, но получить их надо ещё постараться.
— Охлаждение элементов радиатором через плату неэффективно, но вполне возможно.
— Отремонтировать и улучшить можно что угодно, но иногда это нецелесообразно.

ШИМ контроллер для DC-DC преобразователя XL4005E1

Продолжение истории об убиенном DC-DC преобразователе, начало тут:
mysku.ru/blog/aliexpress/32986.html
Был заказан десяток микросхем для продолжения жестоких экспериментов с получением заявленного тока.

Долетели всего за 3 недели

Пакетик


Содержимое


Итак, имеем:
Преобразователь со сгоревшей микросхемой

Новые микросхемы на замену
www.xlsemi.com/datasheet/XL4005%20datasheet.pdf

Принципиальная схема для медитации

Надо попытаться из всего этого получить что нибудь полезное.
Хронология событий соблюдена 🙂
Выпаял дохлую микросхему и сравнил с новыми

Оказались довольно похожи.
Запаял новую микросхему, заодно поменял клеммные колодки на более удобные лифтовые. Плата не отмыта и пока без дросселя.

Отмотал 4 витка с родного дросселя, т.к. по расчётам на ток 5А его требуемая индуктивность выходила менее 30мкГн во всём диапазоне входных и выходных напряжений, оставил 30мкГн (изначально было 42мкГн).

Приклеил с обратной стороны малюсенький радиатор 20х20х6мм в надежде хоть немного охладить пыл горячего устройства

Подал на вход 12,5В выставил на выходе 5В и нагрузил на 4A для прогрева. Примерно через 15 минут плата и радиатор очень сильно разогрелись, особенно расстроил нагрев входного конденсатора — свыше 100°С от рядом расположенного диода, в таком режиме он долго не проработает. Дроссель также нагрелся свыше 100°С.
Примерно через час такой работы, напряжение на выходе стало подозрительно снижаться и прыгать, решил понаблюдать чем это закончится (запас микросхем позволяет). Закончилось тепловым пробоем диода Шоттки SK86 🙁
pdf.datasheetcatalog.com/datasheet/mcc/SK83.pdf
Равноценной замены в SMD корпусе под рукой не оказалось и была временно подпаяна диодная сборка S10С40С (10А 40В)

Оба диода сборки соединил перемычкой.
Преобразователь заработал, но нагрузку вообще не держал — напряжение тут-же проваливалось. Стало понятно, что микросхема тоже неисправна. Очевидно, замыкание диода убило микросхему…
В очередной раз перепаял микросхему, при этом обнаружилась ещё одна проблема — фольга печатной платы слабо приклеена к основанию и легко отходит при нагреве 🙁

Погорельцы


Очередное включение, ток выставлен на 4А, начинает дико греться диодная сборка, что не удивительно. Устанавливаю её на первый попавшийся под руку радиатор, чтобы опять не запалить.

Плата работает нормально пару часов 🙂 Температура всех компонентов стала гораздо ниже, входной конденсатор перестал перегреваться, самым горячим элементом оставался дроссель, который действительно рассчитан на ток 3A.
Родное кольцо дросселя T50-26B, обмотка проводом всего 0,7мм
Беру ещё парочку колец побольше размером из такого-же материала (распылённое железо -26) и мотаю на 30-33мкГн.
Сразу замечу, что материал неудачен для работы на частотах свыше 100кГц из-за повышенных потерь в сердечнике. На требуемой частоте 300кГц лучше работают кольца из распылённого железа -52 (слева) либо из композитного материала (справа). В дальнейшем обязательно попробую их поставить.

Все 3 дросселя, родной слева.
T50-26B 30мкГн (27 витков 0,7мм, изначально был 31 виток)
T60-26 30мкГн (25 витков 0,9мм)
T80-26 33мкГн (25 витков 1,1мм)

Ставлю дроссель T60-26 30мкГн

На токе 4А сильного нагрева дросселя уже нет, преобразователь работает нормально.
Для выяснения наличия работающей внутренней термозащиты микросхемы, выставил выходной ток 2А и коснулся разогретым паяльником непосредственно до её металлической подложки. Через пару секунд микросхема полностью отрубилась. Убрал паяльник — через 3 секунды микросхема опять заработала. Так успешно повторил несколько раз. Вывод — термозащита работает, но видимо не на всех микросхемах или не во всех режимах.

Далее, был изготовлен и установлен более-менее нормальный радиатор на всё это безобразие. Радиатор — половинка от древнего процессорного кулера.

К плате прилепил на термоскотч. Если будет недостаточно, приклею на теплопроводящий клей

Диодную сборку отавил ту-же и прикрутил к радиатору через изолятор, чтобы не выносить ВЧ импульсы на него.

Ради эксперимента, попробовал поставить дроссель T80-26 33мкГн, но он оказался с огромным запасом по мощности и почти не грелся, смысла его оставлять не было, поставил назад T60-26 30мкГн

После переделок, с установленным радиатором и увеличенным дросселем проверил температуры основных компонентов (пирометром), КПД и пульсации в разных режимах работы.
5В 1А
Радиатор и диод 35°С
ШИМ контроллер 36°С
Дроссель 39°С
Шунт 33°С
КПД 88%

5В 2А
Радиатор и диод 39°С
ШИМ контроллер 42°С
Дроссель 44°С
Шунт 42°С
КПД 86 %

2В 3А
Радиатор и диод 47°С
ШИМ контроллер 51°С
Дроссель 51°С
Шунт 55°С
КПД 78%

5В 3А
Радиатор и диод 46°С
ШИМ контроллер 51°С
Дроссель 52°С
Шунт 55°С
КПД 85%

10В 3А
Радиатор и диод 45°С
ШИМ контроллер 57°С
Дроссель 51°С
Шунт 57°С
КПД 90%

5В 4А
Радиатор и диод 57°С
ШИМ контроллер 68°С
Дроссель 64°С
Шунт 73°С (реально еще выше)
КПД 82%

5В 5А
Радиатор и диод 67°С
ШИМ контроллер 81°С
Дроссель 79°С
Шунт 96°С (реально еще выше) — перегрев налицо.
КПД 78%

Размах пульсаций на выходе при максимальном токе 5А — всего 30мВ.

Это заслуга высокой частоты преобразования 300кГц и керамического конденсатора на выходе.
На рабочих токах более 4А очень желательна замена шунта на 0,025-0,03Ом, что снизит его нагрев и повысит КПД преобразования.
Либо можно обойтись улучшением теплосьёма с шунта при помощи толстого медного проводника:

На токе 5А температура шунта снизилась до безопасной величины.

Для снижения нагрева дросселя попробовал заменить кольцо из распылённого железа -26 на композитное высокочастотное T60 с материнской платы (материал неизвестен), провод 0,9мм 23 витка, индуктивность 18мкГн

Нагрев дросселя заметно снизился — его и оставил.

Добавил резистор 330 Ом последовательно в цепи обратной связи, чтобы токоограничение работало при минимальном выходном напряжении.

Окончательный вариант схемы получился такой:

Ради интереса, проверил форму напряжения на диоде при разном выходном напряжении, но одинаковом токе 1А








10В

12В

Примечательно, что ток нагрузки почти не меняет форму напряжения на диоде, поэтому нет смысла её показывать.
Переделанная плата успешно отработала сутки в режиме 5В 5А без заметной деградации и дрейфа параметров и настроек.

Дополнительно проверил работу схемы при входном напряжении 24V на выходном токе 5А при разных выходных напряжениях — проблем с перегревом и перегрузкой не обнаружено несмотря на выходную мощность до 110Вт (22В 5А).

Итоговые выводы:
— Без переделки и дополнительного охлаждения, плата безопасно вытянет максимум 2,5А-3А
— Штатный диод перегревается сильнее всех элементов и подогревает рядом расположенный конденсатор и микросхему, поэтому вынос его на радиатор очень помогает выжать из платы обещанные амперы.
— Хоть микросхема по спецификации и тянет 5A, но получить их надо ещё постараться.
— Охлаждение элементов радиатором через плату неэффективно, но вполне возможно.
— Отремонтировать и улучшить можно что угодно, но иногда это нецелесообразно.

Понижающий преобразователь с токограничением или зарядка на 5А На этот раз полноценного тестирования не получилось ввиду выхода устройства из строя 🙁
Представляет собой понижающий преобразователь напряжения с дополнительной функцией регулируемого токоограничения и контроля. Это может быть полезно не только для зарядки аккумуляторов, но и для защиты от перегрузки и КЗ.

Заявленные технические характеристики:
Размер: 50*26*11 (l * W * h) (мм)
Рабочая температура:-40° до + 85°
Регулирование напряжения: ± 2.5% (вероятно имелась в виду точность поддержания)
Регулировка нагрузки: ± 0.5% (вероятно имелась в виду точность поддержания)
Пульсация выходного сигнала: 20мВ
Частота переключения: 300 кГц
Эффективность преобразования: до 95%
Выходной ток: регулируемый максимально 5А
Выходное напряжение: 0.8 В-30 В
Входное напряжение: 5 В-32 В
Не синхронное выпрямление





Собран на базе XL4005E1 от XLSEMI, которая по параметрам выгодно отличается от популярной LM2596S

www.xlsemi.com/datasheet/XL4005%20datasheet.pdf

На сдвоенном операционном усилителе LM358 собрана схема регулируемого токоограничения и компаратор для индикации окончания заряда.

Реальная принципиальная схема устройства

Выходное напряжение регулируется в пределах от 0,8В до почти входного.
Точность установки малых напряжений (менее 3В) невысока — слишком резко оно меняется при вращении подстроечника. Если необходима высокая точность установки малых выходных напряжений — придётся заменить подстроечник 10кОм на меньший номинал:
1,0кОм — 1,4-3,5В
1,5кОм — 1,4-5В
2,2кОм — 1,4-7В

Выходной ток регулируется в пределах от 0,03А до 5,5А
В качестве датчика тока применён шунт на базе резистора SMD

Понижающий преобразователь с токограничением или зарядка на 5А На этот раз полноценного тестирования не получилось ввиду выхода устройства из строя 🙁
Представляет собой понижающий преобразователь напряжения с дополнительной функцией регулируемого токоограничения и контроля. Это может быть полезно не только для зарядки аккумуляторов, но и для защиты от перегрузки и КЗ.

Заявленные технические характеристики:
Размер: 50*26*11 (l * W * h) (мм)
Рабочая температура:-40° до + 85°
Регулирование напряжения: ± 2.5% (вероятно имелась в виду точность поддержания)
Регулировка нагрузки: ± 0.5% (вероятно имелась в виду точность поддержания)
Пульсация выходного сигнала: 20мВ
Частота переключения: 300 кГц
Эффективность преобразования: до 95%
Выходной ток: регулируемый максимально 5А
Выходное напряжение: 0.8 В-30 В
Входное напряжение: 5 В-32 В
Не синхронное выпрямление





Собран на базе XL4005E1 от XLSEMI, которая по параметрам выгодно отличается от популярной LM2596S

www.xlsemi.com/datasheet/XL4005%20datasheet.pdf

На сдвоенном операционном усилителе LM358 собрана схема регулируемого токоограничения и компаратор для индикации окончания заряда.

Реальная принципиальная схема устройства

Выходное напряжение регулируется в пределах от 0,8В до почти входного.
Точность установки малых напряжений (менее 3В) невысока — слишком резко оно меняется при вращении подстроечника. Если необходима высокая точность установки малых выходных напряжений — придётся заменить подстроечник 10кОм на меньший номинал:
1,0кОм — 1,4-3,5В
1,5кОм — 1,4-5В
2,2кОм — 1,4-7В

Выходной ток регулируется в пределах от 0,03А до 5,5А
В качестве датчика тока применён шунт на базе резистора SMD 2512 0,05Ом. Очень часто производители в качестве шунта используют печатную дорожку, что является плохим тоном (ток плавает с нагревом).
Подключение входа и выхода универсальное — клеммник + контакты под пайку.
Имеются дополнительные контакты блокировки работы преобразователя.

Отдельно стоящий красный светодиод показывает работу в режиме ограничения тока. Синий светодиод показывает режим заряда аккумулятора, красный рядом с ним — режим окончания заряда (уменьшение тока до 10% от уставки).

Дроссель явно сделан не под этот преобразователь, т.к. не тянет 5А, намотан в один провод и имеет повышенную индуктивность (40мкГн). Скорее всего это дроссель для преобразователя на LM2596S (3А 150кГц).
Реальная ёмкость конденсаторов 470мкФ оказалась 360мкФ, ESR довольно плохой 0,10 Ом, однако дополнительная керамика должна помочь уменьшить выходные пульсации.
Ещё одна особенность: падение напряжения на шунте не компенсировано, т.е. выходное напряжение немного зависит от нагрузки — на максимальном токе 5А выходное напряжение снижается на 0,25В

Естественно китайцы не смогли не накосячить в схеме 🙂
1. При установленном напряжении менее 1,4В некорректно работает схема токоограничения, т.к. операционник уже не может корректировать напряжение на управляющем входе XL4005E1. Решение — добавить сопротивление 200 Ом последовательно с подстроечником. Также, при малом выходном напряжении перестаёт светиться синий светодиод.
2. Напряжение с шунта идёт на входы операционников напрямую без токоограничивающих резисторов. Это может привести к кратковременному повышению напряжения на их входах свыше 5В при замыкании выхода. Решение — добавить резистор 10кОм в разрыв между входами ОУ и шунтом.
3. Уменьшить индуктивность дросселя, просто отмотав с него 6 витков.
После всех доработок схема получается такая:

Проверку производил при входном напряжении 12,5В и выходном напряжении 5В.
На выходном токе 3A XL4005 разогрелась до 65ºС, дроссель до 91ºС, нагрев в допустимых пределах
На выходном токе 4A А XL4005 разогрелась до 82ºС, дроссель до 106ºС, нагрев слишком велик
На выходном токе 5A XL4005 разогрелась до 97ºС, дроссель до 132ºС, быстро перегреваются все силовые элементы включая даже шунт и конденсаторы.
Через 3 минуты такой работы, ток пропал и тестирование пришлось прекратить. Ну, думаю, хорошо, заявленная термозащита XL4005 сработала, но после остывания преобразователь не заработал 🙁 Остальные элементы не пострадали. Видимо, не стоило максимально нагружать преобразователь без дополнительного радиатора.
Надеюсь, это дефект конкретного экземпляра, а не всей партии.
Преобразователь в дальнейшем буду ремонтировать, как придут заказанные микросхемы.
Претензий продавцу не предъявлял.

Вывод: интересная железка, но заявленный ток 5A совершенно не держит, необходимо ограничиться током не более 2,5-3A

Оригинал 5A DC к DC CC CV Литиевая батарея Step Down Зарядная плата Светодиодный преобразователь питания Литиевое зарядное устройство Step Down Module XL4015 | |

HTB1ZYSui4PI8KJjSspoq6x6MFXaU

RED

Этот линейный модуль имеет функцию постоянного напряжения и постоянного тока (CC CV). и он имеет хорошую производительность.
, когда вы используете его в качестве зарядного устройства. этот модуль использует хороший чип в качестве ядра, и он стабилен. также его пульсация низкая до 50 мВ.5%
Регулировка нагрузки: ± 0,5%
Пульсация на выходе: 50 мВ (макс.) 20 м полосы пропускания
Частота переключения: 300 кГц
КПД преобразования: 95% (наивысший) Свойства: неизолированный модуль постоянного тока и напряжения.

. Преимущество:

CC CV
. Низкая пульсация.проверьте проклятие выше.

BLUE

При использовании продукта входы и выходы модуля должны быть изолированы от земли

Технические характеристики
1. Диапазон входного напряжения: 638 В пост. Тока (Примечание: входное напряжение не более 38 В) функция термического отключения
7. Встроенная функция ограничения тока
8. Встроенная функция защиты от короткого замыкания на выходе

9.Защита от переполюсовки на входе: Нет (при необходимости, сильноточный диод, включенный последовательно со входом) .
10.L x Ш x В = 61,7 * 26,2 * 15 мм
11.Вес: 20g

Application
1.Используется в качестве понижающих модулей с возможностями защиты от перегрузки по току
Usage:
(1) отрегулируйте «потенциометр напряжения» так, чтобы выходное напряжение достигло желаемого значения. Выходной ток достигает заданного значения защиты от перегрузки по току.(Например, счетчик отображает текущее значение 4А, затем вы можете использовать модуль с максимальным током 4А)
(3) Подключен к нагрузке.

2. Использование в качестве зарядного устройства для аккумуляторов. Убедитесь, что вам нужно зарядить напряжение аккумулятора и ток зарядки; (если литиевые параметры 3,7 В / 2200 мАч, то напряжение с плавающей запятой составляет 4,2 В, максимальный зарядный ток 1C, т.е. 2200 мА)
(2). В условиях холостого хода отрегулируйте «Потенциометр напряжения» так, чтобы выходное напряжение достигало напряжения поплавка; (если до 3.1A, синие индикаторы выключены, зеленый индикатор включен, что означает, что аккумулятор полностью заряжен)
(5). Подключен к заряду аккумулятора. не подключать аккумулятор)

3. Использовать в качестве светодиодного модуля драйвера постоянного тока
Usage:
(1). отрегулируйте «потенциометр напряжения», чтобы выходное напряжение достигло желаемого значения.
(2). используйте мультиметр для измерения тока короткого замыкания на выходе с остановками 10А, регулируя при этом «потенциометр тока», чтобы выходной ток достигал предварительно определенного рабочего тока светодиода.

XL4015 5A CC CV Step Down Buck Преобразователь-адаптер Адаптер DC DC Регулируемый DC DC Шаг вниз Блок питания Блок питания LED Вольтметр DIY | |

CC CV понижающий понижающий преобразователь DC DC Регулируемый DC-DC понижающий источник питания Мини-модуль LM2596S XL4005 XL4015 LM2596HVS

  • XL4015 DC-DC понижающий адаптер

  • Диапазон входного напряжения: 4 — 38 В пост. Тока (Примечание: входное напряжение не более 38 В)

  • Диапазон выходного напряжения: 1.25 — 36 В постоянного тока регулируемый

  • Выходная мощность: 75 Вт

  • Рабочая частота: 180 кГц

  • Эффективность: 96% (макс.)

  • Защита от короткого замыкания: да (предельный ток 8А).

  • Защита от перегрева

  • текущий диод последовательно с входом

  • Д * Ш * В = 54 * 23 * 18 мм

XL4015E1 DC-DC Step Down Adjustable Power Supply Module DC Buck Voltage Regulator 5A 4-38V Module LED Driver For Lithium Charger

  • XL4015 5A DC DC Buck Converter Литиевое зарядное устройство CC CV

  • Диапазон входного напряжения: 5-36 В постоянного тока

  • Диапазон выходного напряжения: 0.8-32 В постоянного тока

  • Эффективность: 95% (макс.)

  • Выходной ток: 5А (макс.) Регулируемый

  • Д * Ш * В = 5,2 * 2,6 * 1,4 см (прибл.)

  • Рабочая температура: от -40 ° C до +85 ° C

  • Регулирование напряжения: ± 2.5%

  • Регулировка нагрузки: ± 0,5%

  • Пульсация на выходе: 50 мВ (макс.)

  • Частота переключения: 180 кГц

XL4015 5A CC CV Step Down Buck Converter Adapter DC DC Adjustable DC-DC Step-Down Power Supply Voltage Module LED Voltmeter DIY (2)

  • XL4015 DC DC понижающий преобразователь LED Voltmeter

  • 5А, высокая мощность, высокая эффективность, низкая пульсация

  • Входное напряжение: 4.

    Высокая эффективность! Литий-зарядное устройство CC / CV 5A XL4015, регулируемое 6 38 В — 1,25 36 В пост. Тока понижающий блок питания Блок питания | литиевое зарядное устройство | DC DCC зарядное устройство

    Высокая эффективность! CC / CV 5A Литиевое зарядное устройство XL4015 Регулируемый 6-38 В Для 1,25-36 В постоянного тока Понижающий блок питания Бак Модуль

    При использовании продукта входы и выходы модуля должны быть изолированы от земли
    Спецификации
    1. Диапазон входного напряжения: 638 В пост.Диапазон выходного напряжения: 1,25-36 В пост. Тока, регулируемый
    3. Выходной ток: 0-5A
    4. Выходная мощность: 75 Вт
    5.Высокий КПД до 96% защита от полярности: отсутствует (при необходимости, сильноточный диод последовательно подключен к входу) 1) отрегулируйте «потенциометр напряжения», чтобы выходное напряжение достигло желаемого значения.
    (2) использует мультиметр для измерения выходного тока короткого замыкания с остановками 10А, регулируя при этом «потенциометр тока» так, чтобы выходной ток достигал предопределенного значения защиты от перегрузки по току. (Например, счетчик отображает текущее значение 4А, затем вы можете использовать модуль с максимальным током 4А)
    (3) Подключен к нагрузке

    2. Использование в качестве зарядного устройства для батарей
    Использование:
    (1). Убедитесь, что вам нужно зарядить напряжение аккумулятора и ток зарядки; (если литиевые параметры 3.
    (4). Текущее значение по умолчанию для индикатора поворота лампы — 0,1-кратный ток зарядки; (Аккумулятор во время зарядки постепенно уменьшается, если значение тока зарядки равно 1 А, то когда ток зарядки меньше 0,1 А, синие индикаторы выключены, зеленый индикатор включен, что означает, что батарея полностью заряжена)
    ( 5) .подключен к зарядке батареи.
    (шаги 1,2,3,4 как: выход не загружен, батарею не подключать)

    3. Используется как светодиодный модуль драйвера постоянного тока.

    Высокая эффективность! 10Pcs / Lot 5A Регулируемая понижающая плата питания XL4015 Модуль зарядного устройства постоянного / постоянного тока постоянного тока постоянного тока 6 38В до 1,25 36В |  

    HTB1v0jRi_nI8KJjy0Ffq6AdoVXaf

    При использовании продукта входы и выходы модуля должны быть изолированы от земли
    Спецификации
    1. Диапазон входного напряжения: 638 В пост.Выходная мощность: 75 Вт
    5. Высокая эффективность до 96%.
    6. Встроенная функция теплового отключения
    7. Встроенная функция ограничения тока
    8. Встроенная функция защиты от короткого замыкания на выходе
    9. Защита от обратной полярности на входе: отсутствует (если требуется, диод с высоким током последовательно с входом ) .
    10.Л х Ш х В = 61,7 * 26,2 * 15 мм
    11.Вес: 20г

    Application


    1.Используйте в качестве понижающих модулей с возможностями защиты от перегрузки по току
    Использование:
    (1) отрегулируйте «потенциометр напряжения» так, чтобы выходное напряжение достигло желаемого значения.
    (2) использует мультиметр для измерения выходного тока короткого замыкания с остановками 10А, регулируя при этом «потенциометр тока» так, чтобы выходной ток достигал предварительно определенного значения защиты от перегрузки по току. (Например, счетчик отображает текущее значение 4А, затем вы можете использовать модуль с максимальным током 4А).
    (3) Подключен к нагрузке.

    2. Использование в качестве зарядного устройства. Убедитесь, что вам нужно зарядить напряжение аккумулятора и ток зарядки; (если литиевые параметры 3.
    (4). Текущее значение по умолчанию для индикатора поворота лампы — 0,1-кратный ток зарядки; (Аккумулятор во время зарядки постепенно уменьшается, если значение тока зарядки равно 1 А, то когда ток зарядки меньше 0,1 А, синие индикаторы выключены, зеленый индикатор включен, что означает, что батарея полностью заряжена)
    ( 5) .подключен к заряду батареи.
    (шаги 1,2,3,4 как: выход не загружен, батарею не подключать)

    3. Используется в качестве модуля драйвера постоянного тока светодиода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *