Предусилитель на транзисторе. Малошумящий Hi-End предусилитель на транзисторах: схема и особенности конструкции

Как работает малошумящий предусилитель на транзисторах для высококачественного звука. Каковы его преимущества перед предусилителями на операционных усилителях. Какие характеристики делают его Hi-End устройством.

Содержание

Особенности спектра нелинейных искажений в усилителях

Автор сравнивает особенности спектра нелинейных искажений в усилителях с различной частотой среза АЧХ. Показано, что устройства на операционных усилителях (ОУ) обогащают звуковой сигнал высшими гармониками, что негативно влияет на качество звука. Это связано с низкой собственной частотой среза ОУ (десятки-сотни герц), что приводит к ряду проблем:

  • Ухудшение переходной характеристики
  • Возможность возникновения динамических искажений
  • Уменьшение глубины ООС с ростом частоты
  • Рост нелинейных искажений на высоких частотах

Автор приводит графики, демонстрирующие, как меняется соотношение гармоник в зависимости от частоты для усилителей на ОУ. Показано, что с ростом частоты увеличивается относительный уровень высших гармоник, что приводит к «жесткому» звучанию с металлическим оттенком.


Преимущества предусилителя на транзисторах

Предлагаемая конструкция предусилителя на транзисторах лишена недостатков схем на ОУ. Ее ключевые особенности:

  • Высокая частота среза (fc’ >> 20 кГц)
  • Благоприятный спектр нелинейных искажений
  • Очень низкий уровень шума (-109 дБА)
  • Высокая линейность
  • Широкая полоса пропускания (до 200 кГц)

Такие характеристики позволяют получить звучание, близкое к ламповым усилителям, но с лучшими параметрами.

Принципиальная схема предусилителя

Автор приводит подробную принципиальную схему предусилителя. Ключевые особенности схемотехники:

  • Симметричная схема на комплементарных парах транзисторов
  • Все транзисторы работают в режиме класса А
  • Входной каскад на полевых транзисторах с p-n переходом для снижения шума
  • Динамическая нагрузка на полевых транзисторах во входном каскаде
  • Глубокая общая ООС (около 66 дБ)

Такое схемотехническое решение обеспечивает высокую линейность и низкий уровень искажений.

Особенности конструкции и настройки

Автор дает рекомендации по подбору элементов и настройке предусилителя:


  • Полевые транзисторы нужно подобрать в пары по начальному току стока
  • Для С1-С4 рекомендуются неполярные конденсаторы типов К73-16, К73-17, К71-4 и т.п.
  • Питание от стабилизированного двуполярного источника ±15 В
  • Описана процедура настройки режимов транзисторов

Правильный подбор элементов и настройка позволяют реализовать потенциал схемы и получить заявленные характеристики.

Регулятор громкости и тембра

Автор приводит схему регулятора громкости и тембра, использующего описанный предусилитель. Особенности:

  • Физиологический регулятор тембра
  • Тонкомпенсированный регулятор громкости
  • ФВЧ 4-го порядка для эффективного подавления инфранизких помех
  • Возможность обхода регулятора тембра

Такая схема обеспечивает гибкую регулировку тембра и громкости без ухудшения качества звучания.

Преимущества тонкомпенсированного регулятора громкости

Автор предлагает оригинальную схему тонкомпенсированного регулятора громкости (ТКРГ), лишенную недостатков традиционных схем:

  • Отсутствие искажений АЧХ из-за изменения сопротивления движка потенциометра
  • Стабильная работа даже при ухудшении качества контакта движка
  • Отсутствие скачков АЧХ при прохождении движком отводов
  • Хорошее приближение к теоретически требуемым характеристикам ТКРГ

Приводятся АЧХ предложенного ТКРГ, демонстрирующие его эффективность при различных положениях регулятора.


Рекомендации по практической реализации

Автор дает практические советы по изготовлению предусилителя:

  • Нельзя использовать электролитические конденсаторы в схемах ТКРГ и регулятора тембра
  • Рекомендуется тщательно экранировать конструкцию
  • Важно обеспечить хороший контакт в цепях заземления
  • Следует использовать качественные комплектующие

Соблюдение этих рекомендаций позволит реализовать потенциал схемы и получить превосходное звучание в сочетании с качественным УМЗЧ и акустикой.

Сравнение с ламповыми усилителями

Автор проводит интересное сравнение предложенной схемы с ламповыми усилителями:

  • Транзисторная схема имеет более высокую частоту среза, чем типичные ламповые усилители
  • Спектр искажений приближается к «ламповому» благодаря специальной коррекции АЧХ
  • Уровень шума и искажений ниже, чем у ламповых аналогов
  • Сохраняются преимущества транзисторной схемы — компактность, надежность, долговечность

Таким образом, предложенная схема сочетает лучшие черты ламповой и транзисторной техники.


Перспективы дальнейшего совершенствования

Автор намечает возможные пути улучшения схемы:

  • Исследование влияния различных видов коррекции АЧХ на спектр искажений
  • Оптимизация топологии печатной платы для снижения наводок
  • Применение более совершенных транзисторов по мере их появления
  • Разработка специализированных пассивных компонентов для аудиоприменений

Эти направления работы могут привести к созданию еще более совершенных предусилителей в будущем.


Малошумящий High-End предусилитель на транзисторах, схема и описание

Предлагаемая автором конструкция ПУ используется в составе звуковоспроизводящего комплекса вместе с УМЗЧ, описанным в статье «Сверхлинейный УМЗЧ класса High-End на транзисторах».

Сравниваются особенности спектра нелинейных искажений в усилителях с различной частотой среза АЧХ. Показано, что устройства на операционных усилителях обогащают звуковой сигнал высшими гармониками, поэтому их применение в аудиокомплексах особо высокого качества нежелательно. Представлена конструкция малошумящего высоколинейного предварительного усилителя с большой частотой среза и блоками регулировок громкости и тембра.

При использовании пассивных регуляторов тембра (РТ) и достаточной чувствительности УМЗЧ назначением предварительного усилителя ЗЧ (ПУЗЧ) остается компенсация вносимого РТ ослабления усиливаемого сигнала и согласования входных и выходных сопротивлений различных звеньев тракта между собой.

Эта функция принадлежит линейным малошумящим каскадам усиления с высоким (десятки-сотни кОм) входным и низким (не более 600 Ом) выходным сопротивлением.

Такие значения необходимы, чтобы не вносились погрешности в характеристики регулирования РТ и регулятора громкости (РГ) и не оказывалось влияние на характеристики источников сигнала.

Известные автору конструкции ПУЗЧ не удовлетворяют возросшим к ним требованиям. Если ранее при воспроизведении граммофонной или магнитофонной записи было вполне достаточно, чтобы относительный уровень шума ПУЗЧ был около -80…-85 дБ, что не хуже, чем у источников сигнала, то при прослушивании компакт-дисков, когда «мертвая тишина» в паузах наполняется досадным шипением, такой шум уже становится назойливой помехой. Оставляют желать лучшего и другие параметры, особенно у ПУЗЧ, выполненных с использованием операционных усилителей (ОУ).

Низкая (десятки-сотни герц) собственная частота среза ОУ fc обусловливает не самую лучшую переходную характеристику, определяющую верность передачи фронта импульсных сигналов.

Такая fc заставляет считаться с возможностью возникновения динамических искажений, а также приводит к уменьшению глубины ООС с ростом частоты, т.

е. к росту нелинейных искажений (НИ). Ухудшение подавления искажений сигнала начинается в ОУ, охваченном ООС, с частоты его среза to и происходит приблизительно прямо пропорционально частоте.

Например, если fc<500 Гц и при усилении сигнала с частотой fA=1 кГц получен уровень второй гармоники (на частоте 2 кГц) 0,001%, то при усилении равного по амплитуде сигнала с частотой fB=8 кГц уровень второй гармоники (на частоте 16 кГц) будет примерно в fB/fA=8 раз больше, что дает уже не такие благополучные искажения (0,008%). Однако это еще только полбеды.

Еще хуже то, что вместе с этим изменяется соотношение между гармониками одного и того же сигнала в пользу гармоник более высокого порядка. Это касается НИ, генерируемых теми каскадами ОУ (прежде всего, выходными, из-за значительности их вклада в общий уровень НИ), которые следуют за каскадом, формирующим излом АЧХ на частоте fc. Искажения этих каскадов и будем иметь в виду далее (в первых каскадах ОУ процессы имеют свои особенности).

На рис.1 показаны частотные зависимости отношения коэффициента НИ по гармонике n>2 Qn к коэффициенту НИ по второй гармонике Q2, приведенных к такому же отношению для ОУ без ООС Qn/Q2.

Прямая 1 соответствует ОУ без ООС, прямая 2 — ОУ с замкнутой петлей ООС. Прямая 1 соответствует также усилителю, имеющему высокую частоту среза fc’>>20 кГц, причем безразлично, включена ООС или нет.

Как видно, УЗЧ на ОУ обогащает спектр НИ гармониками высших порядков. Наблюдаемую реально картину сглаживает лишь то, что исходные (без ООС) амплитуды гармоник сами обычно уменьшаются с ростом их номера n, поэтому регистрируемые при измерениях продукты искажений зависят не так сильно от частоты. Понятно, что картина, аналогичная рис.1, имеет место и для компонентов интермодуляционных искажений различных порядков.

Как известно, качество звучания зависит не только от амплитуд гармоник различного порядка, но и от соотношения между ними: желательно, чтобы с ростом номера гармоники ее амплитуда достаточно быстро убывала, в противном случае звучание становится жестким, приобретает неприятный металлический оттенок.

Из рис.1 видно, что УЗЧ на ОУ действует в прямо противоположном направлении, причем практически во всем звуковом диапазоне, исключая лишь самые низкие частоты (и это касается, конечно, не только ПУЗЧ, но и усилителей мощности).

Рис. 1. График 1.

И если регулятор тембра НЧ, поднимая АЧХ тракта на частотах, ниже 1 кГц, в какой-то степени восстанавливает соотношение между гармониками в диапазоне наклона участка своей АЧХ, то подъем высоких частот регулятором тембра ВЧ еще более усугубляет нарушение соотношения между ними на частотах более 1 кГц.

Таким образом, пресловутое «транзисторное звучание» начинает зарождаться еще в ПУЗЧ, выполненных на ОУ. Поэтому увлечение такими схемами, несмотря на все удобства и упрощения при использовании ОУ, идет в ущерб качеству звуковоспроизведения.

И нет ничего удивительного в том, что они звучат хуже ламповых усилителей, имеющих, как правило, достаточно высокую fc (что возможно благодаря относительно неглубокой ООС) и к тому же благоприятный спектр генерируемых лампами гармоник (не выше пятого порядка).

Для получения благоприятного спектра НИ транзисторный усилитель до охвата ООС должен иметь частоту среза fc’>20 кГц (рис.2, кривая 1). Это требование удачно согласуется и с условием отсутствия динамических искажений.

Любопытной вместе с этим выглядит возможность дополнительного улучшения спектра гармоник и приближения его характера к ламповому путем специфической коррекции, заключающейся в подъеме исходной (без ООС) АЧХ с ростом частоты в звуковом диапазоне или хотя бы на некотором его участке (рис.2, ломаная 3). Кривая 2 соответствует случаю 2 рис.1.

Рис. 2. График 2.

Благодаря уменьшению относительной доли ВЧ компонентов в НИ, это позволило бы получить спектр искажений на рис.1, кривая 3, что должно, по-видимому, делать звучание более мягким. Однако этот вопрос требует еще своего изучения.

Характеристики предусилителя

Особенно заметными недостатки известных ПУЗЧ становятся при совместной работе с современными  высококачественными УМЗЧ, например [1].0) -103 дБ

  • Взвешенное значение -109 дБА
  • Выходное сопротивление < 0,1Ом
  • Фазовый угол при f=0,1 …200 кГц < 0,1°
  • Минимальное сопротивление нагрузки R 300 Ом.

Принципиальная схема

Усилитель выполнен по симметричной схеме на комплементарных парах транзисторов, такая структура значительно повышает его исходную линейность еще до охвата ООС.

Все транзисторы, включая выходные, работают в режиме класса «А», причем коллекторный ток покоя VT7, VT8 около 10 мА и позволяет им сохранять этот режим при сопротивлениях нагрузки Rh не менее 300 Ом.

Несмотря на то, что VT5 и VT6 включены по схеме с общим эмиттером, их передаточные характеристики достаточно линеаризированы значительными сопротивлениями в эмиттерных цепях (R15, R16).

Уровень НИ оказался настолько мал, что решено было не применять предусматривавшиеся петли ЕПОС [1, 3], которые значительно усложнили бы схему.

Входной каскад с целью получения низкого уровня шума выполнен на полевых транзисторах с р-п-переходом. Входное сопротивление усилителя, равное около 350 кОм, определяется только сопротивлениями резисторов R3, R6 (при этом следует не забыть о соответствующем изменении емкостей С1, С2, чтобы постоянные времени ФВЧ R3C1 и R6C2 оставались прежними).

Делители напряжения R1R2 и R4R5R7 задают рабочие точки VT1 и VT2, резистор R4 служит для начальной установки нулевого напряжения на выходе усилителя и после настройки его можно заменить постоянным резистором нужного сопротивления, причем значение постоянной составляющей на выходе усилителя не столь критично и может находиться в пределах ±200 мВ.

Для получения большого коэффициента усиления входного каскада и малого шума применена динамическая нагрузка на полевых транзисторах VT3, VT4. Поскольку оба плеча входного каскада (VT1-VT3 и VT2-VT4) в конечном итоге работают на общую нагрузку, это дает выигрыш в уровне шума 3 дБ.

В результате шум усилителя оказался примерно втрое (на 10 дБ) меньше, чем у усилителей, входной каскад которых выполнен на ОУ К157УД2.

Рис. 3. Принципиальная схема малошумящего High-End предусилителя на транзисторах.

Сигнал ООС с выхода подается в точку соединения R13R14. Коэффициент передачи цепи ООС определяется цепочками R10R13C3 и R11R1404 вместе с регулятором усиления R12, которым устанавливают коэффициент усиления устройства в пределах 2-5. При желании диапазон регулировки усиления можно расширить уменьшением R10 и R11.

Конденсаторы С5-С7 корректируют АЧХ усилителя с целью получения наилучшей переходной характеристики, но его работоспособность сохраняется и без них, однако фронт прямоугольного импульса в их отсутствие приобретает небольшой выброс, а на «полке» появляется рябь.

Резисторы R19, R20 предохраняют VT7, VT8 от перегрузки при коротком замыкании на выходе.

Режимы усилителя по постоянному току стабилизированы как местной (R13, R14, R8, R9, R15, R16), так и глубокой (около 66 дБ) общей ООС, благодаря чему температурные колебания и дрейф параметров элементов мало сказываются на его работе.

Детали

Полевые транзисторы следует подобрать в пары по начальному току стока. У транзисторов VT1, VT2 он должен быть около 0,8-1,8 мА, у VT3, VT4 — не менее 5-6 мА. VT1 можно взять с индексами Б, А, VT2 — с индексами И, Е, Ж, К, VT3, VT4 — с индексами Д, Г, Е, КТ3107 — с индексами Б или И, КТ3102 — соответственно А или Б, В, Д, VT5-VT8 можно не подбирать

Конденсаторы С5, С7 — типов КТ, КД, С1-С4 — К73-16, К73-17, К71-4, К76-5 и т.п. В качестве С3, С4 можно использовать электролитические конденсаторы, например, К50-16, К50-6 либо импортные.

Питание усилителя — от любого стабилизированного двуполярного источника напряжения ±15 В.

Налаживание

Налаживание собранного из исправных деталей усилителя несложно. Подбором R8 и R9 устанавливают указанные на схеме напряжения на стоках VT1 и VT2 (12± 0,5 В), а подбором R17, R18 — напряжения на эмиттерах VT7, VT8 (0,8-1,2 В). Параллельно этому подстройкой R4 устанавливают близким к нулю выходное напряжение.

Если же нужные режимы транзисторов сразу установить не удается, следует вначале наладить отдельно входной каскад. Для этого выход усилителя соединяют с общим проводом (чтобы отключить общую ООС) и отключают базы VT5 и VT6 от стоков VT1 и VT2, закорачивая затем эти базы со своими эмиттерами.

После этого добиваются во входном каскаде режимов, как указано выше. Если это удается, то восстанавливают соединения схемы и окончательно подбирают R17,R18 и R4.

Регулятор громкости и тембра

Схема регулятора громкости и тембра с использованием показанного на рис.3 усилителя представлена на рис.4, где А1, А2 — два таких усилителя; ФРТ — физиологический регулятор тембра [3]; ТКРГ — тонкомпенсированный регулятор громкости, выход которого подключается к УМЗЧ.

Инфразвуковые частоты срезаются в каждом из усилителей А1 и А2 как на входе (ФВЧ R1-R3C1 и R4-R5-R6-C2, рис.3), так и в цепи ООС (R10-R13-C3 и R11-R14-C4), что дает в итоге ФВЧ 4-го порядка (а вместе с входным ФВЧ УМЗЧ [1] — 5-го порядка), этого достаточно для эффективного подавления низкочастотных помех с частотой меньше 20 Гц, таких, например, как от коробленных грампластинок.

В обходе ФРТ нет острой необходимости, так как его органами регулировки легко получить строго горизонтальную АЧХ. Однако эту функцию несложно осуществить, как показано на рис.4, с помощью переключателя S1 и делителя R1R2.

Рис. 4. Схема регулятора громкости и тембра.

В качестве R12 (рис.3) использован сдвоенный переменный резистор, «половинки» которого включают в разные каналы стереотракта. В каскадах А1 они включены «синфазно» (сопротивление реостата R12 в обоих каналах изменяется в одну сторону при перемещении движка регулятора) и выполняют роль дополнительного регулятора уровня, повышая тем самым перегрузочную способность ПУЗЧ до 26 дБ и обеспечивая согласование АЧХ ТКРГ с уровнем сигнала. В каскадах А2 они включены «противофазно» (сопротивление R12 в одном канале увеличивается, в другом уменьшается) и играют роль регулятора стереобаланса.

На рис.5 изображена принципиальная схема ТКРГ, выполненного на сдвоенном переменном резисторе с двумя отводами типа СП3-30В. Часто в схемах ТКРГ применяется подключение цепей частотной коррекции к движку потенциометра.

Рис. 5. Принципиальная схема тонкомпенсированныого регулятора громкости.

Движущиеся контакты движка не могут быть идеальными, и при регулировании громкости их сопротивления изменяются от почти нулевого до весьма заметного, особенно после продолжительной эксплуатации.

В простом (не тонкомпенсированном) регуляторе это почти не ощущается, особенно если последующий каскад имеет достаточно большое входное сопротивление, и может проявляться незначительными шорохами при регулировании.

В ТКРГ с подключением цепей коррекции к движку дела обстоят значительно хуже, АЧХ при ухудшениях контакта может искажаться очень сильно и становиться полностью неприемлемой, временами оглушая слушателя резким звуком неестественной окраски.

Искажениями АЧХ страдают и ТКРГ, цепи коррекции которых подключают как к отводам, так и к движку. В таких ТКРГ даже при идеальном постоянном контакте движка хорошо заметны на слух раздражающие изменения АЧХ при проходе движка мимо отвода.

Предлагаемый ТКРГ лишен этих недостатков, так как в нем к движку потенциометра цепи частотной коррекции не подключаются. Его АЧХ представлены на рис.6. Они являются хорошим приближением к требуемым, благодаря детальной проработке частотно-зависимых звеньев.

Рис. 6. АЧХ тонкомпенсированныого регулятора громкости.

В схеме ТКРГ (и в ФРТ) нельзя использовать электролитические конденсаторы, так как постоянная составляющая напряжения на их обкладках при работе данных схем равна нулю.

Следует использовать те же типы неэлектролитических конденсаторов, какие указаны в схеме усилителя. Описанный предварительный усилитель и блок регулировки громкости и тембра при работе вместе с УМЗЧ [1], укомплектованым хорошими акустическими системами, обеспечивают превосходное звучание.

Автор:  В. П. Матюшкин, г. Дрогобыч, Украина.

Литература:

  1. Матюшкин В.П. Сверхлинейный УМЗЧ класса Hgh-End на транзисторах // Радіоаматор.-1998.-№8.-С.10-11; №9.-С. 10-11.
  2. Матюшкин В.П. Параллельные петли обратной связи и их применение в УЗЧ // Радіоаматор.-2000.-№12.-2001; №1-3.

Предварительный усилитель на полевом транзисторе


Данное устройство позволяет подключить динамический микрофон, электрогитару и прочие источники сигнала с высоким выходным сопротивлением к звуковой карте компьютера. Устройство не вносит частотных искажений в звуковом диапазоне частот, а также искажений, связанных с нелинейностью усилительного прибора, поскольку построена по схеме истокового повторителя.

Иными словами, если вас хоть немного заботит качество записываемого звука, у вас неплохая звуковая карта и дорогой микрофон, то это устройство – то, что вам необходимо.

Немного о схеме. Устройство начинает работать, если в разъем J1 вставляется моно-джэк, или, если по-научному, штекер диаметром 6,35 мм (1/4 дюйма). При этом через джек минусовой контакт батареи питания замыкается на минус питания и устройство начинает работу. Также вторым контактом этого штекера входной сигнал подается на резистор R1, обеспечивающий высокое входное сопротивление устройства. Конденсатор C2 производит частотную корректировку, обрезая частоты выше звукового диапазона. Резисторы R2-R4 обеспечивают необходимое смещение на затворе полевого транзистора.


В данной конструкции применен полевой транзистор КП303 с индексом Е. При использовании транзистора с другим индексом возможно придется уменьшить номиналы резисторов R3 и R4. Резистор R5 является нагрузкой усилительного каскада, с него звуковой сигнал снимается конденсатором C5 и через резистор R7 подается на вход звуковой карты компьютера.

Диод VD1 в схеме выполняет функцию защиты от дурака от случайной переполюсовки, поскольку конструктивные особенности разъема батареи «Крона» не исключают такой возможности. Диод лучше применить германиевый, поскольку падение напряжения на нем будет меньше. Но это совершенно не критично, его можно заменить любым маломощным кремниевым диодом, например КД521, КД522, 1N4148 и т.п.

Устройство собирается на плате из однослойнофольгированного текстолита размерами 47х26мм. Трассировка платы в программе Dip Trace будет приведена ниже. Но можно обойтись и без изготовления платы, а собрать все на универсальной монтажной плате (это та, которая с кучей дырочек) такого же размера.



Корпус устройства изготавливается из однослойного текстолита для полного экранирования усилителя.

Размеры его деталей следующие:
— боковые стенки 60х50 мм – 2 штуки
— передняя стенка 50х30 мм – 1 штука
— задняя стенка 46х30 мм – 1 штука. Размер 46 миллиметров не критичен, может варьироваться от 50 мм до 35 мм. Все зависит от того, как вы хотите устанавливать батарею питания.
— нижняя и промежуточная стенки 55х30 мм


Стенки корпуса спаиваются между собой припоем. Фольга на всех стенках должна оказаться внутри корпуса. Старайтесь не перегревать текстолит, поскольку фольга может легко отслоиться.

Первым делом спаиваются между собой все стенки, кроме задней. Затем просверливаются отверстия для разъема джэка диаметром 10 мм, отверстие для проводов питания, где-то 3 мм в диаметре и такое же в задней стенке для экранированного провода с миниджэком.

Также в месте крепления задней стенки припаивается скоба из толстой медной проволоки, в которую будет вставляться низ задней стенки.

После этого нужно будет приклеить разъем для «Кроны». Кстати, его можно взять из уже отработавшей кроны, как я всегда и делаю. Клеится этот разъем термоклеем к задней стороне передней стенки. Важно чтобы ни один из контактов разъема не касался фольги корпуса.



После этого к схеме подпаиваются провода питания и третий провод, связывающий фольгу корпуса и «землю» схемы. Также припаивается экранированный выходной провод, схема устанавливается в корпус и задняя стенка запаивается вверху по бокам.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Малошумящий High-End предусилитель на транзисторах

Предлагаемая автором конструкция ПУ используется в составе звуковоспроизводящего комплекса вместе с УМЗЧ, описанным в статье «Сверхлинейный УМЗЧ класса High-End на транзисторах».

Сравниваются особенности спектра нелинейных искажений в усилителях с различной частотой среза АЧХ. Показано, что устройства на операционных усилителях обогащают звуковой сигнал высшими гармониками, поэтому их применение в аудиокомплексах особо высокого качества нежелательно. Представлена конструкция малошумящего высоколинейного предварительного усилителя с большой частотой среза и блоками регулировок громкости и тембра.

При использовании пассивных регуляторов тембра (РТ) и достаточной чувствительности УМЗЧ назначением предварительного усилителя ЗЧ (ПУЗЧ) остается компенсация вносимого РТ ослабления усиливаемого сигнала и согласования входных и выходных сопротивлений различных звеньев тракта между собой. Эта функция принадлежит линейным малошумящим каскадам усиления с высоким (десятки-сотни кОм) входным и низким (не более 600 Ом) выходным сопротивлением. Такие значения необходимы, чтобы не вносились погрешности в характеристики регулирования РТ и регулятора громкости (РГ) и не оказывалось влияние на характеристики источников сигнала.

Известные автору конструкции ПУЗЧ не удовлетворяют возросшим к ним требованиям. Если ранее при воспроизведении граммофонной или магнитофонной записи было вполне достаточно, чтобы относительный уровень шума ПУЗЧ был около -80…-85 дБ, что не хуже, чем у источников сигнала, то при прослушивании компакт-дисков, когда «мертвая тишина» в паузах наполняется досадным шипением, такой шум уже становится назойливой помехой. Оставляют желать лучшего и другие параметры, особенно у ПУЗЧ, выполненных с использованием операционных усилителей (ОУ).

Низкая (десятки-сотни герц) собственная частота среза ОУ fc обусловливает не самую лучшую переходную характеристику, определяющую верность передачи фронта импульсных сигналов. Такая fc заставляет считаться с возможностью возникновения динамических искажений, а также приводит к уменьшению глубины ООС с ростом частоты, т.е. к росту нелинейных искажений (НИ). Ухудшение подавления искажений сигнала начинается в ОУ, охваченном ООС, с частоты его среза to и происходит приблизительно прямо пропорционально частоте. Например, если fc<500 Гц и при усилении сигнала с частотой fA=1 кГц   получен уровень второй гармоники (на частоте 2 кГц) 0,001%, то при усилении равного по амплитуде сигнала с частотой fB=8 кГц уровень второй гармоники (на частоте 16 кГц) будет примерно в fB/fA=8 раз больше, что дает уже не такие благополучные искажения (0,008%). Однако это еще только полбеды.

Еще хуже то, что вместе с этим изменяется соотношение между гармониками одного и того же сигнала в пользу гармоник более высокого порядка. Это касается НИ, генерируемых теми каскадами ОУ (прежде всего, выходными, из-за значительности их вклада в общий уровень НИ), которые следуют за каскадом, формирующим излом АЧХ на частоте fc. Искажения этих каскадов и будем иметь в виду далее (в первых каскадах ОУ процессы имеют свои особенности).

На рис.1 показаны частотные зависимости отношения коэффициента НИ по гармонике n>2 Qn к коэффициенту НИ по второй гармонике Q2, приведенных к такому же отношению для ОУ без ООС Qn/Q2. Прямая 1 соответствует ОУ без ООС, прямая 2 — ОУ с замкнутой петлей ООС. Прямая 1 соответствует также усилителю, имеющему высокую частоту среза fc’>>20 кГц, причем безразлично, включена ООС или нет. Как видно, УЗЧ на ОУ обогащает спектр НИ гармониками высших порядков. Наблюдаемую реально картину сглаживает лишь то, что исходные (без ООС) амплитуды гармоник сами обычно уменьшаются с ростом их номера n, поэтому регистрируемые при измерениях продукты искажений зависят не так сильно от частоты. Понятно, что картина, аналогичная рис.1, имеет место и для компонентов интермодуляционных искажений различных порядков.

Как известно, качество звучания зависит не только от амплитуд гармоник различного порядка, но и от соотношения между ними: желательно, чтобы с ростом номера гармоники ее амплитуда достаточно быстро убывала, в противном случае звучание становится жестким, приобретает неприятный металлический оттенок. Из рис.1 видно, что УЗЧ на ОУ действует в прямо противоположном направлении, причем практически во всем звуковом диапазоне, исключая лишь самые низкие частоты (и это касается, конечно, не только ПУЗЧ, но и усилителей мощности). И если регулятор тембра НЧ, поднимая АЧХ тракта на частотах, ниже 1 кГц, в какой-то степени восстанавливает соотношение между гармониками в диапазоне наклона участка своей АЧХ, то подъем высоких частот регулятором тембра ВЧ еще более усугубляет нарушение соотношения между ними на частотах более 1 кГц.

Таким образом, пресловутое «транзисторное звучание» начинает зарождаться еще в ПУЗЧ, выполненных на ОУ. Поэтому увлечение такими схемами, несмотря на все удобства и упрощения при использовании ОУ, идет в ущерб качеству звуковоспроизведения. И нет ничего удивительного в том, что они звучат хуже ламповых усилителей, имеющих, как правило, достаточно высокую fc (что возможно благодаря относительно неглубокой ООС) и к тому же благоприятный спектр генерируемых лампами гармоник (не выше пятого порядка).

Для получения благоприятного спектра НИ транзисторный усилитель до охвата ООС должен иметь частоту среза fc’>20 кГц (рис.2, кривая 1). Это требование удачно согласуется и с условием отсутствия динамических искажений. Любопытной вместе с этим выглядит возможность дополнительного улучшения спектра гармоник и приближения его характера к ламповому путем специфической коррекции, заключающейся в подъеме исходной (без ООС) АЧХ с ростом частоты в звуковом диапазоне или хотя бы на некотором его участке (рис.2, ломаная 3). Кривая 2 соответствует случаю 2 рис.1. Благодаря уменьшению относительной доли ВЧ компонентов в НИ, это позволило бы получить спектр искажений на рис.1, кривая 3, что должно, по-видимому, делать звучание более мягким. Однако этот вопрос требует еще своего изучения.

Особенно заметными недостатки известных ПУЗЧ становятся при совместной работе с современными  высококачественными УМЗЧ, например [1].

При разработке предлагаемого ПУЗЧ учтены перечисленные соображения, вместе с этим желательно достичь максимальной простоты схемы.0) -103 дБ

  • Взвешенное значение -109 дБА
  • Выходное сопротивление < 0,1Ом
  • Фазовый угол при f=0,1 …200 кГц < 0,1°
  • Минимальное сопротивление нагрузки R 300 Ом

Усилитель выполнен по симметричной схеме на комплементарных парах транзисторов, такая структура значительно повышает его исходную линейность еще до охвата ООС. Все транзисторы, включая выходные, работают в режиме класса «А», причем коллекторный ток покоя VT7, VT8 около 10 мА и позволяет им сохранять этот режим при сопротивлениях нагрузки Rh не менее 300 Ом.

Несмотря на то, что VT5 и VT6 включены по схеме с общим эмиттером, их передаточные характеристики достаточно линеаризированы значительными сопротивлениями в эмиттерных цепях (R15, R16).

Уровень НИ оказался настолько мал, что решено было не применять предусматривавшиеся петли ЕПОС [1, 3], которые значительно усложнили бы схему.

Входной каскад с целью получения низкого уровня шума выполнен на полевых транзисторах с р-п-переходом. Входное сопротивление усилителя, равное около 350 кОм, определяется только сопротивлениями резисторов R3, R6 (при этом следует не забыть о соответствующем изменении емкостей С1, С2, чтобы постоянные времени ФВЧ R3C1 и R6C2 оставались прежними). Делители напряжения R1R2 и R4R5R7 задают рабочие точки VT1 и VT2, резистор R4 служит для начальной установки нулевого напряжения на выходе усилителя и после настройки его можно заменить постоянным резистором нужного сопротивления, причем значение постоянной составляющей на выходе усилителя не столь критично и может находиться в пределах ±200 мВ.

Для получения большого коэффициента усиления входного каскада и малого шума применена динамическая нагрузка на полевых транзисторах VT3, VT4. Поскольку оба плеча входного каскада (VT1-VT3 и VT2-VT4) в конечном итоге работают на общую нагрузку, это дает выигрыш в уровне шума 3 дБ. В результате шум усилителя оказался примерно втрое (на 10 дБ) меньше, чем у усилителей, входной каскад которых выполнен на ОУ К157УД2.

Сигнал ООС с выхода подается в точку соединения R13R14. Коэффициент передачи цепи ООС определяется цепочками R10R13C3 и R11R1404 вместе с регулятором усиления R12, которым устанавливают коэффициент усиления устройства в пределах 2-5. При желании диапазон регулировки усиления можно расширить уменьшением R10 и R11.

Конденсаторы С5-С7 корректируют АЧХ усилителя с целью получения наилучшей переходной характеристики, но его работоспособность сохраняется и без них, однако фронт прямоугольного импульса в их отсутствие приобретает небольшой выброс, а на «полке» появляется рябь.

Резисторы R19, R20 предохраняют VT7, VT8 от перегрузки при коротком замыкании на выходе.

Режимы усилителя по постоянному току стабилизированы как местной (R13, R14, R8, R9, R15, R16), так и глубокой (около 66 дБ) общей ООС, благодаря чему температурные колебания и дрейф параметров элементов мало сказываются на его работе.

Полевые транзисторы следует подобрать в пары по начальному току стока. У транзисторов VT1, VT2 он должен быть около 0,8-1,8 мА, у VT3, VT4 — не менее 5-6 мА. VT1 можно взять с индексами Б, А, VT2 — с индексами И, Е, Ж, К, VT3, VT4 — с индексами Д, Г, Е, КТ3107 — с индексами Б или И, КТ3102 — соответственно А или Б, В, Д, VT5-VT8 можно не подбирать

Конденсаторы С5, С7 — типов КТ, КД, С1-С4 — К73-16, К73-17, К71-4, К76-5 и т.п. В качестве С3, С4 можно использовать электролитические конденсаторы, например, К50-16, К50-6 либо импортные.

Питание усилителя — от любого стабилизированного двуполярного источника напряжения ±15 В.

Налаживание собранного из исправных деталей усилителя несложно. Подбором R8 и R9 устанавливают указанные на схеме напряжения на стоках VT1 и VT2 (12± 0,5 В), а подбором R17, R18 — напряжения на эмиттерах VT7, VT8 (0,8-1,2 В). Параллельно этому подстройкой R4 устанавливают близким к нулю выходное напряжение.

Если же нужные режимы транзисторов сразу установить не удается, следует вначале наладить отдельно входной каскад. Для этого выход усилителя соединяют с общим проводом (чтобы отключить общую ООС) и отключают базы VT5 и VT6 от стоков VT1 и VT2, закорачивая затем эти базы со своими эмиттерами. После этого добиваются во входном каскаде режимов, как указано выше. Если это удается, то восстанавливают соединения схемы и окончательно подбирают R17,R18 и R4.

Схема регулятора громкости и тембра с использованием показанного на рис.3 усилителя представлена на рис.4, где А1, А2 — два таких усилителя; ФРТ — физиологический регулятор тембра [3]; ТКРГ -тонкомпенсированный регулятор громкости, выход которого подключается к УМЗЧ. Инфразвуковые частоты срезаются в каждом из усилителей А1 и А2 как на входе (ФВЧ R1-R3C1 и R4-R5-R6-C2, рис.3), так и в цепи ООС (R10-R13-C3 и R11-R14-C4), что дает в итоге ФВЧ 4-го порядка (а вместе с входным ФВЧ УМЗЧ [1] — 5-го порядка), этого достаточно для эффективного подавления низкочастотных помех с частотой меньше 20 Гц, таких, например, как от коробленных грампластинок.

В обходе ФРТ нет острой необходимости, так как его органами регулировки легко получить строго горизонтальную АЧХ. Однако эту функцию несложно осуществить, как показано на рис.4, с помощью переключателя S1 и делителя R1R2.

 

 

В качестве R12 (рис.3) использован сдвоенный переменный резистор, «половинки» которого включают в разные каналы стереотракта. В каскадах А1 они включены «синфазно» (сопротивление реостата R12 в обоих каналах изменяется в одну сторону при перемещении движка регулятора) и выполняют роль дополнительного регулятора уровня, повышая тем самым перегрузочную способность ПУЗЧ до 26 дБ и обеспечивая согласование АЧХ ТКРГ с уровнем сигнала. В каскадах А2 они включены «противофазно» (сопротивление R12 в одном канале увеличивается, в другом уменьшается) и играют роль регулятора стереобаланса.

На рис.5 изображена принципиальная схема ТКРГ, выполненного на сдвоенном переменном резисторе с двумя отводами типа СП3-30В. Часто в схемах ТКРГ применяется подключение цепей частотной коррекции к движку потенциометра. Движущиеся контакты движка не могут быть идеальными, и при регулировании громкости их сопротивления изменяются от почти нулевого до весьма заметного, особенно после продолжительной эксплуатации. В простом (не тонкомпенсированном) регуляторе это почти не ощущается, особенно если последующий каскад имеет достаточно большое входное сопротивление, и может проявляться незначительными шорохами при регулировании.

В ТКРГ с подключением цепей коррекции к движку дела обстоят значительно хуже, АЧХ при ухудшениях контакта может искажаться очень сильно и становиться полностью неприемлемой, временами оглушая слушателя резким звуком неестественной окраски. Искажениями АЧХ страдают и ТКРГ, цепи коррекции которых подключают как к отводам, так и к движку. В таких ТКРГ даже при идеальном постоянном контакте движка хорошо заметны на слух раздражающие изменения АЧХ при проходе движка мимо отвода.

Предлагаемый ТКРГ лишен этих недостатков, так как в нем к движку потенциометра цепи частотной коррекции не подключаются. Его АЧХ представлены на рис.6. Они являются хорошим приближением к требуемым, благодаря детальной проработке частотно-зависимых звеньев.

В схеме ТКРГ (и в ФРТ) нельзя использовать электролитические конденсаторы, так как постоянная составляющая напряжения на их обкладках при работе данных схем равна нулю. Следует использовать те же типы неэлектролитических конденсаторов, какие указаны в схеме усилителя. Описанный предварительный усилитель и блок регулировки громкости и тембра при работе вместе с УМЗЧ [1], укомплектованым хорошими акустическими системами, обеспечивают превосходное звучание.

Автор:  В. П. Матюшкин, г. Дрогобыч

Литература:

1. Матюшкин В.П. Сверхлинейный УМЗЧ класса Hgh-End на транзисторах//Радюаматор.-1998.-№8.-С.10-11; №9.-С. 10-11.

2. Матюшкин В.П. Параллельные петли обратной связи и их применение в УЗЧ//Рад1оаматор.-2000.-№12.-2001; №1-3.®

Предусилитель для микрофона. Подборка схем

Предусилитель для микрофона, он же предварительный усилитель или усилитель для микрофона — это такой вид усилителя, назначение которого — усиление слабого сигнала до величины линейного уровня (порядка 0,5-1,5 вольт), то есть до приемлемой величины, при которой работают обычные усилители звуковой мощности.

Входным источником акустических сигналов для предварительного усилителя обычно являются звукосниматели виниловых пластинок, микрофоны, звукосниматели различных музыкальных инструментов. Ниже приводится три схемы микрофонных усилителей на транзисторах, а так же вариант усилителя микрофона на микросхеме 4558. Все их без труда можно собрать своими руками.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Схема простого микрофонного предусилителя на одном транзисторе

Данная схема микрофонного предусилителя работает как с динамическим, так и с электретными микрофонами.

Динамические микрофоны по конструкции схожи с громкоговорителями. Акустическая волна оказывает воздействие на мембрану и на прикрепленную к ней акустическую катушку. В момент колебания мембраны, в катушке, находящейся под воздействием магнитного поля постоянного магнита, образуется электрический ток.

Работа электретных микрофонов базируется на возможности определенных видов материалов с повышенной диэлектрической проницаемостью (электретов) менять поверхностный заряд под воздействием акустической волны. Данный тип микрофонов отличается от динамического высоким входным сопротивлением.

При использовании электретного микрофона, для смещения напряжения на микрофоне, необходимо установить сопротивление R1

микрофонный усилитель на одном транзисторе

Поскольку эта схема микрофонного усилителя для динамического микрофона, то при использовании электродинамического микрофона его сопротивление должно быть в диапазоне от 200 до 600 Ом. При этом конденсатор C1 необходимо поставить до 10 мкф. Если это будет электролитический конденсатор, то его плюсовой вывод необходимо подключить в сторону транзистора.

Питание осуществляется от батареи крона или же от стабилизированного источника питания. Хотя лучше от батареи, чтобы исключить шумы. Биполярный транзистор BC547 можно заменить на отечественный КТ3102. Конденсаторы электролитические на напряжение 16 вольт. Для предотвращения помех, подключать предусилитель к источнику сигнала и к входу усилителя необходимо экранированным проводом. Если необходимо дальнейшее мощное усиление звука, то можно собрать усилитель на микросхеме TDA2030.

Микрофонный предварительный усилитель на 2-х транзисторах

Структура построения любого предусилителя очень сильно влияет на его шумовые характеристики. Если брать во внимание тот факт, что используемые в схеме предусилителя качественные радиодетали все равно в той или иной мере приводят к искажениям (шумам), то очевидно, что единственный выход получить более-менее качественный микрофонный усилитель — это сократить число радиокомпонентов схемы. Примером может послужить следующая схема двухкаскадного предварительного усилителя на транзисторах.

В данном варианте количество разделительных конденсаторов сведено к минимуму, поскольку транзисторы включены по схеме с общим эмиттером. Так же между каскадами существует непосредственная связь. Для стабилизации режима работы схемы, при изменении внешней температуры и напряжения питания, в схему добавлена ООС по постоянному току.

Предусилитель для электретного микрофона на трех транзисторах

Это еще один вариант микрофонного усилителя для электретного микрофона. Особенность данной схемы усилителя для микрофона в том, что подача питания на схему предусилителя осуществляется по тому же проводнику (фантомное питание) по которому идет входной сигнал.

 

Данный микрофонный предусилитель предназначен для совместной работы с электретным микрофоном, например, МКЭ-3. Напряжение питания на микрофон идет через сопротивление R1. Аудио сигнал с выхода микрофона поступает на базу VT1 через конденсатор С1. Делителем напряжения, состоящим из сопротивлений R2, R3 создается необходимое смещение на базе VT1 (примерно 0,6 В). Усиленный сигнал с резистора R5, выступающий в роли нагрузки, идет на базу VT2 который является частью эмиттерного повторителя на VT2 и VT3.

Возле разъема на выходе, установлены дополнительно два элемента: нагрузочное сопротивление R6, через которое идет питание, и разделительный конденсатор СЗ, отделяющий выходной аудио сигнал от напряжения питания.

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

Микросхема 4558- характеристики

Скачать datasheet 4558 (140,5 KiB, скачано: 3 669)

предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.

⚡️Схема предварительного усилителя на транзисторе

На чтение 2 мин Опубликовано Обновлено

Не менее важной частью УНЧ чем усилитель мощности является так же и предварительный усилитель в котором осуществляется не только предварительное усиление сигнала, но и его частотная коррекция с помощью регулятора тембра.

На сайте Радиочипи показана простая электрическая схема предварительного УНЧ с регулятором тембра по низким и высоким частотам и регулятором громкости. На транзисторе VT1 выполнен не столько предварительный усилитель, сколько активный регулятор тембра.

Тембр по низким частотам регулируется переменным резистором R2. Тембр по высоким частотам регулируется переменным резистором R4. Частото-зависимый мост включен между входом и выходом каскада на VT1, превращая его в регулируемый активный фильтр.

Входной сигнал поступает сразу на схему регулировки тембра без каких-то предварительных каскадов. Если выходное сопротивление источника сигнала небольшое это вполне допустимо. Но при высокоомном выходе, например, если источником сигнала должен служить старый проигрыватель виниловых дисков с пьезоэлектрическим звукоснимателем, нужно сделать

предварительный каскад для повышения входного сопротивления, например, по схеме эмиттерного повторителя, как показано на рисунке 2. В этом случае входной сигнал поступает на базу VT2, а сигнал на вход активного регулятора тембра снимается с его эмиттера. Режим работы каскада устанавливается подбором сопротивления резистора R10.

Режим работы по постоянному току каскада на транзисторе VT1 задает делитель напряжения R5-R6. Переменный резистор R9 служит для регулировки громкости. С него сигнал подается на усилитель мощности звуковой частоты. Все конденсаторы должны быть на напряжение не ниже напряжения питания.

Автор

Предусилитель для электретного микрофона

Предусилитель для микрофона, он же предварительный усилитель или усилитель для микрофона — это такой вид усилителя, назначение которого — усиление слабого сигнала до величины линейного уровня (порядка 0,5-1,5 вольт), то есть до приемлемой величины, при которой работают обычные усилители звуковой мощности.

Входным источником акустических сигналов для предварительного усилителя обычно являются звукосниматели виниловых пластинок, микрофоны, звукосниматели различных музыкальных инструментов. Ниже приводится три схемы микрофонных усилителей на транзисторах, а так же вариант усилителя микрофона на микросхеме 4558. Все их без труда можно собрать своими руками.

Схема простого микрофонного предусилителя на одном транзисторе

Данная схема микрофонного предусилителя работает как с динамическим, так и с электретными микрофонами.

Динамические микрофоны по конструкции схожи с громкоговорителями. Акустическая волна оказывает воздействие на мембрану и на прикрепленную к ней акустическую катушку. В момент колебания мембраны, в катушке, находящейся под воздействием магнитного поля постоянного магнита, образуется электрический ток.

Работа электретных микрофонов базируется на возможности определенных видов материалов с повышенной диэлектрической проницаемостью (электретов) менять поверхностный заряд под воздействием акустической волны. Данный тип микрофонов отличается от динамического высоким входным сопротивлением.

При использовании электретного микрофона, для смещения напряжения на микрофоне, необходимо установить сопротивление R1


микрофонный усилитель на одном транзисторе

Поскольку эта схема микрофонного усилителя для динамического микрофона, то при использовании электродинамического микрофона его сопротивление должно быть в диапазоне от 200 до 600 Ом. При этом конденсатор C1 необходимо поставить до 10 мкф. Если это будет электролитический конденсатор, то его плюсовой вывод необходимо подключить в сторону транзистора.

Питание осуществляется от батареи крона или же от стабилизированного источника питания. Хотя лучше от батареи, чтобы исключить шумы. Биполярный транзистор BC547 можно заменить на отечественный КТ3102. Конденсаторы электролитические на напряжение 16 вольт. Для предотвращения помех, подключать предусилитель к источнику сигнала и к входу усилителя необходимо экранированным проводом. Если необходимо дальнейшее мощное усиление звука, то можно собрать усилитель на микросхеме TDA2030.

Микрофонный предварительный усилитель на 2-х транзисторах

Структура построения любого предусилителя очень сильно влияет на его шумовые характеристики. Если брать во внимание тот факт, что используемые в схеме предусилителя качественные радиодетали все равно в той или иной мере приводят к искажениям (шумам), то очевидно, что единственный выход получить более-менее качественный микрофонный усилитель — это сократить число радиокомпонентов схемы. Примером может послужить следующая схема двухкаскадного предварительного усилителя на транзисторах.

С данном варианте количество разделительных конденсаторов сведено к минимуму, поскольку транзисторы включены по схеме с общим эмиттером. Так же между каскадами существует непосредственная связь. Для стабилизации режима работы схемы, при изменении внешней температуры и напряжения питания, в схему добавлена ООС по постоянному току.

Предусилитель для электретного микрофона на трех транзисторах

Это еще один вариант микрофонного усилителя для электретного микрофона. Особенность данной схемы усилителя для микрофона в том, что подача питания на схему предусилителя осуществляется по тому же проводнику (фантомное питание) по которому идет входной сигнал.

Данный микрофонный предусилитель предназначен для совместной работы с электретным микрофоном, например, МКЭ-3. Напряжение питания на микрофон идет через сопротивление R1. Аудио сигнал с выхода микрофона поступает на базу VT1 через конденсатор С1. Делителем напряжения, состоящим из сопротивлений R2, R3 создается необходимое смещение на базе VT1 (примерно 0,6 В). Усиленный сигнал с резистора R5, выступающий в роли нагрузки, идет на базу VT2 который является частью эмиттерного повторителя на VT2 и VT3.

Возле разъема на выходе, установлены дополнительно два элемента: нагрузочное сопротивление R6, через которое идет питание, и разделительный конденсатор СЗ, отделяющий выходной аудио сигнал от напряжения питания.

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

Микросхема 4558- характеристики

Скачать datasheet 4558 (140,5 Kb, скачано: 2 466)


предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.

Предусилитель для микрофона, он же предварительный усилитель или усилитель для микрофона — это такой вид усилителя, назначение которого — усиление слабого сигнала до величины линейного уровня (порядка 0,5-1,5 вольт), то есть до приемлемой величины, при которой работают обычные усилители звуковой мощности.

Входным источником акустических сигналов для предварительного усилителя обычно являются звукосниматели виниловых пластинок, микрофоны, звукосниматели различных музыкальных инструментов. Ниже приводится три схемы микрофонных усилителей на транзисторах, а так же вариант усилителя микрофона на микросхеме 4558. Все их без труда можно собрать своими руками.

Схема простого микрофонного предусилителя на одном транзисторе

Данная схема микрофонного предусилителя работает как с динамическим, так и с электретными микрофонами.

Динамические микрофоны по конструкции схожи с громкоговорителями. Акустическая волна оказывает воздействие на мембрану и на прикрепленную к ней акустическую катушку. В момент колебания мембраны, в катушке, находящейся под воздействием магнитного поля постоянного магнита, образуется электрический ток.

Работа электретных микрофонов базируется на возможности определенных видов материалов с повышенной диэлектрической проницаемостью (электретов) менять поверхностный заряд под воздействием акустической волны. Данный тип микрофонов отличается от динамического высоким входным сопротивлением.

При использовании электретного микрофона, для смещения напряжения на микрофоне, необходимо установить сопротивление R1


микрофонный усилитель на одном транзисторе

Поскольку эта схема микрофонного усилителя для динамического микрофона, то при использовании электродинамического микрофона его сопротивление должно быть в диапазоне от 200 до 600 Ом. При этом конденсатор C1 необходимо поставить до 10 мкф. Если это будет электролитический конденсатор, то его плюсовой вывод необходимо подключить в сторону транзистора.

Питание осуществляется от батареи крона или же от стабилизированного источника питания. Хотя лучше от батареи, чтобы исключить шумы. Биполярный транзистор BC547 можно заменить на отечественный КТ3102. Конденсаторы электролитические на напряжение 16 вольт. Для предотвращения помех, подключать предусилитель к источнику сигнала и к входу усилителя необходимо экранированным проводом. Если необходимо дальнейшее мощное усиление звука, то можно собрать усилитель на микросхеме TDA2030.

Микрофонный предварительный усилитель на 2-х транзисторах

Структура построения любого предусилителя очень сильно влияет на его шумовые характеристики. Если брать во внимание тот факт, что используемые в схеме предусилителя качественные радиодетали все равно в той или иной мере приводят к искажениям (шумам), то очевидно, что единственный выход получить более-менее качественный микрофонный усилитель — это сократить число радиокомпонентов схемы. Примером может послужить следующая схема двухкаскадного предварительного усилителя на транзисторах.

С данном варианте количество разделительных конденсаторов сведено к минимуму, поскольку транзисторы включены по схеме с общим эмиттером. Так же между каскадами существует непосредственная связь. Для стабилизации режима работы схемы, при изменении внешней температуры и напряжения питания, в схему добавлена ООС по постоянному току.

Предусилитель для электретного микрофона на трех транзисторах

Это еще один вариант микрофонного усилителя для электретного микрофона. Особенность данной схемы усилителя для микрофона в том, что подача питания на схему предусилителя осуществляется по тому же проводнику (фантомное питание) по которому идет входной сигнал.

Данный микрофонный предусилитель предназначен для совместной работы с электретным микрофоном, например, МКЭ-3. Напряжение питания на микрофон идет через сопротивление R1. Аудио сигнал с выхода микрофона поступает на базу VT1 через конденсатор С1. Делителем напряжения, состоящим из сопротивлений R2, R3 создается необходимое смещение на базе VT1 (примерно 0,6 В). Усиленный сигнал с резистора R5, выступающий в роли нагрузки, идет на базу VT2 который является частью эмиттерного повторителя на VT2 и VT3.

Возле разъема на выходе, установлены дополнительно два элемента: нагрузочное сопротивление R6, через которое идет питание, и разделительный конденсатор СЗ, отделяющий выходной аудио сигнал от напряжения питания.

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

Микросхема 4558- характеристики

Скачать datasheet 4558 (140,5 Kb, скачано: 2 466)


предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.

Среди задач, решаемых с помощью электретных микрофонов, можно выделить озвучивание больших помещений (например, конференцзалов? храмов и т.п.), с относительно большим расстоянием от источника звука, что требует повышенной чувствительности и помехозащищенности. Промышленно выпускаемые микрофоны для подобных целей достаточно дорогостоящи и, кроме того, требуют автономного источника питания для предусилителя.

Целью данной разработки явилось удешевление изготовления высокочувствительного и помехозащищенного микрофона, без существенной потери качества воспроизведения.

За основу взята схема [1] балансного предусилителя, питающегося непосредственно от фантомного питания (+48 В) микшерного пульта:

Её основным недостатком является избыточное усиление, приводящее к клиппированию вывокочувствительных микрофонных входов пульта. Кроме того, недостаточно рационально выполнено питание электретного микрофона [2], а также зависимое от температуры смещение баз транзисторов на шести диодах, включенных как стабисторы. Наличие этих диодов, а также электролических конденсаторов, увеличивает размеры платы и не способствует миниатюризации.

Попытка замены стабилизации диодами на обратносмещенный базо-эмиттерный переход планарного транзистора (КТ315) оказалась неудачной из-за повышенной шумности (шипения) в полезном сигнале.

Поэтому в последующем применялась стабилизация на шунтовом регуляторе TL431, продемонстрировавшая практическое отсутствие посторонних шумов и высокую термостабильность напряжения смещения.

Окончательная схема предусилителя электретного микрофона показана ниже.

Её особенностями явились дополнительные коллекторные резисторы R7 и R9, примерно в 4,5 раза снижающие амплитуду сигнала на контактах разъема по сравнению с имеющейся на коллекторах транзисторов VT1 и VT2, а также задание смещения базы VT2 непосредственно от делителя, подключенного к управляющему электроду шунтового регулятора DA1 (+2,5 В). Электретный микрофон запитывается от катода DA1 через делитель R3R6, таким образом, чтобы постоянное напряжение на нем составило половину от питающего (т.е., +2,5 В от +5 В) и стало равным напряжению на управляющем электроде DA1. Такое подключение микрофона обеспечивает максимальную чувствительность. Оно было апробировано в проекте [3] и продемонстрировало свою практическую применимость.

Схема выполнена на компонентах поверхностного монтажа (SMD) на печатной плате размерами 37 х 15 мм (чертеж в формате *.lay7 приведен в аттаче):

Настройка сводится к уравниванию потенциалов между контактными точками (показаны стрелкой), выведенными на лицевую сторону платы путем вращения движка подстроечного резистора.

Апробация данного предусилителя продемонстрировала его полную работоспособность (файл с записью голоса приаттачен).

Russian Hamradio — Предусилитель на транзисторе АП320.

Предусилитель о котором пойдет речь в данной статье обладает рядом преимуществ перед другими схемами благодаря своим параметрам, а то есть низким коэффициентом шума. Коэффициент шума данного усилителя, определяется только шумами самого транзистора АП320А2. Схема усилителя особенностей в настройке не имеет. Принципиальная схема предусилителя приведена на рис.1.

Рис.1.

Во время передачи вход усилителя нагружен на резистор R1, что обеспечивает работоспособность данного усилителя и сохранность транзистора АП320А2. Обмотка реле РПВ2/7 на рис.1 не показана. Управление при переходе с прима на передачу производится по стандартной схеме, а т.е. по кабелю.

Детали

Катушка L1 имеет 5 витков и намотана проводом ПЭВ-2 диаметром 1 мм. Диаметр катушки — 8 мм.  Трансформатор Тр1 намотан на кольце 30 ВЧ диаметром 7 мм, проводом ПЭЛШО диаметром 0,31мм. Обмотки трансформатора соединить, как показано на схеме приведенной — рис.1.

Рис.2.

Трансформатор закрепить на плате только через диэлектрик толщиной не менее 5 мм. Конструкция трансформатора и расположение выводов, а также маркировка выводов транзистора АП320 приведена на рис.2. Перед установкой транзистора на плату, необходимо закоротить все выводы между собой мягкой проволокой.

Монтаж усилителя выполнен на монтажных пятачках, обеспечивающих более стабильную работу усилителя, чем традиционный монтаж с изготовлением полной печатной платы. Корпус усилителя выполняется из двухстороннего стеклотекстолита и имеет размеры 80х80х35 мм. Расположение деталей и конструкция усилителя показана на рис.3. После настройки усилитель закрывается крышкой из двухстороннего стеклотекстолита.

Рис.3.

Все соединения корпуса, разъемов тщательно пропаиваются. При пайке выводы радиодеталей должны быть минимальными и короткими их пайка должна производится по кратчайшему пути.

Настройка

Настройка усилителя особенностей не имеет. Все действия по общепринятой методике. При настройке, возможно потребуется произвести подбор резистора R2 от указанного номинала. При большой длине кабеля необходимо учитывать падение напряжения от трансивера до антенны и возможно потребуется увеличение питающего напряжения с +12В до +14В и более для нормальной работы усилителя на АП320А2 особенно в холодное время.

Материал подготовил Ю. Погребан, (UA9XEX).

4 Схема предусилителя на транзисторах

Если нам нужна качественная звуковая система. Первое, что стоит выбрать, — хорошую схему предусилителя. Некоторые сказали, что в этом нет необходимости. Позвольте мне объяснить вам, почему вы должны использовать схемы транзисторных предусилителей.

Представьте, что у нас есть усилитель на 100 Вт RMS. И коэффициент усиления примерно в 22 раза превышает входную чувствительность или уровень входного сигнала 1,2 В.

Итак, нам нужно ввести входной сигнал 1,2 В (размах), чтобы услышать 100 Вт полной мощности.

Но если мы введем более низкий звуковой сигнал, например 0,1 В (размах), это также приведет к понижению звука в динамике.

Следовательно, нам нужен базовый усилитель или предусилитель, чтобы усилить сигнал и получить достаточную мощность около 1,2 В (размах) с низким уровнем искажений.

Во многих случаях усилителю требуются различные компоненты, такие как усиление, чувствительность или даже согласование импеданса.

Мы должны изучить или создать 4 схемы предусилителя, в каждой из которых используется только один транзистор.И расположите разные схемы, чтобы они соответствовали потребностям усилителя.

Примечание: Все 4 схемы имеют одинаковую печатную плату, поэтому мы можем выбрать расположение различных устройств для выбранной схемы.

Входной предусилитель с низким сопротивлением на транзисторе

В старой схеме усилителя, например, в системе внутренней связи Используйте 2 или более громкоговорителей вместо микрофона.

В этом случае звуковая катушка этого динамика имеет очень низкий импеданс, не более 20 Ом. Напряжение звуковой катушки очень низкое, только менее 0.01V. В старых AM-радиоприемниках также используются динамики с низким сопротивлением.

Мы можем увеличить импеданс, используя согласующие трансформаторы. Для преобразования как более высокого импеданса, так и напряжения. Но использование трансформаторов приведет к потере высокой частоты. Поэтому лучше использовать транзистор,

ПОДРОБНЕЕ:

Схема предусилителя со средним импедансом

Если мы хотим разработать схему предусилителя со средним импедансом, используя только один транзистор, мы должны превратить ее в общий эмиттер.

Мы можем использовать это для многих сигнальных входов, например конденсаторного микрофона, тюнера, AUX и т. Д.

ПОДРОБНЕЕ:

И / ИЛИ

Посмотрите на пример старой схемы ниже.

Схема предусилителя на транзисторе

Это интересно, потому что используется только один транзистор. Если у вас нет этого (2SD30). Вы можете использовать другие, такие как 2SC1815 или 2SC945 или 2SC828 и т. Д.

Схема предусилителей с использованием транзистора

Схема выше представляет собой моносистему.Если хотите стерео. Вам нужно построить еще один Mono. Это простая схема.

Можно подключить выход схемы к входу усилителей мощности. Для входящего сигнала должен быть достаточно высокий уровень, например, от проигрывателя компакт-дисков, сотового телефона и т. Д. Не подходит для слабого сигнала. Из-за низкого прироста.

Цепь предусилителя с высоким сопротивлением

Нужна схема предусилителя с высоким сопротивлением? Для керамического проигрывателя и т. Д. Сделать схему эмиттерного повторителя малошумной, чтобы звук был лаконичным.

Конечно, мы любим выбирать простые и дешевые схемы, и эту схему тоже.

См. Активные схемы ниже. Это простая схема. ПОДРОБНЕЕ

Если мы хотим еще больше увеличить входное сопротивление биполярной цепи. Мы можем сделать это проще, используя 2 или 3 транзистора, как схему усилителя магнитофона. Это обычно используется.

Примеры схем см. Ниже.

Простой предусилитель на транзисторах BC547

Это схема предусилителя более высокого уровня.Также, чтобы увеличить небольшой аудиосигнал до силы, нужно перейти в схему усилителя мощности.

Подходит для тюнера, ленты и т. Д. Чтобы сила входных сигналов в мкВ увеличилась до мВ. Он может получить эффективный доступ к усилителю мощности.

Простой предварительный усилитель на транзисторах BC547

Как это работает

Прежде всего, вводит в схему источник питания 9В. И Q1, и Q2 к цепи прямой связи для лучшей передачи.

Когда сигнал вводится через соединение C1 в сигнал Q1.Он усиливает сигнал до более высокого уровня на коллекторе (C).

Затем сигнал поступает в Q2 в качестве второго усилителя. Далее сигнал на выход C выхода Q2. Для передачи сигнала связи C6 с выхода. Некоторые сигналы на выходе Q2 будут передаваться через C4, C3 и R3. Он идет на контакт E в Q1, чтобы улучшить диапазон частотной характеристики.

Простая схема предусилителя на транзисторах BC548

Эта схема предусилителя на двух транзисторах.В нем используется единый источник питания от 6В до 12В, при минимальном токе 2-3 мА. Он может увеличить мощность сигнала до 2 В.

Это позволит легко подать сигнал на усилитель мощности. Частотный диапазон составляет от 70 Гц до 45 кГц при -3 дБ. Его искажение составляет менее 0,1%.

Схема простого предусилителя на транзисторах BC548

Как это работает

Для начала вводит напряжение питания в схему. Во-вторых, чтобы вывести источник звука на вход. Сигнал передается через C1, чтобы предотвратить нарушение постоянного напряжения в цепи.

Затем аудиосигнал поступает на вывод B Q1 для усиления сигналов до форсирования с помощью R1 и R2. Это организованная предвзятость для первого квартала. Транзисторы Q1 и Q2 соединяются вместе в форме прямой связи, чтобы улучшить звуковой отклик.

Затем сигнал увеличивается из отведения C Q2 и через C5 соединяется с сигналом для сглаживания. Затем отправьте его на вывод. Коэффициент усиления схемы можно установить с R6 / R5.

Для конденсатора C3 для лучшего улучшения высокочастотной характеристики.

Резистор-R9 подает напряжение питания и ограничивает ток, подключенный к цепи при включении цепи для конденсаторного микрофона. Если вы не используете его, можно удалить R9.

Схема кассетного предусилителя на транзисторе BC109

Это схема кассетного предусилителя. Я использовал основную электронику транзистора BC109 .

Схема кассетного предусилителя на транзисторе BC109

Это очень простой предусилитель для кассетной ленты или автомобильной аудиосистемы.Но это старая трасса, мне нравится эта трасса, потому что она классическая.

Попробуйте простую схему предусилителя на полевых транзисторах (очень высокий импеданс).

Если вам нужен предусилитель с очень высоким импедансом. Мы можем увидеть множество схем, использующих транзисторы или микросхемы. Но если нам нужна небольшая, легкая и экономичная схема.

Я думаю, что стоит поискать схему предусилителя на полевых транзисторах. ПОДРОБНЕЕ

Что еще? У нас всегда есть много способов.
Если выше низкий прирост для вас. Посмотрите:

У Тэя есть схема регулировки тембра.

Или

Попробуйте версию IC: Схема предусилителя с использованием OP-AMP

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

5 Объяснение простых схем предусилителя

Как следует из названия, схема предусилителя предварительно усиливает очень слабый сигнал до определенного уровня, который может быть дополнительно усилен подключенной схемой усилителя мощности. По сути, он действует как буферный каскад между источником входного слабого сигнала и усилителем мощности.Предварительный усилитель используется в приложениях, где входной сигнал слишком мал, и усилитель мощности не может обнаружить этот слабый сигнал без каскада предварительного усилителя.

В этом посте рассказывается о 5 схемах предусилителя, которые можно быстро собрать с помощью пары транзисторов (BJT) и нескольких резисторов. Первая идея основана на просьбе г-на Равиша.

Цели и требования к схемам

  1. Электроника — мое хобби на протяжении многих лет. Часто просматриваю ваш сайт и находю много полезных проектов.Я требую от тебя одолжения.
  2. У меня есть модуль FM-передатчика, который работает от 5 вольт постоянного тока с возможностью подключения с компьютера через USB или через аудиовыход любого другого устройства через аудиоразъем 3,5 мм.
  3. Модуль отлично работает в компьютерном режиме USB с отличным уровнем сигнала, качеством и покрытием. Но когда я подключаю то же самое через аудиовход к приставке DTH, сила сигнала становится слабой даже при полной громкости как в приставке, так и в модуле FM. Я считаю, что уровень аудиосигнала от приставки недостаточен для FM модуля.
  4. Пожалуйста, порекомендуйте мне схему предусилителя слабого сигнала стереозвука хорошего качества, которая может работать от однополярного источника питания 5 или 6 вольт, не нагружая телевизионную приставку, предпочтительно с использованием хорошего малошумящего операционного усилителя с подробной схемой и этикетками деталей.

1) Предварительный усилитель на двух транзисторах

Простая схема предварительного усилителя может быть очень легко построена путем сборки пары транзисторов и нескольких резисторов, как показано на следующем рисунке:

Схема представляет собой простой двухтранзисторный предварительный усилитель использование петли обратной связи для увеличения усиления.

Любая музыка, как мы знаем, имеет форму постоянно меняющейся частоты, поэтому, когда такой изменяющийся вход подается на указанные концевые клеммы C1, то же самое передается через базу T1 и землю.

Более высокие амплитуды обрабатываются нормально и воспроизводятся с потенциалом, который приблизительно равен напряжению питания, однако для более низких амплитуд несовпадающих сигналов T2 разрешено проводить с более высоким коэффициентом, который может пройти к его эмиттеру.

В это время, когда фактическое улучшение музыки реализовано путем передачи этого накопленного более высокого потенциала обратно на базу T1, которая, соответственно, насыщается с гораздо оптимальной скоростью.

Это двухтактное действие в конечном итоге приводит к общему усилению незначительно маленькой музыки или входных данных в значительно больший выходной сигнал.

Эта простая схема позволяет повысить очень малые или минимальные частоты до заметно больших выходов, которые затем можно использовать для питания больших усилителей.

Обсуждаемая схема фактически широко использовалась в старых записывающих устройствах кассетного типа в их каскадах предусилителя для усиления мельчайших сигналов с магнитофонной головки, так что выход этого небольшого усилителя стал совместимым с подключенным усилителем большой мощности.

Список деталей

  • R1 = 22K
  • R2 = 220 Ом
  • R3 = 100k
  • R4 = 4K7
  • R5 = 1K
  • C1 = 1 мкФ / 25 В
  • C2 = 10 мкФ / 256 T
  • = BC547

Схема регулируемого предусилителя

Эта полезная схема предусилителя является усовершенствованной версией указанной выше конструкции. Он имеет коэффициент усиления по напряжению, который можно установить на любой уровень от пяти до ста раз с помощью резистора обратной связи соответствующего значения.Входной импеданс высокий, обычно около 800 кОм, и получается низкий выходной импеданс около 120 Ом.

Шум и искажения, создаваемые схемой, очень низкие.

Максимальный уровень выходного сигнала около 6 вольт от пика до пика может быть обработан до того, как произойдет ограничение.

На рисунке показана схема блока, и это прямой двух транзистор с прямой связью, причем оба транзистора используются в режиме общего эмиттера.R2 обеспечивает локальную отрицательную обратную связь по Tr1 и обеспечивает удобную точку tn, в которой общая отрицательная обратная связь может быть применена к схеме.

Эта обратная связь получается от коллектора Tr2 через запорный конденсатор постоянного тока C3. а значение RF определяет величину обратной связи, которая применяется к усилителю. Чем ниже значение этого компонента, тем больше применяется обратная связь и тем ниже коэффициент усиления по напряжению в замкнутом контуре.

Требуемое значение Rf находится путем умножения требуемого усиления напряжения на 560.Таким образом, для увеличения напряжения в десять раз, например, требуется, чтобы Rf имел значение 5,6 кОм. Рекомендуется поддерживать коэффициент усиления по напряжению в указанных ранее пределах. C2 влияет на высокочастотную характеристику усилителя и необходим, поскольку в противном случае может возникнуть нестабильность.

Верхний -3 дБ отклик устройства все еще находится на уровне около 200 кГц, даже если усилитель используется с коэффициентом усиления по напряжению в сто раз. При использовании в качестве нижнего усиления верхняя точка -3 дБ сдвигается пропорционально выше.Кстати, нижняя точка -3 дБ находится примерно на уровне 20 Гц.

Другая конструкция транзисторного предусилителя

Это входной двухступенчатый предусилитель с высоким импедансом, который имеет регулируемое усиление по напряжению от 1,5 до 10. Это усиление может быть изменено путем настройки VRI и становится удобным там, где требуется частое изменение чувствительности микрофона. .

Как показано выше, схема на самом деле предназначена для кварцевых микрофонов или керамических картриджей.

Список деталей

2) Использование полевого транзистора

Конструкция второго предусилителя выглядит еще проще, поскольку он работает с одним недорогим полевым транзистором.Принципиальную схему можно увидеть ниже.
Схема не требует пояснений и может быть интегрирована с любым стандартным усилителем мощности для дальнейшего усиления.

Гитарный предусилитель

Обычно возникает необходимость подключить электрогитару к микшерной панели, аудиодеке или портативной студии.

Что касается проводки, это может не быть проблемой, однако согласование высокого импеданса гитарного компонента с низким импедансом линейного входа микшерной панели действительно становится проблемой.

Даже ничего не подозревающие высокоимпедансные входы этих устройств плохо подходят для гитарного выхода. Как только гитара подключена к такому типу входа, вы вряд ли увидите сигнал, который может обработать панель или дека.

Возможно, гитара будет подключена к микрофонному входу (с высоким сопротивлением), однако это обычно слишком чувствительно для этой функции, что приводит к слишком быстрому ограничению сигнала гитары.

Согласующий усилитель, представленный в этой статье, решает эти трудности: он оснащен входом с высоким импедансом (1 МОм), который выдерживает напряжения более 200 В.Выходное сопротивление довольно мало. Усиление — X2 (6 дБ).

Предлагаются двойная регулировка тембра, контроль присутствия и регулировка громкости. Схема рассчитана на входные уровни до 3 В. При превышении этого уровня искажения возрастают, но это, естественно, может быть неплохим результатом для гитарной музыки.

Истинное ограничение входного сигнала не произойдет до тех пор, пока в конечном итоге не будут использованы значительно более высокие уровни, превышающие минимальные технические характеристики гитары. Схема питается от батареи 9 В (PP3), через которую схема потребляет ток около 3 мА.

3) Стерео предусилитель с использованием микросхемы LM382

Вот еще одна симпатичная небольшая схема предусилителя, использующая двойную микросхему операционного усилителя LM382. Поскольку ИС имеет двойной операционный усилитель, можно создать два предусилителя для стереозвука. Можно ожидать, что выходной сигнал этого предусилителя будет очень хорошим.

Список деталей

R1, R2 = см. Таблицу ниже.
R3, R4 = 100K 1/2 Вт 5%
C1, C2 = 100 нФ полиэстер
C3 до C10 = см. Таблицу
C11 до C13 = 10 мкФ / 25 В
IC1 = LM382

4) Сбалансированный предусилитель

Если вы ищете для чего-то более сложного вы можете попробовать этот сбалансированный предусилитель.Схема подробно описана в этой статье, которую вы можете использовать для удовольствия от чтения.

5) Предусилитель с регулятором тона

Регулятор тона обычно включает в себя функции низких и высоких частот для настройки динамического качества музыки. Однако, поскольку регулятор тембра также может усиливать входящий сигнал, его можно эффективно использовать как выдающийся каскад предусилителя Hi-Fi. У нас есть система, которая работает двумя способами: для улучшения качества звука музыки, а также для предварительного усиления музыки для последующего каскада усилителя мощности.

Полную схему этого пятого предусилителя можно увидеть ниже:

ОБНОВЛЕНИЕ

Вот еще пара схем предусилителя, которые могут вас заинтересовать.

6) Схема предусилителя MIC с низким Z (импедансом)

Схема, описанная до сих пор, конечно, подходит только для использования с микрофонами с высоким импедансом и обеспечивает недостаточное усиление для использования с типами с низким импедансом. Обычно они обеспечивают уровень выходного сигнала около 0,2 мВ. R.M.S., что примерно в десять раз меньше, чем у микрофона с высоким сопротивлением.

Принципиальная схема предназначена для предусилителя, который может использоваться с микрофонами с низким сопротивлением и должен давать выходной сигнал около 500 мВ. R.M.S. Было обнаружено, что прототип хорошо работает с динамическими микрофонами с импедансом 200 и 600 Ом, но он также должен хорошо работать с электретными типами, которые имеют встроенный буферный усилитель на полевых транзисторах, но не имеют повышающего трансформатора. Невзвешенные шумовые характеристики этой схемы не так хороши, как у предыдущей схемы, но все же составляют около -60 дБ относительно 500 мВ R.РС.

Эта схема действительно является адаптацией второй конструкции. Входной каскад полевого транзистора использует режим общего затвора, а не общий режим истока. Конфигурация общего затвора дает достаточно хорошее усиление по напряжению вместе с низким входным импедансом (несколько сотен Ом), который достаточно хорошо соответствует микрофону. Единственное другое изменение в схеме заключается в том, что эмиттер Tr2 подключается непосредственно к отрицательной шине питания, и здесь нет резистора обратной связи. Это сделано для увеличения усиления схемы, которое, как объяснялось ранее, должно быть примерно в десять раз выше для микрофона с низким сопротивлением.

Схема предусилителя с нулевым шумом

Во многих приложениях (аудио, вычислительные устройства, аэрокосмические усилители, средства связи и т. Д.) Становится необходим исключительно малошумящий каскад предусилителя, и практически любая модельная стратегия, которая могла бы минимизировать шум даже на 1 дБ. приветствовали с энтузиазмом все участники.

R11 is = 6k8

Схема, показанная ниже, обеспечивает фундаментальную концепцию дизайна, хотя и не совсем идеальную, но окончательные результаты на сегодняшний день обнадеживают.Применяя даже высокочувствительные измерительные приборы под рукой, мы по-прежнему не могли определить практически любой выходной шумовой сигнал! Сказав это, в настоящее время, похоже, все еще остается одна проблема: коэффициент усиления схемы равен нулю.

Схема предусилителя с автоматической регулировкой усиления

Этот микрофонный предусилитель имеет автоматическую регулировку усиления, которая поддерживает относительно стабильное качество выходного сигнала в широком диапазоне входных диапазонов. Схема особенно хорошо подходит для управления модулятором радиопередатчика и позволяет достичь большого типичного индекса модуляции.Это, возможно, может быть применено в системах усилителя мощности и домофонах, чтобы обеспечить лучшую разборчивость речи и компенсировать различные характеристики динамиков.

Конкретным каскадом усилителя сигнала является Т2, который работает в режиме общего эмиттера, выходной сигнал извлекается из его коллектора. Часть выходного сигнала подается через эмиттерный повторитель T3 на выпрямитель пиков, содержащий D1 / D2 и C4. Напряжение на C4 используется для регулирования базового тока T1, который составляет часть входного аттенюатора.

При пониженных концентрациях сигнала напряжение на C4 минимально, а T1 потребляет очень небольшой ток. Когда уровень входного сигнала повышается, напряжение на C4 повышается, и T1 включается сильнее, вызывая более сильное подавление входного сигнала. Общий эффект заключается в том, что по мере увеличения входного сигнала он должен проходить через повышенную степень ослабления, и выходной сигнал, таким образом, остается достаточно постоянным для широкого диапазона входных сигналов. Схема подходит для входов с пиковым входным уровнем до 1 В.Микрофон можно было заменить крошечным динамиком, чтобы преобразовать схему в домофон.

Схема предварительного усилителя 1,5 В

В то время как большинство усилителей не имеют достаточной входной чувствительности и почти не имеют места внутри корпуса, независимые предварительные усилители малой мощности, которые можно было бы интегрировать извне, могут оказаться очень полезными.

Они должны состоять из минимального количества деталей и, вероятно, питаться только от одного сухого элемента.

Независимая схема предварительного усилителя 1,5 В, описанная ниже, состоит из отдельного транзистора усиления, предшествующего эмиттерному повторителю.Отрицательная обратная связь постоянного тока поддерживает стабильный рабочий уровень.

Коэффициент усиления составляет примерно от x 10 до x 20. Если источник сигнала обеспечивает импеданс более 100 кОм, некоторое регулирование усиления возможно через P1. Достаточно долговременное резервное питание от батареи может быть получено за счет использования пары сухих элементов на 1,5 В (последовательно), а не одного.

Если напряжение упадет ниже 1 В, усилитель может перестать работать. Типичные сухие элементы часто быстро разряжаются до 1 вольт и впоследствии должны быть выброшены, хотя для каждой из двух ячеек может потребоваться больше времени, чтобы упасть до 0.5 вольт. Потребляемый ток при питании 3 В, вероятно, составит около 450 мкА.

Разные схемы предусилителя

Простая схема предусилителя на одном транзисторе

Представленный здесь проект представляет собой простую схему предусилителя и является максимально простой. Эта схема обеспечивает усиление по напряжению от 3 до 30 и зависит от импеданса источника и нагрузки. Простая схема предусилителя имеет низкое входное сопротивление.

Описание простой схемы предусилителя

Схема простого предусилителя спроектирована с использованием одного транзистора усилителя малой мощности и настроена в режиме общего эмиттера.Входной сигнал подается на базу транзистора Т 1 через конденсатор С 1 . Конденсатор C 1 представляет собой разделительный конденсатор для передачи входного сигнала на контакты база-эмиттер транзистора.

В постоянного тока 12 В подается на коллектор, который выполняет дополнительную функцию обеспечения тока базы. В условиях нулевого сигнала конденсатор C 1 действует как разомкнутая цепь, поскольку реактивное сопротивление конденсатора бесконечно при нулевой частоте.Таким образом, конденсатор C 1 действует как блокирующий конденсатор. Аналогично конденсатор C 2 выполняет ту же функцию. Таким образом, конденсатор C 2 работает как разделительный конденсатор и подает усиленный сигнал, составляющий выходное напряжение.

В простой схеме предусилителя используется фиксированное смещение. В этой схеме работа нулевого сигнала может быть установлена ​​путем выбора сопротивления R 1 .

Ознакомьтесь с другими схемами предусилителя, размещенными в bestengineeringprojects.com

  1. Схема предварительного усилителя динамического микрофона
  2. Управляющий стерео предусилитель на базе операционного усилителя JFET
  3. Схема предусилителя электрогитары
  4. Предусилитель для керамического звукоснимателя
  5. Схема предусилителя с высоким коэффициентом усиления на одном транзисторе

ПЕРЕЧЕНЬ ДЕТАЛЕЙ ПРОСТОЙ ЦЕПИ ПРЕДУСИЛИТЕЛЯ

Резистор (полностью ¼-ватт, ± 5% углерода)
R 1 = 2,2 МОм

R 2 = 4.7 кОм

Конденсаторы
C 1 , C 2 = 10 мкФ, 10 В (электролитический конденсатор)
Полупроводник
T 1 = BC148B (маломощный кремниевый NPN транзистор усилителя)

Нравится:

Нравится Загрузка …

Принципиальная схема простого предусилителя

Усилитель

— это электронная схема или устройство, которое используется для усиления и широко используется в основном для воспроизведения звука, а также в нашей электронной промышленности.Существует много типов усилителей, использующих различные компоненты, такие как усилитель на основе транзистора, усилитель на основе операционного усилителя, усилитель на основе трансформатора. Иногда мы используем схему предусилителя в схемах для предварительного усиления слабого сигнала, когда уровень звука источника звука слишком низкий. Для получения чистого и бесшумного звука необходимо предварительное усиление сигналов низкого уровня перед подачей их в источник питания. В этом проекте мы построим схему простого предусилителя с использованием NPN-транзистора BC547 .

Здесь мы использовали эту схему предусилителя для усиления выхода AUX мобильного телефона и усиления голосового ввода, подаваемого конденсаторным микрофоном или микрофоном. То же самое было продемонстрировано в Video , приведенном в конце. Обе схемы приведены ниже отдельно. Вы также можете проверить наши предыдущие схемы усилителей ниже:

Требуется компонентов:

  1. Транзистор BC547
  2. Хлебная доска
  3. 8 Ом Динамик
  4. Конденсатор 100 мкФ
  5. Блок питания
  6. Резистор 2.2к
  7. Дополнительный провод или аудиоразъем или микрофон
  8. Соединительный провод
  9. Перемычка

Принципиальная схема и пояснения

:

Ниже приведена принципиальная схема предварительного усиления выхода AUX мобильного телефона:

Это простейшая схема для предварительного усилителя , и мы использовали ту же схему для предварительного усиления в нашем усилителе на базе 555.

Здесь конденсатор C1 действует как конденсатор связи.Конденсатор связи используется в качестве фильтра для блокировки составляющей постоянного тока входного сигнала, поэтому его также называют блокирующим конденсатором постоянного тока . Он предотвращает повреждение наушников или динамика постоянным током.

А как мы знаем, транзисторы можно использовать либо как переключатель, либо как усилитель. Итак, здесь этот NPN транзистор BC547 действует как усилитель. В схеме усиления этот транзистор позволяет протекать большему току, когда мы прикладываем меньшее напряжение к его базе.Итак, здесь мы прикладываем напряжение к его основанию через входной аудиосигнал через разъем AUX, и это позволяет пропускать больший ток от источника батареи 9 В через динамик. Таким образом, преобразует электрическую энергию в аудиовыход .

Предварительное усиление аудиовхода с микрофона:

Здесь мы разместили микрофон вместо воспроизведения музыки через разъем AUX. Эта схема будет усиливать голосовой ввод, подаваемый конденсаторным микрофоном, поэтому она известна как Схема микрофонного предусилителя .

Схемы транзисторных усилителей

Эта статья представляет собой список различных типов схем усилителя, построенных с использованием одних только транзисторов. Это включает усилитель класса AB на 4 транзистора, затем у нас есть схема усилителя для наушников и, наконец, усилитель малой мощности на транзисторе. Эта статья предназначена исключительно для публикации большего количества схем транзисторных усилителей. Так что вы можете продолжать посещать этот пост в будущем для получения дополнительных сведений.

1. Транзисторный усилитель класса AB 4

2.Усилитель для наушников на транзисторах

3. Недорогая схема усилителя на транзисторе

Это схемы, которые можно использовать во многих низкомасштабных приложениях. Главная особенность этих схем заключается в том, что все они представляют собой всего лишь базовую конструкцию, а используемые компоненты можно легко достать из вашего мусорного ящика. К тому же стоимость компонентов не очень критична, и небольшие изменения в ней не повлияют на производительность.

Описание.

Здесь показан очень простой и легкий в сборке аудиоусилитель класса AB с использованием четырех транзисторов. В режиме работы класса AB каждое выходное устройство проводит более половины цикла входного сигнала. Благодаря конструкции класса AB возможен КПД до 78% и снижены перекрестные искажения. Показанная здесь схема подходит для небольших радиоприемников, аудиоплееров, домофона, телефона и т. Д.

Транзистор Q1 со связанными с ним компонентами подключен как каскад предварительного усилителя. Аудиовход подключен к базе Q1 через резистор R1 и конденсатор C1.Резистор R3 обеспечивает смещение между коллектором и базой для Q1, а C3 — это конденсатор обхода переменного тока для резистора R4 коллектора. Смещение коллектора к базе — хороший метод смещения для таких схем, поскольку он обеспечивает достаточную отрицательную обратную связь, предотвращает появление теплового взлёта и стабилизирует рабочую точку. Вторая ступень — это ступень привода для двухтактной пары. Q2 и связанные с ним компоненты выполняют эту работу. Этот каскад также смещен от коллектора к базе, и его вход соединен с выходом каскада предварительного усилителя с помощью конденсатора C2.Резистор R8 ограничивает ток коллектора Q2. Третья ступень — двухтактная секция класса AB, состоящая из транзисторов Q3 и Q4. Диоды D1 и D2 обеспечивают напряжение смещения для двухтактного каскада. Выход усилителя подключен к громкоговорителю через конденсатор C4. C5 и C6 — конденсаторы фильтра источника питания.

Принципиальная схема 4-х транзисторного усилителя.
Усилитель класса AB на 4 транзистора
Примечания.
  • Схема может быть собрана на плате vero.
  • K1 может быть динамиком на 8 Ом / 5 Вт.
  • C6 должен быть заземлен рядом с Q1, а C5 должен быть заземлен рядом с заземлением громкоговорителя. Это снижает шум.
  • Используйте 5 В постоянного тока для питания цепи.

В начало списка

Описание.

Это принципиальная схема усилителя для наушников, работающего в двухтактном режиме класса А. В режиме класса A выходные устройства (транзисторы) проводят в течение всего цикла входного сигнала.Максимально возможный КПД для работы класса A составляет 50%, и он еще больше снижается при использовании емкостной связи. Но преимущества усилителя класса AB — отсутствие перекрестных искажений, высокая точность воспроизведения и низкий уровень гармонических искажений. Эти усилители наиболее подходят для приложений с низким энергопотреблением.

В схеме транзистор Q1 работает как предусилитель. Резисторы R6 и R7 обеспечивают смещение делителя потенциала для Q1. Аудиовход подключен к базе Q1 через конденсатор C2, резистор R9 и POT R10.Эмиттер Q1 соединен с базой Q2 через резистор R3. Диоды D1 и D2 обеспечивают напряжение смещения для Q2. База Q3 напрямую связана с коллектором Q1. Резистор R5 ограничивает ток коллектора Q2 и Q3. C4 и C5 — конденсаторы фильтра источника питания. Выход усилителя соединен с головным телефоном с помощью конденсатора C3.

Схема усилителя головного телефона.
Усилитель для наушников, класс A

Примечания.
  • Схема может быть собрана на плате vero / perf.
  • Источник питания может быть от 6 до 24 В постоянного тока.
  • Я использовал 12 В постоянного тока для питания схемы.
  • Z1 может быть головным телефоном с сопротивлением 100 Ом или выше.
  • Номинальное напряжение электролитических конденсаторов должно соответствовать используемому напряжению питания.

В начало списка

Описание.

Ниже показана очень простая схема трехкаскадного транзисторного усилителя малой мощности.Первый и второй каскады — это предварительные усилители, а третий — выходной каскад. Для каждой ступени используется смещение коллектора к базе, и для подобных схем этого достаточно.

Смещение коллектора к базе : Рассмотрим первую ступень. R1 — резистор коллектора, а R2 — резистор базы. Этот тип смещения обеспечивает некоторую отрицательную обратную связь, позволяет избежать теплового разгона и стабилизирует рабочую точку. Когда температура увеличивается, ток коллектора также увеличивается.Это увеличивает падение напряжения на сопротивлении коллектора R1 и уменьшает падение напряжения на базовом резисторе R2. В результате падает базовый ток, что, в свою очередь, снижает ток коллектора и предотвращается тепловой пробой. Стабилизация рабочей точки достигается за счет предотвращения изменения тока коллектора в зависимости от температуры.

Когда работает транзисторный усилитель, напряжение коллектора будет иметь фазу, противоположную входному сигналу. Поскольку базовый резистор R2 подключен между коллектором и базой, некоторая часть напряжения коллектора, противоположного фазе, возвращается на вход (базу) через базовый резистор R2, и, таким образом, достигается отрицательная обратная связь.Отрицательная обратная связь снижает коэффициент усиления усилителя по напряжению, но улучшает стабильность.

В схеме коллектор Q1 соединен с базой Q2 с помощью конденсатора C2. R3 — это резистор смещения для Q2, а R4 — его коллекторный резистор. Коллектор Q2 соединен с базой Q3 с помощью конденсатора C3. R5 — резистор смещения для Q3, а динамик подключен как нагрузка коллектора. Конденсаторы С4 и С5 являются фильтрами. C1 — входной развязывающий конденсатор постоянного тока.

Принципиальная схема транзисторного усилителя малой мощности.
Транзисторный усилитель малой мощности

Примечания.
  • Схема может быть собрана на плате веро или перфомансе.
  • Используйте 9 В постоянного тока для питания цепи. Батарея 9В PP3 подойдет.
  • Все электролитические конденсаторы должны быть рассчитаны на 10 или 15 В.
  • Дополнительный защитный диод может быть последовательно добавлен к положительной линии питания. Это защищает схему от случайного изменения полярности.
  • Типовой номер транзисторов не особо критичен. Замена не сильно повлияет на производительность.
  • Питание схемы от сетевого адаптера вызывает некоторый шум.
  • Сопротивление динамика может составлять 64 Ом и более.

В начало списка

Усилитель звука на общих транзисторах · Один транзистор

Создайте небольшой усилитель звука на обычных транзисторах. Дает 300 мВт на динамик 8 Ом.

Вот схема небольшого аудиоусилителя, который может обеспечить до 300 мВт при нагрузке 8 Ом и может использоваться в устройствах с низким энергопотреблением, таких как радиоприемники с батарейным питанием. Эта схема может быть альтернативой микросхеме LM386. Благодаря простоте схемы, схема может быть построена также на макетной плате для тех из вас, кто хочет поэкспериментировать и узнать, как работает усилитель.

Дизайн прост. Обычный малосигнальный NPN-транзистор (например, BC547, 2N2222, 2N3904, S8050) управляет балансным усилителем мощности, сделанным из аналогичных транзисторов.Пары выходных транзисторов могут быть BC327 с BC337 или S8050 с S8550. Они должны выдерживать пиковые токи 300-400 мА (поэтому здесь не следует использовать BC547 / BC557 или 2N3904 / 2N3906).

Усилитель может питаться от батареи 9 В или от источника питания 12 В. Схема потребляет ток около 170 мА. Ток покоя менее 10 мА.

Аудиоусилитель на макете
Я построил усилитель на макете и протестировал выходной каскад с парами BC327 / BC337 и S8050 / S8550 (последние показаны на рисунке выше).Если входной сигнал слишком высокий, из транзисторов может выйти дым. Это потому, что ток покоя пропорционален температуре. Чтобы избежать этого, выходные транзисторы можно установить на небольшой радиатор. Вот макет платы в Fritzing (с транзисторами BC327 / BC337, которые имеют другую распиновку, чем S8050 / S8550):
Макет аудиоусилителя
Далее следует схема и печатная плата для этой схемы. Если вы посмотрите внимательно, вы можете заметить, что на макетной плате я использовал разные значения для некоторых резисторов.Если вы решили построить схему, вы должны следовать значениям деталей из схемы ниже:
Схема звукового усилителя
Схема дана для обоих каналов. Резисторы R4 и R8 и диоды D1, D2 и D3, D4 задают ток покоя. R4 и R8 можно понизить до 1,8 кОм (как я делал на макетной плате) при питании схемы от батареи 9 В. Усиление определяется R1 и R3 (R5 и R7). Значения 39 кОм для R1 / R3 подходят для уровня аудиосигнала линейного выхода от 1 до 1.4Вп-п. Если в схему подается сигнал более низкого уровня, R1 / R3 также должны иметь меньшие значения. Вы не должны изменять R3 / R2 (R7 / R6), потому что они устанавливают рабочую точку постоянного тока усилителя.
Контур печатной платы звукового усилителя
Конструкция печатной платы рассчитана на два канала, которые можно разделить. Площадь выходных транзисторов указана для S8050 / S8550. Если вы решили использовать BC327 / BC337, поверните их на 180 градусов. Я еще не построил печатную плату, поэтому вот 3D-рендеринг в KiCAD:
3D-прототип аудиоусилителя
При желании вы можете скачать файл моделирования LTspice и проект печатной платы в формате PDF.

Простой микрофонный предусилитель

Дизайн и авторские права Томи Энгдал 1997,1999

Обзор схемных характеристик

  • Краткое описание работы: Простой микрофонный предусилитель.
  • Защита цепей: Специальные цепи защиты не используются
  • Сложность схемы: Очень простая схема на одном транзисторе
  • Характеристики схемы: усиление 35 дБ, плоская частотная характеристика от 20 Гц до 20 кГц, довольно низкие показатели искажений, немного шумит
  • Доступность компонентов: используются обычные и легко доступные компоненты
  • Тестирование конструкции: Я построил несколько микрофонных предусилителей на основе этой схемы, и они работали без проблем.
  • Приложения: Подключите динамический или электретный микрофон к аудиовходу линейного уровня в усилителе HIFI или звуковой карте компьютера.
  • Источник питания: батарея 9 В, потребляет ток менее 10 мА
  • Ориентировочная стоимость компонентов: Компоненты электроники, превышающие 10 долларов США
  • Соображения по безопасности: Никаких особых требований по электробезопасности.

Описание схемы

Это простая схема микрофонного предусилителя, которую вы можете использовать между микрофоном и стереоусилителем.Эта схема усилителя микрофон подходит для использования с обычным домашним стереоусилителем линейные / CD / доп. / ленточные входы. Этот микрофонный предусилитель может принимать как динамические и входы электретного микрофона (предусилитель обеспечивает питание электретного элементы микрофона). Идея этой схемы состоит в том, чтобы сохранить дизайн как как можно проще, чтобы было легко построить. Это была моя цель, когда мне было нужно простой внешний микрофонный предусилитель для моего микшера. Производительность схемы нет ничего лучше, но может использоваться со многими не очень серьезными проекты.

Схема представляет собой простой одно транзисторный усилитель с усилением. около 30-40 дБ (в зависимости от транзитора, температуры и напряжения). Вход динамического микрофона представляет собой простой транзисторный усилитель. схема, в которой нет ничего особенного. Светодиод D1 включен в цепь, чтобы показать, что схема работает. Падение напряжения, вызванное светодиодом (около 1,8 В для КРАСНОГО светодиода) было учтено при проектировании схема усилителя построена на Q1. Резистор R4 и конденсатор C5 сделайте фильтр, чтобы отфильтровать возможный шум от батареи или другого источник питания, который используется для питания этой цепи.Конденсаторы C1, C2 и C3 используются для блокировки смещения постоянного тока на базе Q1. вытекать из микрофонного входа в микрофон (полярность всех конденсаторов прямая = + и кривая = -).

Электретный микрофонный вход имеет резистор R1 для подачи тока через капсюль электретного микрофона при подключении к входу электретного микрофона. Электрет микрофону нужен ток (около 1 мА), протекающий через него для работы, потому что внутри есть небольшая схема усилителя микрофонный капсюль.Эта схема подходит для всех типичных дешевых электретных капсулы, которые можно приобрести в любом магазине электронных компонентов. Поскольку электретные микрофоны имеют более высокий выходной уровень сигнала, это довольно легко перегрузить усилитель, когда вы кричите на электрет микрофон.

Схема должна быть построена в небольшой металлической коробке, как на картинке выше. Батарейку на 9 В тоже поместите внутрь корпуса. Аккумулятор и металлический корпус защищают от внешних шумов и источников помех. Я использовал стандарт 6.Разъем 3 мм для динамического микрофона и моно разъем 3,5 мм для электретного микрофона оба устанавливаются на панели металлического бокса. На лицевую панель также установлены светодиоды и переключатели питания.

Измеренные характеристики от прототипа

  • Частотная характеристика: от 20 Гц до 20 кГц + -1 дБ
  • Уровень шума (A-взвешенный): -85 дБм
  • Усиление: 35 дБ
Из-за простоты конструкции искажение производительность не очень хорошая. На уровнях сигнала обычно используются у электретных микрофонов искажение составляет около 2-3%.У динамических микрофонов уровень искажений ниже (не измеряется). Вот частотная характеристика, измеренная ДЕМО-версия ПО LoudSpeaker LAB с картой Sound Blaster 16 PNP:

Ослабление низких частот вызвано микрофонным предусилителем. схема. Высококачественное затухание вызвано картой Sound Blaster 16. Как видно из измеренных характеристик, микрофонный предусилитель работает нормально. подходит для измерений громкоговорителей с использованием подходящего программного обеспечения для измерения и звуковая карта.Использование этого предусилителя, подключенного к линейному входу проблемы, вызванные плохим микрофонным предусилителем во многих звуковых картах можно избежать.

Список компонентов

 R1 4,7 кОм
R2 220 кОм
R3 2,2 кОм
R4 120 Ом
C1..C4 10 мкФ 16 В электролитический
C5 100 мкФ 16 В электролитический
D1 Красный светодиод
1 квартал BC547B
SW1 переключатель вкл / выкл
 
Если вы не можете найти все компоненты в магазине рядом с вами, посмотрите в советах по замене компонентов. Если вам сложно найти транзистор BC547, вы можете используйте вместо него транзистор 2N2222.О схеме было сообщено также хорошо работать с ним (хотя может быть небольшая производительность изменения, хотя я не тестировал и не измерял схему с 2N2222).

Идеи модификации

Если вы планируете использовать эту схему с электретной звуковой картой микрофон со стереоштекером 3,5 мм, то вам нужно изменить схему чтобы заставить его работать этот тип мультимедийного микрофона. Вам не нужно делать много Изменения: просто замените моно-разъем 3,5 мм на стереоджек. В оригинальной схеме R1 идет на кончик разъема микрофона, но теперь вы подключаете R1, чтобы перейти к кольцу разъема.

Если вам нужен регулируемый уровень выходного сигнала для микрофонного предусилителя вы можете легко добавить этот выход, подключив один логарифмический потенциометр 10 кОм к вывод схемы следующим образом:

 От микрофонного усилителя> ------ +
  выход |
                     | | 10 кОм лог
                     | | <---------------- Вывод
                     | _ |
                      |
  Земля ------------- + ------------------ Земля
 
Эта схема позволяет регулировать выходной уровень от нуля до максимума. микрофонный предусилитель-усилитель.

Как усилитель сравнивается с другими усилителями

Универсальный мультимедийный микрофонный усилитель AVID MC-1 имеет следующие характеристики:

  • Диапазон регулировки уровня: 10 дБ
  • Усиление для динамического микрофона: от 46 дБ до 56 дБ
  • Усиление для электретного микрофона: от 16 дБ до 26 дБ
Этот усилитель предназначен для повышения уровня микрофона от различных микрофоны до уровня, подходящего для нормальной звуковой карты ПК вход линейного уровня.

Вопросы и ответы

В чем разница между уровнем MIC и LINE?

Уровень относится к относительной силе сигнала и измеряется в децибелы. Источники уровня LINE - это сигналы, значительно усиленные через микрофон (микрофон) уровень сигналов. Уровень линии обычно от -10 до +4 дБм, тогда как уровни MIC обычно составляют -60 дБм.

Что означает «низкий импеданс»?

Импеданс - это электрический термин, обозначающий, насколько устройство препятствует прохождению тока и измеряется в омах.Пока нет установленный стандарт, низкое сопротивление обычно относится к диапазону между 150 и 800 Ом. У большинства профессиональных аудиомикрофонов низкий уровень сопротивление. Эта схема усилителя предназначена для работы с любыми низкими и средними частотами. источник импеданса.

Как я могу изменить усиление схемы?

Коэффициент усиления в этой схеме определяется в основном характеристики Q1 и значение R2. Схема спроектирован для вполне оптимальной производительности (для таких простых Схема), и не стоит пытаться сильно его модифицировать.Если вы хотите попробовать модификацию, вы можете изменить значение R1 между примерно 100 кОм и 1 МОм, чтобы получить несколько иное исполнение.

Если вы просто хотите уменьшить выходной уровень, используйте идею модификации описано ранее в этой статье. Если вам нужно больше приложений, затем попробуйте какую-нибудь другую схему с транзисторами без транзисторов.

Можно ли использовать другие типы транзисторов?

Я сам не пробовал эту схему с транзисторами другого типа, но он должен хорошо работать с большим набором слабых сигналов транзистор, очень похожий на BC547B.Использование другого транзистора тип может варьировать коэффициент усиления, уровень шума и искажения фигура. Если у вас есть проблемы с подключением схемы к работе с какой-то тип транзистора, вы можете попробовать изменить значение R2 на что-то между 100 кОм и 470 кОм (что-то, что хорошо работает).

Согласно одному комментарию, я получил транзистор 2N2222, который будет работать ну в этой схеме без доработок.

Если я хочу сконструировать микрофонный усилитель только для динамического микрофона, какие части я могу не учитывать?

Вы можете не указывать R1, C1 и C2.

Если я хочу сконструировать микрофонный усилитель только для электретного микрофона, какие части я могу не учитывать?

Вы можете не указывать C3. Все остальные части схемы необходимы в этом приложении.


Томи Энгдал <[email protected]>
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *