Простой усилитель на транзисторах: Три схемы УНЧ для новичков

Содержание

Самый простой усилитель звука на одном транзисторе. Усилитель низкой частоты на мощных транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.


Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.


Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.


Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.


Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.


Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).


Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.


Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.


Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.


Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.


Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец — третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.


Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.


Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Усилитель на микросхеме TDA2003
Аудио усилитель

TDA2003

1Поиск в Чип и ДипВ блокнот
С147 мкФ х 25В1Поиск в Чип и ДипВ блокнот
С2Конденсатор100 нФ1ПленочныйПоиск в Чип и ДипВ блокнот
С3Электролитический конденсатор1 мкФ х 25В1Поиск в Чип и ДипВ блокнот
С5Электролитический конденсатор470 мкФ х 16В1Поиск в Чип и ДипВ блокнот
R1Резистор

100 Ом

1Поиск в Чип и ДипВ блокнот
R2Переменный резистор50 кОм1От 10 кОм до 50 кОмПоиск в Чип и ДипВ блокнот
Ls1Динамическая головка2-4 Ом1Поиск в Чип и ДипВ блокнот
Усилитель на транзисторах схема №2
VT1-VT3Биполярный транзистор

КТ315А

3Поиск в Чип и ДипВ блокнот
С1Электролитический конденсатор1 мкФ х 16В1Поиск в Чип и ДипВ блокнот
С2, С3Электролитический конденсатор1000 мкФ х 16В2Поиск в Чип и ДипВ блокнот
R1, R2Резистор

100 кОм

2Поиск в Чип и ДипВ блокнот
R3Резистор

47 кОм

1Поиск в Чип и ДипВ блокнот
R4Резистор

1 кОм

1Поиск в Чип и ДипВ блокнот
R5Переменный резистор50 кОм1

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от Uб на базе.

В качестве опыта для начинающего радиолюбителя соберем самый простой усилитель транзистор, в соответствии с предлагаемой схемой и рисунком.


К коллектору VT1 подсоединим высокоомный телефон BF2 , между базой и минусом блока питания подключим сопротивление , и развязывающую емкость конденсатора C св .

Конечно, сильного усиления звукового сигнала от такой схемы мы не получим, но услышать звук в телефоне BF1 все таки можно, т.к мы собрали ваш первый усилительный каскад.

Усилительным каскадом называют схему транзистора с резисторами, конденсаторами и другими радиокомпонентами, обеспечивающими последнему условия работы как транзистор усилитель. Кроме того сразу скажем о том, что усилительные каскады можно соединять между собой и получать многокаскадные усилительные устройства.

При подключение источника питания к схеме, на базу транзистора через сопротивление Rб идет небольшое отрицательное напряжение порядка 0,1 – 0,2В, называемое напряжением смещения. Оно немного приоткрывает транзистор, т.е снижает высоту потенциальных барьеров, и через переходы полупроводникового прибора начинает течь небольшой ток, который держит усилитель в дежурном режиме, из которого он способен мгновенно выйти, как только на входе появится входной сигнал.

Без присутствия напряжения смещения эмиттерный переход будет заперт и, как диод, будет не пропускать положительные полупериоды входного напряжения, а усиленный сигнал будет искажаться.

Если на вход усилителя подсоединить еще один телефон и применить его в роли микрофона, то он будет преобразовывать возникающие на его мембране звуковые колебания в переменное напряжение звукового диапазона, которое через емкость Ссв будет следовать на базу транзистора.

Конденсатор Ссв является связующим компонентом между телефоном и базой. Он отлично пропускает напряжение ЗЧ, но создает серьезную преграду постоянному току идущему из базовой цепи к телефону. Кроме того телефон обладает внутренним сопротивлением порядка 1600 Ом, поэтому без этой емкости конденсатора база через внутреннее сопротивление соединялась бы с эмиттером и никакого усиления не было бы.

Теперь, если начать говорить в телефон-микрофон, то эмиттерной цепи появятся колебания тока телефона Iтлф, которые и будут управлять большим током возникающем в коллекторе и эти усиленные колебания, преобразованные вторым телефоном в обычный звук, мы и будем слышать.

Процесс усиления сигнала можно представить так. В момент отсутствия напряжения входного сигнала Uвх, в цепях базы и коллектора протекают незначительные токи (прямые участки диаграммы а, б, в), заданные приложенным напряжением блока питания, напряжением смещения и усилительными характеристиками биполярного транзистора.

Как только на базу поступает входной сигнал (правая часть диаграммы а), то в зависимости от него начнут изменяться и токи в цепях трехвыводного полупроводникового прибора (правая часть диаграммы б, в).

В отрицательной полуволне сигнала, когда Uвх и напряжение БП суммируются на базе — токи протекающие через транзистор возрастают.

При плюсовой волне минусовое напряжение на базе снижается, как и протекающие токи. Вот таким образом и работает транзистор усилитель.

Если на выход подключить не телефон а резистор, то появляющееся на нем напряжение переменной составляющей усиленного сигнала можно подвести ко входной цепи второго каскада для дополнительного усиления. Один прибор способен усиливать сигнал в 30 — 50 раз.

По этому же принципу работают VT противоположной структуры n-p-n. Но для них полярность включения блока питания необходимо поменять на противоположную.

Для работы транзистора усилителя на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно должно поступать постоянное напряжение смещения, открывающее полупроводниковый прибор.

Для германиевых VT открывающее напряжение должно быть не более 0,2 вольта, а для кремниевых 0,7 вольта. Напряжение смещения на базу не подают только тогда, когда эмиттерный переход транзистора применяют для детектирования сигнала, но об этом мы поговорим позднее.

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

Источник питания должен выдавать стабильное или нестабильное двуполярное напряжение питания ±45V и ток 5А. Эта схема УНЧ на транзисторах весьма проста, так как в выходном каскаде используется пара мощных комплементарных транзисторов Дарлингтона . В соответствии с справочными характеристиками эти транзисторы могут коммутировать ток до 5А при напряжении эмиттерном-коллекторном переходе до 100V.

Схема УНЧ представлена на рисунке чуть ниже.

Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных транзисторах VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6. ОС по переменной состовляющей осуществляется через резистор R6, но её величина зависит от номиналов цепочки R7-C3. Но следует учитовать, что слишком сильное увеличение сопротивления R7 приводет к возбуждению.

Режим работы по постоянному току обеспечивается подбором резистора R6. Выходной каскад на транзисторах Дарлингтона VT3 и VT4 работает в классе АВ. Диоды VD1 и VD2 нужны для стабилизации рабочей точки выходного каскада.

Транзистор VT5 ппредназначен для раскачки выходного каскада, на его базу поступает сигнал с выхода дифференциального предварительного усилителя, а так же постоянное напряжение смещения, которое определяет режим работы выходного каскада по постоянному току.

Все конденсаторы схемы должны быть рассчитаны на максимальное постоянное напряжение не ниже 100V. Транзисторы выходного каскада рекомендуется закрепить на радиаторы площадью не меньше 200 см в квадрате

Рассмотренная схема простого двухкаскадного усилителя разработана для работы с наушниками или для использования в простых устройствах с функцией предварительного усилителя.

Первый транзистор усилителя подсоединен по схеме с общим эмиттером, а второй транзистор с общим коллектором. Первый каскад предназначен для базового усиления сигнала по напряжению, а второй каскада усиливает уже по мощности.


Малое выходное сопротивление второго каскада двухкаскадного усилителя, называемого эмиттерным повторителем, позволяет подсоединять не только наушники с большим сопротивлением, но и другие виды преобразователей акустического сигнала.

Эта тоже двухкаскадная схема УНЧ выполненная на двух транзисторах, но уже противоположной проводимости. Ее главная особенность в том, что связь между каскадами непосредственная. Охваченная ООС через сопротивление R3 напряжение смещения со второго каскада проходит на базу первого транзистора.


Конденсатор СЗ, шунтирует резистор R4, уменьшает ООС по переменному току, тем самым уменьшающая усиление VT2. Путем подбора номинала резистора R3 задают режим работы транзисторов.

УМЗЧ на двух транзисторах


Этот достаточно легкий усилитель мощности звуковой частоты (УМЗЧ) можно спаять всего на двух транзисторах. При напряжении питания 42В постоянного тока выходная мощность усилителя достигает 0,25 Вт при нагрузке 4 Ом. Потребляемый ток всего 23 mA. Усилитель работает в однотактном режиме «А».

Напряжение низкой частоты от источника сигнала подходит к регулятору громкости R1. Далее через защитный резистор R3 и конденсатор C1 сигнал оказывается на базе биполярного транзистора VT1 включенного по схеме с общим эмиттером. Усиленный сигнал через R8 подается на затвор мощного полевого транзистора VT2 включенный по схеме с общим истоком и его нагрузкой служит первичная обмотка понижающего трансформатора К вторичной обмотке трансформатора можно подключить динамическую головку или акустическую систему.

В обоих транзисторных каскадах присутствует местная отрицательная обратная связь по постоянному и переменному току, так и общей цепью ООС.

В случае увеличения напряжения на затворе полевого транзистора сопротивление сток исток его канала уменьшается и напряжение на его стоке уменьшается. Это влияет и на уровень сигнала поступающий на биполярный транзистор, что снижает напряжения затвор-исток.

Совместно с цепями местной отрицательной обратной связи, таким образом, стабилизируются режимы работы обоих транзисторов даже в случае незначительного изменения питающего напряжения. Коэффициент усиления зависит от соотношения сопротивлений резисторов R10 и R7. Стабилитрон VD1 предназначен для предотвращения выхода полевого транзистора из строя. Питание усилительного каскада на VT1 производится через RC фильтр R12C4. Конденсатор C5 блокировочный по цепи питания.

Усилитель может быть собран на печатной плате размерами 80×50 мм,на ней расположены все элементы кроме понижающего трансформатора и динамической головки

Наладку схемы усилителя осуществляют при том напряжении питания, при котором он будет работать. Для тонкой настройки рекомендуется использовать осциллограф, щуп которого подключают к выводу стока полевого транзистора. Подав на вход усилителя синусоидальный сигнал частотой 100 … 4000 Гц, с помощью регулировки подстроечного резистора R5 добиваются того, чтобы отсутствовали заметные искажения синусоиды при как можно большем размахе амплитуды сигнала на выводе стока транзистора.

Выходная мощность усилителя на полевом транзисторе небольшая, всего 0,25Вт, напряжение питания от 42В до 60В. Сопротивление динамической головки 4 Ома.

Аудио сигнал через переменное сопротивление R1, затем R3 и разделительную емкость C1 поступает на усилительный каскад на биполярном транзисторе по схеме с общим эмиттером. Далее с этого транзистора усиленный сигнал через сопротивление R10 проходит на полевой транзистор.


Первичная обмотка трансформатора является нагрузкой для полевого транзистора, а к вторичной обмотки подключен четырех омная динамическая головка. Соотношением сопротивлений R10 и R7 задаем степень усиления по напряжению. С целью защиты униполярного транзистора в схему добавлен стабилитрон VD1.

Все номиналы деталей имеются на схеме. Трансформатор можно использовать типа ТВК110ЛМ или ТВК110Л2, от блока кадровой развертки старого телевизора или аналогичный.

УМЗЧ по схеме Агеева

Наткнулся на эту схему в старом выпуске журнала радио, впечатления от нее остались самыми приятными,во первых схема настолько проста, что ее сможет собрать и начинающий радиолюбитель,во вторых при условии рабочих компонентов и правильной сборки наладки она не требует.


Если вас заинтересовала эта схема, то остальные подробности по ее сборке вы сможете найти в журнале радио №8 за 1982 год.

Высококачественные транзисторные УНЧ

Усилитель мощности на трех транзисторах. Простая схема для начинающих.

Самая простая схема усилителя мощности.
Представляет собой двухтактный эмиттерный повторитель, использующий комплементарную пару транзисторов — VT2(n-p-n) и VT3(p-n-p). На транзисторе VT1 выполнен предварительный усилитель.Режим транзистора VT1 задается резистором R1, через который осуществляется стабилизирующая параллельная отрицательная связь по напряжению. Резисторы R3 и R4 вместе с диодами D1, D2 определяют ток покоя выходных транзисторов.

Параметры компонентов схемы:
С1=10мкФ*15В; С2=470мкФ*15В; R1=330кОм; R2=1кОм; R3=2,2Ом.
Транзисторы: VT1 — BC108(лучше — BC548), VT2 — BFY50, VT3 — BC461, диоды D1,D2 — 1N4148.

Российские аналоги: BC108 — КТ342В, выходные транзисторы — любые комплиментарные, средней мощности. Германиевые тоже подойдут(пара ГТ402 — ГТ404, например) при условии изменения значения R2 в большую сторону(его придется подбирать).
При напряжении питания 9 В такая схема обеспечивает выходную мощность 1 Ватт на нагрузке сопротивлением 8 Ом.

Если изменить параметры компонентов схемы следующим образом:
С1=22мкФ*25В; С2=1000мкФ*25В; R1=100кОм; R2=680Ом; R3=0,2Ом. Транзисторы: VT1 — BC337, VT2 — BD131, VT3 — BD132, диоды D1,D2 остаются 1N4148, то при напряжении питания 18 В можно получить мощность 5 Ватт на нагрузке сопротивлением 8 Ом. При увеличении напряжения питания до 25 В мощность увеличится почти до 10 Ватт.
Российские аналоги транзистров: BC337 — КТ660А( при отсутствии подойдут и КТ815, и КТ817),BD131 — КТ943(КТ817 тоже пойдет), BD132 — КТ932(КТ816 в пару к КТ817).

Для балансировки выходного каскада целесообразно вместо резистора R1=100 кОм установить последовательно подключенные постоянное сопротивление 47 кОм и переменное сопротивление 100 кОм. Переменное сопротивление необходимо регулировать таким образом, чтобы напряжение в точке соединения резисторов R3,R4 равнялось половине напряжения питания схемы. Выходные транзисторы следует установить на радиаторе с тепловым сопротивлением не более 10С/Вт.

Максимальное значение мощности, которую можно получить в нагрузке для такой схемы можно рассчитать по формуле:

RL здесь — сопротивление нагрузки, подключаемой через конденсатор С2.

Использованы материалы книги М.Тули — «Карманный справочник радиолюбителя».

На главную страницу

Простой усилитель на транзисторах


Простейшие усилители низкой частоты на транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Усилитель звука на транзисторах #1 ⋆ diodov.net

Усилитель звука относится к одному из наиболее интересных электронных устройств для начинающих электронщиков или радиолюбителей. И это не удивительно, ведь если устройство собрано правильно, то достаточно подключить динамик и сразу же раздастся звук, оповещающий о том, что усилитель мощности работает. Наличие звука приносить радость успешного завершения сборки усилителя звука своими руками, а его отсутствие – разочарование. Поэтому цель данной статьи – принести радость начинающему электронщику. Но сначала все по порядку…

Усилитель мощности на транзисторах. Базовые положения

Усилитель мощности на транзисторах присутствует в том или ином виде во многих электронных устройствах. Особенно ярко выделено его применение в звуковой технике.

Современный мир электроники полностью опутан различными запоминающими устройствами: флешки, жесткие диски и т.п. Для воспроизведения информации, хранящейся в памяти накопителей, нужно, прежде всего, преобразовать и усилить ее сигналы.

Главное назначение любого усилителя состоит в преобразовании маломощного сигнала в более мощный. При этом форма его должна сохраняться и не искажаться в процессе преобразования. Иначе произойдет частичная или полная утеря информации.

Начинающим электронщикам следует помнить очень важный момент. Усиление происходит не за счет каких-либо магических свойств транзистора, а за счет энергии блока питания. Транзистор лишь управляет потоком мощности от источника питания к нагрузке. Причем он выполняет свою работу в нужные моменты времени. Отсюда становится понятно, что мощность на нагрузке ограничена лишь мощностью блока питания. Если нагрузка, например динамик, имеет мощность 10 Вт, а источник тока способен выдать только 5 Вт, то нагрузка будет способна развить только 5 Вт.

Структура усилителя состоит из источника и узла, согласующего входной сигнал с источником тока. Такое согласование позволяет получить выходной сигнал.

Устройство транзистора

Поскольку главным элементом усилителя является транзистор, то рассмотрим вкратце устройство и принцип работы это полупроводникового прибора.

Среди довольно обширного выбора полупроводниковых приборов, как по характеристикам, так и по принципу действия, в данной статье мы рассмотрим, и будем применять исключительно биполярные транзисторы (БТ).

Такой электронный прибор состоит из полупроводникового кристалла и трех, подсоединенных к нему электродов. Вся конструкция помещается в корпус, который защищает прибор от разных внешних воздействий (пыль, влага и т.п.). От корпуса отходят три вывода: база (Б), коллектор (К) и эмиттер (Э).

Существуют принципиально два типа БТ n-p-n и p-n-p структуры. Принцип работы их аналогичен, а отличие состоит лишь в полярности подключения к их выводам источника питания и радиоэлектронных элементов, имеющих полярность, например электролитических конденсаторов.

Биполярный транзистор имеет два pn-перехода, поэтому конструктивно его можно рассматривать, как два последовательно встречно соединенных диода. Точка соединения диодов аналогична базе. Но если взять два любых диода и соединить их соответствующим образом, то в такой конструкции не будут проявляться усилительные свойства. Причина в том, что у «настоящего» транзистора слишком малое расстояние между различными полупроводниковыми структурами (база-эмиттер, база-коллектор). Расстояние равно единицам микрометра, то есть несколько тысячных миллиметра (1мкм = 0,001 мм = 0,000001 м). Именно за счет малого расстояния получается транзисторный эффект.

Как работает биполярный транзистор (БТ)

Принцип работы БТ упрощенно рассмотрим на примере ниже приведенной схемы.

Базу оставим не подключенной либо соединим ее с минусом источника питания. Последний вариант более предпочтительный, поскольку исключает появление наводок на выводе.

Чтобы исключить короткое замыкание в цепь коллектора следует установить резистор Rн, он же будет служить нагрузкой. Однако при подключении источника питания Uип, ток в цепи VT и Rн протекать не будет (обратный ток мы не берем в счет, поскольку его значение слишком мало и не превышает единиц микроампер). Отсутствие тока в цепи поясняется тем, что транзистор закрыт. И если вернуться к аналогии с диодом, то мы заметим, что один из них находится под обратным напряжением, поэтому он заперт.

Открыть БТ не составит большого труда. Следует на базу относительно эмиттера (для n-p-n структуры) приложить положительный потенциал, то есть подать напряжение, например от другого источника питания – батарейки. Величина напряжения должна быть порядка 0,6 В, чтобы скомпенсировать падение напряжения на эмиттерном переходе. Резистор Rб служит для ограничения тока, протекающего в цепи базы.

Таким образом, если подать небольшое напряжение на базу, то в цепи нагрузки Rн будет протекать ток коллектора Iк. При смене полярности блока питания VT закроется. Чтобы не запутаться и правильно подключать источник питания следует обратить внимание на направление стрелки эмиттера. Она указывает на направление протекания токов Iк и Iб. Для БТ n-p-n типа Iк и Iб входят в эмиттер, а для p-n-p – выходят.

Коэффициент усиления транзистора

Токи базы Iб и коллектора Iк находятся в тесной взаимосвязи. Более того, величина тока, протекающего в цепи коллектора помимо параметров Uип и Rн определяются величиной Iб в прямопропорциональной зависимости. Отношение Iк к Iб называется коэффициентом усиления транзистора по току и обозначается буквой β («бета»):

Коэффициент усиления является одним из важнейших параметров БТ и всегда приводится в справочниках. Для большинства маломощных БТ он находится в диапазоне 50…550 единиц. В общем, β показывает во сколько раз ток коллектора больше тока базы.

Усилитель звука на транзисторах

Усилитель звука на транзисторах предназначен для повышения мощности сигнала звуковой частоты, поэтому его еще называют усилитель мощности звуковой частоты или сокращенно УМЗЧ. Источником звука, подлежащего усилению, чаще всего служит микрофон или выход звуковой карты компьютера, ноутбука, смартфона и т.п. Мощность таких источников довольно низкая и составляет микроватты, а для нормальной работы динамика (громкоговорителя) необходимо обеспечить мощность единицы и десятки ватт, а то и сотни ватт. Поэтому главной задачей УМЗЧ является повышение мощности слабого входного сигнала в тысячи и десятки тысяч раз.

Звуки раздающейся мелодии или речи имеют сложный характер. Однако любой из них, даже самой сложной формы можно разложить в ряд сигналов синусоидальной формы, отличающихся как по частоте, так и по амплитуде.

Поэтому с целью упростить пояснение принципа работы схемы УМЗЧ будем применять входной сигнал синусоидальной формы uc. Нагрузкой на первых порах вместо динамика буде служить резистор Rн.

Однако приведенная выше схема применяется лишь для работы БТ в ключевом режиме, то есть когда полупроводниковый прибор VT находится в двух фиксированных состояниях – открытом и закрытом. Для усиления переменного сигнала данная схема непригодна, поскольку будет усиливаться только положительная полуволна входного сигнала. Для отрицательной полуволны транзистор будет закрыт. Кроме того, амплитуда входного сигнала должна быть не меньше 0,6 В, иначе просто останется незамеченным, поскольку не откроется эмиттерный переход.

Базовая схема входного каскада УМЗЧ

Чтобы схема УМЗЧ работала правильно, а это означает, усиливала без искажений положительные и отрицательные полуволны, изначально следует приоткрыть VT наполовину. Тогда положительная полуволна будет еще больше открывать БТ, а отрицательная – призакрывать его.

Приоткрыть БТ можно небольшим напряжением, поданным на базу, оно же называется напряжением смещения. Сам процесс называют установкой рабочей точки транзистора по постоянному току. Напряжение смещения зачастую подается от общего источника питания через токоограничивающий резистор Rб, согласно схемы, приведенной ниже.

Чтобы постоянное напряжение не воздействовало на источник переменного сигнала, а также не нарушался режим работы схемы по постоянному току, переменная составляющая отделяется конденсатором С1, а нагрузка подключается к коллектору через разделительный конденсатор C2 к клеммам uвых.

Простейший усилитель звука на одном транзисторе за 15 минут

Привет, Самоделкины! Если у Вас есть динамик и источник звука, но нечем его усилить — то в этой статье мы расскажем Вам, как собрать усилитель из хлама =)Для этого нам потребуются следующие компоненты и инструменты:1. n-p-n кремниевый транзистор КТ805 или его аналоги. (этот самый мощный в серии)2. Электролитический конденсатор емкостью 100мкФ и напряжением более 16 вольт3. переменный резистор около 5кОм4. монтажная плата (необязательно — можно сделать навесным монтажем)5. радиатор6. провода7. разъем мини джек 8. блок питания 5-12 В постоянного тока9. паяльник, канифоль, припой .(вот такой подобран хлам)Первым делом устанавливаем компоненты на монтажную плату.К базе КТ805 припаиваем центральный вывод переменного резистора и отрицательный вывод конденсатора.Второй вывод переменного резистора — это + питания и + динамика припаиваем на платуКоллектор транзистора (центральный контакт) будет минус динамика.К эмиттеру подключаем минус питания и отрицательный провод входного сигнала. Положительным проводом является + конденсатора.Для тестов остается припаять 3 пары проводов Вход Выход и Питание (на фото слева направо). Транзистор устанавливаем на радиатор.Приступаем к тестам и настройке. Собираем и подключаем все компоненты на столе, строго соблюдая полярность! Желательно и схему проверить на наличие коротких замыканий. Нашим подстроечным резистором подбираем правильный режим работы. Короче говоря согласуем работу транзистора с сопротивлением динамика.Ура! Настройка прошла успешно! Окультуриваем и устанавливаем все в корпус.

Всем удачи и хороших идей!

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

7.9

Идея

6.9

Описание

6.4

Исполнение

Итоговая оценка: 7.07 из 10 (голосов: 19 / История оценок)

Facebook

ВКонтакте

Twitter

ОК

48

Схема усилителя звука на одном транзисторе

Содержание

Усилитель звуковой частоты является важнейшим узлом многих электронных устройств. Это может быть воспроизведение музыкальных файлов, системы оповещения пожарной и охранной сигнализации или звуковые датчики различных игрушек. Бытовая техника оснащена встроенными низкочастотными каналами, но при домашнем конструировании электронных самоделок может потребоваться необходимость сделать это устройство самостоятельно.

Диапазон звуковых частот, которые воспринимаются человеческим ухом, находится в пределах 20 Гц-20 кГц, но устройство, выполненное на одном полупроводниковом приборе, из-за простоты схемы и минимального количества деталей обеспечивает более узкую полосу частот. В простых устройствах, для прослушивания музыки достаточно частотного диапазона 100 Гц-6 000 Гц. Этого хватит для воспроизведения музыки на миниатюрный динамик или наушник. Качество будет средним, но для мобильного устройства вполне приемлемым.

Схема простого усилителя звука на транзисторах может быть собрана на кремниевых или германиевых изделиях прямой или обратной проводимости (p-n-p, n-p-n). Кремниевые полупроводники менее критичны к напряжению питания и имеют меньшую зависимость характеристик от температуры перехода.

Схема усилителя звука на 1 транзисторе

Простейшая схема усилителя звука на одном транзисторе включает в себя следующие элементы:

  • Транзистор КТ 315 Б
  • Резистор R1 – 16 ком
  • Резистор R2 – 1,6 ком
  • Резистор R3 – 150 ом
  • Резистор R4 – 15 ом
  • Конденсатор С1 – 10,0 мкф
  • Конденсатор С2 – 500,0 мкф

Это устройство с фиксированным напряжением смещения базы, которое задаётся делителем R1-R2. В цепь коллектора включен резистор R3, который является нагрузкой каскада. Между контактом Х2 и плюсом источника питания можно подключить миниатюрный динамик или наушник, который должен иметь большое сопротивление. Низкоомную нагрузку на выход каскада подключать нельзя. Правильно собранная схема начинает работать сразу и не нуждается в настройке.

Схема усилителя звуковой частоты

Более качественный УНЧ можно собрать на двух приборах.

Схема усилителя на двух транзисторах включает в себя больше комплектующих элементов, но может работать с низким уровнем входного сигнала, так как первый элемент выполняет функцию предварительного каскада.

Переменный сигнал звуковой частоты подаётся на потенциометр R1, который играет роль регулятора громкости. Далее через разделительный конденсатор сигнал подаётся на базу элемента первой ступени, где усиливается до величины, обеспечивающей нормальную работу второй ступени. В цепь коллектора второго полупроводника включен источник звука, которым может быть малогабаритный наушник. Смещение на базах задают резисторы R2 и R4. Кроме КТ 315 в схеме усилителя звука на двух транзисторах можно использовать любые маломощные кремниевые полупроводники, но в зависимости от типа применяемых изделий может потребоваться подбор резисторов смещения.

Если использовать двухтактный выход можно добиться хорошего уровня громкости и неплохой частотной характеристики. Данная схема выполнена на трёх распространённых кремниевых приборах КТ 315, но в устройстве можно использовать и другие полупроводники. Большим плюсом схемы является то, что она может работать на низкоомную нагрузку. В качестве источника звука можно использовать миниатюрные динамики с сопротивлением от 4 до 8 ом.

Устройство можно использовать совместно с плеером, тюнером или другим бытовым прибором. Напряжение питания 9 В можно получить от батарейки типа «Крона». Если в выходном каскаде использовать КТ 815, то на нагрузке 4 ома можно получить мощность до 1 ватта. При этом напряжение питания нужно будет увеличить до 12 вольт, а выходные элементы смонтировать на небольших алюминиевых теплоотводах.

Схема простого усилителя звука на одном транзисторе

Получить хорошие электрические характеристики в усилителе, собранном на одном полупроводнике практически невозможно, поэтому качественные устройства собираются на нескольких полупроводниковых приборах. Такие конструкции дают на низкоомной нагрузке десятки и сотни ватт и предназначены для работы в Hi-Fi комплексах. При выборе устройства может возникнуть вопрос, на каких транзисторах можно сделать усилитель звука. Это могут быть любые кремниевые или германиевые полупроводники. Широкое распространение получили УНЧ, собранные на полевых полупроводниках. Для устройств малой мощности с низковольтным питанием можно применить кремниевые изделия КТ 312, КТ 315, КТ 361, КТ 342 или германиевые старых серий МП 39-МП 42.

Усилитель мощности своими руками на транзисторах можно выполнить на комплементарной паре КТ 818Б-КТ 819Б. Для такой конструкции потребуется предварительный блок, входной каскад и предоконечный блок. Предварительный узел включает в себя регулировку уровня сигнала и регулировку тембра по высоким и низким частотам или многополосный эквалайзер. Напряжение на выходе предварительного блока должно быть не менее 0,5 вольта. Входной узел блока мощности можно собрать на быстродействующем операционном усилителе. Для того чтобы раскачать оконечную часть потребуется предоконечный каскад, который собирается на комплементарной паре приборов средней мощности КТ 816-КТ 817. Конструкции мощных усилителей низкой частоты отличаются сложной схемотехникой и большим количеством комплектующих элементов. Для правильной регулировки и настройки такого блока потребуется не только тестер, но осциллограф, и генератор звуковой частоты.

Современная элементная база включает в себя мощные MOSFET приборы, позволяющие конструировать УНЧ высокого класса. Они обеспечивают воспроизведение сигналов в полосе частот от 20 Гц до 40 кГц с высокой линейностью, коэффициент нелинейных искажений менее 0,1% и выходную мощность от 50 W и выше. Данная конструкция проста в повторении и регулировке, но требует использования высококачественного двухполярного источника питания.



Нужна консультация специалиста?

Оставьте заявку и мы перезвоним Вам в течение 48 часов!

Имяменеджер, эксперт

высшее проф. обр.



Предварительный унч на транзисторах. Самый простой усилитель звука. Настройка и испытания усилителя

В этой статье мы поговорим об усилителях. Они же УНЧ (усилители низкой частоты), они же УМЗЧ (усилители мощности звуковой частоты). Эти устройства могут быть выполнены как на транзисторах, так и на микросхемах. Хотя некоторые радиолюбители, отдавая дань моде на винтаж, делают их по старинке — на лампах. Здесь советуем посмотреть . Особое внимание начинающих хочу обратить на микросхемы автомобильных усилителей с 12-ти вольтовым питанием. Используя их можно получить довольно качественный звук на выходе, причем для сборки практически достаточно знаний школьного курса физики. Порой из обвеса, или говоря другими словами, тех деталей на схеме, без которых микросхема не будет работать, на схеме бывает буквально 5 штук. Одна из подобных, усилитель на микросхеме TDA1557Q приведена на рисунке:

Такой усилитель в свое время был собран мною, пользуюсь уже несколько лет им вместе с советской акустикой 8 Ом 8 Вт, совместно с компьютером. Качество звучания намного выше, чем у китайских пластмассовых колонок. Правда, чтобы почувствовать существенную разницу, мне пришлось купить звуковую карту creative, на встроенном звуке разница была незначительная.

Усилитель можно собрать навесным монтажом

Также усилитель можно собрать навесным монтажом, прямо на выводах деталей, но я бы не советовал собирать этим методом. Лучше потратить немного больше времени, найти разведенную печатную плату (или развести самому), перенести рисунок на текстолит, протравить его и получить в итоге усилитель, который будет работать много лет. Обо всех эти технологиях многократно рассказано в интернете, поэтому более подробно останавливаться на них не буду.

Усилитель прикрепленный к радиатору

Сразу скажу, что микросхемы усилителей при работе сильно нагреваются и их необходимо крепить, нанеся термопасту на радиатор. Тем же, кто хочет просто собрать один усилитель и нет времени или желания изучать программы по разводке печатных плат, технологии ЛУТ и травление, могу предложить использовать специальные макетные платы с отверстиями под пайку. Одна из них изображена на фото ниже:

Как видно на фото, соединения осуществляются не дорожками на печатной плате, как в случае с печатным монтажом, а гибкими проводками, подпаиваемыми к контактам на плате. Единственной проблемой при сборке таких усилителей, является источник питания, выдающий напряжение 12-16 вольт, при токе потребления усилителем до 5 ампер. Разумеется, такой трансформатор (на 5 ампер) будет иметь немаленькие размеры, поэтому некоторые пользуются импульсными источниками питания.

Трансформатор для усилителя — фото

У многих, думаю, дома есть блоки питания компьютеров, которые сейчас морально устарели, и больше не используются в составе системных блоков, так вот такие блоки питания способны выдавать по цепям +12 вольт, токи намного большие чем 4 ампера. Конечно, такое питание среди ценителей звучания считается худшим, чем стандартное трансформаторное, но я подключал импульсный блок питания для питания своего усилителя, после сменил его на трансформаторный — разница в звучании можно сказать незаметна.

После выхода с трансформатора, разумеется, нужно поставить для выпрямления тока диодный мост, который должен быть рассчитан на работу с большими токами, потребляемыми усилителем.

После диодного моста идет фильтр на электролитическом конденсаторе, который должен быть рассчитан на заметно большее напряжение, чем у нас в схеме. Например, если у нас в схеме питание 16 вольт, конденсатор должен быть на 25 вольт. Причем этот конденсатор должен быть как можно большей емкости, у меня стоят подключенные параллельно 2 конденсатора по 2200 мкф, и это не предел. Параллельно питанию (шунтируем) нужно подключить керамический конденсатор емкостью 100 нф. У усилителя на входе ставят пленочные разделительные конденсаторы емкостью от 0,22 до 1 мкф.

Пленочные конденсаторы

Подключение сигнала к усилителю, с целью снизить уровень наводимых помех, должно осуществляться экранированным кабелем, для этих целей удобно пользоваться кабелем Джек 3.5 — 2 Тюльпана, с соответствующими гнездами на усилителе.

Кабель джек 3.5 — 2 тюльпана

Регулировку уровня сигнала (громкости на усилителе) осуществляют с помощью потенциометра, если усилитель стерео, то сдвоенного. Схема подключения переменного резистора показана на рисунке ниже:

Разумеется усилители могут быть выполнены и на транзисторах, при этом питание, подключение и регулировка громкости в них применяются точно так же, как и в усилителях на микросхемах. Рассмотрим, к примеру, схему усилителя на одном транзисторе:

Здесь также стоит разделительный конденсатор, и минус сигнала соединяется с минусом питания. Ниже приведена схема двухтактного усилителя мощности на двух транзисторах:

Следующая схема также на двух транзисторах, но собранная из двух каскадов. Действительно, если присмотреться, она состоит как-бы из 2 почти одинаковых частей. В первый каскад у нас входят: С1, R1, R2, V1. Во второй каскад C2, R3, V2, и нагрузка наушники В1.

Двухкаскадный усилитель на транзисторах — схема

Если же мы хотим сделать стерео усилитель, нам нужно будет собрать два одинаковых канала. Точно также мы можем, собрав две схемы любого моно усилителя, превратить его в стерео. Ниже приведена схема трехкаскадного усилителя мощности на транзисторах:

Трехкаскадный усилитель на транзисторах — схема

Схемы усилителей также различаются по напряжению питания, некоторым достаточно для работы 3-5 вольт, другим необходимо 20 и выше. Для работы некоторых усилителей требуется двуполярное питание. Ниже приведены 2 схемы усилителя на микросхеме TDA2822 , первая стерео подключение:

На схеме в виде резисторов RL обозначены подключения динамиков. Усилитель нормально работает от напряжения в 4 вольта. На следующем рисунке изображена схема мостового включения, в ней используется один динамик, зато она выдает большую мощность, чем в стерео варианте:

На следующем рисунке изображены схемы усилителя на , обе схемы взяты из даташита. Питание 18 вольт, мощность 14 Ватт:

Акустика, подключаемая к усилителю, может иметь разное сопротивление, чаще всего это 4-8 Ом, иногда встречаются динамики с сопротивлением 16 Ом. Узнать сопротивление динамика, можно перевернув его тыльной стороной к себе, там обычно пишется номинальная мощность и сопротивление динамика. В нашем случае это 8 Ом, 15 Ватт.

Если же динамик находится внутри колонки и посмотреть, что на нем написано, нет возможности, тогда динамик можно прозвонить тестером в режиме омметра выбрав предел измерения 200 Ом.

Динамики имеют полярность. Кабеля, которыми акустика подключается, обычно имеют пометку красным цветом, для провода который соединен с плюсом динамика.

Если провода не имеют пометок, проверить правильность подключения можно, соединив батарейку плюс с плюсом, минус с минусом динамика (условно), если диффузор динамика выдвинется наружу — то мы угадали с полярностью. Больше различных схем УНЧ, в том числе ламповых, можно посмотреть в . Там собрана, думаем, самая большая подборка схем в интернете.

Время чтения ≈ 6 минут

Усилители – наверное, одни из первых устройств, которые начинают конструировать радиолюбители-новички. Собирая УНЧ на транзисторах своими руками при помощи готовой схемы, многие используют микросхемы.

Транзисторные усилители хоть и отличаются огромным числом , но каждый радиоэлектронщик постоянно стремится сделать что-то новое, более мощное, более сложное, интересное.

Более того, если вам нужен качественный, надежный усилитель, то стоит смотреть в сторону именно транзисторных моделей. Ведь, именно они наиболее дешевые, способны выдавать чистый звук, и их легко сконструирует любой новичок.

Поэтому, давайте разберемся, как сделать самодельный усилитель НЧ класса B.

Примечание! Да-да, усилители класса B тоже могут быть хорошими. Многие говорят, что качественный звук могут выдавать лишь ламповые устройства. Отчасти это правда. Но, взгляните на их стоимость.

Более того, собрать такое устройство дома – задача далеко не из легких. Ведь вам придется долго искать нужные радиолампы, после чего покупать их по довольно высокой цене. Да и сам процесс сборки и пайки требует какого-то опыта.

Поэтому, рассмотрим схему простого, и в то же время качественного усилителя низкой частоты, способного выдавать звук мощность 50 Вт.

Старая, но проверенная годами схема из 90-х

Схема УНЧ, который мы будем собирать, впервые была опубликована в журнала «Радио» за 1991 год. Ее успешно собрали сотни тысяч радиолюбителей. Причем, не только для и улучшения мастерства, но и для использования в своих аудиосистемах.

Итак, знаменитый усилитель низкой частоты Дорофеева:

Уникальность и гениальность этой схемы кроется в ее простоте. В этом УНЧ применяется минимальное количество радиоэлементов, и предельно простой источник питания. Но, устройство способно «брать» нагрузку в 4 Ома, и обеспечивать выходную мощность в 50 Вт, чего вполне достаточно для домашней или автомобильной акустической системы.

Многие электротехники совершенствовали, дорабатывали эту схему. И. для удобства мы взяли самый современный ее вариант, заменив старые компоненты на новые, чтобы вам было проще конструировать УНЧ:

Описание схемы усилителя низких частот

В этом «переработанном» Доровеевском УНЧ были использованы уникальные и наиболее эффективные схематические решения. К примеру, сопротивление R12. Этот резистор ограничивает ток на коллекторе выходного транзистора, тем самым ограничивая максимальную мощность усилителя.

Важно! Не стоит менять номинал R12, чтобы увеличить выходную мощность, так как он подобран именно под те компоненты, что применяются в схеме. Этот резистор защищает всю схему от коротких замыканий .

Выходной каскад транзисторов:

Тот самый R12 «вживую»:

Резистор R12 должен иметь мощность на 1 Вт, если под рукой такого нет – берите на полватта. Он имеет параметры, обеспечивающие коэффициент нелинейных искажений до 0,1% на частоте в 1 кГц, и не более 0,2% при 20 кГц. То есть, на слух никаких изменений вы не заметите. Даже при работе на максимальной мощности.

Блок питания нашего усилителя нужно подобрать двухполярный, с выходными напряжениями в пределах 15-25 В (+- 1 %):

Чтобы «поднять» мощность звука, можно увеличить напряжение. Но, тогда придется параллельно произвести замену транзисторов в оконечном каскаде схемы. Заменить их нужно на более мощные, после чего провести перерасчет нескольких сопротивлений.

Компоненты R9 и R10 должны иметь номинал, в соответствии с подающимся напряжением:

Они, с помощью стабилитрона, ограничивают проходящий ток. В этой же части цепи собирается параметрический стабилизатор, который нужен для стабилизации напряжения и тока перед операционным усилителем:


Пара слов о микросхеме TL071 – «сердце» нашего УНЧ. Ее считают отличным операционным усилителем, которые встречается как в любительских конструкциях, так и в профессиональной аудиоаппаратуре. Если нет подходящего операционника, его можно заменить на TL081:

Вид «в реальности» на плате:

Важно! Если вы решите применять в этой схеме какие-либо другие операционные усилители, внимательно изучайте их распиновку, ведь «ножки» могут иметь другие значения .

Для удобства микросхему TL071 стоит монтировать на предварительно впаянную в плату пластиковую панельку. Так можно будет быстро заменить компонент на другой в случае необходимости.

Полезно знать! Для ознакомления представим вам еще одну схему этого УНЧ, но без усиливающей микросхемы. Устройство состоит исключительно из транзисторов, но собирается крайне редко ввиду устаревания и неактуальности.

Чтобы было удобнее, мы постарались сделать печатную плату минимальной по размерам – для компактности и простоты монтажа в аудиосистему:


Все перемычки на плате нужно запаивать сразу же после травления.

Транзисторные блоки (входного и выходного каскада) нужно монтировать на общий радиатор. Разумеется, они тщательно изолируются от теплоотвода.

На схеме они здесь:

А тут на печатной плате:

Если в наличии нет готовых, радиаторы можно изготовить из алюминиевых или медных пластин:

Транзисторы выходного каскада должны иметь рассеиваемую мощность как минимум в 55 Вт, а еще лучше – 70 или целых 100 Вт. Но, этот параметр зависит от подающегося на плату напряжения питания.


Из схемы понятно, что на входном и выходном каскаде применяется по 2 комплементарных транзистора. Нам важно подобрать их по усиливающему коэффициенту. Чтобы определить этот параметр, можно взять любой мультиметр с функцией проверки транзисторов:


Если такого устройства у вас нет, тогда придется одолжить у какого-то мастерам транзисторный тестер:


Стабилитроны стоит подбирать по мощности на полватта. Напряжение стабилизации у них должно составлять 15-20 В:


Блок питания. Если вы планируете смонтировать на свой УНЧ трансформаторный БП, тогда подберите конденсаторы-фильтры с емкостью как минимум 5 000 мкФ. Тут чем больше – тем лучше.


Собранный нами усилитель низких частот относится к B-классу. Работает он стабильно, обеспечивая почти кристально-чистое звучание. Но, БН лучше всего подбирать так, чтобы он мог работать не на всю мощность. Оптимальный вариант – трансформатор габаритной мощностью минимум в 80 Вт.

Вот и все. Мы разобрались, как собрать УНЧ на транзисторах своими руками с помощью простой схемы, и как его в будущем можно усовершенствовать. Все компоненты устройства найдутся , а если их нет – стоит разобрать пару-тройку старых магнитофонов или заказать радиодетали в интернете (стоят они практически копейки).

Схема № 2

Схема второго нашего усилителя значительно сложнее, но зато позволяет получить и более качественной звучание. Достигнуто это за счет более совершенной схемотехники, большего коэффициента усиления усилителя (и, следовательно, более глубокой обратной связи), а также возможностью регулировать начальное смещение транзисторов выходного каскада.

Схема нового варианта усилителя приведена на рис. 11.20. Этот усилитель, в отличие от своего предшественника, питается от двухполярного источника напряжения.

Входной каскад усилителя на транзисторах VT1-VT3 образует т. н. дифференциальный усилитель. Транзистор VT2 в дифференциальном усилителе является источником тока (довольно часто в дифференциальных усилителях в качестве источника тока ставят обычный резистор достаточно большого номинала). А транзисторы VT1 и VT3 образуют два пути, по которым ток из источника уходит в нагрузку.

Если ток в цепи одного транзистора увеличится, то ток в цепи другого транзистора уменьшится на точно такую же величину — источник тока поддерживает сумму токов обоих транзисторов постоянной.

В итоге транзисторы дифференциального усилителя образуют почти «идеальное» устройство сравнения, что важно для качественной работы обратной связи. На базу одного транзистора подается усиливаемый сигнал, на базу другого — сигнал обратной связи через делитель напряжения на резисторах R6, R8.

Противофазный сигнал «расхождения» выделяется на резисторах R4 и R5, и поступает на две цепочки усиления:

  • транзистор VT7;
  • транзисторы VT4-VT6.

Когда сигнал рассогласования отсутствует, токи обоих цепочек, т. е. транзисторов VT7 и VT6, равны, и напряжение в точке соединения их коллекторов (в нашей схеме такой точкой можно считать транзистор VT8) в точности равно нулю.

При появлении сигнала рассогласования токи транзисторов становятся разными, и напряжение в точке соединения становится больше или меньше нуля. Это напряжение усиливается составным эмиттерным повторителем, собранным на комплементарных парах VT9, VT10 и VT11, VT12, и поступает на АС — это выходной сигнал усилителя.

Транзистор VT8 используется для регулировки т. н. тока «покоя» выходного каскада. Когда движок подстроечного резистора R14 находится в верхнем по схеме положении, транзистор VT8 полностью открыт. При этом падение напряжение на нем близко к нулю. Если же перемещать движок резистора в нижнее положение, падение напряжения на транзисторе VT8 будет увеличиваться. А это равносильно внесению сигнала смещения в базы транзисторов выходного эмиттерного повторителя. Происходит смещение режима их работы от класса С до класса В, а в принципе — и до класса А. Это, как мы уже знаем, один из способов улучшения качества звука — не следует полагаться в этом только на действие обратной связи.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 50×47.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Работу усилителя смотрим на . Внешний вид усилителя приведен на рис. 11.21.

Аналоги и элементная база . При отсутствии необходимых деталей транзисторы VT1, VT3 можно заменить любыми малошумящими с допустимым током не менее 100 мА, допустимым напряжением не ниже напряжения питания усилителя и как можно большим коэффициентом усиления.

Специально для таких схем промышленностью выпускаются транзисторные сборки, представляющие собой пару транзисторов в одном корпусе с максимально подобными характеристиками — это был бы идеальный вариант.

Транзисторы VT9 и VT10 обязательно должны быть комплементарными, также как и VT11, и VT12. Они должны быть рассчитаны на напряжение не менее удвоенного напряжения питания усилителя. Не забыли, уважаемый радиолюбитель, что усилитель питается от двухполярного источника напряжения?

Для зарубежных аналогов комплементарые пары обычно указываются в документации на транзистор, для отечественных приборов — придется попотеть в Инете! Транзисторы выходного каскада VT11, VT12 дополнительно должны выдерживать ток, не меньший:

I в = U / R, А,

U — напряжение питания усилителя,
R — сопротивление АС.

Для транзисторов VT9, VT10 допустимый ток должен быть не менее:

I п = I в / B, А ,

I в — максимальный ток выходных транзисторов;
B — коэффициент усиления выходных транзисторов.

Обратите внимание, что в документации на мощные транзисторы иногда приводятся два коэффициента усиления — один для режима усиления «малого сигнала», другой — для схемы с ОЭ. Вам нужен для расчета не тот, который для «малого сигнала». Обратите внимание также на особенность транзисторов КТ972/КТ973 — их коэффициент усиления составляет более 750.

Найденный вами аналог должен обладать не меньшим коэффициентом усиления — это существенно для данной схемы. Остальные транзисторы должны иметь допустимое напряжение не менее удвоенного напряжения питания усилителя и допустимый ток не мене 100 мА. Резисторы — любые с допустимой рассеиваемой мощностью не менее 0.125 Вт. Конденсаторы — электролитические, с емкостью не менее указанной и рабочим напряжением не менее напряжения питания усилителя.

Продолжение читайте

  • 20.09.2014

    Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов. Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). …

  • 21.09.2014

    На рисунке показана схема простого сенсорного переключателя на ИМС 555. Таймер 555 работает в режиме компаратора. При прикосновении пластин происходит переключение компаратора, который в свою очередь управляет транзистором VT1 с открытым коллектором. К «открытому» коллектору можно подключать внешнюю нагрузку с питанием её от внешнего или внутреннего источника питания, внешнее питание …

  • 12.12.2015

    В предварительном усилителе для динамического микрофона используется двухканальный операционный усилитель uA739. Оба канала предварительного усилителя одинаковые, поэтому на схеме показан только один. На неинвертирующий вход ОУ подано 50 % напряжение питания, которое задается резисторами R1 и R4 (делитель напряжения), при этом это напряжение используется одновременно двумя каналами усилителя. Цепь R3C3 является …

  • 23.09.2014

    Часы со статической индикацией обладают более ярким свечением индикаторов по сравнению с динамической индикацией, схема таких часов показана на рисунке 1. В качестве уст-ва управления индикатором является дешифратор К176ИД2, эта микросхема обеспечит достаточно высокую яркость свечения светодиодного индикатора. В качестве счетчиков используются микросхемы К561ИЕ10, каждая содержит по 20а четырех разрядных …

Сейчас в интернете можно найти огромное количество схем различных усилителей на микросхемах, преимущественно серии TDA. Они обладают достаточно неплохими характеристиками, хорошим КПД и стоят не так уж и дорого, в связи с этим и пользуются такой популярностью. Однако на их фоне незаслуженно остаются забытыми транзисторные усилители, которые хоть и сложны в настройке, но не менее интересны.

Схема усилителя

В этой статье рассмотрим процесс сборки весьма необычного усилителя, работающего в классе «А» и содержащего всего 4 транзистора. Эта схема разработана ещё в 1969 году английским инженером Джоном Линсли Худом, несмотря на свою старость, она и по сей день остаётся актуальной.

В отличие от усилителей на микросхемах, транзисторные усилители требуют тщательной настройки и подбора транзисторов. Эта схема – не исключение, хоть она и выглядит предельно простой. Транзистор VT1 – входной, структуры PNP. Можно экспериментировать с различными маломощными PNP-транзисторами, в том числе и с германиевыми, например, МП42. Хорошо себя зарекомендовали в этой схеме в качестве VT1 такие транзисторы, как 2N3906, BC212, BC546, КТ361. Транзистор VT2 – структуры NPN, средней или малой мощности, сюда подойдут КТ801, КТ630, КТ602, 2N697, BD139, 2SC5707, 2SD2165. Особое внимание стоит уделить выходным транзисторам VT3 и VT4, а точнее, их коэффициенту усиления. Сюда хорошо подходят КТ805, 2SC5200, 2N3055, 2SC5198. Нужно отобрать два одинаковых транзистора с как можно более близким коэффициентом усиления, при этом он должен более 120. Если коэффициент усиления выходных транзисторов меньше 120, значит в драйверный каскад (VT2) нужно поставить транзистор с большим усилением (300 и более).

Подбор номиналов усилителя

Некоторые номиналы на схеме подбираются исходя из напряжения питания схемы и сопротивления нагрузки, некоторые возможные варианты показаны в таблице:


Не рекомендуется поднимать напряжение питания более 40 вольт, могут выйти из строя выходные транзисторы. Особенность усилителей класса А – большой ток покоя, и, следовательно, сильный разогрев транзисторов. При напряжении питания, например, 20 вольт и токе покоя 1.5 ампера усилитель потребляет 30 ватт, не зависимо от того, подаётся на его вход сигнал или нет. На каждом из выходных транзисторов при этом будет рассеиваться по 15 ватт тепла, а это мощность небольшого паяльника! Поэтому транзисторы VT3 и VT4 нужно установить на большой радиатор, используя термопасту.
Данный усилитель склонен в появлению самовозбуждений, поэтому на его выходе ставят цепь Цобеля: резистор сопротивлением 10 Ом и конденсатор 100 нФ, включенные последовательно между землёй и общей точкой выходных транзисторов (на схеме эта цепь показана пунктиром).
При первом включении усилителя в разрыв его питающего провода нужно включить амперметр для контроля тока покоя. Пока выходные транзисторы не разогрелись до рабочей температуры, он может немного плавать, это вполне нормально. Также при первом включении нужно замерять напряжение между общей точкой выходных транзисторов (коллектор VT4 и эммитер VT3) и землёй, там должна быть половина питающего напряжения. Если напряжение отличается в большую или меньшую сторону, нужно покрутить подстроечный резистор R2.

Плата усилителя:

(cкачиваний: 605)


Плата изготовлена методом ЛУТ.

Собранный мной усилитель


Несколько слов о конденсаторах, входном и выходном. Ёмкость входного конденсатора на схеме обозначена 0,1 мкФ, однако такой ёмкости не достаточно. В качестве входного следует поставить плёночный конденсатор ёмкостью 0,68 – 1 мкФ, иначе возможен нежелательный срез низких частот. Выходной конденсатор С5 стоит взять на напряжение не меньшее, чем напряжением питания, жадничать с ёмкостью также не стоит.
Преимуществом схемы этого усилителя является то, что она не представляет опасности для динамиков акустической системы, ведь динамик подключается через разделительный конденсатор (С5), это значит, что при появлении на выходе постоянного напряжения, например, при выходе усилителя из строя, динамик останется цел, ведь конденсатор не пропустит постоянное напряжение.

Простой усилитель мощности класса АВ своими руками. « схемопедия

Немного подробнее про характеристики усилителя.

2 канала по 38 Ватт на нагрузке 8Ом (как раз на фото)

Соотношение сигнал/шум >92дБ по даташиту.

Коэффициент гармонических искажений 0,03%

Полоса пропускания от 10Гц до 100 кГц.

На осциллографе синус не уменьшается на 96кГц ни сколько. Дальше посмотреть не позволяет мой аудио интерфейс E-MU, т.к. его максимальная частота дискретизации 192кГц. Да и этого диапазона ни к чему. Будем считать верхнюю граничную частоту в примерно 100кГц. Как-то так. Нижняя граничная частота определяется входными конденсаторами.

Искажение типа «ступенька», присущее усилителям класса АВ, (за что их часто ругают) на осциллографе разглядеть не удалось, а на слух и тем более. Микросхемы достаточно качественные.

Выходное напряжение усилителя 18,5В (действующее значение) без ограничения синуса на 1кГц. Это нам даёт около 43 Ватт на канал. Что сопоставимо с данными даташита (38 Ватт). Поэтому думаю, что К гармоник – не хуже чем по даташиту, к сожалению замерить его нет технической возможности в данное время, но я думаю, что он не отличается от указанного.

При включении никаких щелчков. В микросхеме есть своя защита. Нет ни фона ни даже шипения никакого. Даже не понятно, включен усилитель или нет до того, как ни заиграет музыка.

В целом я остался очень доволен.

Теперь нужно думать над следующим проектом. Пока не решил, что это будет. Возможно полный усилитель на транзисторах с селектором входов, предусилителем с регулятором тембра, тонкомпенсированной регулировкой громкости, спектральным индикатором сигнала и все это в одном корпусе! Возможно, цап для этого усилителя на микросхеме AK4495seq, который я уже собирал своему школьному другу. Надо будет только добавить в него усилитель для наушников. Цап очень хорошо себя показал.

http://pikabu.ru/story/prostoy_usilitel_moshchnosti_klassa_av_svoimi_rukami_dlinnopost_mnogo_foto_4952997

⚡️Простой усилитель на транзисторах | radiochipi.ru

На чтение 8 мин Опубликовано Обновлено

Предлагаю схему транзисторного усилителя мощности звуковой частоты, не имеющего дефицитных деталей.

Кому не хочется собрать хороший усилитель мощности низкой частоты, чтобы он работал «чисто», был надежен , да и налаживание не отнимало бы много времени. Без ошибок собранный он начинает работать сразу же после подачи на него питающих напряжений.

Необходимо лишь с помощью резистора R7 установить нулевое выходное напряжение при отсутствии сигнала на входе и выставить начальный ток выходных транзисторов VT11, VT12 в пределах 100—150 мА. При двуполярном питании ±36 В транзисторный усилитель мощности звуковой частоты отдает в нагрузку сопротивлением 8 Ом 50 Вт, при нагрузке 4 Ом — 90 Вт.

При работе УМЗЧ на 4-омную нагрузку емкость сглаживающих конденсаторов в блоке питания должна быть не менее 20000 мкФ для стерео варианта или 10000 мкФ для моно варианта. Увлекаться снижением емкости этих конденсаторов не стоит, так как при больших токах в нагрузке может ухудшиться воспроизведение.

Хорошие результаты дает применение стабилизированных блоков питания. При этом допустимо снижение емкости фильтрующих конденсаторов в 1,5 раза. К тому же в стабилизированный блок питания нетрудно ввести токовую защиту.

В данном УМЗЧ такая защита не предусмотрена, поскольку простоя защита заметно ухудшает качество звуковоспроизведения, о сложная значительно увеличивает количество радиокомпонентов.

Релейные схемы защиты весьма чувствительны ко всякого рода помехам и всплескам напряжений, поэтому и от них пришлось отказаться. Предлагаемый усилитель на транзисторах рассчитан не стационарный аудиокомплекс. Аккуратно собранный, работающий на исправные и с хорошим запасом мощности акустические системы, простой усилитель звука прослужит не один год.


Как видно из рис.1, УМЗЧ состоит из дифференциального каскада VT1, VT2 с генератором тока на транзисторе VI3, усилителя напряжения на транзисторе VT4 и буферного каскада — усилителя тока на транзисторе VT5. Последний нагружен на генератор токе, собранный на транзисторе VF6 и на симметричную схему двухтактного составного повторителя напряжения на транзисторах VT7—VT12.

Несмотря на “традиционность”‘ этой схемы, в ней применены некоторые “тонкости”. Усилитель тока VT7—VT12 несколько видоизменен по сравнению с обычными схемами. Это позволило снизить искажения, вносимые выходным каскадом УМЗЧ, в несколько раз.

В обычных схемах из-за наличия емкости перехода база-эмиттер (эта емкость у мощных транзисторов может достигать сотых долей микрофарад) на базах выходных и предвыходных транзисторов скапливаются электрические заряды, что приводит к затягиванию времени переходных процессов.

В предлагаемой схеме влияние емкости база-эмиттер уменьшено в несколько раз, что в итоге благоприятно сказывается на верности звуковоспроизведения. УМЗЧ охвачен цепью общей ООС. Глубина ООС по переменному току зависит от резисторов R17 и R16. Для уменьшения искажений, вносимых конденсатора С6, он зашунтирован неэлектролитическим конденсатором С7 емкостью в 4,7 мкФ.

Даже неискушенные слушатели могут заметить разницу в звучании, особенно на высоких частотах, с конденсатором С7 и без него. Для установки нулевого потенциала на выходе УМЗЧ при отсутствии входного сигнала служит цепь, состоящая из элементов R3,R6,R7,R14,C3. Через эту цепочку подается небольшое отрицательное напряжение смешения на транзисторы VT1 и VT2.

Необходимо отметить, что наличие буферного усилителя тока VT5 позволяет уменьшить искажения в 10-15 роз. Поэтому не стоит упрощать схемы путем исключения этого каскада. Ток покоя выходных транзисторов зависит от тока транзистора VT6. Поэтому при настройке, если необходимо, изменяют сопротивление резистора R18. Увеличение сопротивления резистора R18 соответствует уменьшению тока транзистора
VT6 и, наоборот, уменьшение R18 вызывает увеличение тока VT6.

Увеличение тока через VT6 вызывает соответственно увеличение падения напряжения на диодах VD1 — VD4, что в свою очередь приводит к увеличению напряжения смещения транзисторов VT7—VT12, при этом начальный ток выходных транзисторов VT11 и VT12 увеличивается. Напряжение на входе усилителя при максимальной мощности, отдаваемой им в нагрузку, примерно равно 1 В.

Коэффициент гармоник не превышает 0,04 % во всем диапазоне звуковых частот. Если подобрать комплиментарные пары VT9,VT10 и VT11,VT12 с одинаковыми Ь21э, можно добиться уменьшения Кг до 0,02 % в диапазоне частот до 16 кГц.

Для сохранения хорошего качества звуковоспроизведения предварительный усилитель с блоком тембров должен иметь низкое выходное сопротивление (несколько килоом) и коэфициент нелинейных искажений не более чем данный УМЗЧ.


Печатная плата УМЗЧ изображена на рис.2. Очень удобно проверять усилитель на устойчивость с помощью генератора прямоугольных импульсов, наблюдая на экране осциллографа за формой выходного сигнала. При этом подбирают емкость конденсатора С5, добиваясь наименее искаженного сигнала на выходе по сравнению с его первоначальной формой.

По возможности емкость С5 уменьшают, поскольку улучшается АЧХ усилителя на высоких частотах. Фактически емкость конденсатора удавалось снизить до 20 пФ, когда УМЗЧ работал но громкоговорители без LC-фильтров, т.е. на широкополосные громкоговорители. При работе на большую реактивную нагрузку емкость С5 необходимо увеличивать.

Кроме того, необходимо ввести катушку индуктивности в несколько микрогенри в разрыв выходного провода УМЗЧ. На печатной плате это катушка должна находиться вблизи точки соединения резисторов R26 и R27. При работе на большую реактивную нагрузку следует также ввести в схему УМЗЧ защитные (для выходных транзисторов) диоды VD7 и VD8.

Общеизвестно преимущество инвертирующего усилителя над неинвертирующим. Поскольку при инвертирующем включении входной сигнал подается на базу транзистора VT2, то входное сопротивление УМЗЧ шунтируется резистором R16. При этом для согласования низкого сопротивления усилителя, например с регулятором громкости, необходимо на входе УМЗЧ включить истоковый повторитель.

Схема такого повторителя изображена на рис.3 и на печатной плате специально для него оставлено место. Для перевода УМЗЧ в инвертирующий вариант необходимо сделать следующее.

  1. Отсоединить от общего провода конденсаторы С6, С7 и освободившиеся выводы подключить к выходу истокового повторителя. При этом входом УМЗЧ будет вход повторителя.
  2. Соединить левый контакт С1 (рис1) с общим проводом и включить параллельно ему электролитический конденсатор аналогично Сб.
  3. Чтобы не было щелчков и бросков напряжений на выходе УМЗЧ при ею включении, подбирая резистор R3 (рис.3), установить нулевой потенциал на истоке транзистора VT1.
  4. Сопротивления резисторов R4 и R5 подбираются таким образом, чтобы стабилитроны VD1 и VD2 не вышли из режима стабилизации напряжения. При инвертирующем включении по сравнению с неинеертирующим усилитель работает на слух несколько чище.

Схема блока питания (БП) изображена на рис.4. С целью уменьшения искажений общий провод разделен на два в кожном УМЗЧ, в противном случае резко возрастают искажения, появляются «блуждающие» токи, которые сильно увеличивают уровень фона в акустических системах. С этой же целью в блоке питания для уменьшения наводок от силовых трансформаторов применено противофазное включение первичных обмоток трансформаторов Т1 и Т2.

Раздельное питание каналов УМЗЧ позволяет значительно снизить переходные искажения в каналах, особенно на низких частотах. Диаметр провода как вторичной, так и первичной обмоток также можно уменьшить в 1,4 раза по сравнению с одним трансформатором в БП УМЗЧ. При использовании предохранителей FU2-FU5 (рис.4) надобность в предохранителях FU1 и FU2 (рис.1) отпадает, но предусмотренные для них площадки в платах очень удобны в случае ремонта.

При этом FU1 и FU2 заменяют резисторами для контроля токов и предохранения выхода из строя транзисторов VT7—VT12. Трансформаторы Т1 и Т2 намотаны на тороидальных магнитопроводах, внешний диаметр которых 110 мм, внутренний 65 мм и высото 23 мм. Первичная обмотка содержит 1320 витков провода ПЭВ — 0,64 мм, вторичная обмотка намотана двойным проводом ПЭВ — 1,2 мм 162 витка. Экран состоит из одного слоя провода ПЭЛШО — 0,41 мм.

Для VT5 и VT6 подойдут транзисторы КТ604, КТ611. КТ618А, КГ630. КТ940. Вместо транзисторов КТ817 и КТ816 прекрасно подходят более современные КТ850 и КТ851. Транзисторы VT1 —VT3 заменяешь на современные КТ611А. КТ632, 2Т638А. «Камень преткновения» УМЗЧ — транзистор VT4, его рекомендуется заменить но современный КТ3157А.

Этот транзистор более высоковольтный, чем КТ209М, к тому же он специально разработан для видеоусилителей транзисторных телевизоров и по своим параметром более высокочастотный.
Работает УМЗЧ с такой заменой ощутимо лучше. Усилитель прекрасно работает при понижении питания до ±25 В. Необходимо лишь уменьшить номиналы R11, R18 (Рис.1), чтобы выставить начальные токи VT7-VT12 и нулевое напряжение на выходе УМЗЧ.

В этом случае в дифференциальном каскаде можно применять КТ3102А(Б), а КТ209М (VT4I заменить но КТ3107И). Вместо КТ818. KT8I9 лучше работают КТ864, КТ865 или КТ8101, КТ8102 Предлагается также изменить цепь регулировки начального тока выходных транзисторов заменой VDI — VD4 и R19 на несколько иную схему (рис5).

Транзистор типа КТ626 устанавливается на теплоотводе как можно ближе к VT12. Транзисторы VT11 и VT12 размещены не на отдельных теплоотводах.

Читайте также статьи: усилитель ЛАНЗАР

Простейший УНЧ на мощность до 10 ватт

Эта схема УНЧ с мощностью до 10 ватт была найдена на буржуйском сайте. Недавно была повторена на отечественных компонентах и с некоторыми заменами. Это достаточно хороший усилитель чистого А класса, доступен для повторения. В схеме использовано всего 3 транзистора.

Первый транзистор предварительно усиливает сигнал, он, как и все другие транзисторы в этой схеме не критичен. Я использовал отечественный — КТ829, но можно использовать буквально любые транзисторы обратной проводимости средней мощности.

В выходном каскаде использована легендарная комплементарная пара КТ818/КТ819. За годы их производства, они стали неразлучной парой. Благодаря этим транзисторам усилитель способен развивать 5 ватт от источника питания 12 вольт, хотя максимальная мощность усилителя доходит до 10 ватт. Единственная проблема схемы — повышенный уровень постоянного напряжения на выходе.

Резистор 56 ом был заменен на 52, мощность желательно подобрать 1-2 ватт, он перегревается (но не так страшно). Транзисторы выходного каскада были установлены на теплоотводы, один из них через изоляционную прокладку и шайбу, второй изолировать от теплоотвода не нужно.

Первому транзистору теплоотвод не нужен, транзисторы оконечника тоже почти не греются, что достаточно странно для класса А. Ток потребления в пике доходит 1 А, это тоже очень мало для усилителя этого класса.

Резистор 330 Ом был заменен на 300 (просто не нашел такого резистора), его тоже нужно подобрать с мощностью 0,5-1 ватт. Выходной конденсатор не критичен, подобрать с напряжением 10-50 вольт, емкость 220 — 3300 мкФ. Входной конденсатор тоже не критичен, использовал на 22 мкФ 16 вольт, хотя емкость может отклонится от 1 до 47мкФ. Питал УНЧ от обычного бп на 12 вольт (мост и конденсатор на 2200 мкФ). Несмотря на простую конструкцию, усилитель получился неплохим. Конечно, схема не самая лучшее, но для новичка думаю в самый раз.

Простая схема усилителя звука на одном транзисторе

Схема простого усилителя звука на одном транзисторе

Если вы хотите построить простой аудиоусилитель без запутанных компонентов, вы можете построить простую однотранзисторную схему аудиоусилителя, используя BC547 и резистор, конденсатор. Эта схема может управлять громкоговорителем на 8 Ом и производить значительный звук. Для лучшего результата используйте источник постоянного тока напряжением 9 Вольт.

Два типа однотранзисторных схем аудиоусилителя, разработанных на транзисторе BC 547, здесь первый предназначен для усиления прямого аудиосигнала, а другой — для усиления аудиосигнала от конденсаторного микрофона в качестве предусилителя.

Принципиальная схема

Предварительный усилитель

Необходимые компоненты

  1. Транзистор BC 547 (NPN) = 2
  2. Резистор 2 кОм = 2
  3. Резистор 10 кОм, 2,2 кОм каждый
  4. Электролитический конденсатор 47 мкФ / 16 В
  5. Электролитический конденсатор 1 мкФ / 16 В = 2
  6. Громкоговоритель
  7. Батарея 9 В

Строительство и работа

Чтобы построить схему усилителя, начните с транзистора BC 547 и подключите соответствующее смещение к клеммам коллектора, базы и эмиттера. Для первой схемы громкоговоритель напрямую подключен к клемме коллектора транзистора, а динамик схемы предусилителя подключен через конденсатор связи C2.

Входной аудиосигнал для первой схемы подается на базу BC 547 через конденсатор C1 (47 мкФ) и резистор R1, связанный с коллектором, следовательно, достаточный аудиосигнал и напряжение смещения выше напряжения отсечки постоянно присутствует на клемме базы BC 547 и усиливает входной сигнал. рядом с пиком Vcc.

Входной аудиосигнал для второй схемы подается от конденсаторного микрофона, и он может обрабатывать электрический аудиосигнал с искажениями и шумами для улучшения аудиосигнала, необходимого для фильтрации и усиления входного сигнала.Для усиления микрофонного сигнала резистор R1 подключен на входе к Vcc, а конденсатор C1 отвечает за устранение искажений и передачу аудиосигнала на транзистор BC 547 Base. R2 действует как резистор связи коллектора, тогда выходной аудиосигнал принимается с клеммы коллектора и подается на громкоговоритель через конденсатор C2. Применяя смещение выше точки отсечки к транзистору, мы не можем получить звуковой сигнал с фазовым сдвигом.

Простой транзистор в качестве усилителя

Очень стабильный усилитель при правильной конструкции

Простая схема транзисторного усилителя может использоваться для многих вещей, включая предусилитель звука для усиления слабых сигналов перед передачей на фильтры или усилитель мощности.

Несмотря на то, что эта схема состоит всего из пяти компонентов, она может обеспечить значительный выигрыш, оставаясь при этом очень стабильной в широком диапазоне температур. Причиной такой стабильности является резистор R2, который обеспечивает отрицательную обратную связь от выхода к входу.

Одна из целей конструкции этой схемы — установить выходное напряжение Vo примерно посередине между отрицательным и положительным напряжениями питания при отсутствии входного сигнала.Когда это достигается, выход может свободно колебаться от почти нуля до полного положительного напряжения, обеспечивая большой неискаженный выходной сигнал. Проблема в том, что уровень выходного напряжения зависит от коэффициента усиления транзистора, который может сильно варьироваться от устройства к устройству.

Трудность согласования отдельных транзисторов с коэффициентом усиления в определенном диапазоне может быть причиной того, что схема не часто используется в коммерческих, массовых продуктах. Тем не менее, если вы разрабатываете схему усилителя на основе используемых вами устройств, нет проблем с ее использованием в ваших хобби-проектах.

Компоненты в приведенной выше схеме были выбраны так, чтобы обеспечить хороший выходной уровень с коэффициентом усиления транзистора или β от 50 до 180 и при этом обеспечить выходную амплитуду не менее 4 В. Подойдет биполярный транзистор NPN общего назначения, такой как BC547. Вам может потребоваться отрегулировать значение R2, если сигнал искажен.

Конденсатор C1 обеспечивает блокировку по постоянному току, чтобы гарантировать, что если на входе есть какие-либо постоянные напряжения, они не нарушат смещение усилителя.

Осциллограммы на изображении в начале этой статьи показывают формы входных и выходных сигналов в одном масштабе. Вход был установлен на 1 В от пика до пика, что давало на выходе примерно 3,7 В. Это коэффициент усиления 3,7, что немного ниже значения 4,5, предложенного путем деления R2 на R1.

Я использовал свой осциллограф звуковой карты для генерации входного сигнала и наблюдения за формами входных и выходных сигналов. Я также использовал его для калибровки входа осциллографа до 500 мВ на деление.

Как я сказал ранее, для достижения наилучших результатов вы должны спроектировать эту схему вокруг каждого отдельного транзистора, и вы должны убедиться, что ваш выходной сигнал не искажается, как показано ниже.

Вы видите, как сглаживается дно синусоидальной волны? Это связано с тем, что ток смещения транзистора слишком велик и ограничивает размах отрицательного напряжения. Я создал эту форму сигнала, уменьшив значения R1 и R2, чтобы увеличить базовый ток смещения, сохранив постоянное усиление.

Если ваша схема формирует выходной сигнал, который зажимается вверху или внизу, отрегулируйте значения R1 и R2, чтобы устранить проблему.

Схема двухтранзисторного усилителя

»Примечания по электронике

Существует множество различных конфигураций транзисторных усилителей — в одном из них используются транзисторы PNP и NPN, а коэффициент усиления определяется двумя резисторами.


Типы транзисторных цепей включают:
Типы транзисторных цепей Общий эмиттер Эмиттерный повторитель Общая база Пара Дарлингтона Пара Шиклай Текущее зеркало Длиннохвостая пара Источник постоянного тока Множитель емкости Двухтранзисторный усилитель Фильтр высоких частот

См. Также: Конструкция транзисторной схемы


В этой конструкции электронной схемы показан простой двухтранзисторный усилитель с обратной связью, обеспечивающий определенный уровень усиления, который может определяться резисторами в схеме.

Конструкция включает транзисторы PNP и NPN и принимает общую топологию пары Шиклай, но с дополнительными резисторами, включенными для определения усиления.

Двухтранзисторный усилитель обеспечивает достаточно высокий импеданс при низком выходном сопротивлении. Это идеальная схема транзисторного усилителя для приложений, где требуется более высокий уровень усиления, чем тот, который может быть обеспечен одиночным транзисторным каскадом.

Схема двухтранзисторного усилителя

Av = R4 + R5R5

Резисторы R1 и R2 выбраны для установки базы TR1 примерно на среднюю точку.Если требуется ограничение по току, можно установить резистор между эмиттером TR2 и источником питания.

Двухтранзисторный усилитель — полезная конструкция, которую можно использовать в инструментарии инженеров-электронщиков. Это простая схема, но она эффективно работает в сценариях, где требуется меньшее усиление, чем то, которое может быть обеспечено одним транзистором.

Вернуться к типам транзисторных схем

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Конструкция транзисторного усилителя с общим эмиттером »Lectronics Notes

Простые в использовании пошаговые инструкции по проектированию электронной схемы каскада усилителя на транзисторах с общим эмиттером, показывающие расчеты значений электронных компонентов.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Конструкция схемы с общим эмиттером Эмиттерный повторитель Общая база

См. Также: Типы транзисторных схем


Усилитель с общим эмиттером широко используется, и его электронная схема относительно проста..

Есть несколько простых расчетов, которые можно комбинировать с простой схемой проектирования, чтобы получить надежный результат. Довольно легко принять предпочтительные значения компонентов в конструкции усилителя с общим эмиттером.

Есть несколько вариантов усилителя с общим эмиттером, и они могут быть легко включены в конструкцию. Самая основная форма конструкции усилителя с общим эмиттером — это простой логический буфер / выход, состоящий из транзистора и пары резисторов.В него можно добавить несколько дополнительных компонентов, которые позволят превратить его в усилитель со связью по переменному току со смещением по постоянному току и резистором обхода эмиттера.

Простая логическая конструкция усилителя с общим эмиттером

Эта очень простая конструкция логического буфера или усилителя с общим эмиттером настолько проста, насколько может быть любая конструкция.

На схеме показан транзистор с входным резистором и коллекторным резистором. Входной резистор используется для ограничения тока, протекающего в базу, а резистор коллектора используется для создания этого напряжения на выходе.

Когда на входе виден высокий логический уровень, это заставляет ток течь через R1 в базу. Это вызывает включение транзистора. В свою очередь, напряжение на коллекторе падает почти до нуля, и все напряжение вырабатывается на резисторе R1.

Видно, что есть инверсия фазы. При высоком входном напряжении выходной сигнал низкий, т.е. Схема базового транзисторного усилителя с общим эмиттером — этот вариант часто используется с логическими схемами в качестве простого переключателя.

Усилитель с общим эмиттером, действующий как буфер для логической ИС, очень легко спроектировать.

Хотя это не единственный способ спроектировать сцену, можно использовать следующее пошаговое руководство.

  1. Выберите транзистор: Выбор транзистора, обозначенного на схеме как TR1, будет зависеть от ряда факторов:
    • Ожидаемое рассеяние мощности.
    • Требуемая скорость переключения — для коммутационных приложений выбирайте переключающий транзистор, а не другую форму транзистора с широкой полосой пропускания, фут.
    • Требуется текущее усиление.
    • Требуемый ток.
    • Коллектор-эмиттер напряжение.
    Все это можно предвидеть с достаточной точностью до начала проектирования. После завершения проектирования следует проверить все цифры, чтобы убедиться, что транзистор соответствует выбранным значениям.
  2. Рассчитать резистор коллектора: Выбрав тип транзистора, необходимо определить значения других электронных компонентов.Определение резистора коллектора R2 достигается путем определения тока, необходимого для протекания через резистор. Это будет зависеть от таких элементов, как ток, который должна обеспечивать цепь. Также может потребоваться светодиодный индикатор, включенный последовательно с резистором коллектора. Сила тока должна быть определена так, чтобы обеспечить требуемый световой поток. Номинал резистора можно определить с помощью закона Ома, зная ток, протекающий через резистор, и напряжение на нем.
  3. Определите номинал резистора базы: Ток базы — это ток коллектора, деленный на значение β или hfe, которое практически одинаково. Убедитесь, что имеется достаточный ток привода, чтобы включить транзистор для самых низких значений β даже при низких температурах, когда значения β будут ниже. Следует проявлять осторожность, чтобы не пропускать чрезмерный ток в базу, поскольку в результате переключение может занять больше времени, поскольку необходимо удалить избыточный накопленный заряд.
  4. Переоценить исходные допущения: После того, как проект завершен, необходимо повторно оценить некоторые из начальных решений и оценок на случай, если окончательный проект что-то изменил.

Простая конструкция усилителя с общим эмиттером со связью по переменному току

Конструкция электронной схемы для базовой схемы усилителя с общим эмиттером со связью по переменному току приведена ниже.

Схема базового транзисторного усилителя с общим эмиттером и одиночным базовым резистором смещения

Эта схема не получила широкого распространения, поскольку трудно определить точную рабочую точку схемы из-за встречающихся вариаций значений β.

Можно использовать пошаговый процесс, показанный ниже:

  1. Выберите транзистор: Выбор транзистора будет зависеть от факторов, включая ожидаемую рассеиваемую мощность, напряжение коллектор-эмиттер, полосу пропускания и т. Д.
  2. Выберите резистор коллектора: Значение должно быть выбрано таким образом, чтобы коллектор находился примерно на половине питающей шины для требуемого тока. Величину сопротивления можно определить просто по закону Ома. Текущее значение следует выбирать так, чтобы сопротивление / выходное сопротивление было приемлемым для следующего этапа.
  3. Выберите базовый резистор: Используя показатель β для транзистора, определите базовый ток.Затем, используя закон Ома, зная напряжение питания и тот факт, что база будет на 0,5 В (для кремния) над землей, рассчитайте резистор.
  4. вычислить разделительные конденсаторы: Используя знание входного и выходного импедансов, определите значение конденсатора, равное импедансу при самой низкой частоте использования. (Xc = 2π f C, где C — в фарадах, а частота — в Гц).
  5. Пересмотрите расчеты: Пересмотрите все расчеты и допущения, чтобы убедиться, что все они остаются в силе в свете того, как развивалась схема.

Комплексная конструкция усилителя с общим эмиттером со связью по переменному току

Включив несколько дополнительных компонентов в общую схему эмиттера, можно обеспечить лучший уровень усиления, а также улучшенную температурную стабильность на постоянном токе.

Схема базового транзисторного усилителя с общим эмиттером

Конструкция усилителя с общим эмиттером относительно проста. В качестве основы можно использовать следующую схему проектирования.

  1. Выберите транзистор: Как и прежде, тип транзистора следует выбирать в соответствии с ожидаемыми требованиями к рабочим характеристикам.
  2. Рассчитать резистор коллектора: Необходимо определить ток, необходимый для адекватного управления следующей ступенью. Зная, какой ток должен протекать через резистор, выберите напряжение коллектора, равное примерно половине напряжения питания, чтобы обеспечить равные колебания сигнала вверх и вниз. Это определит номинал резистора по закону Ома.
  3. Рассчитайте резистор эмиттера: обычно для напряжения эмиттера выбирается напряжение около 1 вольт или 10% от значения шины.Это обеспечивает хороший уровень устойчивости схемы по постоянному току. Вычислите сопротивление, зная ток коллектора (фактически такой же, как ток эмиттера) и напряжение эмиттера.
  4. Определить базовый ток: Можно определить базовый ток, разделив ток коллектора на β (или hfe, что по сути то же самое). Если указан диапазон для β, работайте с осторожностью.
  5. Определите базовое напряжение: Это легко вычислить, потому что базовое напряжение — это просто напряжение эмиттера плюс напряжение перехода база-эмиттер.Это принято равным 0,6 В для кремниевых и 0,2 В для германиевых транзисторов.
  6. Определите номиналы резистора базы: Предположим, что ток, протекающий по цепи R1 + R2, примерно в десять раз больше необходимого тока базы. Затем выберите правильное соотношение резисторов, чтобы обеспечить необходимое напряжение на базе.
  7. Конденсатор обхода эмиттера: Коэффициент усиления схемы без конденсатора на резисторе эмиттера составляет приблизительно R3 / R4.Чтобы увеличить коэффициент усиления для сигналов переменного тока, добавлен конденсатор С3 обхода эмиттерного резистора. Это должно быть рассчитано таким образом, чтобы реактивное сопротивление равнялось R4 при самой низкой рабочей частоте.
  8. Определите значение входного конденсатора: Значение входного конденсатора должно равняться сопротивлению входной цепи на самой низкой частоте, чтобы обеспечить падение на -3 дБ на этой частоте. Полный импеданс цепи будет β умноженным на R3 плюс любое сопротивление, внешнее по отношению к цепи, т.е.е. сопротивление источника. Внешнее сопротивление часто игнорируется, так как оно, скорее всего, не окажет чрезмерного влияния на схему.
  9. Определите значение выходного конденсатора: Опять же, выходной конденсатор обычно выбирается равным сопротивлению цепи на самой низкой рабочей частоте. Сопротивление цепи — это выходное сопротивление эмиттерного повторителя плюс сопротивление нагрузки, то есть следующей цепи.
  10. Переоценить предположения: В свете того, как развивалась схема, переоценить все предположения схемы, чтобы убедиться, что они остаются в силе.Такие аспекты, как выбор транзистора, значения потребления тока и т. Д.

Можно получить более определенное усиление для каскада для сигналов более высокой частоты, поместив резистор (R5) последовательно с C3. Для низких значений усиления по напряжению это можно определить из простого соотношения A v = R3 / R5.

Схема базового транзисторного усилителя с общим эмиттером и дополнительным эмиттерным резистором в цепи обхода конденсатора

После небольшой практики различные каскады в конструкции транзисторного усилителя с общим эмиттером становятся второй натурой, и их можно очень легко выполнить.Выбор транзистора также может быть упрощен. Как упоминалось выше, очень важно использовать переключающий транзистор для коммутационных приложений — даже транзисторы с большим ft или отсечкой не будут работать так же хорошо, как правильный переключающий транзистор.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Однотранзисторный аудиоусилитель — Hackster.io

Однотранзисторный аудиоусилитель

Ред. — 25 апреля 2016 г.

Введение

Проект: Однотранзисторные усилители звука Pinguino

Автор: Ян Зумвальт

02 Лицензия: Не защищено авторским правом

Источник: Контент в открытом доступе (более трех общедоступных источников) см .: http://zoomaviation.com/pinguino/hardware-projects/1-transistor-audio-amp-5/

Подключение очень маленького динамик напрямую к выходному контакту Pinguino PIC возможен, но громкость мала.Фактически только средние частоты можно услышать в нескольких дюймах от динамика. Добавление простого однотранзисторного аудиоусилителя увеличит громкость и частотную характеристику до уровня, к которому мы привыкли.

Все схемы, представленные здесь, будут работать с подходящей производительностью с микросхемой Pinguino PIC. Тем не менее, для оптимальной производительности схема может быть спроектирована так, чтобы максимизировать возможности тока вывода PIC. Именно это и будет делать первая представленная схема. Мы продемонстрируем, как рассчитать значения для простого транзисторного усилителя 2n3904.

Параметры

PIC18F2455 / 2550/4455/4550 может подавать до 300 мА на усилитель или динамик. Для улучшенного вывода звука на громкоговорители большим улучшением будет один транзисторный аудиоусилитель.

Итак, какие у нас есть варианты?

Максимальный выход на динамик 8 Ом можно рассчитать по формуле закона Ома P = V * I, или в данном случае P = 5 В * 300 мА = 1,5 Вт. Желательно, чтобы Vout составлял 1/2 от V +, чтобы транзистор находился в середине рабочего диапазона.

Расчеты

Ссылка на формулу закона Ома

Распиновка общих транзисторов

Vout = R2 * R1 + R2 * Vin

можно переставить, чтобы получить:

R1 = R2 (Vin * Vout — 1)

Мы знаем динамик R2, это 8 Ом, Vin — 5 В, а Vout — 2 .83V. Подставьте значения, и мы получим:

R1 = 8 (52,83 — 1)

, что дает нам 6,134 Ом. Ближайший стандартный размер резистора составляет 6,8 Ом, что было бы идеально. Конечно, вам понадобится хороший толстый резистор, не менее 1 Вт, а лучше немного больше.

Ваша схема может выглядеть как Рис-1.

Рис. 1: Схема одноканального транзисторного усилителя звука 5 В 2N3904 NPN. Целиком Схема может быть помещена в контейнер Tic-Tac (см. фото на обложке). Наушники или можно использовать небольшой динамик.

Рис-2: Схема однотранзисторного аудиоусилителя 15 В NPN

Рис-3: Схема однотранзисторного аудиоусилителя 12 В NPN

Рис-4: Схема однотранзисторного аудиоусилителя BC337 NPN с чипом 5 В

Рис-5: Схема однотранзисторного аудиоусилителя 15 В NPN

Рис-6: Схема одноканального транзисторного усилителя мощностью 5 В NPN

Рис.7: Схема усилителя звука на одном транзисторе NPN 9В 2N4401

Рис-8: Схема одноканального транзисторного усилителя звука 9в 2N2222 NPN

Рис.9: Схема однотранзисторного аудиоусилителя 6v BC547 NPN Можно использовать любые транзисторы NPN, такие как BC 547.Это усилитель с общей базой и 100-кратным усилением, который может работать от 2 до 9 В.

Fig-10: простой аудиоусилитель BC547 NPN 5 В

Давайте попробуем 3-х транзисторные схемы усилителя звука (МОНО)

Вам нравится транзистор? Сегодня я перейду к 3-х транзисторным схемам усилителя звука.

Почему в усилителе используются транзисторы?

Транзисторы — это устройства из полупроводников. У него много преимуществ, но наиболее важным и распространенным является его использование в качестве усилителя.Как? Должен… следовать, чтобы увидеть.

Хотя в настоящее время мы будем использовать ИС в большем количестве схем усилителя мощности.

Но транзисторы все еще широко используются. Потому что они маленькие по размеру. И высокий коэффициент усиления по току и напряжению. Это зависит от предвзятости, что можно сделать легко.

Основные принципы работы транзисторов

В целом рабочий диапазон транзистора можно разделить на 3 диапазона:

1. Отсечка (остановка транзистора) Не будет одновременно тока базы (IB) и коллектора (IC) протекает через транзистор.Будут очень редкие токи утечки.

2. Насыщенный диапазон. Через транзистор полностью проходит электричество, пока он не насыщается. И ток больше этого не увеличится. Что мы можем ограничить ток, протекающий через соединение резисторов.

3. Активный диапазон — это период, в течение которого транзистор работает (проводит ток). Управляя током коллектора (IC), пропорциональным току базы (IB).

Соотношение этих двух токов. Эти два значения могут найти коэффициент усиления по току (hFE) из:

hFE = IC / IB

Следовательно, при использовании транзисторного усилителя звука схема работает в активной фазе. В этом эксперименте вам нужно будет изучить простую схему усилителя. Давайте начнем.

Рекомендовано: Узнайте, как работает транзистор

У нас есть 2 интересных эксперимента.

Простой микрофонный усилитель звука

Посмотрите на схему ниже.Это экспериментальный процесс №1. Мы назвали простой аудиоусилитель. Увеличит сингл с микрофона.

Рисунок 1: Простой микрофонный усилитель звука Схема

Прецессия эксперимента схемы

  1. Подключите оборудование в соответствии со схемой, показанной на Рисунке 1, на макетную плату. Но будьте осторожны и с полярностью устройства. Не подключайтесь с неправильной полярностью.
  2. Когда закончите, подключите положительный и отрицательный провода от источника питания 6 В.
  3. Теперь нажмите на MIC1 2-3 раза.Мы услышим «хлопающий» звук из динамика. После этого попробуйте говорить в микрофон. Вы услышите звук, распространяющийся через динамики.

Как это работает?

Вернитесь к Рисунку 1 еще раз. Это схема усилителя от микрофона. Когда на MIC1 поступает аудиосигнал.

Когда звуковой сигнал проходит через MIC1. И он преобразуется в небольшой электрический сигнал, подаваемый на Q1 в точке A.

Для того, чтобы сначала усилить сигнал.Который мы установили как обычный эмиттерный усилитель.

Есть R1 и R2 для разделения напряжения смещения на Q1. Но сигнал недостаточно сильный.

В точке B. Когда сигнал увеличивается. Затем отправьте его на Q2 и Q3, которые подключены к схеме составного усилителя Дарлингтона.

Чтобы еще раз усилить сигнал, достаточно сильный, чтобы пройти через динамик.

Прочитать другие: 3-х транзисторный усилитель звука

Составной усилитель Дарлингтона
Рисунок 2: Соединение составного усилителя Дарлингтона

На рисунке 2 показано соединение транзистора Дарлингтона.Подключаем 2 транзистора с точно такими же характеристиками. По характеристикам схемы как на рисунке.

Например:

Если коэффициент усиления каждого транзистора равен 100, общий коэффициент усиления будет равен (100 × 100) = 10 000.

Связано: Цепи малых усилителей с высоким импедансом

AM-радиоприемник со схемой 3-х транзисторного усилителя

Это еще один пример простого эксперимента 2. Посмотрите на рисунок 3.Это простой эксперимент со схемой радиоприемника AM.

Как это работает

С помощью катушки L1, намотанной на ферритовый стержень. Один конец соединяется с анодом D1. Другой конец катушки заземлен. К этой катушке подключен регулируемый конденсатор (VC1).

Когда значения резонанса L1 и VC1 с этой частотой завершены. Диод D1 обнаруживает только звуковой сигнал. Чтобы перейти к Q1, усиление в соответствии с предыдущими принципами.

Если звук очень тихий.Попробуйте использовать наушники вместо колонок. Что отчетливее слышно с радиостанции. И помогает убрать посторонний шум.

Одним из недостатков является то, что эта схема является простой схемой базовой настройки, поэтому может быть трудно настроить станцию.

Читайте также: Очень простая схема усилителя на транзисторе 2N3904

Схема обратной связи транзисторного усилителя

Помимо обучения подключению аудиотранзистора. Мы также изучили, как организовать цепь смещения для получения обратной связи.Существует два типа обратной связи:

Способы улучшения схемы

Посмотрите на рисунок 5. Мы разделим значения R4 на R4A и R4B, при этом C2 подключается в центре обоих R. Затем другая сторона заземляется. Это даст немного больше отзывов.

Рис. 5: улучшите схему обратной связи

Что даст хорошие результаты даже при небольшом уменьшении увеличения.

Однако сумма расширений в цепи ограничена. Затем мы добавляем C2, чтобы уменьшить отрицательную обратную связь.

Рекомендуется: схема транзисторного усилителя звука мощностью 40 Вт с ПК B

Который этот C2 также помогает сделать напряжение на выводе эмиттера или потенциальное напряжение в точке D более плавным (из рисунка 1).

Мы ограничиваем только сумму отзывов. Потому что в базовой схеме усилителя большое увеличение важнее высокой четкости.

Как это приложение

Нам нравится использовать эту схему. Используется в домофоне. Все, что вам нужно, это сделать этот аудиоусилитель, добавить еще один комплект.Затем подключите кабель от динамика. Но не должен выходить более чем на 20 метров.

Если вы действительно хотите построить его для использования. Посмотрите на схему ниже.

Читать далее: простые транзисторные схемы внутренней связи

Только тогда они смогут взаимодействовать друг с другом. Даже будучи далеко друг от друга. Играть совсем не сложно.

Мало того, что у нас еще 3 транзисторных усилителя.

Моноусилитель на два динамика с выходами на транзисторах

В обычном стереоусилителе 2 динамика.А если моноусилитель — это одиночный динамик.

Но эта схема представляет собой специальный моноусилитель. Он может управлять 2 динамиками одновременно.

Без параллельного или последовательного доступа. Потому что это вызывает изменение импеданса динамика.

Но в этой схеме мы продолжаем динамики вместо коллекторного резистора (RC) транзистора.

Итак, он может усиливаться через 2 динамика.

Как это работает

Сначала подайте питание на схему, а аудиосигнал на входной разъем.Затем аудиосигнал, передаваемый через C1 и R1, усиливается транзистором Q1.

Который Q1 является первым предусилителем для небольшого увеличения сигнала. Перед отправкой в ​​Q2.

Затем Q2 подключается к цепи эмиттерного повторителя. Его функция — усилитель драйвера для усиления сигнала из секции предварительного усилителя. Для большей мощности для вождения Q3 работает хорошо.

А Q3 — усилитель мощности вне динамика.

Он имеет обратную связь аудиосигнала через VR1 и R2 на контакт B Q2.Чтобы контролировать стабильность работы навсегда.

Эта схема выводит 40 милливатт, искажение сигнала со скоростью 0,1 процента. А АЧХ от 15 Гц до 200 кГц.
Напряжение питания от 9В до 20В.

Вы ищете усилитель моно. У вас есть много вариантов. Например:

Детали вам понадобятся

0,25Вт 5% резисторы
R1: 27K
R2: 47K
R3: 12K
R4: 10 Ом
VR1: 50K Потенциометр

Конденсаторы
C1: 0.22 мкФ 50 В Керамика
C2: 5 пФ 50 В Керамика
C3, C4: 10 пФ 50 В Керамика
C5: 1000 мкФ 16 В Электролитический

Полупроводники
Q1: BC558, 45 В 0,1 А Транзистор PNP
Q2: Транзистор BD140,80 В 1,5 А PNP : TIP2955, 60V, 15A PNP-транзистор

Примечание: Я давно публикую эту схему. Но я не пробовал. Нашел много ошибок. Я нашел этот веб-сайт, разместил этот контент на нем. И измените номер транзистора. Это хорошая идея.Спасибо.

Также ознакомьтесь с этими статьями:

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Схема 4-транзисторного усилителя звука

Это схема 4-транзисторного усилителя звука. Комплементарный двухтактный усилитель с 4 транзисторами, демонстрирующий основы конструкции аудиоусилителя.

Эта схема экономит ток батареи, который довольно низкий при средней громкости, возрастая до 25-30 мА при увеличении громкости.

Это дает нам усилитель мощностью 250 мВт, которого достаточно, чтобы довести громкоговоритель до той же громкости, что и мобильный телефон или MP3-плеер.

Входное напряжение должно составлять около 100-500 мВ для полного управления усилителем. Ранее вам может понравиться схема усилителя LM386 . Но вам может понравиться и эта схема.

Работа схемы 4-х транзисторного усилителя

Этот тип схемы с использованием небольшого количества компонентов не требует трансформаторов и обеспечивает очень хорошие результаты.Четыре транзистора напрямую связаны, а петли обратной связи постоянного тока помогают стабилизировать работу схемы.

Рекомендуется: Здесь работает транзистор

4 работающих транзистора

Оба транзистора Q3 и Q4 скомпонованы как комплементарная пара, работающая на в двухтактном режиме. Каждый выходной транзистор выполняет одну половину звукового цикла, причем один отключается, когда другой проводит.

Затем транзисторы Q1 и Q2 работают как предварительный усилитель для увеличения входящего напряжения для управления выходной парой.

Затем в точке Q1 смещение всей цепи начинается с делителя напряжения, состоящего из резисторов 56 кОм и 100 кОм.

Это обеспечивает базу с напряжением смещения 5,5 В. Напряжение эмиттера на 0,6В меньше этого, и будет 4,9В.

И далее, транзистор Q2 смещен так, что он обеспечивает напряжение на нагрузочном резисторе 270 Ом, которое образует выходные транзисторы.

Рекомендуется: 3-х транзисторная схема усилителя звука

Имеется перепад напряжения 0.6В между их базой и эмиттером.

Это необходимо для уменьшения перекрестных искажений, которые возникают всякий раз, когда два транзистора соединяются по двухтактной схеме.

Электролитический фильтр емкостью 100 мкФ защищает динамик от появления постоянного тока, поэтому динамик должен колебаться вокруг этого нового положения.

См. Множество схем транзисторных усилителей

Прежде всего, вам понадобятся все детали ниже

Детали, которые вам понадобятся
  • Q1, Q3: BC547 или эквивалент, 45 В 0.1A, транзистор NPN
  • Q2, Q4: BC557 или аналогичный, 45 В 0,1 A, транзистор PNP

0,25 Вт Допуск резисторов: 5%

  • R1: 56K
  • R2: 100K
  • R3: 33K
  • R4: 470 Ом
  • R5: 270 Ом
  • R6: 1,5K
  • R7: 10K

Электролитические конденсаторы

  • C1: 10 мкФ 25 В
  • C2: 1 мкФ 25 В
  • C3: 25 В
  • B1: 9-вольтовые батареи
  • SP1: 8 Ом 0.25 ” Громкоговоритель

Эта схема требует достаточного источника питания. У тебя есть это? Если у вас его нет. Смотрим: Много Схема блока питания

Эта схема небольшого размера вы можете собрать их на макетной плате. Или вы можете собрать схему усилителя на небольшом куске универсальной печатной платы с 20 — 25 отверстиями. Прежде чем приступать к какой-либо пайке, сначала составьте схему расположения, которая почти соответствует схеме.

С осторожностью вы обнаружите, что вам не придется вырезать ни одну из универсальных дорожек печатной платы, и большинство деталей аккуратно поместятся на плату, поскольку все они равны нулю.Расстояние 1 дюйм.

Для моего сына план будет строить его на деревянной доске или на твердой бумаге , это также экономит деньги и весело!

Когда вы закончите пайку, затем подключите батарею через миллиамперметр, чтобы проверить, что ток находится в пределах 30 мА и, скорее всего, 5-15 мА при отсутствии входного сигнала.

Вы можете проследить через усилитель с помощью трассировщика сигналов проекта .

Очевидно, что все ступени не могут обеспечить хороший усилитель, поскольку транзистор имеет усиление не менее 20 раз, а иногда и внутрисхемное усиление 100.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *