Усилитель тока на оу: что это такое, принцип работы, схемы включения

Содержание

что это такое, принцип работы, схемы включения

В радиоэлектронике и микросхемотехнике широкое распространение получил операционный усилитель (ОУ). Он обладает отличными техническими характеристиками (ТХ) по усилению сигналов. Чтобы понять сферы применения ОУ, нужно узнать его принцип действия, схему подключения и основные ТХ.

Что такое операционный усилитель

ОУ — интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.

У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.

Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.

Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.

Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.

Виды и обозначения на схеме

С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.

Классификация по сферам применения:

  1. Индустриальные — дешевый вариант.
  2. Презиционные (точная измерительная аппаратура).
  3. Электрометрические (малое значение Iвх).
  4. Микромощные (потребление малого I питания).
  5. Программируемые (токи задаются при помощи I внешнего).
  6. Мощные или сильноточные (отдача большего значения I потребителю).
  7. Низковольтные (работают при U<3 В).
  8. Высоковольтные (рассчитаны на высокие значения U).
  9. Быстродействующие (высокая скорость нарастания и частота усиления).
  10. С низким уровнем шума.
  11. Звуковой тип (низкий коэффициент гармоник).
  12. Для двухполярного и однополярного типа электрического питания.
  13. Разностные (способны измерять низкие U при высоких помехах). Применяются в шунтах.
  14. Усилительные каскады готового типа.
  15. Специализированные.

По входным сигналам ОУ делятся на 2 типа:

  1. С 2 входами.
  2. С 3 входами. 3 вход применяется для расширения функциональных возможностей. Обладает внутренней ООС.

Схема операционного усилителя достаточно сложная, и не имеет смысла его изготавливать, а радиолюбителю нужно только знать правильную схему включения операционного усилителя, но для этого следует понимать расшифровку его выводов.

Основные обозначения выводов ИМС:

  1. V+ — неинвертирующий вход.
  2. V- — инвертирующий вход.
  3. Vout — выход.Vs+ (Vdd, Vcc, Vcc+) — плюсовая клемма ИП.
  4. Vs- (Vss, Vee, Vcc-) — минус ИП.

Практически в любом ОУ присутствуют 5 выводов. Однако в некоторых разновидностях может отсутствовать V-. Существуют модели, которые обладают дополнительными выводами, которые расширяют возможности ОУ.

Выводы для питания необязательно обозначать, т.к. это увеличивает читабельность схемы. Вывод питания от положительной клеммы или полюса ИП располагают вверху схемы.

Основные характеристики

ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:

  1. Усилительные.
  2. Входные.
  3. Выходные.
  4. Энергетические.
  5. Дрейфовые.
  6. Частотные.
  7. Быстродействие.

Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс).
Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.

Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ.
Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.

Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.

Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).

В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:

  1. Скорость нарастания Uвых (СН Uвых).
  2. Время установления Uвых (реакция ОУ при скачке U).

Где применяются

Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.

В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.

Можно выделить устройства, в которых применяются ОУ:

  1. Предусилители.
  2. Усилители звуковых и видеочастотных сигналов.
  3. Компараторы U.
  4. Дифусилители.
  5. Диференциаторы.
  6. Интеграторы.
  7. Фильтрующие элементы.
  8. Выпрямители (повышенная точность выходных параметров).
  9. Стабилизаторы U и I.
  10. Вычислители аналогового типа.
  11. АЦП (аналого-цифровые преобразователи).
  12. ЦАП (цифро-аналоговые преобразователи).
  13. Устройства для генерации различных сигналов.
  14. Компьютерная техника.

Операционные усилители и их применение получили широкое распространение в различной аппаратуре.

Операционный усилитель принцип работы для чайников

Операционные усилители. Виды и работа. Питание и особенности

Операционные усилители являются одними из основных компонентов в современных аналоговых электронных устройствах. Благодаря простоте расчетов и отличным параметрам, операционные усилители легки в применении. Их также называют дифференциальными усилителями, так как они способны усилить разность входных напряжений.

Особенно популярно использование операционных усилителей в звуковой технике, для усиления звучания музыкальных колонок.

Обозначение на схемах

Из корпуса усилителя обычно выходят пять выводов, из которых два вывода – входы, один – выход, остальные два – питание.

Принцип действия
Существуют два правила, помогающие понять принцип действия операционного усилителя:
  1. Выход операционного усилителя стремится к нулевой разности напряжений на входах.
  2. Входы усилителя не расходуют ток.

Первый вход обозначен «+», он называется неинвертирующим. Второй вход обозначен знаком «–», считается инвертирующим.

Входы усилителя имеют высокое сопротивление, называемое импедансом. Это позволяет расходовать ток на входах в несколько наноампер. На входе происходит оценка величины напряжений. В зависимости от этой оценки усилитель выдает на выход усиленный сигнал.

Большое значение имеет коэффициент усиления, который иногда достигает миллиона. Это означает, что если на вход подать хотя бы 1 милливольт, то на выходе напряжение будет равно величине напряжения источника питания усилителя. Поэтому операционники не применяют без обратной связи.

Входы усилителя действуют по следующему принципу: если напряжение на неинвертирующем входе будет выше напряжения инвертирующего входа, то на выходе окажется наибольшее положительное напряжение. При обратной ситуации на выходе будет наибольшее отрицательное значение.

Отрицательное и положительное напряжение на выходе операционного усилителя возможно из-за использования источника питания, обладающего расщепленным двуполярным напряжением.

Питание операционного усилителя

Если взять пальчиковую батарейку, то у нее два полюса: положительный и отрицательный. Если отрицательный полюс считать за нулевую точку отсчета, то положительный полюс покажет +1,5 В. Это видно по подключенному мультиметру.

Взять два элемента и подключить их последовательно, то получается следующая картина.

Если за нулевую точку принять отрицательный полюс нижней батарейки, а напряжение измерять на положительном полюсе верхней батарейки, то прибор покажет +10 вольта.

Если за ноль принять среднюю точку между батарейками, то получается источник двуполярного напряжения, так как имеется напряжение положительной и отрицательной полярности, равной соответственно +5 вольта и -5 вольта.

Существуют простые схемы блоков с расщепленным питанием, использующиеся в конструкциях радиолюбителей.

Питание на схему подается от бытовой сети. Трансформатор понижает ток до 30 вольт. Вторичная обмотка в середине имеет ответвление, с помощью которого на выходе получается +15 В и -15 В выпрямленного напряжения.

Разновидности

Существует несколько разных схем операционных усилителей, которые стоит рассмотреть подробно.

Инвертирующий усилитель

Такая схема является основной. Особенностью этой схемы является то, что операционники характеризуются кроме усиления, еще и изменением фазы. Буква «k» обозначает параметр усиления. На графике изображено влияние усилителя в данной схеме.

Синий цвет отображает входной сигнал, а красный цвет – выходной сигнал. Коэффициент усиления в этом случае равен: k = 2. Амплитуда сигнала на выходе в 2 раза больше, сигнала на входе. Выходной сигнал усилителя перевернут, отсюда и его название. Инвертирующие операционные усилители имеют простую схему:

Такие операционные усилители стали популярными из-за своей простой конструкции. Для вычисления усиления применяют формулу:

Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Здесь он применяется для защиты.

Неинвертирующие операционные усилители

Эта схема подобна предыдущей, отличием является отсутствие инверсии (перевернутости) сигнала. Это означает сохранение фазы сигнала. На графике изображен усиленный сигнал.

Коэффициент усиления неинвертирующего усилителя также равен: k = 2. На вход подается сигнал в форме синусоиды, на выходе изменилась только ее амплитуда.

Эта схема не менее простая, чем предыдущая, в ней имеется два сопротивления. На входе сигнал подается на плюсовой вывод. Для расчета коэффициента усиления требуется использовать формулу:

Из нее видно, что коэффициент усиления не бывает меньше единицы, так как сигнал не подавляется.

Схема вычитания

Эта схема дает возможность создания разности двух сигналов на входе, которые могут быть усилены. На графике показан принцип действия дифференциальной схемы.

Такую схему усилителя еще называют схемой вычитания.

Она имеет более сложную конструкцию, в отличие от рассмотренных ранее схем. Для расчета выходного напряжения пользуются формулой:

Левая часть выражения (R3/R1) определяет коэффициент усиления, а правая часть (Ua – Ub) является разностью напряжений.

Схема сложения

Такую схему называют интегрированным усилителем. Она противоположна схеме вычитания. Особенностью ее является возможность обработки больше двух сигналов. На таком принципе действуют все звуковые микшеры.

Эта схема показывает возможность суммирования нескольких сигналов. Для расчета напряжения применяется формула:

Схема интегратора

Если в схему добавить конденсатор в обратную связь, то получится интегратор. Это еще одно устройство, в котором используются операционные усилители.

Схема интегратора подобна инвертирующему усилителю, с добавлением емкости в обратную связь. Это приводит к зависимости работы системы от частоты сигнала на входе.

Интегратор характеризуется интересной особенностью перехода между сигналами: сначала прямоугольный сигнал преобразуется в треугольный, далее он переходит в синусоидальный. Расчет коэффициента усиление проводится по формуле:

В этой формуле переменная ω = 2πf повышается с возрастанием частоты, следовательно, чем больше частота, тем коэффициент усиления меньше. Поэтому интегратор может действовать в качестве активного фильтра низких частот.

Схема дифференциатора

В этой схеме получается обратная ситуация. На входе подключена емкость, а в обратной связи подключено сопротивление.

Судя по названию схемы, ее принцип работы заключается в разнице. Чем больше скорость изменения сигнала, тем больше величина коэффициента усиления. Этот параметр дает возможность создавать активные фильтры для высокой частоты. Коэффициент усиления для дифференциатора рассчитывается по формуле:

Это выражение обратно выражению интегратора. Коэффициент усиления повышается в отрицательную сторону с возрастанием частоты.

Аналоговый компаратор

Устройство компаратора сравнивает два значения напряжения и переводит сигнал в низкое или высокое значение на выходе, в зависимости от состояния напряжения. Эта система включает в себя цифровую и аналоговую электронику.

Особенностью этой системы является отсутствие в основной версии обратной связи. Это означает, что сопротивление петли очень велико.

На плюсовой вход подается сигнал, а на минусовой вход подается основное напряжение, которое задается потенциометром. Ввиду отсутствия обратной связи коэффициент усиления стремится к бесконечности.

При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению. Если на входе напряжение будет меньше опорного, то выходным значением будет отрицательное напряжение, равное напряжению источника питания.

В схеме аналогового компаратора имеется значительный недостаток. При приближении значений напряжения на двух входах друг к другу, возможно частое изменение выходного напряжения, что обычно приводит к пропускам и сбоям в работе реле. Это может привести к нарушению работы оборудования. Для решения этой задачи применяют схему с гистерезисом.

Аналоговый компаратор с гистерезисом

На рисунке показана схема действия схемы с гистерезисом, которая аналогична предыдущей схеме. Отличием является то, что выключение и включение не происходит при одном напряжении.

Направление стрелок на графике указывает направление перемещения гистерезиса. При рассмотрении графика слева направо видно, что переход к более низкому уровню осуществляется при напряжении Uph, а двигаясь справа налево, напряжение на выходе достигнет высшего уровня при напряжении Upl.

Такой принцип действия приводит к тому, что при равных значениях входных напряжений, состояние на выходе не изменяется, так как для изменения требуется разница напряжений на существенную величину.

Такая работа схемы приводит к некоторой инертности системы, однако это более безопасно, в отличие от схемы без гистерезиса. Обычно такой принцип действия применяется в нагревательных приборах с наличием термостата: плиты, утюги и т.д. На рисунке изображена схема усилителя с гистерезисом.

Напряжения рассчитываются по следующим зависимостям:

Повторители напряжения

Операционные усилители часто применяются в схемах повторителей напряжения. Основной особенностью этих устройств является то, что в них не происходит усиления или ослабления сигнала, то есть, коэффициент усиления в этом случае равен единице. Такая особенность связана с тем, что петля обратной связи имеет сопротивление, равное нулю.

Такие системы повторителей напряжения чаще всего используются в качестве буфера для увеличения нагрузочного тока и работоспособности устройства. Так как входной ток приближен к нулю, а ток на выходе зависит от вида усилителя, то есть возможность разгрузки слабых источников сигнала, например, некоторых датчиков.

Операционный усилитель

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.

Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Схема операционного усилителя

На схемах операционный усилитель обозначается вот так:

Чаще всего ОУ на схемах обозначаются без выводов питания

Итак, далее по классике, слева два входа, а справа – выход.

Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”. В этом случае “минус” батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Идеальная и реальная модель операционного усилителя

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

1) Входное сопротивление идеального ОУ бесконечно большое.

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т. п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения – несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.

А что покажет Falstad? Ноль Вольт.

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.

Смотрим, что имеем на виртуальном осциллографе:

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит. Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

Что такое операционный усилитель?

В радиоэлектронике и микросхемотехнике широкое распространение получил операционный усилитель (ОУ). Он обладает отличными техническими характеристиками (ТХ) по усилению сигналов. Чтобы понять сферы применения ОУ, нужно узнать его принцип действия, схему подключения и основные ТХ.

Что такое операционный усилитель

ОУ — интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.

У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.

Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.

Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.

Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.

Виды и обозначения на схеме

С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.

Классификация по сферам применения:

  1. Индустриальные — дешевый вариант.
  2. Презиционные (точная измерительная аппаратура).
  3. Электрометрические (малое значение Iвх).
  4. Микромощные (потребление малого I питания).
  5. Программируемые (токи задаются при помощи I внешнего).
  6. Мощные или сильноточные (отдача большего значения I потребителю).
  7. Низковольтные (работают при U Читайте также: Как перевести киловатты в лошадиные силы?

Основные характеристики

ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:

  1. Усилительные.
  2. Входные.
  3. Выходные.
  4. Энергетические.
  5. Дрейфовые.
  6. Частотные.
  7. Быстродействие.

Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс).
Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.

Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ.
Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.

Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.

Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).

В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:

  1. Скорость нарастания Uвых (СН Uвых).
  2. Время установления Uвых (реакция ОУ при скачке U).

Где применяются

Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.

В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.

Можно выделить устройства, в которых применяются ОУ:

  1. Предусилители.
  2. Усилители звуковых и видеочастотных сигналов.
  3. Компараторы U.
  4. Дифусилители.
  5. Диференциаторы.
  6. Интеграторы.
  7. Фильтрующие элементы.
  8. Выпрямители (повышенная точность выходных параметров).
  9. Стабилизаторы U и I.
  10. Вычислители аналогового типа.
  11. АЦП (аналого-цифровые преобразователи).
  12. ЦАП (цифро-аналоговые преобразователи).
  13. Устройства для генерации различных сигналов.
  14. Компьютерная техника.

Операционные усилители и их применение получили широкое распространение в различной аппаратуре.

Операционный усилитель

Операционный усилитель — это усилитель постоянного тока с высоким коэффициентом усиления, который может быть очень большим, вплоть до миллионов. Часто встречается коэффициент усиления в 200 000. Операционные усилители способны усиливать сигналы переменного тока, также как сигналы постоянного тока, они чаще используются в измерительном оборудовании для усиления сигналов постоянного тока.

Название «операционный» усилитель происходит от того, что выполняемые операционным усилителем функции представляют собой математические операции. Например, устройство для извлечение квадратного корня является контрольно-измерительным устройством, в котором используется операционный усилитель для определения квадратного корня сигналов для обеспечения контроля изменения величины потока жидкой или газообразной среды.

Операционный усилитель

Операционные усилители не обладают бесконечными входными сопротивлениями и нулевыми выходными сопротивлениями. Хотя возможно входное сопротивление в несколько триллионов Ом, и выходные сопротивления близкие к нулю. В результате выходные сигналы от таких операционных усилителей могут очень точно регулироваться. По этой причине операционные усилители считаются точными усилителями.

Высокая степень точности, обеспечиваемая операционными усилителями, возможна благодаря применению технологии интегральных схем. Хотя в принципе возможно изготовить операционный усилитель из дискретных компонентов, соединенных вместе на монтажной плате, однако практически все операционные усилители в настоящее время выполнены в виде интегральных схем.

Кристалл интегральной схемы операционного усилителя содержит все транзисторы и другие элементы, необходимые для усиления сигнала. Стандартный кристалл выполнен из, на нем может располагаться порядка 30 транзисторов и других элементов.

Кристалл с интегральной схемой операционного усилителя

При использовании операционных усилителей в различных типах схем они могут выполнять различные операции, необходимые в контрольно-измерительном оборудовании. Например, они могут суммировать сигналы, вычитать сигналы, находить среднюю величину сигнала и выполнять даже более сложные функции.

Схемы операционного усилителя

Все операционные усилители имеют два входа. Минус на схеме обозначает один вход, плюс — другой. Условное обозначение операционного усилителя можно узнать на схеме по знакам плюс и минус на вертикальной стороне треугольника. Это отличительные черты условного обозначения операционного усилителя. Если вы встретите на схеме подобный символ, но без знаков плюс и минус, то элемент, обозначенный таким образом, может представлять собой усилитель, но это не операционный усилитель.

Схема операционного усилителя

Выход операционного усилителя представлен на вершине треугольника, противолежащей стороне, где находятся входные зажимы. Соединения с источником питания обычно обозначаются линиями на противоположных сторонах треугольника. Большинство операционных усилителей рассчитаны на работу от биполярного источника напряжения, имеющего положительное и отрицательное напряжения. В целом, операционные усилители могут работать в пределах напряжения от +-1 В до +-40 В. Наиболее распространенное напряжение питания для них 15 В.

Схема соединения операционного усилителя с источником питания

Выход биполярного источника напряжения измеряется относительно нуля вольт, не всегда относительно земли шасси. Для указания точки отсчета используется стрелка с не закрашенной треугольной головкой. Такая стрелка показывает общую точку в схеме, называемую «общей точкой сигналов». Входной и выходной сигналы операционного усилителя также измеряются относительно общей точки сигналов. Соединения общих точек сигналов не всегда отображаются на принципиальных схемах с операционными усилителями.

Схема обозначения общей точки сигналов

Корпусы операционных усилителей

Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.

Операционный усилитель в корпусе ТО-5 (небольшой, металлический, круглой формы) Операционный усилитель в DIP- корпусе (самый большой из представленных) Операционный усилитель в мини DIP-корпусе (самый маленький из представленных) Операционный усилитель в плоском корпусе с боковыми выводами

Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.

Инвертирующий усилитель на ОУ. Принцип работы

Инвертирующий усилитель является одним из самых простых и наиболее часто используемых аналоговых схем. С помощью всего двух резисторов, мы можем выставить необходимый нам коэффициент усиления. Ничего не мешает нам сделать коэффициент менее 1, тем самым ослабив входной сигнал.

Часто к схеме добавляют еще один резистор R3, сопротивление которого равно сумме R1 и R2.

Чтобы понять, как работает инвертирующий усилитель, смоделируем простую схему. У нас на входе напряжение 4В, сопротивление резисторов составляет R1=1к и R2=2к. Можно было бы, конечно, подставить все это в формулу и сразу вычислить результат, но давайте посмотрим, как именно работает эта схема.

Начнем с напоминания основных принципов работы операционного усилителя:

Правило №1 — операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

Обратите внимание, что неинвертирующий вход (+) соединен с массой, то есть на нем напряжение равное 0В. В соответствии с правилом №1 на инвертирующем входе (-) так же должно быть 0В.

Итак, мы знаем напряжение, находящееся на выводах резистора R1 и его сопротивление 1к. Таким образом, с помощью закона Ома мы можем выполнить расчет, и рассчитать, какой ток течет через резистор R1:

Чтобы знать, куда дальше течет этот ток, мы должны знать еще принцип действия усилителя:

Правило №2 — входы усилителя не потребляют ток

Таким образом, ток, протекающий через R1, течет далее через R2!

Снова воспользуемся законом Ома и вычислим, какое падение напряжения происходит на резисторе R2. Мы знаем его сопротивление и знаем какой ток через него, следовательно:

Получается, что на выходе мы имеем 8В? Не совсем так. Напомню, что это инвертирующий усилитель, т. е. если на вход мы подаем положительное напряжение, а на выходе снимаем отрицательное. Как же это происходит?

Это происходит вследствие того, что обратная связь установлена на инвертирующем входе (-), и для уравнивания напряжений на входе усилитель снижает потенциал на выходе. Соединения резисторов можно рассмотреть как простой делитель напряжения, поэтому чтобы потенциал в точке их соединения был равен нулю, на выходе должно быть минус 8 вольт: Uвых. = -(R2/R1)*Uвх.

Есть еще один подвох, связанный с 3 правилом:

Правило №3 — напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

То есть нужно проверить, что рассчитанные нами напряжения можно реально получить через усилитель. Часто начинающие думают, что усилитель работает как источник свободной энергии и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание.
Классические усилители работают от напряжения -15В и +15В. В такой ситуации наши -8В, которые мы рассчитали, являются реальным напряжением, так как находится в этом диапазоне.

Однако современные усилители часто работают с напряжением 5В и ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал нам минус 8В на выходе. Поэтому, при проектировании схем всегда помните, что теоретические расчеты всегда нужно подкреплять реальностью и физическими возможностями.

Необходимо отметить, что инвертирующий усилитель имеет один недостаток. Мы уже знаем, что повторитель напряжения не нагружает источник сигнала, поскольку входы усилителя имеют очень большое сопротивление, и потребляют ток так мало, что в большинстве случаев его можно игнорировать (правило №2).

Инвертирующий же усилитель имеет входное сопротивление равное сопротивлению резистора R1, на практике оно составляет от 1к…1М. Для сравнения, усилитель с входами на полевых транзисторах имеет сопротивление порядка сотен мегаом и даже гигаом! Поэтому иногда может быть целесообразно перед усилителем установить повторитель напряжения.

Лекция 7 Применение операционных усилителей

Операционный усилитель без обратных связей практически не применяется. Многообразие видов обратных связей, а также способов их подключения позволяет синтезировать множество электронных схем. Можно выделить три основные схемы включения: инвертирующая, неинвертирующая и дифференциальная. Задачей анализа является нахождение функции преобразования входного сигнала, а также определение основных параметров: входного и выходного сопротивлений, полосы пропускания. При анализе воспользуемся понятием «идеальный операционный усилитель», что значительно упростит анализ, а результаты достаточно точны для практических целей.

7.1 Инвертирующее включение операционного усилителя

Инвертирующее включение операционного усилителя (рисунок 7.1) одно из самых распространенных. Оно используется в усилителях постоянного тока, в усилителях с емкостной связью, в интеграторах, в преобразователях напряжение – ток.

Рисунок 7.1 — Инвертирующее включение ОУ

Предварительно определим вид обратной связи, способ снятия и способ введения и их влияние на свойства схемы.

В схеме введена отрицательная обратная связь, т.к. напряжение с выхода поступает на инвертирующий вход. Фазовый сдвиг между входным напряжением и напряжением обратной связи равен . Коэффициент усиления с обратной связьюмного меньше, чем коэффициент усиления ОУ и определяется цепью обратной связи. Полоса пропускания схемы во много раз больнее, чем полоса пропускания ОУ.

Отрицательная обратная связь по напряжению, что обеспечивает малое выходное сопротивление, такая ОС стабилизирует выходное напряжение при изменении нагрузки, таким образом, схема будет являться почти идеальным источником напряжения.

Параллельный способ введения ОС приводит к малому входному сопротивлению схемы.

Эти выводы можно сделать на основании изучения раздела о влиянии обратной связи на свойства усилителей.

Рассмотрим работу схемы. Под действием входного напряжения в цепи резисторавозникает ток

(7. 1)

который в точке а распределяется на два тока:- входной ток операционного усилителя

(7.2)

и — ток в цепи обратной связи

(7.3)

где .

Если ОУ идеальный, то

, . (7.4)

Выходное напряжение изменяется до тех пор, пока ток не сравняется с током, тогда

, (7.5)

а коэффициент усиления с обратной связью

. (7.6)

Знак минус показывает, что схема инвертирующая, т.е. напряжение на выходе находится в противофазе входному напряжению

К основным параметрам, характеризующим свойства усилителей, кроме коэффициента усиления с обратной связью , относятся входное сопротивление с обратной связьюи выходное сопротивление с обратной связью

(7. 7)

, (7.8)

где — коэффициент обратной связи.

Частотные параметры УПТ определяют по амплитудно-частотным характеристикам (рисунок 7.2), которые строятся в логарифмическом масштабе в соответствии с уравнением

(7.9)

где — коэффициент усиления при нулевой частоте,

— частота верхнего среза, т.е. такая частота, при которой коэффициент усиления уменьшится в раз от своего максимального значения.

Рисунок 7.2 — Логарифмическая амплитудно-частотная характеристика УПТ

Особую роль в этой схеме играет резистор , он служит для уменьшения влияния входных токов смещения. Его сопротивление, согласно правилу, должно быть равно сопротивлению постоянному току в цепи инвертирующего входа. В цепи инвертирующего входа входной ток смещения распределяется по двум резисторами, следовательно, для этого тока резисторы включены параллельно.

Сопротивление резисторавыбирается равным сопротивлению параллельно соединенных резисторови.

Применение операционных усилителей. Часть 1. Регулирование тока нагрузки на примере светодиодного драйвера

Как известно, — для питания светодиодов требуется стабильный ток. Устройство, способное питать светодиоды стабильным током, называется драйвером светодиодов. Эта статья посвящена изготовлению такого драйвера с использованием операционного усилителя.

Итак, главная идея заключается в том, чтобы стабилизировать падение напряжения на резисторе известного номинала (в нашем случае — R3), включенном в цепь последовательно с нагрузкой (светодиодом). Поскольку резистор включен последовательно со светодиодом, то через них протекает одинаковый ток. Если этот резистор подобран таким образом, что он практически не нагревается, то и сопротивление его будет неизменным. Таким образом, стабилизировав падение напряжения на нём, мы стабилизируем и ток через него и, соответственно ток через светодиод.

Причём же здесь операционный усилитель? Да при том, что одним из его замечательных свойств является то, что ОУ стремится к такому состоянию, когда разность напряжений на его входах равна нулю. И делает он это путём изменения своего выходного напряжения. Если разность U1-U2 положительна — выходное напряжение будет возрастать, а если отрицательна — уменьшаться.

Представим, что наша схема находится в некоем равновесном состоянии, когда напряжение на выходе ОУ равно Uвых. При этом через нагрузку и резистор протекает ток Iн. Если по каким либо причинам ток в цепи возрастёт (например, если под действием нагрева уменьшится сопротивление светодиода), то это вызовет увеличение падения напряжения на резисторе R3 и, соответственно, увеличение напряжения на инвертирующем входе ОУ. Между входами ОУ появится отрицательная разность напряжений (ошибка), стремясь скомпенсировать которую, операционник будет уменьшать выходное напряжение. Он будет делать это до тех пор, пока напряжения на его входах не станут равными, т.

е. пока падение напряжения на резисторе R3 не станет равным напряжению на неинвертирующем входе ОУ.

Таким образом, вся задача свелась к тому, чтобы стабилизировать напряжение на неинверирующем входе ОУ. Если вся схема питается стабильным напряжением Uп, то для этого достаточно простого делителя (как на схеме 1). Раз делитель подключен к стабильному напряжению, то и выход делителя тоже будет стабильным.

Расчёты: Для расчётов выберем реальный пример: пусть мы хотим запитать два сверхъярких светодиода подсветки сотового телефона Nokia от напряжения Uп=12В (отличный фонарик в машину). Нам нужно получить ток через каждый светодиод 20 мА и при этом у нас имеется выковырянный с материнской платы сдвоенный операционный усилитель LM833. При таком токе наши светодиоды светят гораздо ярче, чем в телефоне, но сгорать и не собираются, значительный нагрев начинается где-то ближе к 30 мА. Расчёт будем вести для одного канала операционника, т.к. для второго он абсолютно аналогичен.

напряжение на неинвертирующем входе: U1=Uп*R2/(R1+R2)

напряжение на инвертирующем входе: U2=Iн*R3

из условия равенства напряжений в состоянии равновесия:

U1=U2 => Iн=Uп*R2/R3*1/(R1+R2)

Как выбирать номиналы элементов?

Во-первых, выражение для U1 справедливо только в том случае, если входной ток операционного усилителя = 0. То есть для идеального операционного усилителя. Чтобы можно было не учитывать входной ток реального ОУ, ток через делитель должен быть по крайней мере раз в 100 больше, чем входной ток ОУ. Величину входного тока можно посмотреть в даташите, обычно для современных ОУ она может составлять от десятков пикоампер до сотен наноампер (для нашего случая input bias current max=1 мкА). То есть ток через делитель должен быть по меньшей мере 100..200 мкА.

Во-вторых, с одной стороны — чем больше R3 — тем более наша схема чувствительна к изменению тока, но с другой стороны — увеличение R3 снижает КПД схемы, поскольку резистор рассеивает мощность, пропорциональную сопротивлению. Будем исходить из того, что мы не хотим падения напряжения на резисторе более 1В.

(Вообще же, если хотят побороться за КПД, то R3 выбирают как можно меньше. Предел уменьшения R3 ограничен таким показателем операционника, как напряжение смещения нуля. Для нормальной работы ОУ, R3 выбирают таким, чтобы минимальное падение напряжения на нём было на пару порядков больше напряжения смещения нуля. Подробнее об этом показателе и его влиянии на работу ОУ читайте в статье про дифференциальный усилитель.)

Итак, пусть R1=47кОм, тогда с учётом того, что U1=U2=1В, из выражения для U1 получим R2=R1/(Uп/U1-1)=4,272 -> из стандартного ряда выбираем резистор на 4,3 кОм. Из выражения для U2 находим R3=U2/Iн=50 -> выбираем резистор на 47 Ом. Проверим ток через делитель: Iд=Uп/(R1+R2)=234 мкА, что вполне нас устраивает. Мощность, рассеиваемая на R3: P=Iн2*R3=18,8 мВт, что тоже вполне приемлемо. Для сравнения, — самые обычные резисторы МЛТ-0,125 рассчитаны на 125 мВт.

Скачать плату (разводка под SMD)

Как уже было отмечено, описанная выше схема рассчитана на стабильное питание U

п. Что же делать, если питание НЕ стабильное. Самым простым решением является замена сопротивления R2 делителя на стабилитрон. Что важно учитывать в этом случае?

Во-первых, важно чтобы стабилитрон мог работать во всем диапазоне напряжения питания. Если ток через R1D1 будет слишком маленьким — напряжение на стабилитроне будет значительно выше напряжения стабилизации, соответственно, выходное напряжение будет значительно выше требуемого и светодиод может сгореть. Итак, нужно, чтобы при Uп min ток через R1D1 был больше или равен Iст min (минимальный ток стабилизации узнаём из даташита на стабилитрон).

R1 max = (Uп min-Uст)/Iст min

Во-вторых, при максимальном напряжении питания ток через стабилитрон не должен быть выше Iст max (наш стабилитрон не должен сгореть). То есть

R1 min =(Uп max-Uст)/Iст max

И, наконец, в-третьих, напряжение на реальном стабилитроне не точно равно Uст, — оно, в зависимости от тока, меняется от Uст min до Uст max. Соответственно, падение на резисторе R3 тоже изменяется от Uст min до Uст max. Это так же следует учитывать, поскольку чем больше ΔUст — тем больше ошибка регулирования тока, в зависимости от напряжения питания.

Ну ладно, с небольшими токами разобрались, а что делать, если нам нужен ток через светодиод не 20, а 500 мА, что превышает возможности операционника? Тут тоже всё достаточно просто — выход можно умощнить с помощью обычного биполярного или полевого транзистора, все расчёты при этом остаются без изменений. Единственное очевидное условие — транзистор должен выдерживать требуемый ток и максимальное напряжение питания.

Ну вот, пожалуй и всё. Удачи! И ни в коем случае не выкидывайте старый радиохлам — у нас впереди ещё много прикольных штуковин.

Planet Analog — Расчет выходного смещения в схемах на базе операционных усилителей

Операционные усилители

являются одними из наиболее широко используемых компонентов при проектировании электронных схем. Хотя функционально они просты, они демонстрируют сложное поведение, поскольку сам операционный усилитель представляет собой тщательно продуманную подсхему, состоящую из более чем дюжины транзисторов. Идеализированные модели операционного усилителя, а именно бесконечные значения усиления, полосы пропускания, входного сопротивления и выходной проводимости, а также нулевые значения входного напряжения смещения и токов смещения, являются хорошим приближением первого порядка для анализа схем на основе операционных усилителей.

Отклонение от идеального поведения может быть включено в анализ в зависимости от среды, в которой работает операционный усилитель. Одной из таких сред являются системы измерения постоянного тока. В таких приложениях нельзя игнорировать наличие напряжения смещения; в отличие от цепочки обработки сигналов, где смещения постоянного тока можно легко отфильтровать с помощью одного конденсатора. Напряжение смещения операционного усилителя приводит к ошибке на выходе для сигналов постоянного тока. Кроме того, они могут уменьшить динамический диапазон выходных данных, если они значительны.Наличие напряжения смещения — это хорошо изученное явление, которое описано в различной литературе и учебниках.

В этой статье предлагается обобщенный метод вычисления смещения на выходе, когда в схеме используется операционный усилитель с входным смещением e .

Передаточная функция идеального операционного усилителя описывается уравнением y = A ( V + V ), где y — выход; A — это усиление, при A → ∞, В + — это напряжение на положительной входной клемме и В — напряжение на отрицательной входной клемме операционного усилителя.Наличие смещения можно инкапсулировать, предположив, что реальная передаточная характеристика входа / выхода ОУ составляет y = A ( V + V + e ), где e это ошибка дифференциального входа идеального операционного усилителя. Эта модель согласуется с наблюдением, что в реальном операционном усилителе выходной сигнал равен нулю, когда есть разница на входе ( В + В ), и что настоящий операционный усилитель производит ненулевой выход при В + = В .

Предполагая функциональную модель операционного усилителя как y = A ( V + V + e ), где e — входное напряжение смещения при использовании в конфигурация отрицательной обратной связи, получаем

или, В + В = — e (при бесконечном усилении) для любой операционный усилитель , используемый в конфигурации с отрицательной обратной связью.

Таким образом, «золотые правила» операционных усилителей, которые широко соблюдаются при анализе идеальных схем на основе операционных усилителей, изменены, чтобы включить в них наличие входного напряжения смещения, равного e .

  • В схеме с операционным усилителем, используемым в конфигурации с отрицательной обратной связью, В = В + + e
  • Входной ток на положительной или отрицательной клемме операционного усилителя или с нее равен нулю.

Теперь рассмотрим топологию схемы, показанную на рисунке 1. Схематическая топология отображена на схему, показанную на рисунке 2, с резистивными цепями, замененными их эквивалентами Thevenin (смотрящими в сторону от клемм) как V th + , R th + и V th- , R th- соответственно.

Рисунок 1

A Общая топология схемы на основе ОУ с отрицательной обратной связью.

Применяя золотое правило,

V = V + + e = V th + + e , начиная с V + = V th + .

Применяя закон Кирхгофа к отрицательному выводу операционного усилителя на рисунке 2, получаем уравнение

Решая для V out в терминах V th + , V th- и e , получаем

Рисунок 2

Топология схемы, показанная на рисунке 1, отображается на схему выше

F ( V th + , V th- , 0) — это просто выход, когда операционный усилитель идеален (т.е.е. нулевое входное напряжение смещения) Следовательно, выходное смещение составляет

Здесь мы применяем полученную выше формулу для расчета выходного смещения для множества широко используемых схем на основе операционных усилителей.

1. Разностный усилитель

См. Рисунок 3. В данном случае

Рисунок 3

1а. Неинвертирующий усилитель:

Частный случай дифференциального усилителя с В 1 = 0 и R 1 = 0.

2. Суммирующий усилитель

См. Рисунок 4.

Рисунок 4

В данном случае R th- = R 1 || R 2 || R 3 ………. || R n и, следовательно,

2а. Инвертирующий усилитель

Частный случай суммирующего усилителя с n = 1.

2б.Двоично-взвешенный цифро-аналоговый преобразователь

Особый случай суммирующего усилителя, показанного выше, с

3. Цифро-аналоговый преобразователь лестничного типа R-2R

Как известно, эквивалентное выходное сопротивление лестницы R-2R равно R независимо от длины лестницы. На рисунках 5 и 6 показаны два варианта реализации. На рисунке 5

Рисунок 5

Релейный цифро-аналоговый преобразователь R-2R с буферизованным выходом

Рисунок 6

Релейный цифро-аналоговый преобразователь R-2R с инвертирующим выходом

На рисунке 6,

Для низких значений n взвешенный двоичный ЦАП дает меньшее смещение на выходе по сравнению с ЦАП R-2R на рисунке 6.

Включающие токи смещения

Этот раздел включает вычисление выходного смещения, если токи смещения вызывают беспокойство. Пусть токи смещения на положительной и отрицательной клеммах равны I B + и I B- соответственно (+ значение для исходящего тока). Ссылаясь на рисунок 2,

Применяя закон Кирхгофа к отрицательному выводу ОУ, получаем уравнение

Решение для V out в терминах V th + , V th- , e , I B + , I B- , получаем,

F ( V th + , V th- , 0, 0, 0) — это выход для идеального операционного усилителя.Таким образом, выходное смещение равно

.

После расчета R th + и R th — в каждом из вышеуказанных случаев (разделы 1-3) вычисление общего смещения представляет собой просто упражнение по подстановке соответствующих значений в приведенное выше уравнение.

Проектирование операционных усилителей: Советы по компоновке печатной платы для уменьшения шума | Блог

Я помню, как я в молодости сам подключал стереосистему и активные динамики в цепочку, чтобы попытаться получить идеальный звук.Вы быстро осознаете мощь усилителей и ущерб, который многоступенчатые усилители могут нанести вашей любимой музыке. Мне особо напомнили о фундаментальном компоненте: операционных усилителях. Операционные усилители — особенно полезные устройства в конструкции печатных плат, и они составляют основу многих устройств, которые делают возможной современную жизнь.

Поскольку операционные усилители являются аналоговыми компонентами, они могут быть весьма чувствительны к шумам. Если вы хотите убедиться, что ваши сигналы не содержат шумов, вам необходимо следовать правильным рекомендациям по компоновке операционных усилителей для вашей следующей печатной платы.Мы собрали несколько советов, которые вы можете использовать, чтобы гарантировать, что ваши аналоговые схемы будут свободными от шума, а операционные усилители будут работать должным образом.

  1. Используйте байпасный конденсатор
  2. Обратите внимание на паразитную емкость между выходными и входными контактами
  3. Удаление тепла с усилителей высокой мощности
  4. Отдельные аналоговые и цифровые компоненты

Основные принципы операционных усилителей

Операционные усилители — это компоненты преобразования сигналов, способные фильтровать и усиливать сигналы с помощью основных арифметических операций.Операционный усилитель имеет три контакта: инвертирующий вход, неинвертирующий вход и выход, который составляет основу многих конфигураций. Выход является несимметричным, то есть он привязан к некоторому уровню земли на вашей плате. Обычно это ближайшая аналоговая заземляющая пластина. Тем не менее, дифференциальные операционные усилители также доступны для работы с дифференциальными парами.

Все операционные усилители обладают следующими характеристиками: высокий коэффициент усиления без обратной связи, высокий входной импеданс, низкий выходной импеданс и ограниченная полоса пропускания.Типичный усилитель может иметь коэффициент усиления 10 000 и более. Входное сопротивление составляет менее 100 Ом, а выходное сопротивление обычно составляет не менее 0,25 МОм.

Операционный усилитель: простой, но универсальный электронный компонент. Операционные усилители

имеют довольно простые правила эксплуатации. Если вы подадите положительный вход на неинвертирующий вход, операционный усилитель создаст положительный размах на выходе. Точно так же, если вы подадите положительное напряжение на инвертирующий вход, на выходе возникнет отрицательный размах.Короче говоря, выход пропорционален разности напряжений на обоих входах.

Усиление обеспечивается добавлением петли обратной связи между выходом и одним из входов. Обратная связь по постоянному току включает только резисторы, а катушки индуктивности или конденсаторы используются для создания обратной связи с частотно-зависимым усилением. Список применений операционных усилителей можно продолжать бесконечно, но наиболее распространенными являются компараторы напряжения, активные выпрямители, фильтры сигналов и повторители напряжения.

Рекомендации по компоновке печатной платы операционного усилителя

Часто операционные усилители играют роль между аналоговыми и цифровыми компонентами.Одно из применений операционных усилителей — усиление необработанных аналоговых сигналов от датчиков до их захвата с помощью АЦП в микроконтроллере или другой схеме. Они также обычно используются в аудиоприложениях. При проектировании с операционными усилителями важно учитывать следующие рекомендации по компоновке операционных усилителей:

1. Используйте байпасный конденсатор

Операционному усилителю требуется стабилизированное напряжение для получения правильного выходного сигнала. Чтобы подавить шум, возникающий при переключении источника питания, поместите заземленный байпасный конденсатор рядом с выводом питания операционного усилителя.У байпасного конденсатора должен быть короткий путь между выводом питания операционного усилителя и заземлением.

Обходной конденсатор А обеспечит правильный выходной сигнал операционного усилителя.

2. Обратите внимание на паразитную емкость между выходными и входными контактами

Общеизвестно, что установка заземляющего слоя снижает восприимчивость к шуму за счет уменьшения индуктивности контура. Однако в случае конструкции операционного усилителя, когда плоскость заземления проходит ниже всего операционного усилителя и проходит ниже входных контактов операционного усилителя, паразитная емкость может возникать между входными контактами и выходом.Эта паразитная емкость может позволить высокочастотным компонентам выходного сигнала возвращаться на незаземленный входной вывод. Это известная проблема при проектировании высокочастотных усилителей мощности.

3. Удалите тепло из усилителей высокой мощности

При использовании операционного усилителя мощности необходимо поддерживать низкотемпературный переход для предотвращения теплового разгона. Правильные методы отвода тепла, в том числе тепловые переходные отверстия или радиаторы, могут помочь в отводе избыточного тепла. Операционные усилители большой мощности могут быть упакованы в микросхемы, которые включают в себя радиатор, прикрепленный к кристаллу, который можно использовать для отвода тепла непосредственно внутрь платы.

4. Отдельные аналоговые и цифровые компоненты

Правильные методы проектирования аналоговых устройств применимы и к операционным усилителям. Операционный усилитель часто используется для усиления сигнала низкого уровня перед его подачей в АЦП для усиления. Не размещайте нисходящие цифровые компоненты в той же области, что и другие аналоговые компоненты. Это предотвратит обратное попадание шума из цифровой части платы в аналоговую часть восходящего потока.

Избегайте схемных ошибок с помощью ПО для интерактивного дизайна

Компоновка ОУ

может быть сложным и длительным процессом без правильной технологии компоновки печатной платы.Возможность доступа к полной истории проектирования и эффективной настройки компоновки компонентов может означать разницу между нефункциональной схемой и высокопроизводительной конструкцией. Проектировать передовые аналоговые системы намного проще, если у вас есть подходящее программное обеспечение для проектирования печатных плат, которое поможет вам следовать рекомендациям по компоновке операционных усилителей. CircuitStudio® от Altium поможет вам разработать термостойкую конструкцию с точной интеграцией и адекватным зазором между аналоговыми и цифровыми компонентами.

Нужны дополнительные советы по разработке операционных усилителей? Поговорите со специалистом Altium.

Усилитель датчика тока и переключатель максимального тока

Проект усилителя датчика тока и переключателя максимального тока основан на датчике тока ACS714-30A и операционном усилителе LM358, 1/2 операционного усилителя LM358 используется в качестве усилителя для низкого напряжения и 2 операционного усилителя nd 1/2 LM358 используются в качестве компаратор, обеспечивающий выход TTL перегрузки по току, подстроечный потенциометр для установки предела перегрузки по току. Датчик ACS714 измеряет ток до +/- 30 А, конечный выход усилителя составляет 235 мВ / 1 А, и обычно выходной ток перегрузки имеет высокий TTL, он становится низким, когда ток превышает заданное значение.Для цепи требуется 5 В постоянного тока и 40 мА, встроенный светодиод показывает мощность. Резисторный делитель R1, R3 обеспечивает выход напряжения шины для интерфейса микроконтроллера для измерения напряжения шины, выберите соответствующее значение для R3, R1 в соответствии с вашим приложением и напряжением шины, оно должно быть менее 5 В постоянного тока.

Датчик тока ACS714

Allegro ™ ACS714 предоставляет экономичные и точные решения для измерения переменного или постоянного тока в автомобильных системах. Комплектация устройства позволяет легко реализовать его заказчику.Типичные применения включают управление двигателем, обнаружение и управление нагрузкой, импульсные источники питания и защиту от перегрузки по току. Устройство состоит из точной, линейной цепи Холла с малым смещением и медным проводящим каналом, расположенным вблизи поверхности кристалла. Приложенный ток, протекающий через этот медный проводящий путь, создает магнитное поле, которое ИС Холла преобразует в пропорциональное напряжение. Точность устройства оптимизируется за счет непосредственной близости магнитного сигнала к датчику Холла.Точное пропорциональное напряжение обеспечивается стабилизированной прерывателем BiCMOS Hall IC с низким смещением, точность которой запрограммирована после упаковки. Выход устройства имеет положительный наклон (> VIOUT (Q)), когда возрастающий ток течет через первичный медный проводящий путь (от контактов 1 и 2 к контактам 3 и 4), который используется для отбора тока. Внутреннее сопротивление этого токопроводящего пути обычно составляет 1,2 мОм, что обеспечивает низкие потери мощности. Толщина медного проводника позволяет выжить устройству в условиях перегрузки по току до 5 раз.

Характеристики

  • Питание 5 В постоянного тока
  • ACS714-30 малошумящий прямой выход 66 мВ / ампер
  • LM358 Выход усилителя 235 мВ / А
  • Максимальный выходной ток (обычно высокий-TTL становится низким при превышении уставки по току)
  • Предварительная установка триммера для установки предела сверхтока
  • Выход напряжения шины
  • Индикатор питания
  • Винтовой зажим для тока
  • Разъем для выходов и питания

Соединения разъема заголовка

  • Контакт 1: VCC, 5 В постоянного тока
  • Контакт 2: Земля питания
  • Контакт 3: VOP- ACS715-30 Датчик, прямой выход, 66 мВ / А
  • Контакт 4: OP1- Выход усилителя 235 мВ / А
  • Контакт 5: выход OP2 по току (обычно высокий TTL, низкий уровень при превышении предела)
  • Контакт 6: BSV- Выход напряжения шины

Схема

Список деталей

Подключения

PCB Фото

ACS714-30A Лист данных

ACS714
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *