Устройство операционного усилителя: Операционные усилители — принцип действия и параметры.

Содержание

принцип работы, схемы и т.д.

Операционный усилитель — это усилитель постоянного тока с высоким коэффициентом усиления, который может быть очень большим, вплоть до миллионов. Часто встречается коэффициент усиления в 200 000. Операционные усилители способны усиливать сигналы переменного тока, также как сигналы постоянного тока, они чаще используются в измерительном оборудовании для усиления сигналов постоянного тока.

Название «операционный» усилитель происходит от того, что выполняемые операционным усилителем функции представляют собой математические операции. Например, устройство для извлечение квадратного корня является контрольно-измерительным устройством, в котором используется операционный усилитель для определения квадратного корня сигналов для обеспечения контроля изменения величины потока жидкой или газообразной среды.

Операционный усилитель
Обратите внимание на основы электричества и на приборы электроники.

Операционные усилители не обладают бесконечными входными сопротивлениями и нулевыми выходными сопротивлениями. Хотя возможно входное сопротивление в несколько триллионов Ом, и выходные сопротивления близкие к нулю. В результате выходные сигналы от таких операционных усилителей могут очень точно регулироваться. По этой причине операционные усилители считаются точными усилителями.

Высокая степень точности, обеспечиваемая операционными усилителями, возможна благодаря применению технологии интегральных схем. Хотя в принципе возможно изготовить операционный усилитель из дискретных компонентов, соединенных вместе на монтажной плате, однако практически все операционные усилители в настоящее время выполнены в виде интегральных схем.

Кристалл интегральной схемы операционного усилителя содержит все транзисторы и другие элементы, необходимые для усиления сигнала. Стандартный кристалл выполнен из, на нем может располагаться порядка 30 транзисторов и других элементов.

Кристалл с интегральной схемой операционного усилителя

При использовании операционных усилителей в различных типах схем они могут выполнять различные операции, необходимые в контрольно-измерительном оборудовании. Например, они могут суммировать сигналы, вычитать сигналы, находить среднюю величину сигнала и выполнять даже более сложные функции.

Схемы операционного усилителя

Все операционные усилители имеют два входа. Минус на схеме обозначает один вход, плюс — другой. Условное обозначение операционного усилителя можно узнать на схеме по знакам плюс и минус на вертикальной стороне треугольника. Это отличительные черты условного обозначения операционного усилителя. Если вы встретите на схеме подобный символ, но без знаков плюс и минус, то элемент, обозначенный таким образом, может представлять собой усилитель, но это не операционный усилитель.

Схема операционного усилителя

Выход операционного усилителя представлен на вершине треугольника, противолежащей стороне, где находятся входные зажимы. Соединения с источником питания обычно обозначаются линиями на противоположных сторонах треугольника. Большинство операционных усилителей рассчитаны на работу от биполярного источника напряжения, имеющего положительное и отрицательное напряжения. В целом, операционные усилители могут работать в пределах напряжения от +-1 В до +-40 В. Наиболее распространенное напряжение питания для них 15 В.

Схема соединения операционного усилителя с источником питания

Выход биполярного источника напряжения измеряется относительно нуля вольт, не всегда относительно земли шасси. Для указания точки отсчета используется стрелка с не закрашенной треугольной головкой. Такая стрелка показывает общую точку в схеме, называемую «общей точкой сигналов». Входной и выходной сигналы операционного усилителя также измеряются относительно общей точки сигналов. Соединения общих точек сигналов не всегда отображаются на принципиальных схемах с операционными усилителями.

Схема обозначения общей точки сигналов

Корпусы операционных усилителей

Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.

Операционный усилитель в корпусе ТО-5 (небольшой, металлический, круглой формы)Операционный усилитель в DIP- корпусе (самый большой из представленных)Операционный усилитель в мини DIP-корпусе (самый маленький из представленных)Операционный усилитель в плоском корпусе с боковыми выводами

Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.

Операционный усилитель | Электроника для всех

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? 😉 Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас Uвых= K*Uвх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления 😉 И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

Uout=(U2-U1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях про использование аналогового компаратора и про создание на его базе АЦП. Также компаратор замечательно используется для создания

всяких ШИМ сигналов.

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

Что получим? А ничего интересного, процесс пойдет по следующей цепочке событий.

Uout = (0 — U1)*К = — К*U1
Uout’ = (-K*U1 — U1)*K1

В общем, выход мгновенно свалится в бесконечные минуса, а в реале ляжет на шину отрицательного питания и усе. Поэтому такое включение применяется крайне редко. Например в триггере Шмитта для обеспечения гистерезиса.

Триггер Шмитта
Представим себе компаратор включенный по такой вот схеме и запитанный от +/- 15 вольт:

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:

Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:

В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U1, на инверсном входе Uout = U1. Ну и получается, что U

out = U1.

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:

Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель


А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U1 на прямом. На инверсном Uout/2 = U1 или Uout = 2*U1.

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

Uout = U1*(1+R1/R2)

Мнемонически запоминается что на что делится очень просто:

Таким образом, можно очень легко умножать аналоговые значения на числа больше 1. А как быть с числами меньше единицы?

Инвертирующий усилитель
Тут поможет только инверсный усилитель. Разница лишь в том, что мы берем и прямой вход коротим на землю.

При этом получается, что входной сигнал идет по цепи резисторов R2, R1 в Uout. При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что Uout=0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно Uout. Делитель из R1 и R2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

Uout = — Uin * R1/R2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Вычитающая схема
Однако никто же не мешает подать на прямой вход не ноль, а любое другое напряжение. И тогда усилитель будет пытаться приравнять свой инверсный вход уже к нему. Получается вычитающая схема:

Допустим U2 и U1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно 🙂

Если U1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U1 и Uout станет 30 вольт. Ток через резистор R4 будет при этом (U1-Uout)/(R3+R4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R4 составит R4*I4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

Uout = U2*K2 — U1*K1

K2 = ((R3+R4) * R6 ) / (R6+R5)*R4
K1 = R3/R4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Если же вводные резисторы (R4 и R5) равны друг другу. И резистор обратной связи и резистор на землю (R3 и R6) тоже равны друг другу. То формула упрощается до

Uout = R3/R4 (U2 — U1).

Таким образом, на одном усилке можно два сигнала сначала вычесть, а потом умножить на константу. Этим, кстати, я воспользовался в схеме реобаса, чтобы привести милливольтный сигнал с датчика температуры к вменяемому виду.

Раз можно вычитать, то можно и суммировать

Сумматор инвертирующий

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

Uout = -1(R3*U1/R1 + R3*U2/R2)

Резисторы на входе (R1, R2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И Uout = -1(U1+U2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.

Uout = U1*K1 + U2*K2

K1 = R5/R1
K2 = R5/R2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R3/R4 = K1+K2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками 🙂

Продолжение следует, когда-нибудь 🙂

Операционный усилитель, принцип работы для чайников!

Приветствую вас дорогие друзья! Вот наконец добрался я  до своего компьютера,  приготовил себе чайку с печеньками  и понеслась…

Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете  для себя что-то полезное, по крайней мере я на это надеюсь.  Обязательно подпишитесь, тогда вы ничего не пропустите.

А сегодня речь пойдет о таком электронном устройстве как операционный усилитель.  Эти усилители   применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.

Особенно распространено применение  операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями,  ведь многие аудиосистемы просто нашпигованы ими.  Благодаря  свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем  качество работы операционного усилителя  на слух.

В  этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и  разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику .


[contents]


Что такое операционный усилитель ?

Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.

Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в  пластмассовом DIP корпусе а справа изображен операционник в металлическом  корпусе.

По началу, до знакомства с операционниками,     микросхемы в таких металлических корпусах я постоянно путал с транзисторами.  Думал что это такие хитромудрые  многоэмиттерные транзисторы 🙂

Условное графическое обозначение (УГО)

Условное обозначение операционного усилителя выглядит следующим образом.

Итак  операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.

Для такого усилителя есть два правила которые помогут понять принцип работы:

 

  1. Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
  2. Входы операционного усилителя ток не потребляют

Вход 1  обозначается знаком «+»  и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.

Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.

Это говорит о том, что  входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.

Коэффициент усиления операционного усилителя имеет просто огромное значение,  может достигать миллиона, а это очень большое значение!  Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе  получим сразу максимум,  напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.

Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет  максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения  окажется более положительной то  на выходе будем наблюдать максимум отрицательной величины, где-то -15В.

Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным  напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.

Правильное питание ОУ

Наверное не будет секретом, что для того, чтобы операционник работал, его нужно запитать, т.е. подключить его к источнику питания. Но есть интересный момент, как мы убедились чуток ранее операционный усилитель может выдавать на выход напряжения как положительной так и отрицательной полярности. Как такое может быть?

А такое быть может! Это связано с применением двуполярного источника питания, конечно возможно использование и однополярного источника но в этом случае возможности операционного усилителя будут ограничены.

Вообще в работе с источниками питания многое зависит от того что мы взяли за точку отсчета т.е. за 0 (ноль). Давайте с этим разберемся.

Пример на батарейках

 Обычно примеры проще всего приводить на пальцах но  в электронике думаю подойдут и пальчиковые батарейки 🙂

Допустим у нас есть обычная пальчиковая батарейка (батарейка типа АА). У нее есть два полюса плюсовой и минусовой. Когда минусовой полюс мы принимаем за ноль, считаем нулевой точкой отсчета то соответственно плюсовой полюс батарейки будет у нас показывать + 5В (значение с плюсом).

Это мы можем увидеть с помощью мультиметра (кстати статья про мультиметры в помощь), достаточно подключить   минусовой черный щуп к минусу батарейки а красный щуп к плюсу и вуаля. Здесь все просто и логично.

Теперь немножко усложним задачу и возьмем точно такую же вторую батарейку. Подключим батарейки последовательно и  рассмотрим как меняются показания измерительных приборов (мультиметров или вольтметров) в зависимости от различных точек приложения щупов.

Если мы за ноль приняли минусовой полюс крайней батарейки  а измеряющий щуп подключим к плюсу батарейки то  мультиметр нам покажет значение в +10 В.

Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет -10 В.

Но если за точку отсчета будет принята точка между двумя батарейками то в результате мы сможем плучить простой источник двуполярного питания. И вы можете в этом убедиться, мультиметр нам подтвердит что так оно и есть. У нас в наличии   будет напряжение как положительной полярности +5В так и  напряжение отрицательной полярности -5В.

Схемы источников двуполярного питания

Примеры на батарейках я привел для примера, чтобы было более понятно. Теперь давайте рассмотрим несколько примеров  простых схем источников расщепленного питания которые можно применять в своих радиолюбительских конструкциях.

Схема с трансформатором,  с отводом от «средней» точки

И первая схема источника питания для ОУ перед вами. Она достаточно простая но я немножко поясню принцип ее работы.

Схема питается от привычной нам домашней  сети  поэтому нет ничего удивительного что на первичную обмотку трансформатора приходит переменный ток в 220В. Затем трансформатор преобразует переменный ток 220В в такой же переменный но уже в 30В. Вот такую  вот нам захотелось произвести трансформацию.

Да на вторичной обмотке будет переменное напряжение в 30В но обратите внимание на отвод от средней точки вторичной обмотки. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления.

Благодаря этому ответвлению мы можем получить на выходе вторичной обмотки переменное напряжение как в 30 В так и переменку в 15В. Это знание мы берем на вооружение.

Далее нам нужно переменку выпрямить и превратить в постоянку поэтому диодный мост нам в помощь. Диодный мост с этой задачей справился и на выходе мы получили не очень стабильную постоянку в 30В. Это напряжение будет нам показывать мультиметр если  мы подключим шупы к выходу диодного моста, но нам нужно помнить про ответвление на вторичной обмотке.

Это ответвление мы ведем далее и подключаем между электролитическими конденсаторами и затем между следующией парой высокочастотных кондерчиков. Чего мы этим добились?

Мы добились нулевой точки отсчета между полюсами потенциалов положительной и отрицательной полярности. В результате на выходе мы имеем достаточно стабильное  напряжение как +15В так и -15В. Эту схему конечно можно еще более улучшить если добавить стабилитроны или интегральные стабилизаторы но тем не менее приведенная схема уже вполне может справиться с задачей питания операционных усилителей.

Схема с двумя диодными мостами

Эта схема на мой взгляд проще, проще в том ключе, что нет необходимости искать трансформатор с ответвлением от середины или формировать вторичную обмотку самостоятельно. Но здесь придется раскошелиться на второй диодный мост.

Диодные мосты включены так, что положительный потенциал формируется с катодов диодиков первого моста, а отрицательный потенциал выходит с анодов диодов второго моста.  Здесь нулевая точка отсчета выводится между  двумя мостами. Упомяну также, что здесь используются разделительные конденсаторы, они оберегают один диодный мост от воздействий со стороны второго.

Эта схема также легко подвергается различным улучшениям, но самое главное она решает основную задачу — с помощью нее можно запитать операционный усилитель.

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде 🙂 Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно  мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно.

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник  станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом  и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь,  отрицательная обратная связь

Да, в  операционных усилителях применяют обратную связь и очень широко. Но обратная связь   может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь это когда часть выходного сигнала поступает обратно на вход причем она (часть выходного) суммируется с входным.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать.  Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые  используют в АЦП (Аналого-цифровых преобразователях).

Отрицательная обратная связь это такая связь когда часть выходного сигнала поступает обратно на вход но при этом она вычитается из входного

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость.  В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Схемы включения операционных усилителей

Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся  рассказать о каждой но  я постараюсь рассмотреть основные.

Компаратор на ОУ

Формулы для  компараторной схемы будут следующие:

Т.е. в результате будет напряжение соответствующее логической единице.

Т.е. в результате будет напряжение соответствующее логическому нулю.

Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.

Рассмотрим для начала вот такую схему включения  операционника  в режиме компаратора.  Эта схема включения лишена обратной связи.  Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше  и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).

Допустим  напряжение стабилизации стабилитрона  5В,  на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1  используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.

В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.

Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий)  изменит на противоположный  из 3В сделает -3В.

В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.

Триггер Шмитта на ОУ

Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.

Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.

Если на входе у нас напряжение больше нуля то на выходе будем иметь  -15В. Если напряжение меньше нуля то на выходе будет+15В.

Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону.  В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать  максимума до минимума что на практике совершенно не удобно.

Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.

Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.

Представим, что на вход мы подали 5В , на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь.  Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.

На инверсном входе у нас сигнал более положительный поэтому  операционный усилитель отработает следующим образом.  Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.

Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В.  На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.

Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.

Повторитель

Наиболее простой обладатель отрицательной обратной связи это повторитель.

Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего  это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.

Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам.  Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.

Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то  он и повторитель.

Неинвертирующий усилитель

Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.

Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть  в два раза больше напряжения на входе.

Вообще чтобы применять эту схему включения даже не нужно  ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.

Инвертирующий усилитель

И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель.  Для инвертирующего усилителя  есть такие формулы:

Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак ) его . Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.

Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2  и на выход.  Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.

1В/110=Х/100, отсюда Х = 0,91В

Получается что в точке А потенциал равен 0,91В,  но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.

Как сделать так чтобы на входе был 1В а в точке А  был 0В?

Для этого нужно уменьшать напряжение на выходе.  И в результате мы получаем

 

К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.

Сумматор инвертирующий

 

А эта схема включения позволяет складывать множество входных напряжений. Причем напряжения могут быть как положительными так и отрицательными. По истине на операционниках можно строить аналоговые компьютеры. Так чтож давайте разбираться.

Основой сумматора служит все тот же инвертирующий усилитель только с одним отличием, вместо одного входа он может иметь этих входов сколько угодно. Вспомним формулку и инвертирующего усилка.Потенциал точки Х будет равен нулю поэтому сумма токов входящих с каждого входа будет выглядеть вот так:Если нашей целью является чистое сложение входных напряжений то все резисторы в этой схеме выбираются одного номинала.  Это приводит также что коэффициент усиления для каждого входа будет равен 1. Тогда формула для инвертирующего усилителя принимает вид: 

Ну чтож, я думаю что с работой сумматора и других схем включения на операционниках разобраться не трудно. Достаточно немножко попрактиковаться и попробовать собрать эти схемы и посмотреть что происходит с входными и выходными сигналами.

А я на этом пожалуй остановлюсь ведь в работе с операционными усилителями применяются очень много различных схем включения, это различные преобразователи ток-напряжение,  сумматоры, интеграторы и логарифмирующие усилители и все их рассматривать можно очень долго.

Если вас заинтересовали другие схемы включения и хотите с ними разобраться то советую полистать книжку П.Хоровица и У.Хилла,  все обязательно встанет на свои места.

А на этом я буду завершать, тем более статья получилась достаточно объемной и  после написания ее нужно чутка подшлифовать и навести марафет.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Кстати друзья, у меня возникла одна классная идея и мне очень важно слышать ваше мнение. Я подумываю выпустить обучающий материал   по операционным усилителям, этот материал будет в виде обычной pdf книжки или видеокурса, еще не решил. Мне кажется что несмотря на большое обилие информации в интернете и в литературе все=таки не хватает наглядной практической информации, такой, которую сможет понять каждый.

Так вот, напишите пожалуйста в комментариях какую информацию вы хотели бы видеть в этом обучающем материале чтобы я мог выдавать не просто полезную информацию а информацию которая действительно востребована.

А на этом у меня все, поэтому я желаю вам удачи, успехов и прекрасного настроения, даже не смотря на то что за окном зима!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

1.1.   Устройство и внутренняя структура операционных усилителей

Операционный усилитель это электронный усилитель, предназначенный для различных операций над аналоговыми величинами в схемах с отрицательной обратной связью (ООС). Чаще под ОУ понимают усилитель постоянного тока (УПТ) с дифференциальным входом, большим коэффициентом усиления (K0), малыми входными токами (IВХ), большим входным сопротивлением (RВХ), малым выходным сопротивлением (RВЫХ), достаточно большой граничной частотой усиления (fГР), малым смещением нуля (UСМ). Под большими и малыми понимаются такие величины, которые в простых расчетах можно считать соответственно бесконечными или нулевыми (идеальный ОУ).

Входной каскад операционного усилителя (рис. 1.1) выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа. Выходное напряжение (UВЫХ) находится в одной фазе с разностью входных напряжений:

UВЫХ = U1 – U2.

Чтобы обеспечить возможность работы как с положительными, так и с отрицательными входными сигналами, операционные усилители обычно питают от симметричных источников, обеспечивающих одинаковые по величине положительное и отрицательное напряжения (+UП, –UП) относительно нулевого провода («земли»). Для большинства современных ОУ напряжение питания можно менять в достаточно широких пределах от ± 3 до ± 18 В. В дальнейшем, рассматривая схемы на ОУ, мы, как правило, не будем указывать выводы питания.

Очень важным обстоятельством является то, что операционный усилитель почти всегда охвачен глубокой отрицательной обратной связью, свойства которой и определяют свойства схемы с ОУ.

Принцип введения отрицательной обратной связи иллюстрируется рис. 1.2.

Часть выходного напряжения возвращается через цепь обратной связи к входу усилителя. Если напряжение обратной связи (рис. 1.2) вычитается из входного напряжения, обратная связь называется отрицательной.

Для физического анализа схемы (см. рис. 1.2) допустим, что входное напряжение изменилось от нуля до некоторого положительного значения (UВХ). В первый момент выходное напряжение (UВЫХ), а следовательно, и напряжение обратной связи (ΔUВЫХ) также равны нулю. При этом напряжение, приложенное к входу операционного усилителя, составит:

UД = UВХ.

Так как это напряжение усиливается усилителем с большим коэффициентом усиления (KU), то выходное напряжение (UВЫХ) быстро возрастет до некоторого положительного значения и вместе с ним возрастет также напряжение обратной связи (ΔUВЫХ). Это приведет к уменьшению напряжения (UД), приложенного к входу усилителя. Тот факт, что выходное напряжение воздействует на входное напряжение, причем так, что это влияние направлено в сторону, противоположную изменениям входной величины, и есть проявление отрицательной обратной связи. После достижения устойчивого состояния выходное напряжение ОУ равно:

UВЫХ = KUUД = KU(UВХ – βUВЫХ).

Решив это уравнение относительно UВЫХ, получим:

KОС = UВЫХ/UВХ = KU/(1 + βKU)

При KU >>1 коэффициент усиления ОУ, охваченного обратной связью, составит:

KОС = 1/β

Из этого соотношения следует, что коэффициент усиления ОУ с обратной связью определяется почти исключительно только обратной связью и мало зависит от параметров самого усилителя.

В простейшем случае цепь обратной связи представляет собой резистивный делитель напряжения. При этом схема с ОУ работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC-цепь, то образуется активный фильтр. Наконец, включение в цепь обратной связи ОУ диодов и транзисторов позволяет реализовать нелинейные преобразования сигналов с высокой точностью.

Таким образом, основное назначение операционного усилителя построение схем с точно синтезированной передаточной функцией, которая зависит практически только от свойств цепи обратной связи (ОС). Н

Операционный усилитель. Принцип работы и схемы включения.

Продолжаем изучать основы электроники на нашем сайте, и героем сегодняшней статьи будет еще одно замечательное устройство – а именно операционный усилитель. Сегодня разберемся, что это вообще такое, как он работает, ну и парочку основных схем по традиции разберем 🙂

Итак, по определению ОУ – это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом. Теперь разберемся, что это значит…

ОУ имеет два входа и один выход. Один из этих входов называют неинвертирующим и обозначают на схемах плюсом, второй, соответственно, является инвертирующим. Так вот, напряжение на выходе ОУ определяется следующим образом:

U_{вых} = K(U_+\medspace-\medspace U_-)

K – это коэффициент усиления операционника, обычно он имеет значения порядка 100000 – 1000000. Из формулы видим, что в случае, когда сигналы на обоих входах ОУ равны, на выходе ноль. Если, например, потенциал инвертирующего входа (-) стал более положительным, чем потенциал неинвертирующего входа (+), то выходной сигнал изменится в отрицательном направлении. В этом и заключается работа операционного усилителя.

Помимо уже упомянутых входов и выхода ОУ имеет также выводы для подачи питания, и вот как выглядит его обозначение на принципиальных схемах:

Чаще всего в схемах на операционниках используется обратная связь, поскольку коэффициент усиления ОУ без обратной связи слишком уж велик 🙂 В замечательной книге Хоровица и Хилла приведены несколько, а точнее два правила, которые определяют как работает операционник в схемах с обратной связью.

  • Итак, первое правило заключается в том, что входы ОУ не потребляют ток. Конечно, в реальности потребление все-таки есть, поскольку идеального ничего не бывает, но это потребление составляет единицы нА, а то и меньше.
  • Второе правило заключается в том, что выход ОУ стремится к тому, чтобы разность напряжений между его входами была равна нулю. Вот эта формулировка мне, честно говоря, не слишком нравится. А суть тут заключается в том, что часть выходного напряжения через цепь обратной связи передается на вход и в результате этого потенциал обоих входов ОУ выравнивается.

Для того, чтобы разобраться в работе операционного усилителя, давайте рассмотрим пару-тройку схем. И начнем со схемы неинвертирующего усилителя (кстати на схемах порой опускают обозначение выводов для подачи питания на ОУ, мы, пожалуй, тоже так поступим 🙂 ):

Для начала определим, какое же значение напряжения мы получим на выходе, подав на вход U_{вх}. Как следует из второго правила – операционник с обратной связью “добьется” того, чтобы потенциалы входов выровнялись, а это значит, что:

U_- = U_{вх}

Но в то же время R_1 и R_2 образуют делитель напряжения и тогда:

U_- = \frac{U_{вых}\medspace R_1}{R_1\medspace+\medspace R_2}

Приравниваем эти два значения и получаем, что:

U_{вых} = U_{вх}\medspace (1 + \frac{R_2}{R_1})

K_{ус} = \frac{U_{вых}}{U_{вх}} = 1\medspace+\medspace\frac{R_2}{R_1}

Получили такой вот коэффициент усиления для неинвертирующего усилителя на операционном усилителе с обратной связью.

Давайте рассмотрим конкретный пример, чтобы еще лучше понять работу данной схемы. Пусть будут такие номиналы: R_2 = 10\medspace КОм , R_1 = 1\medspace КОм. На вход подадим 1 В. В этом случае напряжение на выходе ОУ начнет расти, поскольку (U_+\medspace-\medspace U_- > 0).

И расти оно будет до тех пор, пока потенциал на инвертирующем (-) выходе не станет равен 1 В (так как на неинвертирующем входе (+) у нас как раз-таки 1 В). Остается определить, при каком выходном значении напряжения, U_- будет равно 1 В. Входы ОУ ток не потребляют, значит ток протекает по цепи выход – R_2 – R_1 – земля:

I = \frac{U_{вых}}{R_1\medspace+\medspace R_2} = \frac{U_-}{R_1}

Из этого равенства без проблем определим U_{вых}, при значении U_- равном 1 В:

U_{вых} = U_-\frac{R_1\medspace+\medspace R_2}{R_1}

Подставив наши значения, получим U_{вых} = 11\medspace В. Это подтверждает верность выведенной нами ранее формулы U_{вых} = U_{вх}\medspace(1 + \frac{R_2}{R_1}) 🙂

С неинвертирующим усилителем разобрались, давайте рассмотрим еще одну схему – инвертирующий усилитель.

В принципе работает эта схема практически так же, как предыдущая. На неинвертирующем (+) входе потенциал земли, значит на инвертирующем тоже будет такой же потенциал. То есть:

U_- = 0

Не забываем, что ток входы ОУ не потребляют, а значит ток протекает по цепи выход – R_2 – R_1 – вход и равен он:

I = \frac{U_{вых}\medspace-\medspace U_-}{R_2} = \frac{U_-\medspace-\medspace U_{вх}}{R_1}

Отсюда нам остается только выразить U_{out} и определить коэффициент усиления цепи:

U_{вых} = -U_{вх}\medspace\frac{R_2}{R_1}

K_{ус} = -\frac{R_2}{R_1}

Сразу же становится понятно, почему усилитель называется инвертирующим 🙂 Сигналы на входе и на выходе разных знаков.

В завершение рассмотрим, пожалуй, еще одну небольшую схемку, а именно схему повторителя на операционном усилителе с обратной связью:

Если внимательно посмотреть на эту схему, то становится понятно, что это всего лишь неинвертирующий усилитель, у которого R_1 равно бесконечности, а R_2 равно нулю. Подставив эти значения в формулу для U_{out} получим:

U_{вых} = U_{вх}\medspace(1\medspace+\medspace\frac{R_2}{R_1}) = U_{вх}

Таким образом, напряжение на выходе повторяет сигнал на входе! Огромный плюс такого повторителя заключается в том, что его входной импеданс огромен, а выходной, напротив, мал.

Наверно, на этом сегодня закончим, а в следующей статье рассмотрим и проанализируем какие-нибудь схемки посложнее 🙂 До скорых встреч!

Операционные усилители. Устройство и принцип действия.

Операционные усилители. Устройство и принцип действия.

Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами: их усиление или ослабление, сложение или вычитание, интегрирование или дифференцирование, логарифмирование или потенцирование, преобразование их формы и др. Все эти операции ОУ выполняет с помощью цепей положительной и отрицательной обратной связи, в состав которых могут входить сопротивления, емкости и индуктивности, диоды, стабилитроны, транзисторы и некоторые другие электронные элементы. Поскольку все операции, выполняемые при помощи ОУ, могут иметь нормированную погрешность, то к его характеристикам предъявляются определенные требования.

Требования эти в основном сводятся к тому, чтобы ОУ как можно ближе соответствовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное сопротивление ОУ должно быть равно бесконечности, а следовательно, входной ток должен быть равен нулю. Выходное сопротивление должно быть равно нулю, а следовательно, нагрузка не должна влиять на выходное напряжение. Частотный диапазон усиливаемых сигналов должен простираться от постоянного напряжения до очень высокой частоты. Поскольку коэффициент усиления ОУ очень велик, то при конечном значении выходного напряжения напряжение на его входе должно быть близким к нулю.

Входная цепь ОУ обычно выполняется по дифференциальной схеме, а это значит, что входные сигналы можно подавать на любой из двух входов, один из которых изменяет полярность выходного напряжения и поэтому называется инвертирующим, а другой не изменяет полярности выходного напряжения и называется — неинвертирующим.

Условное схематическое обозначение дифференциального операционного усилителя приведено на рис. 1, а. Инвертирующий вход можно отмечать кружочком или писать около него знак минус (-). Неинвертирующий вход или совсем не отмечается, или около него пишется знак плюс (+). Два вывода ОУ используются для подачи на него напряжения питания +ЕП и -Е„. Положительное и отрицательное напряжение питания обычно имеют одно и то же значение, а их общий вывод одновременно является общим выводом для входных и выходного сигналов (в дальнейшем выводы питания изображаться не будут).

 

 Рис. 1. Схематическое изображение дифференциального операционного усилителя (а), инвертирующего (б) и неинвертирующего (в)

 

Если один из двух входов ОУ соединить с общим выводом, то можно получить два ОУ с одним входом, один из которых будет инвертирующим (рис.1, б), а другой — неинвертирующим (рис.1, в). Выходное напряжение для дифференциального усилителя определяется по формуле:

Uвых = (Uвх1-Uвх2)A,

где А — коэффициент усиления ОУ.

Для инвертирующего ОУ выходное напряжение равно Uвых = —Uвх2A; а для неинвертирующего Uвых=Uвх1A. Разностное напряжение (Uвх1 –Uвх2) = Uдиф — называют дифференциальным входным сигналом. По сути дела, это напряжение приложено между инвертирующим и неинвертирующим входами ОУ.

Если оба входа ОУ соединить вместе, то получившаяся схема будет иметь только один вход, а приложенный к нему сигнал называют синфазным Uсф= Uвх1 = Uвх2. Для синфазного сигнала в соответствии с формулой выходное напряжение должно быть равно нулю, однако в реальных усилителях этого не происходит и выходной сигнал присутствует, хотя и имеет малое значение. Схемы подачи на входы ОУ дифференциального и синфазного сигналов приведены на рис. 2.

 

   

 Рис. 2. Схемы подачи на входы ОУ дифференциального и синфазного сигналов.

 

Операционные усилители. Часть 1 | joyta.ru

Операционный усилитель (ОУ) — это основной элемент современной аналоговой электроники. Благодаря отличным характеристикам и простоте расчетов, ОУ очень легки в использовании. Операционные усилители еще называют дифференциальными усилителями, поскольку они могут усилить разность напряжений на входах.

Операционные усилители выпускаются как готовые микросхемы, иногда по одному, а иногда и по несколько штук в одном корпусе. Существует множество видов операционных усилителей, которые отличаются между собой техническими параметрами, что в конечном итоге влияет на целесообразность применения в конкретных схемах.

Hantek 2000 - осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц....

В теории операционный усилитель имеет идеальные параметры. На практике же их параметры стремятся к идеальным, но все же не достигают их. Использование понятия «идеального» операционного усилителя помогает упростить расчеты.

Этими идеальными параметрами являются:

  • бесконечно большое усиление при открытой петли обратной связи;
  • бесконечно широкая полоса передаваемых частот;
  • бесконечно большое входное сопротивление;
  • импеданс равный нулю;
  • выходное напряжение равно нулю при равенстве входных напряжений.

Как вы можете видеть, такие параметры не могут быть обеспечены в полной мере, но из года в год ОУ реально все более и более приближаются к идеалу.

Есть несколько основных схем работы операционного усилителя:

  • инвертирующий
  • неинвертирующий
  • вычитание
  • сложение
  • дифференцирование
  • интегрирование
  • повторитель напряжения
  • аналоговый компаратор

Схема инвертирующего усилителя

Это основная схема, в которой работает ОУ. Работа операционного усилителя характеризуется не только усилением (или ослаблением) входного сигнала, но и изменением его фазы. Усиление обозначается буквой k. Приведенный ниже график показывает влияние операционного усилителя в такой схеме:

Синим цветом представлен график входного сигнала, а красным — график выходного сигнала, причем усиление системы составляет 2 (k=2). Как видно, амплитуда выходного сигнала в два раза выше, чем амплитуда входного сигнала, и также видно, что сигнал перевернут.

Схема такого усилителя достаточно проста, и представлена на следующем рисунке:

Блок питания 0...30 В / 3A

Набор для сборки регулируемого блока питания...

Эта схема доказывает, почему операционные усилители являются настолько популярными. Для того, чтобы вычислить значения элементов нам достаточно использовать следующую формулу:

Как видно, резистор R3 не влияет на усиление схемы, и можно было бы обойтись без него, соединив положительный вход усилителя с минусом питания. В данном случае резистор R3 используется в качестве защиты.

Схема неинвертирующего усилителя

В схеме неинвертирующего усилителя ситуация очень схожа с инвертирующим усилителем, с той лишь разницей, что здесь не происходит инверсия сигнала, то есть фаза сохраняется. Приведенный ниже график показывает, что происходит с усиленным сигналом:

Так же, как и в предыдущей схеме, коэффициент усиления равен k=2, а на вход подан синусоидальный сигнал. Как видно, изменению подверглась только амплитуда сигнала.

Ниже приведена принципиальная схема использования операционного усилителя в качестве неинвертирующего усилителя:

Данная схема усилителя также является очень простой, здесь есть два резистора. Входной сигнал подается на положительный вход ОУ. Чтобы рассчитать усиление необходимо применить формулу:

Из формулы видно, что усиление не может быть меньше единицы, т. е. такая схема не позволяет подавить сигнал.

Операционный усилитель в схеме вычитания (дифференциальный усилитель)

Другим типом схемы использования ОУ является дифференциальный усилитель, который позволяет получить разность двух входных сигналов, которая впоследствии может быть усилена. На графике, приведенном ниже, представлен принцип работы системы.

Следующая схема позволяет реализовать такую работу операционного усилителя:

Схема является более сложной по сравнению с предыдущими. Чтобы рассчитать напряжение на выходе, следует применить формулу:

 

Первая часть уравнения отвечает за усиление (или ослабление), а вторая часть — это разница двух напряжений.

Операционный усилитель в схеме сложения

Этот тип функции полностью противоположен функции вычитания. Его интересной особенностью является то, что здесь может быть обработано более двух сигналов. На этом принципе основаны все аудио микшеры.

Как видно на схеме можно суммировать множество сигналов, схема проста и интуитивно понятна. Для расчета используем формулу:

Основы работы с операционным усилителем

- Учебное пособие по операционному усилителю

Операционные усилители - это линейные устройства, которые обладают всеми свойствами, необходимыми для почти идеального усиления постоянного тока, и поэтому широко используются при формировании сигналов, фильтрации или для выполнения математических операций, таких как сложение, вычитание, интегрирование и дифференцирование.

Операционный усилитель , или для краткости операционный усилитель, по сути, представляет собой устройство усиления напряжения, предназначенное для использования с внешними компонентами обратной связи, такими как резисторы и конденсаторы, между его выходными и входными клеммами.Эти компоненты обратной связи определяют результирующую функцию или «работу» усилителя, и благодаря различным конфигурациям обратной связи, будь то резистивная, емкостная или и то, и другое, усилитель может выполнять множество различных операций, что и привело к его названию «Операционный усилитель».

Операционный усилитель - это, по сути, трехконтактное устройство, состоящее из двух входов с высоким импедансом. Один из входов называется Inverting Input и отмечен знаком минус или минус (-).Другой вход называется неинвертирующим входом и отмечен знаком плюс или плюс (+).

Третий вывод представляет собой выходной порт операционного усилителя, который может как потреблять, так и передавать либо напряжение, либо ток. В линейном операционном усилителе выходной сигнал представляет собой коэффициент усиления, известный как коэффициент усиления усилителя (A), умноженный на значение входного сигнала, и в зависимости от природы этих входных и выходных сигналов может быть четыре различных классификации операционных усиление усилителя.

  • Напряжение - напряжение «на входе» и «на выходе»
  • Current - Ток «на входе» и «на выходе»
  • Крутизна - напряжение «на входе» и ток «на выходе»
  • Трансопротивление - ток «на входе» и «на выходе»

Поскольку большинство схем, работающих с операционными усилителями, являются усилителями напряжения, мы ограничим обучающие программы в этом разделе только усилителями напряжения (Vin и Vout).

Сигнал выходного напряжения от операционного усилителя - это разница между сигналами, подаваемыми на его два отдельных входа.Другими словами, выходной сигнал операционного усилителя - это разница между двумя входными сигналами, поскольку входной каскад операционного усилителя фактически является дифференциальным усилителем, как показано ниже.

Дифференциальный усилитель

Схема ниже показывает обобщенную форму дифференциального усилителя с двумя входами, обозначенными V1 и V2. Два идентичных транзистора TR1 и TR2 смещены в одной и той же рабочей точке, их эмиттеры соединены вместе и возвращены на общую шину -Vee через резистор Re.

Дифференциальный усилитель

Схема работает от двойного источника питания + Vcc и -Vee, что обеспечивает постоянное питание. Напряжение, которое появляется на выходе усилителя Vout, представляет собой разницу между двумя входными сигналами, поскольку два базовых входа находятся в противофазе друг с другом.

Таким образом, когда прямое смещение транзистора TR1 увеличивается, прямое смещение транзистора TR2 уменьшается, и наоборот. Тогда, если два транзистора идеально согласованы, ток, протекающий через резистор с общим эмиттером Re, останется постоянным.

Подобно входному сигналу, выходной сигнал также сбалансирован, и поскольку напряжения коллектора либо колеблются в противоположных направлениях (противофазно), либо в одном и том же направлении (синфазно), сигнал выходного напряжения, снимаемый между двумя коллекторами, составляет: если предположить, что схема идеально сбалансирована, то разница между двумя напряжениями коллектора равна нулю.

Это известно как Common Mode of Operation , где коэффициент усиления синфазного сигнала усилителя является выходным усилением, когда входной сигнал равен нулю.

Операционные усилители

также имеют один выход (хотя есть и с дополнительным дифференциальным выходом) с низким импедансом, который привязан к общей клемме заземления, и он должен игнорировать любые синфазные сигналы, то есть, если идентичный сигнал применяется к обоим инвертирующим сигналам. и неинвертирующие входы, выход не должен изменяться.

Однако в реальных усилителях всегда есть некоторое отклонение, и отношение изменения выходного напряжения к изменению входного синфазного напряжения называется коэффициентом подавления синфазного сигнала или CMRR для краткости.

Операционные усилители

сами по себе имеют очень высокое усиление по постоянному току без обратной связи, и, применив некоторую форму с отрицательной обратной связью , мы можем создать схему операционного усилителя с очень точной характеристикой усиления, которая зависит только от используемой обратной связи. Обратите внимание, что термин «разомкнутый контур» означает, что вокруг усилителя не используются компоненты обратной связи, поэтому тракт или контур обратной связи разомкнут.

Операционный усилитель реагирует только на разницу напряжений на двух входных клеммах, известную как «Дифференциальное входное напряжение », а не на их общий потенциал.Тогда, если к обоим клеммам приложен одинаковый потенциал напряжения, результирующий выходной сигнал будет равен нулю. Коэффициент усиления операционных усилителей обычно известен как разомкнутый дифференциальный коэффициент усиления и обозначен символом (A или ).

Схема эквивалента

идеального операционного усилителя

Параметры операционного усилителя и идеальная характеристика

  • Усиление разомкнутого контура, (Avo)

    • Infinite - Основная функция операционного усилителя заключается в усилении входного сигнала, и чем больше у него коэффициент усиления без обратной связи, тем лучше.Коэффициент усиления без обратной связи - это коэффициент усиления операционного усилителя без положительной или отрицательной обратной связи, и для такого усилителя коэффициент усиления будет бесконечным, но типичные реальные значения находятся в диапазоне примерно от 20 000 до 200 000.
  • Входное сопротивление, (Z

    IN )
    • Бесконечное - Входное сопротивление - это отношение входного напряжения к входному току и предполагается, что оно бесконечно, чтобы предотвратить протекание любого тока от источника питания во входную схему усилителя (I IN = 0).Настоящие операционные усилители имеют входные токи утечки от нескольких пикоампер до нескольких миллиампер.
  • Выходное сопротивление, (Z

    OUT )
    • Ноль - Выходное сопротивление идеального операционного усилителя предполагается равным нулю, действуя как идеальный внутренний источник напряжения без внутреннего сопротивления, чтобы он мог подавать на нагрузку столько тока, сколько необходимо. Это внутреннее сопротивление эффективно последовательно с нагрузкой, тем самым уменьшая выходное напряжение, доступное для нагрузки.Реальные операционные усилители имеют выходное сопротивление в диапазоне 100-20 кОм.
  • Пропускная способность, (BW)

    • Infinite - Идеальный операционный усилитель имеет бесконечную частотную характеристику и может усиливать любой частотный сигнал от постоянного до самых высоких частот переменного тока, поэтому предполагается, что он имеет бесконечную полосу пропускания. В реальных операционных усилителях полоса пропускания ограничена произведением коэффициента усиления на полосу пропускания (GB), которое равно частоте, на которой коэффициент усиления усилителей становится равным единице.
  • Напряжение смещения, (В

    IO )
    • Ноль - Выход усилителя будет нулевым, когда разность напряжений между инвертирующим и неинвертирующим входами равна нулю, одинакова или когда оба входа заземлены. Реальные операционные усилители имеют некоторое выходное напряжение смещения.

Из этих «идеализированных» характеристик, приведенных выше, мы можем видеть, что входное сопротивление бесконечно, поэтому ток не течет ни на одну из входных клемм («правило тока») и что напряжение смещения дифференциального входа равно нулю. (« правило напряжения »).Важно помнить об этих двух свойствах, поскольку они помогут нам понять работу операционного усилителя в отношении анализа и проектирования схем операционного усилителя.

Однако реальные операционные усилители , такие как обычно доступные uA741 , например, не имеют бесконечного усиления или полосы пропускания, но имеют типичное «усиление разомкнутого контура», которое определяется как усиление выходного сигнала усилителя без каких-либо внешних сигналов обратной связи, подключенных к это и для типичного операционного усилителя составляет около 100 дБ при постоянном токе (ноль Гц).Это выходное усиление линейно уменьшается с частотой до «Unity Gain» или 1, примерно на 1 МГц, и это показано на следующей кривой отклика усиления в разомкнутом контуре.

Кривая АЧХ без обратной связи

Из этой кривой частотной характеристики мы можем видеть, что произведение коэффициента усиления на частоту является постоянным в любой точке кривой. Кроме того, частота единичного усиления (0 дБ) также определяет коэффициент усиления усилителя в любой точке кривой. Эта константа обычно известна как произведение на коэффициент усиления или фунтов стерлингов .Следовательно:

GBP = Прирост x Полоса пропускания = A x BW

Например, из приведенного выше графика коэффициент усиления усилителя на частоте 100 кГц задается как 20 дБ или 10, тогда произведение коэффициента усиления на полосу пропускания рассчитывается как:

GBP = A x BW = 10 x 100 000 Гц = 1 000 000.

Точно так же операционные усилители усиливаются на 1 кГц = 60 дБ или 1000, поэтому GBP задается как:

GBP = A x BW = 1000 x 1000 Гц = 1000000. То же! .

Коэффициент усиления по напряжению (A В ) операционного усилителя можно найти по следующей формуле:

и Децибел или (дБ) дается как:

An Полоса пропускания операционных усилителей

Полоса пропускания операционных усилителей - это диапазон частот, в котором коэффициент усиления усилителя по напряжению превышает 70.7% или -3 дБ (где 0 дБ - максимум) от его максимального выходного значения, как показано ниже.

Здесь мы использовали линию 40 дБ в качестве примера. -3 дБ или 70,7% от точки понижения Vmax на кривой частотной характеристики задается как 37 дБ . Если провести линию до тех пор, пока она не пересечется с основной кривой GBP, мы получим частотную точку чуть выше линии 10 кГц на уровне примерно от 12 до 15 кГц. Теперь мы можем рассчитать это более точно, так как мы уже знаем GBP усилителя, в данном конкретном случае 1 МГц.

Пример рабочего усилителя №1.

Используя формулу 20 log (A), мы можем рассчитать полосу пропускания усилителя как:

37 = 20 log (A), следовательно, A = anti-log (37 ÷ 20) = 70,8

GBP ÷ A = Полоса пропускания, следовательно, 1000000 ÷ 70,8 = 14,124 Гц или 14 кГц

Тогда полоса пропускания усилителя при коэффициенте усиления 40 дБ задается как 14 кГц , как было ранее предсказано из графика.

Пример рабочего усилителя №2.

Если бы коэффициент усиления операционного усилителя был уменьшен наполовину до 20 дБ на приведенной выше кривой частотной характеристики, точка -3 дБ теперь будет на уровне 17 дБ.Это даст операционному усилителю общий коэффициент усиления 7,08, следовательно, A = 7,08 .

Если мы воспользуемся той же формулой, что и выше, это новое усиление даст нам полосу пропускания примерно 141,2 кГц , что в десять раз больше, чем частота, указанная в точке 40 дБ. Таким образом, можно видеть, что за счет уменьшения общего «коэффициента усиления разомкнутого контура» операционного усилителя его полоса пропускания увеличивается, и наоборот.

Другими словами, полоса пропускания операционного усилителя обратно пропорциональна его усилению (A 1 / ∞ BW).Кроме того, эта точка угловой частоты -3 дБ обычно известна как «точка половинной мощности», так как выходная мощность усилителя составляет половину своего максимального значения, как показано:

Обзор операционных усилителей

Теперь мы знаем, что операционные усилители - это дифференциальный усилитель постоянного тока с очень высоким коэффициентом усиления, который использует одну или несколько внешних цепей обратной связи для управления его откликом и характеристиками. Мы можем подключать внешние резисторы или конденсаторы к операционному усилителю различными способами, чтобы сформировать базовые схемы «строительного блока», такие как усилители инвертирующего, неинвертирующего, с повторителем напряжения, суммирующего, дифференциального, интегратора и дифференциатора.

Символ операционного усилителя

«Идеальный» или совершенный операционный усилитель - это устройство с определенными особыми характеристиками, такими как бесконечное усиление разомкнутого контура A O , бесконечное входное сопротивление R IN , нулевое выходное сопротивление R OUT , бесконечная полоса пропускания от 0 до ∞ и смещение нуля (выход точно равен нулю, когда вход равен нулю).

Существует очень большое количество ИС операционных усилителей, подходящих для всех возможных применений: от стандартных биполярных, прецизионных, высокоскоростных, малошумящих, высоковольтных и т. Д., В стандартной конфигурации или с внутренними переходными полевыми транзисторами.

Операционные усилители доступны в корпусах IC, состоящих из одного, двух или четырех операционных усилителей в одном устройстве. Наиболее распространенным и используемым из всех операционных усилителей в базовых электронных наборах и проектах является промышленный стандарт мкА-741 .

В следующем руководстве по операционным усилителям мы будем использовать отрицательную обратную связь, подключенную вокруг операционного усилителя, чтобы создать стандартную схему усилителя с обратной связью, называемую схемой инвертирующего усилителя, которая выдает выходной сигнал, который составляет 180 o «вне диапазона». фаза »с вводом.

Операционные усилители (операционные усилители) | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта.Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы analog.com или определенных предлагаемых функций. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт.Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам.Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить файлы cookie

Таблица выбора операционных усилителей (ОУ) | Параметрический поиск

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie.Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы analog.com или определенных предлагаемых функций. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту.Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить файлы cookie

ОУ общего назначения | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Decline cookies

Операционные усилители Rail-to-Rail | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта.Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы analog.com или определенных предлагаемых функций. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт.Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам.Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить файлы cookie

8.1: Введение в операционные усилители (операционные усилители)

Что такое операционный усилитель (операционный усилитель)?

Операционные усилители

, также известные как операционные усилители, в основном представляют собой устройства усиления напряжения, предназначенные для использования с такими компонентами, как конденсаторы и резисторы, между его входными / выходными клеммами. По сути, они являются основной частью аналоговых устройств. Подобные компоненты обратной связи используются для определения работы усилителя.Усилитель может выполнять множество различных операций (резистивных, емкостных или и того, и другого), что дало ему название Operational Amplifier.

Пример операционного усилителя на схеме.

Операционные усилители

- это линейные устройства, которые идеально подходят для усиления постоянного тока и часто используются для преобразования сигналов, фильтрации или других математических операций (сложение, вычитание, интегрирование и дифференцирование).

Операционный усилитель, пожалуй, самый полезный отдельный прибор в аналоговой электронной схеме.Имея всего несколько внешних компонентов, он может выполнять широкий спектр задач обработки аналоговых сигналов. Это также вполне доступные усилители общего назначения, которые продаются по цене менее доллара за штуку. Современные конструкции также разрабатывались с учетом долговечности: производятся несколько операционных усилителей, которые могут выдерживать прямые короткие замыкания на своих выходах без повреждений.

Одним из ключей к полезности этих небольших схем является инженерный принцип обратной связи, в частности отрицательной обратной связи , которая составляет основу почти всех процессов автоматического управления.Принципы, представленные в этом разделе, выходят далеко за рамки непосредственной электроники. Студенту-электронщику стоит потратить время на то, чтобы изучить эти принципы и хорошо их усвоить.

Дополнительная литература

Операционные усилители, или операционные усилители, являются одними из самых фундаментальных строительных блоков, которые инженер-электрик может использовать при проектировании схем. Для операционных усилителей существует масса полезных приложений. В этой статье будут рассмотрены лишь несколько основных схем, которые вы можете реализовать в своих проектах!

Основы: повторители напряжения

Первая схема настолько проста, что выглядит немного сумасшедшей:

Рисунок 1: Повторитель напряжения

Эта схема называется повторителем напряжения и ведет себя следующим образом:

Vin = VoutVin = Vout

На первый взгляд, это не очень полезно.Зачем мне платить несколько дополнительных центов за операционный усилитель, если похоже, что провод будет выполнять ту же работу между двумя компонентами? Ответ прост, если вы знаете несколько простых вещей об операционных усилителях. Когда вы начинаете нарушать схему с помощью операционных усилителей, вы должны помнить два основных принципа:

  1. Входные клеммы операционного усилителя, V + и V-, не потребляют ток.
  2. Напряжение V + и V- всегда равно. Это свойство иногда называют виртуальным коротким приближением .

Глядя на первое правило, мы видим, что наша схема повторителя напряжения не потребляет ток на входной клемме, подключенной к V +. На самом деле это просто способ сказать, что V + имеет действительно высокий импеданс - на самом деле, поскольку мы говорим об идеальных операционных усилителях, мы склонны просто сказать, что у него бесконечный входной импеданс. На практике это имеет довольно приятные последствия: если V + не потребляет ток, это означает, что мы можем подключить Vin к любому узлу в любой цепи и измерить его , не изменяя исходную схему .Нам не пришлось бы проходить через утомительную процедуру решения кучи новых уравнений для узловых напряжений и токов сетки, потому что мы не будем мешать ни одному из них, добавляя повторитель напряжения. Довольно круто, да?

(Примечание: как и в большинстве правил, есть некоторые исключения из этих правил операционных усилителей. На протяжении всей статьи мы будем игнорировать эти исключения - они будут мешать анализу нашего повторителя напряжения.)

Вместо того, чтобы проводить прямое измерение на Vin в нашей гипотетической схеме, мы бы измеряли вместо Vout.Это второе действующее правило операционных усилителей - напряжения V + и V- всегда считаются равными. Поскольку мы подключили V- и выход операционного усилителя, мы можем расширить это на шаг дальше и сказать, что Vout = V- = V + из-за виртуального короткого приближения.

Использование повторителей напряжения обеспечивает действительно простой способ сопряжения различных цепей с разным импедансом. Прохладный! Что еще мы можем сделать с операционными усилителями?

Изменение усиления - инвертирующий усилитель

Как следует из названия, операционные усилители - это усилители.Они могут усиливать сигналы за счет определенного соотношения входа и выхода. Это соотношение обычно называют коэффициентом усиления операционного усилителя. В идеальном мире коэффициент усиления операционного усилителя был бы бесконечным - настолько высоким, что он мог бы усилить любой уровень сигнала до любого другого уровня сигнала. В реальном мире это не так, но мы рассмотрим это как факт при анализе следующей схемы: инвертирующего усилителя.

Рисунок 2: Инвертирующий усилитель

Давайте шаг за шагом рассмотрим работу этой схемы.Во-первых, давайте применим наши два правила для операционных усилителей, чтобы вычислить некоторые узловые напряжения этой схемы. Самым простым в применении является виртуальное короткое приближение, когда V + и V- всегда находятся под одним и тем же напряжением. Мы видим, что V + заземлен; следовательно, V- также должен быть на земле. А как насчет тока, входящего и выходящего из узла V-? Согласно действующему закону Кирхгофа, мы знаем, что сумма всех токов в этом узле должна быть следующей:

Изначально кажется, что для решения этого уравнения может потребоваться некоторая работа, поскольку это уравнение имеет три неизвестных.Но так ли это? Если вы вспомните правила операционных усилителей, изложенные ранее, вы увидите, что мы бесплатно получаем один член этого уравнения: входы операционных усилителей не потребляют ток! Следовательно, мы знаем, что iV- равно нулю. Затем мы можем преобразовать это уравнение в следующую форму:

Поскольку V- связан с землей посредством виртуального короткого замыкания, закон Ома позволяет нам заменить эти токи напряжениями и сопротивлениями:

Что, с небольшой алгеброй, возвращает нас к тому, с чего мы начали:

Довольно ясно, почему эта схема полезна - она ​​позволяет вам применять линейное усиление к входу и выходу, выбирая (Rf / Rin) для формирования любого отношения, которое вы хотите.Схема также имеет дополнительный бонус, позволяющий вам в значительной степени контролировать ее входное сопротивление - поскольку вы можете выбрать значение резистора Rin, вы можете увеличить его до максимального или минимального значения, чтобы соответствовать любому выходному импедансу, который вы нужно соответствовать!

Зачем нам нужна сеть резисторов для достижения такого поведения? Чтобы понять это, нам нужно немного больше понять, как работает операционный усилитель. Операционный усилитель - это тип усилителя напряжения. В идеальном случае операционный усилитель обеспечивает бесконечное усиление - он может усилить любое напряжение до любого другого уровня напряжения.Мы можем масштабировать бесконечное усиление операционного усилителя, используя цепь резисторов, которая соединяет входной узел V- и выходной узел. Подключая выход операционного усилителя к входу, мы используем процесс, называемый _feedback_, для регулировки выходного напряжения до желаемого уровня. Обратная связь - действительно важная концепция ЭЭ, достаточно сложная, чтобы заслужить целую статью, посвященную этой теме. На данный момент достаточно понять основной принцип применительно к операционным усилителям: подключив выход ко входу, вы можете изменить поведение схемы действительно полезными способами.

Инверсия инвертора?

Давайте посмотрим, что произойдет, когда мы начнем дурачиться с базовой конструкцией инвертирующего усилителя. Что произойдет, если мы переключим цепь обратной связи на другой входной вывод, V-?

Рисунок 3: Что делает эта схема?

Мы можем проделать ту же серию шагов, что и раньше с инвертирующим усилителем, но мы начинаем заменять напряжения в V-узле. Из-за виртуального короткого приближения V- = V + = Vin.В результате мы можем записать следующее уравнение для тока, проходящего через Rg:

Поскольку мы знаем, что операционный усилитель не потребляет ток, мы знаем, что ток через Rg и ​​Rf должен быть одинаковым, что позволяет нам написать это уравнение:

Виртуальное короткое приближение позволяет нам избавиться от V-, поскольку мы знаем, что оно равно Vin.

И после небольшой алгебраической перестановки получаем следующее:

В отличие от предыдущей схемы, коэффициент усиления этой схемы неотрицательный.В результате эта схема называется неинвертирующим усилителем : она обеспечивает линейное усиление, но с положительным знаком. В отличие от предыдущего неинвертирующего усилителя, он не может обеспечить усиление меньше единицы - установить цепь обратной связи ниже невозможно! С другой стороны, в этой схеме есть то, чего нет в инвертирующем усилителе. Поскольку выход положительный, он находится в фазе с входом. Инвертирующий усилитель, применяя отрицательное усиление, сдвигает выходной сигнал на 180 градусов.Неинвертирующий усилитель этого не делает!

Заключение

Операционные усилители

- действительно универсальные схемные компоненты. В этой статье мы даже не догадались, что с ними можно сделать - диапазон функциональных возможностей, которые они могут использовать, огромен. Какие еще схемы вы можете сделать с ними? Есть ли у вас какие-нибудь крутые схемы с операционными усилителями? Оставьте нам сообщение в разделе комментариев и расскажите нам об этом!

10 лучших операционных усилителей

Операционный усилитель - или сокращенно «операционный усилитель» - это обычный строительный блок аналоговой электроники.Независимо от того, являетесь ли вы профессиональным дизайнером электроники или только начинаете, вполне вероятно, что вы использовали в своих разработках операционный усилитель.

Изобретенный в 1941 году Карлом Д. Шварцелем-младшим из Bell Labs, операционный усилитель изначально был построен на электронных лампах и был изобретен для выполнения математических операций в аналоговых компьютерах, отсюда и свое название. Теперь операционные усилители используются во всех сферах применения, начиная с обработки сигналов и фильтрации, а также для сложных математических операций, таких как интегрирование и дифференцирование.Они составляют основу многих современных аналоговых электронных схем, поскольку они экономичны, оптимально работают и легко доступны.

Операционные усилители

обычно доступны в виде интегральных схем (ИС). У них есть входные и выходные клеммы, способные выдавать большую версию сигналов напряжения, которые проходят через них. Они могут быть разработаны для работы в качестве устройства усиления напряжения при использовании с активными компонентами, такими как транзисторы, и пассивными компонентами, такими как резисторы и конденсаторы, для обеспечения желаемого отклика.

Когда сигналы проходят через дискретные элементы в аналоговой цепи, они имеют тенденцию к уменьшению амплитуды - их уровень напряжения уменьшается, но операционный усилитель может помочь буферизовать и повысить амплитуду таких сигналов, тем самым обеспечивая сигнал, который полезен на выходе. .

Операционные усилители

легко адаптируются и универсальны для многих электронных схем. Они используются в аудио и видео приложениях, регуляторах напряжения, прецизионных схемах, аналого-цифровых и цифро-аналоговых преобразователях и во многих других приложениях.

Выбор операционного усилителя

При разработке приложения, для которого требуется операционный усилитель, важно учитывать требования к конструкции, чтобы убедиться, что вы выбрали правильный.

Разработчикам следует учитывать усиление, входное сопротивление, выходное сопротивление, шум и полосу пропускания, а также следующие факторы, которые следует учитывать при выборе ИС операционного усилителя:

1. Количество каналов / входов

Операционный усилитель может иметь несколько каналов от 1 до 8, причем наиболее распространенные операционные усилители имеют 1, 2 или 4 канала.

2. Прирост

Коэффициент усиления операционного усилителя показывает, насколько больше по величине будет его выход, чем его вход, следовательно, его коэффициент усиления. Обычно это определяется как усиление разомкнутого контура или усиление напряжения большого сигнала .

Бесконечное усиление разомкнутого контура означает, что нулевое напряжение на входе полностью включит или выключит выход, и хотя это кажется непрактичным, в основном это означает, что вы можете быстро переключить выход с включения на выключение, просто слегка изменив входное напряжение.Типичные реальные значения находятся в диапазоне примерно от 20 000 до 200 000.

Коэффициент усиления по напряжению большого сигнала , обычно обозначаемый как AVD, представляет собой отношение изменения на выходе к изменению дифференциального напряжения на входе, измеренное при постоянном токе - на низкой частоте - с усилителем, производящим большое выходное напряжение. Обычно его предпочитают коэффициенту усиления по напряжению разомкнутого контура, как правило, в В / мВ. Разница в том, что он измеряется при выходной нагрузке и, следовательно, учитывает эффекты нагрузки.

3. Входное сопротивление

Это отношение входного напряжения к входному току. В идеале это значение бесконечно, но большинство операционных усилителей, которые сейчас производятся, имеют типичные значения порядка миллионов Ом. Желательно, чтобы входное сопротивление операционного усилителя было достаточно высоким, чтобы передавать все напряжение от входа к цели без потерь. Типичный входной ток утечки составляет несколько пико-миллиампер.

4. Выходное сопротивление

Это полное сопротивление слабого сигнала между выходной клеммой и землей.Обычно он идет последовательно с нагрузкой, тем самым увеличивая выходную мощность, доступную для нагрузки. Выходное сопротивление для идеального усилителя предполагается равным нулю, следовательно, для реальных значений оно должно быть небольшим.

5. Шум

Операционные усилители

имеют внутренние источники паразитного шума. Обычно они измеряются на выходе и ссылаются на вход. Наиболее важным из них является эквивалентное входное шумовое напряжение, часто указываемое e n. Он задается как напряжение, В n , на корень герц на определенной частоте.Желательно, чтобы это значение было как можно меньше.

6. Пропускная способность

Полоса пропускания операционного усилителя - это допустимый диапазон частот входного сигнала, который он может воспроизводить. Идеальный операционный усилитель допускает любую частоту, следовательно, его полоса пропускания бесконечна и может усиливать любой частотный сигнал от постоянного до самых высоких частот переменного тока.

Это не относится к практическим операционным усилителям, которые ограничены определенным диапазоном и плохо работают выше определенной частоты.

Параметр Gain Bandwidth Product (GBP) часто используется для описания предела полосы пропускания операционного усилителя по отношению к его усилению. Он равен частоте, на которой коэффициент усиления усилителя становится равным единице.

7. Номинальная скорость нарастания

Скорость нарастания операционного усилителя - это скорость изменения выходного напряжения, вызванная скачком на входе. Он измеряется как изменение напряжения за заданное время - обычно В / мкс или В / мс. В идеале скорость нарастания операционного усилителя должна быть бесконечной, что позволяет выходу быть точной усиленной копией входа без каких-либо искажений.В реальных приложениях, чем выше значение скорости нарастания, тем быстрее может изменяться выходной сигнал и тем легче воспроизводятся высокочастотные сигналы.

8. Максимальное входное напряжение смещения

Это максимальное дифференциальное напряжение, необходимое на входе для получения выходного напряжения 0 В. В идеале он равен нулю, когда оба входа операционного усилителя равны нулю. Следовательно, он должен быть достаточно маленьким.

9. Максимальное напряжение питания

Следует учитывать допустимый диапазон рабочего напряжения операционного усилителя, следовательно, его максимальное напряжение питания не должно превышаться.

Теперь давайте погрузимся в топ-10 самых загружаемых операционных усилителей на SnapEDA! *

10 лучших операционных усилителей на SnapEDA

# 10 LM741 от Texas Instruments

LM741 - это старый, но классический операционный усилитель общего назначения, выпущенный в 1981 году в 8-выводном корпусе PDIP, CDIP или TO-99 с максимальным напряжением питания ± 22 В. Он имеет большое усиление сигнала по напряжению 200 В / мВ и полосу пропускания до 1 МГц. Его вход и выход имеют защиту от перегрузки.Этот операционный усилитель также не имеет фиксации при превышении синфазного диапазона. Это прямая подключаемая замена для других операционных усилителей, таких как 709C, LM201, MC1439 и 748, в большинстве приложений.

Средняя цена у дистрибьюторов на момент публикации: 0,50 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 9 LM358-N от Texas Instruments

LM358-N - это 2-канальный операционный усилитель промышленного стандарта, доступный в 4 различных 8-выводных корпусах (DSBGA, TO-CAN, SOIC, PDIP) с широким диапазоном напряжения питания от 3 В (± 1.5 В) до 32 В (± 16 В) и полосе усиления 1 МГц. Он имеет низкое входное напряжение смещения 2 мВ и большое усиление напряжения сигнала 100 В / мВ, а его диапазон рабочих температур составляет от 0 до 70 ° C. Этот операционный усилитель очень популярен благодаря своей гибкости, доступности и экономической эффективности.

Средняя цена у дистрибьюторов на момент публикации: 0,48 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 8 LM324 от Texas Instruments

LM324 поставляется с четырьмя операционными усилителями с внутренней компенсацией, все в 14-выводном корпусе SOIC, PDIP или TSSOP.Это маломощный операционный усилитель общего назначения с большим коэффициентом усиления сигнала по напряжению около 100 В / мВ, широкой полосой усиления 1 МГц и входным током смещения не более 250 нА. Он работает от одного источника питания в широком диапазоне от 3 В до 32 В, а также поддерживает двойные источники питания в диапазоне от ± 1,5 В до ± 16 В. Он подходит для усилителей преобразователей, блоков усиления постоянного тока и обычных операционных усилителей.

Средняя цена у дистрибьюторов на момент публикации: 0,21 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 7 RC4558 от Texas Instruments

RC4558, электрически подобный uA741, представляет собой двойной операционный усилитель общего назначения. Он поставляется в 8-выводном корпусе PDIP, SOIC, SOP, SSOP, TSSOP или VSSOP, имеет низкий входной ток смещения не более 500 нА и диапазон температур от 0 ° C до 70 ° C или от -40 ° C до 85 ° C для RC4558I. Это устройство предназначено для работы и имеет типичное произведение коэффициента усиления на полосу пропускания 3 МГц. Его особенности делают его подходящим для приложений с повторителем напряжения.

Средняя цена у дистрибьюторов на момент публикации: 0,20 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 6 NE5532 от Texas Instruments

NE5532 (5534 также довольно популярен) - это 2-канальный высокоскоростной звуковой операционный усилитель с низким уровнем шума, который поставляется в 8-контактном корпусе PDIP, SOIC или SOP с широкой полосой усиления 10 МГц и высоким постоянным током. коэффициент усиления по напряжению 100 В / мВ, CMRR этого устройства составляет 100 дБ, а его скорость нарастания составляет 9 В / мс.

Средняя цена у дистрибьюторов на момент публикации: 0,29 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 5 TL072 от Texas Instruments

TL072 - это двойной малошумящий операционный усилитель общего назначения с JFET-входом, который поставляется в 8-выводном корпусе PDIP, SOIC, SOP или TSSOP. Он имеет низкий входной ток смещения 200 пА в диапазоне рабочих температур окружающего воздуха от 0 ° C до 70 ° C или от -40 ° C до 85 ° C для TL07xI. Работает от одного источника питания с диапазоном -0.От 3 В до 36 В, а также поддерживает два источника питания с диапазоном ± 18 В. Он имеет широкую полосу усиления 3 МГц. Подходит для высококачественных аудиоустройств и предварительных усилителей звука.

Средняя цена у дистрибьюторов на момент публикации: 0,40 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 4 OPA2134 от Texas Instruments

OPA2134 - это операционный усилитель с низким уровнем искажений и шума для аудиоприложений, который поставляется в 8-контактном корпусе PDIP или SOIC.Он предназначен для работы от 5 В до 36 В (от ± 2,5 В до ± 18 В) и имеет высокий коэффициент усиления без обратной связи 120 дБ (600 Ом). Этот операционный усилитель на полевых транзисторах с диапазоном рабочих температур окружающего воздуха от 40 ° C до 85 ° C имеет широкую полосу усиления 8 МГц и скорость нарастания напряжения 20 В / мкс. Этот усилитель идеально подходит для обеспечения превосходного качества звука и скорости для исключительного качества звука.

Средняя цена у дистрибьюторов на момент публикации: 3,15 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 3 LM339 от Texas Instruments

LM339 является наиболее часто используемым четырехканальным дифференциальным компаратором, он поставляется в 14-выводном корпусе PDIP, SOIC, SOP, SSOP или TSSOP, рассчитан на работу в диапазоне от 0 ° C до 70 ° C и имеет типичное входное смещение. напряжение и ток 2 мВ и 3 нА соответственно. Он имеет типичный входной ток смещения 25 нА. Подходит для промышленных устройств, генераторов, приложений преобразования логического напряжения и т. Д.

Средняя цена у дистрибьюторов на момент публикации: 0 долларов США.17 долларов США

Загрузить Symbol & Footprint на SnapEDA.

# 2 OP07 от Analog Devices

OP07 - это операционный усилитель со сверхнизким напряжением смещения (макс. 75 мкВ для OP07E), который поставляется в корпусе типа PDIP-8 или SOIC-8 с низким входным током смещения ± 4 нА и высоким коэффициентом усиления без обратной связи 200 В / мВ. Обычно он имеет полосу усиления 0,6 МГц и диапазон входного напряжения ± 13 В. OP07 является прямой заменой усилителей 725, 108A и OP05 и подходит для измерительных приборов с высоким коэффициентом усиления.

Средняя цена у дистрибьюторов на момент публикации: 0,94 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 1 LMH6629 от Texas Instruments

LMH6629 - это быстродействующий операционный усилитель с обратной связью по напряжению со сверхмалым шумом. Это очень особенное устройство, поскольку оно может работать с большим коэффициентом усиления и при этом обеспечивать исключительную скорость и низкий уровень шума. Поставляется в 8-выводном корпусе WSON или SOT-23. Он имеет полосу пропускания –3 дБ при 900 МГц и скорость нарастания 1600 В / мкс.Он отлично подходит для коммуникационных, контрольно-измерительных, оптических и ультразвуковых систем.

Средняя цена у дистрибьюторов на момент публикации: 4,16 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

Вот и наш список 10 лучших.

Если вы хотите увидеть другую категорию компонентов, сообщите нам об этом в разделе комментариев.

Есть ли у вас другой набор операционных усилителей, которые входят в ваш список? Мы также хотели бы услышать ваши мысли о том, какие факторы вы учитываете при выборе операционного усилителя ниже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *