Подключение температурного датчика – » . Датчики температуры для Arduino: обзор популярных моделей и их характеристик

Какие датчики температуры наиболее часто используются с Arduino. Каковы их основные характеристики и особенности. Как правильно подключить датчики температуры к Arduino. Какие преимущества и недостатки у разных моделей датчиков.

Содержание

Популярные датчики температуры для Arduino

Arduino — это популярная платформа для разработки электронных проектов. Одной из распространенных задач является измерение температуры с помощью различных датчиков. Рассмотрим наиболее часто используемые датчики температуры для Arduino:

  • DS18B20
  • DHT11 и DHT22
  • LM35
  • TMP36

Каждый из этих датчиков имеет свои особенности, преимущества и недостатки. Давайте разберем их подробнее.

Цифровой датчик температуры DS18B20

DS18B20 — это цифровой датчик температуры с высокой точностью измерений. Его основные характеристики:

  • Диапазон измерения: от -55°C до +125°C
  • Точность: ±0.5°C в диапазоне от -10°C до +85°C
  • Разрешение: настраиваемое от 9 до 12 бит
  • Интерфейс: 1-Wire (требуется всего один пин микроконтроллера)
  • Уникальный 64-битный серийный код

DS18B20 выпускается в разных корпусах, наиболее распространен вариант TO-92. Датчик удобен тем, что можно подключать несколько устройств на одну линию данных. Это позволяет создавать распределенные системы измерения температуры.


Датчики температуры и влажности DHT11 и DHT22

DHT11 и DHT22 — это комбинированные датчики, измеряющие как температуру, так и относительную влажность воздуха. Их характеристики:

DHT11:

  • Диапазон измерения температуры: 0-50°C
  • Точность измерения температуры: ±2°C
  • Диапазон измерения влажности: 20-80%
  • Точность измерения влажности: ±5%

DHT22:

  • Диапазон измерения температуры: -40°C до 80°C
  • Точность измерения температуры: ±0.5°C
  • Диапазон измерения влажности: 0-100%
  • Точность измерения влажности: ±2-5%

DHT22 обладает лучшими характеристиками, но стоит дороже DHT11. Оба датчика используют собственный протокол передачи данных, требующий точного соблюдения временных интервалов при обмене информацией.

Аналоговый датчик температуры LM35

LM35 — это простой в использовании аналоговый датчик температуры. Его особенности:

  • Диапазон измерения: -55°C до 150°C
  • Точность: ±0.5°C при 25°C
  • Линейная зависимость напряжения от температуры: 10 мВ/°C
  • Не требует калибровки
  • Низкое энергопотребление

LM35 выдает аналоговый сигнал, пропорциональный измеряемой температуре. Это упрощает его подключение к Arduino, так как не требуется дополнительных библиотек для работы с датчиком.


Аналоговый датчик температуры TMP36

TMP36 — еще один популярный аналоговый датчик температуры. Его характеристики:

  • Диапазон измерения: -40°C до 125°C
  • Точность: ±2°C во всем диапазоне
  • Линейная зависимость напряжения от температуры
  • Низкое энергопотребление
  • Не требует внешней калибровки

TMP36 похож на LM35, но имеет несколько иную зависимость выходного напряжения от температуры. При 0°C он выдает 500 мВ, а каждый градус Цельсия соответствует изменению напряжения на 10 мВ.

Сравнение характеристик датчиков температуры для Arduino

Для удобства сравнения представим основные характеристики рассмотренных датчиков в виде таблицы:

ХарактеристикаDS18B20DHT11DHT22LM35TMP36
Тип датчикаЦифровойЦифровойЦифровойАналоговыйАналоговый
Диапазон температур-55°C до +125°C0°C до 50°C -40°C до 80°C-55°C до 150°C-40°C до 125°C
Точность±0.5°C±2°C±0.5°C±0.5°C при 25°C±2°C
Измерение влажностиНетДаДаНетНет
Интерфейс1-WireСобственный протоколСобственный протоколАналоговыйАналоговый

Как выбрать подходящий датчик температуры для Arduino?

При выборе датчика температуры для проекта на Arduino следует учитывать несколько факторов:


  1. Требуемый диапазон измерений
  2. Необходимая точность
  3. Потребность в измерении влажности
  4. Простота подключения и использования
  5. Стоимость датчика
  6. Энергопотребление

Для большинства любительских проектов подойдет DS18B20 благодаря его высокой точности и простоте использования. Если нужно измерять и влажность, то стоит обратить внимание на DHT22. Для простых применений, где не требуется высокая точность, можно использовать аналоговые датчики LM35 или TMP36.

Подключение датчиков температуры к Arduino

Рассмотрим схемы подключения различных датчиков температуры к Arduino:

Подключение DS18B20:

  • VCC подключается к 5V на Arduino
  • GND подключается к GND на Arduino
  • DATA подключается к цифровому пину Arduino (например, D2)
  • Между VCC и DATA нужно установить подтягивающий резистор 4.7 кОм

Подключение DHT11/DHT22:

  • VCC подключается к 5V на Arduino
  • GND подключается к GND на Arduino
  • DATA подключается к цифровому пину Arduino (например, D3)
  • Между VCC и DATA рекомендуется установить подтягивающий резистор 10 кОм

Подключение LM35/TMP36:

  • VCC подключается к 5V на Arduino
  • GND подключается к GND на Arduino
  • OUT подключается к аналоговому пину Arduino (например, A0)

После подключения датчика необходимо загрузить соответствующую библиотеку и скетч для работы с ним. Для DS18B20 используется библиотека OneWire, для DHT11/DHT22 — библиотека DHT. Аналоговые датчики не требуют специальных библиотек.


Преимущества и недостатки разных типов датчиков температуры

Каждый тип датчика имеет свои сильные и слабые стороны:

Цифровые датчики (DS18B20, DHT11, DHT22):

Преимущества:

  • Высокая точность измерений
  • Помехоустойчивость
  • Возможность подключения нескольких датчиков на одну линию (для DS18B20)

Недостатки:

  • Более сложное программирование
  • Выше стоимость по сравнению с аналоговыми датчиками

Аналоговые датчики (LM35, TMP36):

Преимущества:

  • Простота подключения и использования
  • Низкая стоимость
  • Не требуют специальных библиотек

Недостатки:

  • Меньшая точность по сравнению с цифровыми датчиками
  • Чувствительность к помехам
  • Необходимость калибровки в некоторых случаях

Заключение

Выбор подходящего датчика температуры для Arduino зависит от конкретных требований проекта. Цифровые датчики, такие как DS18B20 и DHT22, обеспечивают высокую точность и надежность измерений, но требуют более сложного программирования. Аналоговые датчики LM35 и TMP36 просты в использовании и дешевы, но могут уступать в точности.


При работе с любым датчиком важно правильно его подключить и использовать соответствующие библиотеки. Экспериментируя с разными типами датчиков, вы сможете выбрать оптимальный вариант для своего проекта на Arduino.


Подключение датчика температуры ds18b20, dht, lm35, tmp36 к Arduino

В этой статье мы рассмотрим популярные датчики температуры для Arduino ds18b20, dht11, dht22, lm35, tmp36. Как правило, именно эти датчики становятся основой для инженерных проектов начального уровня для Arduino. Мы рассмотрим также основные способы измерения температуры, классификацию датчиков температуры и приведем сравнение различных датчиков в одной таблице.

Описание датчиков температуры

Температурные датчики предназначены для измерения температуры объекта или вещества с помощью свойств и характеристик измеряемой среды. Все датчики работают по-разному. По принципу измерения эти устройства можно разделить на несколько групп:

  • Термопары;
  • Термисторы;
  • Пьезоэлектрические датчики;
  • Полупроводниковые датчики;
  • Цифровые датчики;
  • Аналоговые датчики.

По области применения можно выделить датчики температуры воздуха, жидкости и другие. Они могут быть как наружные, так и внутренние.

Любой температурный датчик можно описать набором характеристик и параметров, которые позволяют сравнивать их между собой и выбирать подходящий под конкретную задачу вариант. Основными характеристиками являются:

  • Функция преобразования, т.е. зависимость выходной величины от измеряемого значения. Для датчиков температуры этот параметр измеряется в Ом/С или мВ/К.
  • Диапазон измеряемых температур.
  • Метрологические параметры – к ним относятся различные виды погрешностей.
  • Срок службы.
  • Время отклика.
  • Надежность – рассматриваются механическая устойчивость и метрологическая стойкость.
  • Эксплуатационные параметры – габариты, масса, потребляемая мощность, стойкость к агрессивному воздействию среды, стойкость к перегрузкам и другие.
  • Линейность выходных значений.

Датчики температуры по типу

  1. Термопары. Принцип действия термопар основывается на термоэлектрическом эффекте. Представляет собой замкнутый контур из двух проводников или полупроводников. В контуре возникает электрический ток, когда на месте спаев появляется разность температур. Чтобы измерить температуру, один конец термопары помещается в среду для измерения, а второй требуется для снятия значений. На спаях возникают термоЭДС E(t2) и E(t1), которые и определяются температурами t2 и t Результирующая термоЭДС в контуре будет равна разности термоЭДС на концах спаев E(t2)- E(t1). Термопары чаще всего выполняются из платины, хромеля, алюмеля и платинородия. Наибольшее распространение в России получили пары металлов ХА(хромель-алюмель), ТКХ(хромель – копель) и ТПП (платинородий-платина). Большим недостатком таких приборов является большая погрешность измерений. Из преимуществ можно выделить возможность измерения высоких температур – до 1300С.
  2. Терморезистивные датчики. Изготавливаются из материалов, обладающих высоким коэффициентом температурного сопротивления (ТКС). Принцип работы заключается в изменении сопротивления проводника в зависимости от его температуры. Такие приборы обладают высокой точностью, чувствительностью и линейностью измеренных значений. Основными характеристиками устройства являются номинальное электрическое сопротивление при температуре 25 С и ТКС. Терморезистивные датчики различаются по температурному коэффициенту сопротивления – бывают термисторы с отрицательным (NTC) и положительным (PTC, позисторы) ТКС. Для первых с ростом температуры уменьшается сопротивление, для позисторов – увеличивается. Терморезистивные датчики чаще всего применяются в электронике и машиностроении.
  3. Пьезоэлектрический датчик. Такое устройство работает на пьезоэффекте. Под воздействием электрического тока происходит изменение линейных размеров -прямой пьезоэффект. Когда подается разнофазный ток с определенной частотой, происходит колебание пьезорезонатора. Частота определяется температурой.  Зная полученную зависимость, можно определить необходимые данные о частоте и температуре. Диапазон измерения температуры широк, устройство обладает высокой точностью. Датчики чаще всего используются в научных опытах, которые требуют высокой надежности результатов.
  4. Полупроводниковый датчик. Измеряют в диапазоне от -55С до 150С. Принцип работы основан на зависимости изменения напряжения на p-n-переходе от температуры. Так как эта зависимость практически линейна, есть возможность создать датчик без сложной схемы. Но для таких приборов схема содержит одиночный p-n-переход, поэтому датчик отличается большим разбросом параметров и невысокой точностью. Исправить эти недостатки получилось в аналоговых полупроводниковых датчиках.
  5. Аналоговый датчик. Приборы стоят дешево и обладают высокой точностью измерения, что позволяет их применять в микроэлектронике. В схеме содержатся 2 чувствительных элемента (транзистора), обладающих различными характеристиками. Выходной сигнал – это разность между падениями напряжений на транзисторах. При помощи калибровки датчика внешними цепями можно увеличить точность измерения, которая находится в диапазоне от +-1С до +-3С. Датчики обладают тремя выходами, один из них используется для калибровки.
  6. Цифровой датчик. В отличие от аналогового датчика цифровой содержит дополнительные элементы – встроенный АЦП и формирователь сигнала. Подключаются по интерфейсам SPI, I2C, 1-Wire, что позволяет подключать сразу несколько датчиков к одной шине. Подобные устройства стоят немного дороже аналоговых, но при этом они значительно упрощают схемотехнику устройства.
  7. Существуют и другие датчики температуры. Например, для автоматических систем могут применяться сигнализаторы, также существуют пирометры, измеряющие энергию тела, которую оно излучает в окружающую среду. В медицине нередко используются акустические датчики – их принцип работы заключается в разности скорости звука при различных температурах. Эти датчики удобно применять в закрытых полостях и в недоступных средах. Похожие датчики – шумовые, они работают на зависимости шумовой разности потенциалов на резисторе от температуры.

Выбор датчика в первую очередь определяется температурным диапазоном измерения. Важно учитывать и точность измерения – для обучения вполне сойдет датчик с малой точностью, а для научных работ и опытов требуется высокая надежность измерения.

Датчики температуры для работы с Ардуино

При работе с микроконтроллером Ардуино наиболее часто используются следующие датчики температуры: DS18B20, DHT11, DHT22, LM35, TMP36.

Датчик температуры DS18B20

DS18B20 – цифровой 12-разрядный температурный датчик. Устройство доступно в 3 вариантах корпусов – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, чаще всего используется именно последний. Он же изготавливается во влагозащитном корпусе с тремя выходами. Датчик прост и удобен в использовании, к плате Ардуино можно подключать сразу несколько таких приборов. А так как каждое устройство обладает своим уникальным серийным номером, они не перепутаются в результате измерения. Важной особенностью датчика является возможность сохранять данные при выключении прибора. Также DS18B20 может работать в режиме паразитного питания, то есть без внешнего питания через подтягивающий резистор. Подробная статья о ds18b20.

Датчики температуры DHT

DHT11 и DHT22 – две версии датчика DHT, обладающие одинаковой распиновкой. Разливаются по своим характеристикам. Для DHT11 характерно определение температуры в диапазоне от 0С до 50С, определение влажности в диапазоне 20-80% и частота измерений 1 раз в секунду. Датчик DHT22 обладает лучшими характеристиками, он определяет влажность 0-100%, температурный диапазон увеличен – от -40С до 125С, частота опроса 1 раз за 2 секунды. Соответственно, стоимость второго датчика дороже. Оба устройства состоят из 2 основных частей – это термистор и датчик влажности. Приборы имеют 4 выхода – питание, вывод сигнала, земля и один из каналов не используется. Датчик DHT11 обычно используется в учебных целях, так как он показывает невысокую точность измерений, но при этом он очень прост в использовании. Другие технические характеристики устройства: напряжение питания от 3В до 5В, наибольший ток 2,5мА. Для подключения к ардуино между выводами питания и выводами данных нужно установить резистор. Можно купить готовый модуль DHT11 или 22 с установленными резисторами.

Датчик температуры LM35

LM35 – интегральный температурный датчик. Обладает большим диапазоном температур (от -55С до 150С), высокой точностью (+-0,25С) и калиброванным выходом. Выводов всего 3 – земля, питание и выходной мигнал. Датчик стоит дешево, его удобно подключать к цепи, так как он откалиброван уже на этапе изготовления, обладает низким сопротивлением и линейной зависимостью выходного напряжения. Важным преимуществом датчика является его калибровка по шкале Цельсия. Особенности датчика: низкая стоимость, гарантированная точность 0,5С, широкий диапазон напряжений (от 4 до 30В) ток менее 60мА, малый уровень собственного разогрева (до 0,1С), выходное сопротивление 0,1 Ом при токе 1мА. Из недостатков можно выделить ухудшение параметров при удалении на значительное расстояние. В этом случае источниками помех могут стать радиопередатчики, реле, переключатели и другие устройства. Также существует проблема, когда температура измеряемой поверхности и температура окружающей среды сильно различаются. В этом случае датчик показывает среднее значение между двумя температурами. Чтобы избавиться от этой проблемы, можно покрыть поверхность, к которой подключается термодатчик, компаундом.

Схема подключения к микроконтроллеру Ардуино достаточно проста. Желательно датчик прижимать к контролируемой поверхности, чтобы увеличить точность измерения.

Примеры применения:

  • Использование в схемах с развязкой по емкостной нагрузке.
  • В схемах с RC цепочкой.
  • Использование в качестве удаленного датчика температуры.
  • Термометр со шкалой по Цельсию.
  • Термометр со шкалой по Фаренгейту.
  • Измеритель температуры с преобразованием напряжение-частота.
  • Создание термостата.

TMP36 – аналоговый термодатчик

Датчик температуры Использует технологии твердотельной электроники для определения температуры. Устройства обладают высокой точностью, малым износом, не требуют дополнительной калибровки, просты в использовании и стоят недорого. Измеряет температуру в диапазоне от -40С до 150С. Параметры схожи с датчиком LM35, но TMP36 имеет больший диапазон чувствительности и не выдает отрицательное значение напряжения, если температура ниже нуля. Напряжение питания от 2,7В до 5,5В. Ток – 0.05мА. При использовании нескольких датчиков может возникнуть проблема, при которой полученные данные будут противоречивы. Причиной этого являются помехи от других термодатчиков. Чтобы исправить эту неполадку нужно увеличить задержку между записью измерений. Низкое выходное сопротивление и линейность результатов позволяют подключать датчик напрямую к схеме контроля температуры. TMP36 также, как и LM34 обладает малым нагревом прибора в нормальных условиях.

Сравнение характеристик датчиков температуры Ардуино

НазваниеТемпературный диапазонТочностьПогрешностьВариант исполненияБиблиотека
DS18B20-55С…125С+-0.0625С+-2%Существует в 3 видах –  8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, последний изготавливается во влагозащитном корпусе.Onewire.h
DHT110С…50С+-2С+-2% температура, +-5% влажностьИзготавливается в виде готового прямоугольного модуля с 4 ножками, третья не используется. Также встречаются модули с тремя ножками и сразу установленным резистором на 10 кОм.DHT.h
DHT22-40С…125С+-0,5С+-0,5% температура, от +-2 до +-5% влажностьDHT.h
LM35-55С…150С+-0.5С (при 25С)+-2%Существует несколько видов корпуса: TO-46 (для датчиков LM35H, LM35AH,

LM35CH, LM35CAH,

LM35DH)

TO-92 (для датчиков LM35CZ, LM35CAZ,

LM35DZ)

SO-8 для датчика LM35DM

TO-220 для датчика LM35DT.

TMP36-40С…150С+-1С+-2%Изготавливается в трехвыводном корпусе TO-92, восьмивыводном SOIC и пятивыводном SOT-23.

 

arduinomaster.ru

Подключение датчиков температуры к умному дому Loxone

Как было обещано ранее, предлагаю поговорить о подключении датчиков температуры к контроллеру умного дома Loxone Miniserver.
В предыдущей статье вы може прочитать как подключить сервоприводы.

И так, в системе умного дома Loxone в основном используются датчики температуры, основанные на шине 1-Wire. Это очень миниатюрные датчики, благодаря чему мы имеем возможность устанавливать их даже в выключатели, не испортив дизайн интерьера. Помимо этого, еще одним плюсом этих датчиков является то, что они цифровые, то есть преобразование из аналогово сигнала в цифровой происходит непосредственно в самом датчике, что гарантирует отсутствие искажения сигнала (показания значения температуры).

Фото 1. Датчик температуры 1-Wire DS18B20.

Существует мнение, что расположение датчика в выключателе, дает погрешность при измерении температуры. Надо отметить, что большинство систем отопления очень инертны и поэтому, особой разницы где датчик находится — на стене или в выключателе, нет. Задержка по сравнению с настенным датчиком безусловно есть, но она очень незначительна и никак не влияет на работу системы. В любом случае, каждая система настраивается под конкретные требования клиентов и их личные ощущения.

Loxone предлагает два варианта датчика с легким подключением:

Фото 2. Датчик температуры Loxone 1-Wire.

Этот датчик удобен для расположения в установочных коробках. У него клейкая основа, что так же позволяет размещать его на любых сухих поверхностях. Надо отметить, что в этом модуле используется тот же датчик, что и на фотографии в начале статьи, но в данном варианте он исполнен в другом корпусе.

Фото 3. Герметичны датчик температуры Loxone 1-Wire.

Как можно видеть на данной фотографии — датчик герметичный, и подойдет для установки в местах возможного контакта с водой или влагой. Например его можно вмонтировать в пол, для контроля температуры поверхности пола.

Отметим, что датчики 1-Wire напрямую нельзя подключить к Miniserver’у, поэтому подключение нужно осуществлять через расширение Loxone 1-Wire.

Фото 4. Расширение Loxone 1-Wire для системы умного дома Loxone.

На одно расширение можно подключить до двадцати датчиков.

Длина шины, в зависит от способа подключения:


Пример классического шинного соединения.
При данном варианте подключения мы имеем наибольшую длину — 350м.
Соединение шиной с одиночными ответвлениями.
Суммарная длина шины при таком подключении, немного меньше классической — 300м.
На данной схеме представлено соединение, не имеющее конкретной конфигурации.
В таком варианте подключения суммарная длина не должна превышать 100м.
Соединение звездой — все датчики подключаются непосредственно к расширению. Суммарная длина шины не более 100м. Но несмотря не небольшую длину, этот вид соединения хорошо подходит для небольших систем, так как позволяет избежать некоторых сложностей при проводке кабеля.

Надо заметить, что во всех вышеизложенных схемах, указана приблизительная длина. И в разных системах она может варьироваться.

В независимости от выбранного варианта подключения шины, рекомендуется использовать кабель “витая пара” с попарным экранированием.

Схема подключения расширения 1-Wire к Loxone Miniserver

Схема 1. Подключение расширение Loxone 1-Wire к контроллеру умного дома Loxone Miniserver.

Loxone Miniserver и все расширения Loxone (кроме беспроводных) соединяются между собой шиной, максимальная длина которой составляет 500м. и на конце которой, для корректной работы схемы в целом, необходимо поставить резистор на 120Ohm. Более подробно читайте в статье Подсоединение расширений системы умного дома Loxone

Способы подключения датчиков 1-Wire

Схема 2. Способы подключения датчиков 1-Wire.

Подключение с питанием от шины (на схеме слева), стоит использовать в случаях, когда количество жил в витой паре ограниченно. Например Вам нужно подключить 5-ть кнопок в выключателе. В обычной витой паре 8 проводов (т.е. 4 пары), 6 из них идут на выключатель, один питающий и пять сигнальных проводов. В итоге у Вас остается всего одна пара — под датчик. В остальных случаях лучше использовать вариант подключения с отдельным питанием, так как это позволит на одно расширение подключить большее количество датчиков.
Стоит напомнить, что подключения могут быть комбинированными, то есть одновременно к одному расширению можно подключить как датчики с питанием от шины, так и с автономным питанием.

Схема подключения нескольких датчиков 1-Wire при питании от шины

Схема 3. Схема подключения нескольких датчиков 1-Wire при питании от шины к контроллеру умного дома Loxone Miniserver.

Схема подключения нескольких датчиков 1-Wire при отдельном питании

Схема 4. Схема подключения нескольких датчиков 1-Wire при отдельном питании к контроллеру умного дома Loxone Miniserver.

В обоих вариантах представлены схемы с использованием соединения звездой, где суммарная длина шины не должна превышать 100 метров.

Так же, помимо датчиков 1-Wire, есть и аналоговые, у которых на выходе сигнал 0-10В, однако они дороже и имеют большие габариты, что не позволяет их незаметно монтировать в помещении.

Надо отметить, что при наличии датчиков 1-Wire необходимость в аналоговых практически отсутствует, поскольку двадцать датчиков, которые можно подключить к 1-wire, более чем достаточно для одного объекта. Однако применение аналоговых оправдано в случае их монтажа в помещении с высокой температурой и влажностью, например в сауне.

Фото 5. Датчик температуры для сауны Loxone 0-10В.

Схема подключения датчика температуры 0-10В для сауны

Схема 5. Схема подключения датчика температуры 0-10В для сауны к контроллеру умного дома Loxone Miniserver.

Рассмотрим вариант если Вы планируете подключить только один датчик, например для сауны. В этом случае есть возможность применить более простой вариант подключения — напрямую, т.е. без клемм.
Надо заметить, что в датчике температуры для сауны так же встроен датчик влажности, который тоже передает сигнал по 0-10В. Именно поэтому на представленной схеме от датчика идут два сигнальных провода и соответственно им нужно два входа 0-10В на Miniserver’е.

Предлагаю так же рассмотреть пример подключения двух датчиков: температуры/влажности 0-10В. Количество датчиков обусловлено техническими особенностями Miniserver’а, а именно — всего четыре входа 0-10В. Больше количество подключается по аналогии, но уже к расширению Loxone Extension.

Схема подключения двух датчиков температуры/влажности 0-10В

Схема 6. Схема подключения двух датчиков температуры/влажности 0-10В к контроллеру умного дома Loxone Miniserver.

К сожалению нормальной клеммы на четыре контакта нет, поэтому мы используем Phoenix Contact UTTB и как для раздачи питания, и как проходные.

Автор: Максим Кулешов
[email protected]

kickstone.ru

Датчик температуры охлаждающей жидкости

Для контроля работы двигателя внутреннего сгорания используются разнообразные сигнализаторы. Предлагаем рассмотреть, как работает датчик температуры охлаждающей жидкости, как производится его проверка и замена, если он неисправен.

Что это такое

Стандартный датчик охлаждающей жидкости – это устройство, которое используется для измерения антифриза, находящегося в двигателе внутреннего сгорания. Зафиксированные параметры датчика при помощи сигналов возвращаются в блок управления двигателем, который в свою очередь использует эти данные, чтобы отрегулировать нужное количество топлива и определенный угол зажигания.

В некоторых моделях автомобилей сигнализатор может применяться для переключения на элекровентиляционную систему охлаждения. Скажем, так работает датчик температуры автомобильной охлаждающей жидкости в ВАЗ-1117 (и номер 1119) Лада Калина, Лада Приора и Гранта, Ланос, Тойота Камри (Toyota).

Фото – датчик температуры охлаждающей жидкости ВАЗ 2010

На многих иностранных машинах, показания прибора также выводятся на приборной панели. Например, в Volkswagen Golf (Фольксваген Гольф), Subaru (Субару), Mazda (Мазда), Opel Vectra (Опель Вектра) и Passat (Пассат), BMW (БМВ), Ford Focus (Форд Фокус), Daewoo Nexia (Дэу Нексия), Fiat (Фиат), Audi (Ауди) и прочих.

По мере измерения температуры датчика, его уровень сопротивления может меняться. Существует два вида таких датчиков в зависимости от изменения сопротивления:

  1. Датчики с отрицательным температурным коэффициентом, работают по принципу: внутреннее сопротивление уменьшается при росте температуры и наоборот;
  2. Датчики с положительным температурным коэффициентом. При росте температуры они увеличивают сопротивление.

У практически всех автомобилей установлены сигнализаторы с отрицательным коэффициентом. Датчики отрицательной температуры охлаждающей жидкости есть в Газель, ГАЗ, МАЗ, Камаз, Мерседес, Ниссан, Нива, Мицубиси, ОКА, Пежо, Вольво, Renault Logan (Рено Логан), OPEL Astra (Опель Астра), Geely, ЗМЗ.

Фото – температурный датчик

Принцип работы датчика

Блок управления автомобилем отправляет регулируемое напряжение (9-вольтовое) непосредственно в датчик указателя температуры охлаждающей жидкости. В зависимости от падения вольтажа на контактах сигнализатора, будет падать сопротивление, что сразу же зафиксирует блок управления.

В таком случае, автомобильная компьютерная или механическая система сможет вычислить температуру двигателя, а затем (используя данные других приборов) применить справочные таблицы для выполнения корректировки приводов двигателя, т.е. изменить уровень и поступления топлива или угол опережения зажигания.

Фото – схема датчика температуры охлаждающей жидкости

Сопротивление датчика охлаждающей жидкости очень зависит от внешних факторов. Это температура воздуха вне автомобиля, различные особенности привода. Для наиболее корректной работы сигнализатора нужно использовать охлаждающую жидкость, рекомендованную для определенного времени года, она стоит дорого, но продлевает жизнь Вашему авто.

Видео: проверка датчика температуры двигателя

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Фото – датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

Фото – разные датчики температуры охлаждающей жидкости

В этой модели при поломке датчика охлаждающей жидкости, поступает аварийный сигнал 117, который говорит о том, что дальнейшая работа прибора невозможна и необходима установка нового сигнализатора. В Шевроле номер PO118 это высокий сигнал. Общая схема работы выглядит так:

  1. Чтобы добраться к датчику, Вам нужно снять воздуховод, который охлаждает корпус воздушного фильтра и присоединяется к радиатору при помощи двух болтовых соединений и шланга подачи воздуха. Открутите болты и снимите хомут, аккуратно достаньте всю систему. Отключите от датчика электрические провода, чтобы корректно провести замеры сопротивления. Установите мультиметр на режим омметра и задайте значение в 1000 Ом. Подключите контакты устройства к положительному и отрицательному контактам. Нормальное сопротивление должно быть в пределах 2700 Ом при выключенном моторе. Для проверки датчика при включенном движке, нужно убрать тестер подальше от вращающихся частей авто; Фото – проверка датчика мультиметром
  2. Убедившись, что датчику температуры необходим ремонт, нужно отсоединить его от двигателя. Чтобы продолжить снятие, Вы должны предварительно слить антифризную жидкость из радиатора при помощи сливного клапана. После проверить еще раз радиатор и контакты датчика и открутить регулирующий болт как на фото; Фото – снятие датчика
  3. Сборка производится в обратной форме. Нужно помнить, что практически основная характеристика датчика температуры охлаждающей жидкости – это материал шайбы. Если шайба медная, то резьбу сигнализатора не нужно обрабатывать герметиком, в противном случае обязательно смажьте устройство. Фото – медный температурный датчик

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

www.asutpp.ru

Подключение датчика температуры | Датчики температуры

Для чего применяются различные схемы подключения датчиков температуры сопротивления?

Дело в том, что измеряемым параметром при применении таких датчиков является сопротивление датчика, однако провода имеют собственное сопротивление и внсят тем самым определенную погрешность.

Например, если датчик температуры Pt100 при нуле градусов цельсия (сопротивление 100 Ом) подключен по двух проводной схеме медным проводом сечением 0,12 мм2, длина соединительного кабеля 3 м, то два провода в сумме дадут сопротивление около 0,5 Ом в результате набегает погрешность — датчик дает суммарное сопротивление 100,5 Ом, что соответствует температуре примерно 101,2 градуса.

Эту погрешность можно скорректировать прибором (если прибор это позволяет), введя корректировку на 1,2 градуса. Однако такая корректировка не может полностью компенсировать сопротивление проводов датчика. Это связано с тем, что медные провода являются сами по себе термосопротивлениями, т.е. сопротивление проводов так же меняется от темепратуры. Причем в случае например с нагреваемой камерой часть проводов, которая находится вместе с датчиком нагревается и меняет сопротивление, а часть за пределами камеры меняется с изменением температуры в комнате.

В случае рассмотреном выше при сопротивлении проводов 0,5 ома при нагреве на каждые 250 градусов сопротивление проводов может измениться практически вдвое. Дав дополнительно 1,2 градуса цельсия погрешность.

Для исключения влияния сопротивления проводов применяют трехпроводную схему подключения датчика температуры. При такой схеме подключения прибор измеряет суммарное сопротивление датчика с проводами и сопротивление двух проводов (или одного провода и умножает его на 2) и вычитает сопротивление проводов из суммарного, выделяя тем самым чистое сопротивление датчика. Такая схема подключения позволяет получать достаточно высокую точность при значительных влияниях сопротивлений проводов на тчоность измерения. Однако данная схема не учитывает, что провода ввиду погрешностей изготовления могут обладать разным сопротивлением (в следствии неоднородности материала, изменения сечения по длине и пр.) такие погрешности вводят меньшие отклонения в отображаемой температуре чем при двух проводной схеме, однако при больших длинах проводов могут быть существенны. В таких случаях может потребоваться применение четырех проводной схемы подключения, в которой прибор измеряет непосредственно сопротивление датчика без учета соединительных проводов.

В каких случаях можно применять двух проводную схему подключения:

1. Диапазон измерения не большой (например 0. 40 градусов) и требуется невысокая точность (например 1 градус)

2. Соединительные провода имеют большое сечение и длина их не велика, т.е сопротивление проводов мало по сравнению с сопротивлением датчика и не вносит существенной погрешности. Например суммарное сопротивление 2 проводов 0,1 ом, а сопротивление датчика меняется на 0,5 Ома на градус, требуемая точнось 0,5 градуса, таким образом сопротивление проводов вносит погрешность меньше, чем допустимая погрешность.

Трехпроводная схема подключения датчиков температуры сопротивления:

Наиболее распространненная схема подключения, применяемая для измерений на удалении датчика от 3 до 100 м, позволяющая в диапазоне до 300 градусов иметь погрешность порядка 0,5 %, т.е. 0,5 С на 100 С.

Четырех проводная схема подключения:

Применяется как правило для прецизионных измерений с точностью 0,1 С и выше.

Прозвонка (проверка) датчиков температуры сопротивления:

Для прозвонки датчиков температуры требуется обычный тестер показывающий сопротивление, для датчиков с сопротивлением при нуле градусов до 100 ом включительно потимальный диапазон измерения тестера до 200 Ом.

Прозвонку можно производить при комнатной температуре, либо при другой заранее известной температуре входящей в рабочую зону датчика (например поместив датчик в сосуд с водо-ледяной смесью 0 градусов или кипящий чайник примерно, с поправкой на давление, 100 градусов).

При прозвонке определяется, какие провода соединены между собой накоротко возле датчика, сопротивление между такими проводами как правило существенно меньше чем сопротивление датчика (это сопротивление между выводами 1,3 и 2,4). Сопротивление между такими выводами для стандартных датчиков составляет от 0 до 5 Ом, в зависимости от сечения и длинны соединительных проводов. Найдя провода с таким значением сопротивления мы однозначно можем определить какие выводы куда подключать. При трехпроводной схеме выводы 1 и 3 равнозначны т.е. если их подключить наоборот на измерение это никак не повлияет. При четырехпроводной схеме пары проводов 1,3 и 2,4 между собой равнозначны, и внутри пары между собой провода тоже равнозначны, т.е. первый с третим можно переставлять между собой, и второй с четвертым можно переставлять, и целиком пару 1,3 можно переставить с парой 2,4 на результаты измерений это не повлияет.

Кроме этого проверяется, что датчик рабочий, т.е. выдает то сопротивление которое должен при данной температуре (измерение между выводами 1 и 2).

Таблицу значений сопротивлений для основных типов датчиков при разных температурах можно посмотреть тут .

Кроме этого нужно убедиться, что датчик не замыкает на корпус термопреобразователя, прозвонив на мегаомном диапазоне (20. 200 МОм) сопротивление между проводами и корпусом датчика, при этом руками касаться контактов корпуса, проводов и щупов нельзя. Если на мегаомах тестер показывает не бесконечное сопротивление, то скорее всего в корпус датчика попал жир или влага, такой датчик может работать некоторое время, но точность показаний будет снижаться, показания могут плавать.

Каким образом можно подключить датчик температуры сопротивления если его схема подключения не совпадает со схемой на приборе?

Рассмотрим различные варианты:

1. в наличии есть двухпроводный датчик температуры

Соответственно если подключить требуется к прибору с трехпроводной или четырехпроводной схемой, то можно установить соответственно одну или две перемычки на контактах прибора, в местах, где подключаются короткозамкнутые провода. На рисунках 4 и 5 это обозначено перемычками на контактах 1,3 и 2,4.

Несомненно такое подключение приведет к погрешности измерения, и если прибор не позволяет её скомпенсировать, то можно в требуемом диапазоне измерения определить погрешность показаний используя образцовый термометр и рассчитать корректировку, которую нужно прибавлять к показаниям. Это позволит временно решить проблему и не останавливать технологический процесс.

2. в наличии есть трехпроводный датчик температуры

Если подключать такой датчик по двухпроводной схеме рекомендуется соединить два короткозамкнутых у датчика провода вместе, для уменьшения споротивления соединительных проводов (так же можно один из короткозамкнутых проводов заизолировать и не подключать или откусить кусачками). Датчик будет работать в двухпроводной схеме не внося никакой дополнительной погрешности.

Подключение термопреобразователей сопротивления

Принцип работы термопреобразователей сопротивления (ТСМ, ТСП, ТСН, Pt100 и др.) основан на зависимости электрического сопротивления металлов от температуры. Термопреобразователи выполняют в виде катушки из тонкой медной или платиновой проволоки на каркасе из изоляционного материала, заключенной в защитную гильзу.

Термопреобразователи сопротивления характеризуются двумя параметрами: R0 — сопротивление датчика при 0 °С и W100 — отношение сопротивления датчика при 100 °С к его сопротивлению при 0 °С. В связи с введением нового ГОСТа на термопреобразователи сопротивления (ГОСТ Р 8.6252006) для новых приборов ОВЕН в документации вместо W100 приведен параметр α – отношение разницы сопротивлений датчика, измеренных при температуре 100 и 0 °С, к его сопротивлению, измеренному при 0 °С (R0 ), деленное на 100 °С.

Подключение термопар

Спаянный конец, называемый «рабочим спаем», погружается в измеряемую среду, а свободные концы («холодный спай») термопары подключаются ко входу измерителей-регуляторов. Если температуры «рабочего» и «холодного спаев» различны, то термопара вырабатывает термоЭДС, которая и подается на прибор.

Поскольку термоЭДС зависит от разности температур двух спаев термопары, то для получения корректных показаний

architecturalengineering.ru

ДАТЧИКИ ТЕМПЕРАТУРЫ

   В этой статье мы обсудим различные типы датчиков температуры и возможность их использования в каждом конкретном случае. Температура — это физический параметр, который измеряется в градусах. Она является важнейшей частью любого измерительного процесса. К областям требующим точных измерений температуры относится медицина, биологические исследования, электроника, исследования различных материалов, и тепловых характеристик электротехнической продукции. Устройство, используемое для измерения количества тепловой энергии, позволяющее  нам обнаружить физические изменения температуры известно как датчик температуры. Они бывают цифровые и аналоговые.

Основные типы датчиков

   В целом, существует два методы получения данных:

   1. Контактный. Контактные датчики температуры находятся в физическом контакте с объектом или веществом. Они могут быть использованы для измерения температуры твердых тел, жидкостей или газов.

   2. Бесконтактный. Бесконтактные датчики температуры производят обнаружение температуры, перехватывая часть инфракрасной энергии, излучаемой объектом или веществом и чувствуя его интенсивность. Они могут быть использованы для измерения температуры только в твердых телах и жидкостях. Измерять температуру газов они не в состоянии из-за их бесцветности (прозрачности).

Типы датчиков температуры

   Есть много различных типов датчиков температуры. От простых контролирующих процесс вкл/выкл термостатического устройства, до сложных контролирующих системы  водоснабжения, с функцией её нагрева применяемых в процессах выращивания растений. Два основных типа датчиков, контактные  и бесконтактные далее подразделяются на резистивные, датчики напряжения и электромеханические датчики. Три наиболее часто используемых датчика температуры это:

  • Термисторы
  • Термопреобразователи сопротивления
  • Термопары

   Эти датчики температуры отличаются друг от друга с точки зрения эксплуатационных параметров.

Термистор

   Термистор — это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются  стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры.

   За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры.

График работы термистора

Преимущества термисторов

  • Большая скорость реагирования на изменения температуры, точность.
  • Низкая стоимость.
  • Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
  • Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.

Зависимости сопротивления от температуры

   Зависимость сопротивления от температуры выражается следующим уравнением:

   где A, B, C — это константы (предоставляются условиями расчёта), — сопротивление в Омах, — температура в Кельвинах. Вы можете легко рассчитать  изменение температуры от изменения сопротивления или наоборот.

Как использовать термистор?

   Термисторы оцениваются по их резистивному  значению при комнатной температуре (25°C). Термистор-это пассивное резистивное  устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.

   Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.

   Следовательно, его выходное напряжение может быть рассчитано следующим образом:

   При 25°C, RNTC = 2200 Ом;

   При 80°C, RNTC = 50 Ом;

   Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры. Выходное напряжение на резисторе и температура  линейно связаны.

Резистивные датчики температуры

   Температурно-резистивные датчики (термопреобразователи сопротивления) изготовлены из редких металлов, например платины, чье электрическое сопротивление изменяется от соответственно изменению температуры.

   Резистивный детектор температуры имеет положительный температурный коэффициент  и в отличие от термисторов, обеспечивает высокую точность измерения температуры.  Однако, у них слабая чувствительность. Pt100 являются наиболее широко доступным датчиком со стандартным значение сопротивления 100 Ом при 0°C. Основным недостатком является высокая стоимость.

Преимущества таких датчиков

  • Широкий  диапазон  температур от -200 до 650°C
  • Обеспечивают высокий выход по току падения
  • Более линейны по сравнению с термопарами  и термосопротивлениями

Термопары

   Наиболее часто используются датчики температуры-термопары, потому что они точны, работают в широком диапазоне температур от -200°C до 2000°C, и стоят сравнительно недорого. Термопара с проводом и штепсельной вилкой на фото далее:

Работа термопар

   Термопара изготовляется из двух разнородных металлов, сваренных вместе, что даёт эффект разности потенциалов от температуры. От разницы температур между двумя спаями, образуется напряжение, которое используется для измерения температуры. Разность напряжений между двумя спаями называется “эффект Зеебека”.

   Если оба соединения имеют одинаковую температуру, потенциал различия  в разных соединениях равен нулю, т.е. V1 = V2. Однако, если спаи имеют разную температуру,  выходное напряжение относительно разности температур между двумя спаями будет равно их разности V1 — V2.

Типы термопар

   В зависимости от конструкции и назначения различают термопары погружаемые и поверхностные; с обыкновенной, взрывобезопасной, влагонепроницаемой или иной оболочкой (герметичной или негерметичной), а также без оболочки; обыкновенные, виброустойчивые и ударопрочные; стационарные и переносные и другие.

el-shema.ru

Схема датчика температуры и его компоненты

Все приборы, в которых используются проводники, требуют соблюдения определенного температурного режима. Очень часто, при повышении тока и напряжения, такие устройства перестают работать. Для того, чтобы избежать неприятных ситуаций, существует схема датчика температуры, применяемая в составе многих электронных приборов и устройств.

Использование термодатчика

Основной функцией датчика является своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева, термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при увеличении температуры.

Устройство оборудовано инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию термодатчика. Кроме того, здесь имеется неинвертирующий вход, подключенный к переменному резистору. Он предназначен для установки температурного порога, когда происходит срабатывание сигнализатора.

В случае изменения температуры в сторону увеличения, происходит падение напряжения на диоде. В этом случае, значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют обнаруживать даже незначительные колебания температуры.

Дополнительные компоненты и схема датчика

Кроме основных диодных устройств, схема датчика температуры включает в себя ряд дополнительных элементов. Прежде всего, это конденсатор, позволяющий защитить прибор от посторонних влияний. Дело в том, что операционный усилитель обладает повышенной чувствительностью на воздействие переменных электромагнитных полей. Конденсатор снимает эту зависимость с помощью наведения отрицательной обратной связи.

При участии транзистора и стабилитрона образуется опорное стабилизированное напряжение. Здесь используются резисторы с повышенным классом точности при низком значении температурного коэффициента сопротивления. Тем самым, вся схема приобретает дополнительную стабильность. В случае возможных значительных изменений температурного режима, прецизионные резисторы можно не применять. Они используются только для контроля небольших перегревов.

При расположении датчика на дальнем расстоянии от сигнализатора, они должны соединяться между собой двухжильным экранированным проводом. При этом, выводы датчика не должны касаться металлических частей устройства, находящегося под контролем.

Регулятор оборотов вентилятора с датчиком температуры

electric-220.ru

Подключение одного термометра сопротивления к двум различным вторичным приборам одновременно — Готовые решения — Каталог статей

Датчики термосопротивления широко применяются для измерения температуры жидкостей, газов и твердых тел благодаря своей высокой точности, надежности, простоте установки и эксплуатации. Но при попытке передать сигнал с одного датчика термосопротивления одновременно на два вторичных прибора, например, программный ПИД-регулятор и безбумажный регистратор, добиться достоверных показаний не удастся.

Датчик термосопротивления (RTD) не может быть подключен параллельно или последовательно к входам двух вторичных приборов одновременно. Это связано с тем, что любой вторичный прибор генерирует опорный ток «возбуждения» для датчика термосопротивления. Подключение одного термодатчика к двум входам одновременно приведет к «смешиванию» опорных токов и искажению показаний.

Для подключения термодатчика к двум к двум входам одновременно есть несколько способов. Но в любом случае потребуется дополнительное оборудование для размножения сигнал RTD.

Датчик термосопротивления с двойным чувствительным элементом.

Для передачи информации о значении измеренной температуры на два разных вторичных устройства можно использовать термодатчик с двумя независимыми чувствительными элементами в одном корпусе. Выход первого чувствительного элемента соединяется с входом первого вторичного прибора (например, терморегулятора), выход второго чувствительного элемента соединяется с входом второго прибора (например, самописца).

Естественно реализация данного метода потребует замены установленного датчика температуры на другой имеющий два чувствительных элемента, например, Элемер ТС-1088/8.

Ретрансляция сигнала.

Многие вторичные приборы имеют, например, аналоговый выход 4-20 мА, который может быть настроен таким образом, чтобы «повторять» значение сигнала температуры на входе прибора. То есть первый прибор, к которому подключен непосредственно датчик термосопротивления преобразует стандартизированный сигнал RTD в унифицированный выходной сигнал 4-20 мА. На вход второго вторичного прибора приходит уже сигнал 4-20 мА, который в соответствии с заданной шкалой преобразуется в значение температуры. Необходимо помнить, что для передачи сигнала 4-20 мА входа/выхода приборов должны быть соответствующего типа: пассивные или активные.

Например, работа схемы будет возможна, если выход первого прибора будет активным, а вход второго прибора пассивным. При пассивном выходе первого прибора вход второго прибора должен быть активным. Если выход первого прибора и вход второго прибора пассивные, то необходим дополнительный источник питания постоянного тока для питания этого токового контура. Подключение активного выхода к активному входу может привести к повреждению приборов.

Реализация данного метода требует наличия соответствующих входов и выходов у вторичных приборов, а также правильного задания шкалы для входного и выходного сигналов 4-20 мА.

Датчик температуры с нормирующим преобразователем 4-20 мА.

Выходной сигнал датчика термосопротивления может быть сразу преобразован из RTD в аналоговый сигнал 4-20 мА с помощью нормирующего преобразователя, в том числе встроенного непосредственно в головку самого датчика температуры. В этом случае вторичные приборы подключаются последовательно с выходом нормирующего преобразователя образуя так называемую токовую петлю. Подобное подключение, как правило, без проблем работает с высококачественными аналоговыми входами с хорошей гальванической изоляцией. В некоторых случаях при подобном подключении могут возникнуть проблемы, например, при использовании низкоомных, неизолированных аналоговых входов.

При объединении приборов в токовую петлю необходимо помнить, что в цепи должен быть только один источник напряжения, включая активный выход нормирующего преобразователя или активный вход одного из вторичных приборов.

Для преобразования сигнала RTD в унифицированный выходной сигнал можно использовать, например, нормирующие преобразователи НПТ-1, НПТ-2, НПТ-3 или НПТ-3.Ех фирмы Овен.

Сплиттер или размножитель сигнала.

Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока. Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам. Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.

В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.

Цифровой обмен данными.

Данный способ передачи сигнала от одного датчика на несколько вторичных приборов является еще одним вариантом ретрансляции сигнала с одного прибора на другие. Устройство, такое как контроллер, панельный компьютер или PLC, к которому подключен датчик термосопротивления, преобразует значение сигнала датчика в цифровой сигнал, например, Modbus, и передает его на другое устройство в цифровом виде. Используя цифровые коммуникации возможно распространять данные о температуре на большое количество устройств — от самых простых индикаторов Овен СМИ2, до других контроллеров и PLC. Этот вариант естественно требует более высоких капитальных затрат, чем предыдущие аналоговые решения. Но данный метод обеспечивает наиболее точную передачу сигнала с меньшей погрешностью, особенно если речь идет о более чем двух вторичных приборах (точках вывода информации).

azbukakip.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *