Как использовать транзистор в качестве датчика температуры. Какие преимущества у транзисторных термодатчиков. Какие схемы включения транзисторов применяются для измерения температуры. Как откалибровать и повысить точность транзисторного термодатчика.
Принцип работы транзистора как датчика температуры
Транзистор может использоваться в качестве простого и недорогого датчика температуры благодаря температурной зависимости напряжения на p-n переходе. При постоянном токе через переход эмиттер-база напряжение на нем линейно уменьшается с ростом температуры с коэффициентом около -2 мВ/°C.
Основные преимущества транзисторных термодатчиков:
- Простота конструкции и низкая стоимость
- Широкий диапазон измеряемых температур (от -55°C до +150°C)
- Хорошая линейность характеристики
- Возможность усиления сигнала самим транзистором
- Малые размеры и быстродействие
Для использования транзистора как термодатчика необходимо обеспечить постоянный ток через переход эмиттер-база и измерять падение напряжения на нем. Чем меньше ток, тем выше чувствительность, но ниже помехоустойчивость.
Схемы включения транзисторных термодатчиков
Существует несколько основных схем включения транзисторов для измерения температуры:
1. Простейшая схема с общим эмиттером
В этой схеме транзистор включен по схеме с общим эмиттером, а напряжение измеряется между базой и эмиттером:
- Преимущества: простота, высокая чувствительность
- Недостатки: нелинейность, зависимость от напряжения питания
2. Дифференциальная схема на двух транзисторах
Используются два одинаковых транзистора, один из которых является опорным:
- Преимущества: компенсация нелинейности, высокая точность
- Недостатки: необходимость подбора пары транзисторов
3. Мостовая схема
Транзистор включается в одно из плеч измерительного моста:
- Преимущества: линейность, высокая чувствительность
- Недостатки: сложность настройки
Калибровка и повышение точности транзисторных термодатчиков
Для повышения точности измерений с помощью транзисторных термодатчиков применяются следующие методы:
- Индивидуальная калибровка по двум или трем точкам
- Использование прецизионных источников тока
- Термостатирование опорного транзистора
- Программная линеаризация характеристики
- Усреднение результатов нескольких измерений
При правильной калибровке можно достичь точности измерения температуры до ±0,1°C в ограниченном диапазоне.
Применение транзисторных термодатчиков
Транзисторные датчики температуры широко применяются в различных областях:
- Бытовая электроника (термометры, термостаты)
- Промышленная автоматика
- Автомобильная электроника
- Измерение температуры радиаторов и компонентов
- Метеорологические измерения
Особенно эффективно их использование в микропроцессорных системах, где сигнал с датчика может быть легко оцифрован и обработан.
Преимущества и недостатки транзисторных термодатчиков
Рассмотрим основные достоинства и ограничения транзисторных датчиков температуры:
Преимущества:
- Низкая стоимость
- Простота применения
- Широкий диапазон измеряемых температур
- Хорошая линейность характеристики
- Высокое быстродействие
- Малые размеры
Недостатки:
- Необходимость индивидуальной калибровки
- Зависимость от напряжения питания
- Саморазогрев при больших токах
- Чувствительность к электромагнитным помехам
При правильном применении транзисторные термодатчики позволяют создавать простые и недорогие измерители температуры с хорошими характеристиками.
Сравнение транзисторных термодатчиков с другими типами
Рассмотрим, как транзисторные датчики температуры соотносятся с другими распространенными типами:
Тип датчика | Преимущества | Недостатки |
---|---|---|
Транзисторные | — Низкая стоимость — Простота применения — Широкий диапазон | — Необходимость калибровки — Средняя точность |
Термисторы | — Высокая чувствительность — Быстрый отклик | — Нелинейная характеристика — Узкий диапазон |
Термопары | — Очень широкий диапазон — Высокая надежность | — Низкий выходной сигнал — Необходимость компенсации |
Платиновые RTD | — Высокая точность и стабильность — Хорошая линейность | — Высокая стоимость — Чувствительность к вибрации |
Как видно, транзисторные датчики занимают промежуточное положение, сочетая простоту применения с приемлемыми характеристиками.
Советы по применению транзисторных термодатчиков
При использовании транзисторов в качестве датчиков температуры следует учитывать следующие рекомендации:
- Выбирайте транзисторы с малым током утечки и высоким коэффициентом усиления.
- Используйте стабильный источник тока для питания датчика.
- Размещайте датчик как можно ближе к измеряемому объекту.
- Защищайте датчик от электромагнитных помех и влаги.
- Проводите периодическую калибровку для компенсации дрейфа параметров.
- Учитывайте саморазогрев датчика при больших токах.
- Используйте дифференциальные или мостовые схемы для повышения точности.
Соблюдение этих рекомендаций позволит создать надежный и точный измеритель температуры на основе транзисторного датчика.
Термодатчик на транзисторе — E-core
В этой статье я расскажу об использовании биполярного транзистора в качестве датчика температуры. Описание приводится в контексте использования его для измерения температуры радиатора (теплоотвода).
Главное преимущество датчика температуры на транзисторе в том, что он обеспечивает хороший тепловой контакт с радиатором и его относительно просто на нем закрепить и стоит биполярный транзистор не дорого.
Ниже показана схема включения транзистора и узел обработки сигнала на ОУ. VT1 это и есть транзистор-термодатчик, который крепится на радиатор.
Транзистор намеренно используется p-n-p структуры т.к. радиатор часто соединяется с общим проводом схемы, а коллектор транзистора в корпусе TO-220 соединен с теплоотводной пластиной и при креплении транзистора нет необходимости электрически изолировать его от радиатора, что дополнительно упрощает конструкцию.
Падение напряжения на p-n переходе изменяется при увеличении его температуры с крутизной примерно -2 мВ/градус (т.е. уменьшается с ростом температуры). Такое малое изменение напряжения не очень удобно обрабатывать АЦП, более того удобнее когда зависимость прямая т.е. при увеличении температуры сигнал температуры растет.
Приведенная схема смещает, инвертирует и усиливает сигнал с транзистора, обеспечивая увеличение выходного напряжения с ростом температуры, и работает следующим образом.
Из опорного напряжения, формируемого делителем R1R2, вычитается падение напряжения на транзисторе и результат вычитания усиливается. Опорное напряжения выбирается чуть выше падения напряжения на транзисторе при температуре 25 градусов, чем обеспечивается измерение напряжения ниже 25 градусов.
Коэффициент усиления схемы определяется соотношением R5/R4 + 1 и для данной схемы равен 11. Итоговая крутизна сигнала температуры получается 2*11=22мВ/градус. Таким образом для обеспечения измерения температуры от 0 градусов выходной сигнал при 25 градусах должен быть не менее 25*0,022=0,55В. Превышение напряжения смещения над падением на транзисторе при 25 градусах должно быть не менее 0,05В.
Падение напряжения на транзисторе при 25 градусах составляет 0,5-0,6В и зависит от конкретного типа транзистора и тока через него и наверняка подобрать опорное напряжение «с ходу» не получится, поэтому на этапе отладки требуется подбор резисторов R1R2 для конкретного типа транзистора и тока через него, от одного транзистора к другому это значение может меняться, но это уже может быть скорректировано программными методами.
Ток через транзистор определяется сопротивлением резистора R3, в данной схеме ток примерно равен 15мА. Рекомендуемое значение тока через транзистор 10-20мА.
Приведенная схема адаптирована под АЦП с опорным напряжением 3,3В, но может быть использована и для 5В опорного напряжения, для этого необходимо увеличить коэффициент усиления схемы, исходя из требуемого диапазона температур.
На элементах R6VD1 собрана схема ограничения выходного напряжения на случай нештатных ситуаций, например обрыва провода к транзистору. Если напряжение питания ОУ не превышает опорное напряжение АЦП, то их можно исключить.
В качестве DA1 может использовать любой ОУ, обеспечивающий работу при однополярном питании и входном напряжение от 0В. Например дешевый и распространенный LM358.
В качестве транзистора может использоваться любой не составной транзистор p-n-p структуры.
www.e-core.ru
Датчик температуры | Все своими руками
Опубликовал admin | Дата 9 июня, 2014Зависимость падения напряжения на p-n переходе от температуры было замечено сразу после создания самого этого перехода. Это свойство полупроводников используется в электронных термометрах, датчиках температуры, термореле и т.д.
Простейшим датчиком температуры является p-n переход кремниевого диода, температурный коэффициент напряжения, которого равен, примерно, 3 мВ/°C, а прямое падение напряжения находится в районе 0,7В. Работать с таким маленьким напряжением неудобно, поэтому в качестве термозависимого элемента лучше использовать p-n переходы транзистора, добавив к нему базовый делитель напряжения. Полученный двухполюсник обладает свойствами цепочки диодов, т.е. падение напряжения на нем можно устанавливать намного больше, чем 0,7В. Зависит оно от соотношения базовых резисторов R1 и R2 см. рис. 1.Обладая отрицательным температурным коэффициентом сопротивления, этот двухполюсник нашел применение в схеме питания варикапов. При повышении температуры, емкость варикапов начинает увеличиваться, но одновременно уменьшается падение напряжения на двухполюснике VT1, R1,R2, что ведет к увеличению напряжения на переменном резисторе и соответственно на варикапе, уменьшая его емкость. Таким образом, достигается температурная стабилизация резонансной частоты колебательного контура. На рисунке 2 показана схема двухполюсника, который можно использовать в качестве термодатчика в схемах электронных термореле и термометрах. Здесь есть одно неудобство, кристалл транзистора КТ315 размещен в пластмассовом корпусе, что повышает инерцию измерения температуры или срабатывания реле. И второе, это неудобство крепления его к объекту, температуру которого необходимо отслеживать. Например, для отслеживания температуры теплоотводов мощных ПП, лучше применить в качестве термодатчика транзистор КТ814. Конструкция этого транзистора позволяет крепить его непосредственно к радиатору, находящемуся под потенциалом земли, всего одним винтиком. Такой датчик используется в схеме терморегулятора для вентилятора, размещенной на сайте www. ixbt.com/spu/fan-thermal-control.shtml
На рисунке 4 показана практическая схема для вентилятора охлаждения блока питания. Применение операционного усилителя средней мощности К157УД1 в качестве компаратора, позволило подключить пару вентиляторов от блока питания компьютера непосредственно на выход микросхемы, выходной ток которой, равен 0,3А. Температуру включения вентиляторов устанавливают резистором R5. Схема работает следующим образом. При нормальной температуре теплоотвода напряжение на выводе 9 микросхемы DA1 должно быть больше, чем на выводе 8. При этом на выходе DA1, выводе 6, будет потенциал близкий к напряжению питания схемы. Напряжение на вентиляторах при таких условиях будет практически равно «0». Вентиляторы выключены. При повышении температуры теплоотводов будет повышаться и температура транзистора VT1, что в свою очередь вызовет уменьшение напряжения на неинвертирующем входе 8 микросхемы DA1. Как только это напряжение будет меньше напряжения, установленного резистором R5, состояние компаратора изменится и на его выходе напряжение упадет примерно до потенциала земли. Вентиляторы включатся. Резистор R7 обеспечивает небольшой гистерезис схемы, что исключает неопределенное состояние выходного напряжения на выходе DA1 при равенстве входных напряжений. Плату терморегулятора лучше установить прямо на контролируемом радиаторе, чтобы его микросхема тоже обдувалась вентилятором. Транзистор VT1 соединяется с платой тремя проводами и устанавливается в непосредственной близости от мощных ПП.
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:25 862
www.kondratev-v.ru
Термодатчики на транзисторах в схемах на МК
Физическая природа полупроводниковых материалов такова, что их параметры достаточно сильно зависят от температуры. В обычных усилительных схемах с этим явлением борются, а в измерителях температуры, наоборот, поощряют Например, у кремниевых транзисторов при постоянном токе коллектора с повышением температуры напряжение «база — эмиттер» U^^^ уменьшается с теоретическим коэффициентом 2.1 мВ/°С. Фактическое же изменение пропорционально отношению 1000|мВ|/Гх1 К], где Гх — температура среды по шкале Кельвина.
Пример расчёта. Пусть напряжение между базой и эмиттером стандартного кремниевого транзистора при температуре 7;)= 20°С составляет ^^^
С повышением температуры его корпуса до Г, = 35°С это напряжение уменьшается на 49м В: i
Реальное напряжение может несколько отличаться от расчётного, что зависит от положения рабочей точки транзистора и его типа. В любом случае рекомендуется снижать и стабилизировать ток, протекающий через /?—/7-переход, чтобы устранить эффект саморазогрева кристалла.
Рис. 3.67. Схемы подключения транзисторных термодатчиков к МК:
а) измерение температуры в диапазоне —30…+150°С. Термодатчиком выступает транзистор VTI, у которого напряжение (/[^э «дрейфует» с коэффициентом около 2 мВ/°С. Резисторами R4 и 7 выставляется диапазон температур и калибровочное напряжение +3 В на входе МК при комнатной температуре +25°С. Транзистор VTI имеет металлический корпус, торец которого можно запрессовать в термостойкую пластиковую трубку и использовать всю конструкцию как выносной щуп или зонд;
б) термодатчик на однопереходном транзисторе VTI обеспечивает линейность измерения температуры в диапазоне 0…+ 100°С;
в) транзистор VTI специально используется малогабаритный поверхностно монтируемый (SMD). Это необходимо для уменьшения тепловой инерционности датчика. К примеру, SMD- транзистор входит в стабильный тепловой режим через одну минуту после скачка температуры на 10°С (обычному «большому» транзистору требуется в несколько раз больше времени). Резистор /^/балансирует дифференциальную схему, состоящую из транзисторов VTI, VT2\
На Рис. 3.67, а…г показаны схемы подключения транзисторных термодатчиков к МК.
г) транзистор VT1 имеет в своём корпусе отверстие, через которое может закрепляться винтом на поверхности измеряемого объекта. Коллектор транзистора электрически соединяется со своим корпусом, что надо учитывать при монтаже. Температурный коэффициент преобразования прямо пропорционален отношению резисторов R3/R2 (в данной схеме около 20 мВ/°С).
nauchebe.net
Диод как датчик температуры- функция полупроводника
Диод — наипростейший по своей комплектации прибор, обладающий свойствами полупроводника.
Между двумя крайностями диода (донорной и акцепторной) пролегает область пространственного заряда, иначе: p-n-переход. Этот «мост» обеспечивает проникновение электронов из одной части в другую, поэтому, в силу разноимённости составляющих его зарядов, внутри диода возникает довольно малый по силе, но всё-таки ток. Движение электронов по диоду происходит только в одну сторону. Обратный ход конечно есть, но совершенно незначительный, а при попытке подключить в этом направлении источник питания диод запирается обратным напряжением. Это увеличивает плотность вещества и возникает диффузия. Кстати, именно по этой причине диод носит название полупроводникового вентиля (в одну сторону движение есть, в другую — нет).
Если попытаться повысить температуру диода, то количество неосновных носителей (электронов двигающихся в обратном основному направлении) увеличится, а p-n-переход начнёт разрушаться.
Именно поэтому рабочая температура полупроводников имеет определённые ограничения
Принцип взаимодействия между падением напряжения на диодном p-n-переходе и температурой самого диода была выявлена практически сразу после того, как он был сконструирован.
В результате p-n-переход диода из кремния — это наиболее простой температурный датчик. Его ТКН (температурный коэффициент напряжения) составляет 3 милливольта на градус цельсия, а точка прямого падения напряжения — около 0,7В.
Для нормальной работы данный уровень напряжения излишне мало, поэтому чаще используется не сам диод, а транзисторные p-n-переходы в комплекте с базовым делителем напряжения.
В результате, конструкция по своим качествам соответствует целой последовательности диодов. Как итог, показатель по падению напряжения может быть гораздо большим, чем 0,7В.
Поскольку ТКС (температурный коэффициент сопротивления) диода является отрицательным (- 2mV/°C), то он оказался весьма актуальным для использования в варикапах, где ему отводится роль стабилизатора резонансной частоты колебательного контура. Контроль осуществляется при помощи температуры.
Данные по падению напряжения на диодах
При анализе показаний цифрового мультиметра можно отметить, что данные по падению напряжения на p-n-переходе для кремниевых диодов составляют 690-700 мВ, а у германиевых — 400-450 мВ (хотя этот вид диодов на данный момент практически не используется). Если во время замера температура диода поднимается, то данные мультиметра напротив снизятся. Чем значительнее сила нагрева, тем значительнее падают цифровые данные.
Обычно это свойство используется для стабилизации процесса работы в электронной системе (например, для усилителей звуковых частот).
Схема термометра на диоде.
Датчики температуры для микроконтроллера
На данный момент многие схемы строятся на микроконтроллерах, сюда же можно отнести и разнообразные измерители температуры, в которых могут быть применены полупроводниковые датчики при условии, что температура при их эксплуатации не превысит 125°C.
Поскольку градуирование температурных измерителей происходит ещё на заводе, калибровать и настраивать датчики нет никакой необходимости. Получаемые от них результаты в виде цифровых данных поступают в микроконтроллер.
Применение полученной информации зависит от программного наполнения контроллера.
Помимо прочего, такие датчики могут работать в термостатном режиме, то есть (при заранее заданной программе) включаться или выключаться по достижении определённой температуры.
Однако, если опорными станут другие температурные показатели, программу придётся переписывать.
Прочие сферы применения
Хотя на сегодняшний день выбор температурных датчиков весьма широк, никто не забывает про их диодный вариант, который достаточно часто применяется в электроутюгах, электрокаминах и электронике в самом широком её смысле.
Несмотря на ограничения по температурному режиму диодные датчики имеют свои значительные плюсы:
— относительная дешевизна;
— скромные габариты;
— запросто подойдут к огромному числу электронных приборов;
— превосходная чувствительность и точность.
Благодаря всем этим качествам область применения датчиков данного типа растёт из года в год.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
elektronchic.ru
Простой датчик температуры с аналоговым выходом 0-10В
Датчик температуры может использоваться в различных условиях окружающей среды. Датчик предназначен для измерения температуры в градусах Цельсия и преобразовании его в напряжение. Датчик температуры подходит для работы на общих промышленных зонах и на открытой местности.В датчике установлен термометр типа LM35, что обеспечивает надежность и точность при измерениях температуры. Благодаря герметизации датчика с измерительным элементом, обеспечивается высокая вибростойкость и влагостойкость.
Основные технические характеристики:
• Подходит для использования в газообразных средах, а также измерения температуры окружающей среды и температуры предметов и исследуемой поверхности
• Возможность крепления с помощью болтового соединение непосредственно к поверхности измеряемой температуры
• Защита от инверсной подачи питания
• Рабочая температура достигает +100 °C
• Диапазон измеряемых температур: -50…+80
• Напряжение питания: постоянный ток 12В
• Потребляемый ток: 10мА
• Напряжение выходного сигнала: 0-10В
• Выходной ток: 20мА
Конструкция датчика позволяет крепить его непосредственно к площади поверхности для измерения температуры ее поверхности или компенсации температурных изменений (для лучшего эффекта, на место контакта нанести небольшой слой теплопроводной пасты, например КПТ-8 или КПТ-19), возможно так же крепить таким способом датчик температуры на пластиковые, поливинилхлоридные и прочие поверхности изготовленные из материалов с низкой теплопроводностью.
Предыстория:
Обратился как-то ко мне знакомый, который работал инженером в фирме — интеграторе GPS/Глонасс оборудования. Один из их клиентов захотел измерять температуру окружающей среды за бортом очередного трактора. На этой технике уже стояли GPS — терминалы, отечественные, ADM600, какой-то пермской конторы. Спросил меня, какой лучше датчик применить, недорогой. У меня сразу возникла мысль, почему бы не применить DS18B20, на что коллега мне ответил: «у треккера нет 1wire», есть только 2 АЦП, один канал от 0-13, второй от 0 — 36, ну и плюс еще всякие входа дискретные и протокольные интерфейсы. Странно думаю, как так-то? В общем нужно было срочно решить его проблему, причем еще и как обычно — недорого. Придя домой сразу же открыл ящик стола. В кассетнице лежало с десяток DS18b20 и LM35. Откуда LM 35, я даже и не вспомнил. Никогда их не применял. Открыв ДШ по GPS треккеру и вправду не обнаружил у него шину Dallas а. Решено, делать датчик на том что есть — LM35. В ДШ написанно, что при базовом подключении, цена деления 10мВ на 1 градус С. И при этом нет возможности измерить отрицательную температуру.
Исходя из этого, требуется усилить сигнал и сделать смещение на датчике, что бы была возможность измерения отрицательных температур. Полазив в интернете, нашел схему смещения на двух диодах. Решил поставить транзистор.
В качестве усилителя применен низковольтный ОУ LM358:
Дальше решил промоделировать схему со смещением:
Как видно из рисунка, выходной сигнал измеряется (вольтметром) относительно общего провода.
Резистор R1 и транзистор Q1(включенный как диод) образуют схему смещения уровня вывода GND датчика температуры. При этом потенциал нижнего вывода резистора R4 оказывается отрицательным по отношению к GND LM35 и, датчик может работать как с положительными, так и с отрицательными температурами. Измерение выходного сигнала, как уже говорилось выше, осуществляется относительного общего провода питания. При нулевом значении температуры выходное напряжение составляет 0.6В (при использовании транзистора MMBT3906).
Снижение температуры ниже нуля вызывает уменьшение выходного напряжения (10 мВ на 1С на выходе LM35).
Подъем температуры выше нуля приводит к росту выходного напряжения.
Далее вопрос стал о конструктиве. Набросал 3D в Proteus, дабы визуально оценить размеры (решил плату усилителя совместить с головкой датчика в единую конструкцию, ибо линии на этом тракторе могут достигать длины и более 2х метров).
В DIPe сразу не понравилось, громоздко. Решил использовать планарные элементы. В качестве элемента для головки термодатчика использовал медный наконечник с отверстием под болт, решил обжать им LM35, предварительно промазав КПТ-8. Обжал при помощи специальной обжимки от Phoenix contact, брал у коллеги, поэтому не удалось сфотографировать. Далее аккуратно обработал простыми плоскогубцами.
Нарисовал плату в sLayot, получилась достаточно компактна:
Ну дальше сборка, решил сделать сразу 10 штук:
После сборки, обжал аккуратно наконечником корпус термодатчика и хорошо припаял с обратной стороны печатной платы… Конечно лучше было сделать прорези и пропаять с обеих сторон, но времени не было. Плату аккуратно обмакнул в Казанский герметик и поместил в термоусадочную трубку с клеем, провода от датчика поместил в пластиковый гофрорукав с авторынка, диаметром 6мм.
Питание датчика осуществляет отдельный параметрический стабилизатор на TL431 и МДП транзисторе и в данном случае не рассматривается.
Попробовал я откалибровать датчик. Калибровал при помощи спиртового градусника и своего самодельного термометра на DS18B20:
Калибровал так: холодильник, улица, фен. Хотя можно было применить чашку со льдом и комфорку плиты. Но так как термодатчик линеен, не стал сильно заморачиваться и сделал несколько замеров:
Сопоставляя данные с разных термометров сделал вывод: датчик получился достаточно точным.
Схема подключения датчика к прибору ADM600:
Передал датчики товарищу. Который через неделю после инсталяции термометров скинул мне отчет из програмного комплекса Fort Monitor, все работало =)
PS: По оси Y указана температура, а не напряжение. Так устроен программный комплекс…
we.easyelectronics.ru
Как использовать диоды и транзисторы для измерения температуры
Для измерения температуры в качестве термопреобразователей можно использовать полупроводниковые диоды и транзисторы. Это разъясняется тем, что при неизменном значении тока, протекающего в прямом направлении, к примеру через переход диодика, напряжение на переходе фактически линейно меняется с конфигурацией температуры.
Для того чтоб значение тока было повсевременно, поочередно с диодиком довольно включить огромное активное сопротивление. При всем этом ток, проходящий через диодик, не должен вызывать его нагрева.
Выстроить градуировочную характеристику такового термодатчика можно по двум точкам — сначала и в конце измеряемого спектра температур. На рисунке 1, а показана схема измерения температуры с помощью диодика VD. Источником питания может служить батарейка.
Рис. 1. Схема измерения температуры с помощью диодика (а) и транзисторов (б, в). Мостовые съемы позволяют наращивать относительную чувствительность устройства, компенсируя изначальное значение сопротивления датчика.
Аналогично оказывает влияние температура на сопротивление перехода эмиттер — база транзисторов. При всем этом транзистор может сразу действовать и как датчик температуры, и как усилитель собственного сигнала. Потому применение транзисторов в качестве термодатчиков имеет преимущество перед диодиками.
На рисунке 1, б показана схема указателя температуры, в какой в качестве преобразователя температуры употребляется транзистор (германиевый либо кремниевый).
При изготовлении термометров как на диодиках, так и на транзисторах требуется выстроить градуировочную характеристику, при всем этом в качестве примерного средства измерений можно использовать ртутный указатель температуры.
Инерционность термометров на диодиках и транзисторах маленькая: на диодике — 30 с, на транзисторе — 60 с.
Практический энтузиазм представляет мостовая схема с транзистором в одном из плеч (рис. 1, в). В этой схеме эмиттерный переход включен в одно из плеч моста R4, на коллектор подано маленькое запирающее напряжение.
Школа для электрика
elektrica.info
Полупроводниковые датчики температуры
Полупроводниковые датчики температуры
Полупроводниковые датчики температуры предназначены для измерения температуры от -55° до 150°С. В этот диапазон попадает огромное количество задач, как в бытовых, так и в промышленных приложениях. Благодаря высоким характеристикам, простоте применения и низкой стоимости полупроводниковые датчики температуры оказываются очень привлекательными для применения в микропроцессорных устройствах измерения и автоматики.
Принцип работы
Полупроводниковые датчики температуры |
Физический принцип работы полупроводникового термометра основан на зависимости от температуры падения напряжения на p-n переходе, смещенном в прямом направлении. Данная зависимость близка к линейной, что позволяет создавать датчики, не требующие сложных схем коррекции. В качестве чувствительных элементов на практике используются диоды, либо транзисторы, включенные по схеме диода. Для проведения измерений, необходимо протекание стабильного тока через чувствительный элемент. Выходным сигналом является падение напряжения на датчике.
Схемы, использующие одиночный p-n переход, отличаются низкой точностью и большим разбросом параметров, связанных с особенностями изготовления и работы полупроводниковых приборов. Поэтому промышленность выпускает множество типов специализированных датчиков, имеющих в своей основе вышеописанный принцип, но дополнительно оснащенных цепями, устраняющими негативные особенности и значительно расширяющими функционал приборов.
Аналоговые полупроводниковые датчики
Типовая схема включения полупроводникового термометра с коррекцией |
Простые аналоговые полупроводниковые датчики практически в чистом виде реализуют идею измерения температуры, с помощью определения падения напряжения на p-n переходе. Для устранения всех отрицательных явлений, связанных с работой такого перехода, используется специальная схема, содержащая в своем составе два чувствительных элемента (транзистора) с различными характеристиками. Выходной сигнал формируется как разность падений напряжения на каждом чувствительном элементе. При вычитании значительно сокращаются негативные моменты. Дальнейшее повышение точности измерения осуществляется калибровкой датчика с помощью внешних цепей.
Основной характеристикой датчика температуры является точность измерений. Для полупроводниковых моделей она колеблется от ±1°С до ±3.5°С. Самые точные модели редко обеспечивают точность лучше чем ±0.5°С. При этом данный параметр сильно зависит от температуры. Как правило, в суженном диапазоне от -25° до 100°С точность в полтора раза выше, чем в полном диапазоне измерений -40°С до +125°С. Большинство аналоговых датчиков температуры, иначе называемых интегральными датчиками, содержит три вывода и включается по схеме диода. Третий вывод обычно используется для целей калибровки. Выходной сигнал датчика представляет собой напряжение, пропорциональное температуре. Величина изменения напряжения различна и, например, составляет 10мВ/градус. Для точного определения значения температуры необходимо знать падение напряжения при каком-либо ее фиксированном значении. Обычно в качестве такового используется значение начала диапазона измерений либо 0°С.
Примеры аналоговых датчиков температуры
Модель | Диапазон измерений | Точность | Температурный коэффициент | Производитель |
LM35 | от -55°С до +150°С | ±2°С | 10 мВ/°С | National Semiconductor |
LM135 | от -50°С до +150°С | ±1.5°С | 10 мВ/°С | National Semiconductor |
LM335 | от -40°С до +100°С | ±2°С | 10 мВ/°С | National Semiconductor |
TC1047 | от -40°С до +125°С | ±2°С | 10 мВ/°С | Microchip |
TMP37 | от -40°С до +125°С | ±2°С | 20 мВ/°С | Analog Devices |
Кроме простых датчиков, производители предлагают также готовые интегральные системы термостатирования. Подобные микросхемы, например LM56 от National Semiconductor, оснащены выходом для управления нагрузкой. Температура срабатывания выхода задается в виде заводской установки, либо с помощью навесных элементов, подключаемых к специальным входам задания. Невысокое качество регулирования, обеспечиваемое данными элементами, компенсируется их простотой использования и сверхнизкой стоимостью готовых систем управления.
Полупроводниковые датчики с цифровым выходом
Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики можно встретить в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Также использование стандартных интерфейсов позволяет интегрировать датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей, что обусловило огромную популярность применения этих элементов в любительской практике и мелкосерийном производстве.
Примеры датчиков температуры с цифровым выходом
Модель |
Диапазон |
Точность |
Разрешение |
Интерфейс |
Производитель |
LM75 |
от -55°С до +125°С |
±3°С |
9 бит |
I2C |
National Semiconductor |
LM76 |
от -55°С до +150°С |
±1.5°С |
13 бит |
I2C |
National Semiconductor |
DS18B20 |
от -55°С до +125°С |
±2°С |
9-12 бит |
1-Wire |
MAXIM |
DS1621 |
от -55°С до +125°С |
±1°С |
9 бит |
I2C |
MAXIM |
DS1722 |
от -55°С до +120°С |
±2°С |
12 бит |
SPI |
Dallas Semiconduction |
MCP9800 |
от -55°С до +125°С |
±3°С |
12 бит |
I2C |
Microchip |
MSP9808 |
от -40°С до +125°С |
±1°С |
12 бит |
I2C |
Microchip |
ADT7320 |
от -40°С до +150°С |
±0.25°С |
16 бит |
SPI |
Analog Devices |
Характеристики интегральных датчиков температуры с цифровым выходом в целом соответствуют характеристикам аналоговых вариантов. При этом в виду применения АЦП, добавляется такой параметр, как разрешение выходных данных. Сегодня можно встретить датчики с разрешением от 9 до 16 бит. Часто данный параметр указывается в виде температуры, определяемой младшим разрядом АЦП. Например, для высокоточного датчика LM76, предоставляющего пользователю 13-битные данные, он составляет 0.0625°С. Не следует путать этот параметр с точностью измерений, так как вес младшего разряда АЦП определяет только точность работы аналогово-цифрового преобразователя, без учета характеристики датчика. Для того же LM76, заявленная точность измерений не превышает ±1°С.
Типовая схема использования цифрового датчика температуры |
Кроме непосредственного измерения температуры, многие цифровые датчики обладают дополнительными функциональными возможностями. Наибольшее распространение получил дополнительный выход термостатирования, позволяющий использовать микросхемы без внешних устройств управления. Также можно встретить входы подключения дополнительных внешних температурных датчиков и дискретные порты ввода вывода.
Другие статьи:
Датчики температуры. Общий обзор.
Термометр на микроконтроллере PIC12F629
Терморегулятор на микроконтроллере PIC16F676
You have no rights to post comments
mcucpu.ru