Схема включения симистора. Симистор: принцип работы, характеристики и применение

Что такое симистор и как он работает. Каковы основные характеристики и параметры симистора. Где применяются симисторы и какие схемы на них можно собрать. Как проверить исправность симистора.

Содержание

Что такое симистор и его устройство

Симистор (триак) — это полупроводниковый прибор, относящийся к семейству тиристоров. Его главная особенность заключается в способности проводить ток в обоих направлениях.

Структурно симистор представляет собой два встречно-параллельно включенных тиристора в одном корпусе с общим управляющим электродом. Это позволяет ему работать как с положительной, так и с отрицательной полуволной переменного тока.

Симистор имеет три вывода:

  • MT1 и MT2 — основные силовые электроды
  • G — управляющий электрод (затвор)

На электрических схемах симистор обозначается следующим символом:

[Здесь было бы изображение УГО симистора]

Принцип работы симистора

Принцип работы симистора основан на способности переключаться между двумя состояниями:


  • Закрытое состояние — высокое сопротивление, ток не проходит
  • Открытое состояние — низкое сопротивление, ток свободно проходит через прибор

Переключение из закрытого состояния в открытое происходит при подаче управляющего импульса на затвор G. После этого симистор остается открытым, пока ток через него не упадет ниже порогового значения.

Важное свойство симистора — способность открываться при подаче как положительного, так и отрицательного напряжения на основные электроды. Это позволяет использовать его для управления переменным током.

Основные характеристики и параметры симисторов

Ключевыми характеристиками симисторов являются:

  • Максимальное рабочее напряжение
  • Максимальный рабочий ток
  • Ток удержания
  • Напряжение включения
  • Управляющий ток и напряжение
  • Время включения и выключения

Рассмотрим подробнее некоторые из этих параметров:

Максимальное рабочее напряжение

Это максимальное напряжение между основными электродами MT1 и MT2, которое способен выдержать симистор в закрытом состоянии. Типичные значения составляют от 400 В до 1200 В.


Максимальный рабочий ток

Определяет максимальный ток, который может пропускать симистор в открытом состоянии. Обычно находится в диапазоне от нескольких ампер до сотен ампер для мощных приборов.

Ток удержания

Минимальный ток через симистор, необходимый для поддержания его в открытом состоянии. При падении тока ниже этого значения симистор закрывается.

Напряжение включения

Напряжение между основными электродами, при котором происходит самопроизвольное открытие симистора без подачи управляющего сигнала.

Применение симисторов

Благодаря своим свойствам симисторы широко применяются в различных областях электроники и электротехники:

  • Регуляторы мощности для бытовых приборов (диммеры, регуляторы оборотов)
  • Устройства плавного пуска электродвигателей
  • Системы управления нагревательными элементами
  • Импульсные источники питания
  • Сварочные аппараты
  • Устройства защиты от перенапряжений

Рассмотрим некоторые типовые схемы на симисторах:

Простой регулятор мощности (диммер)

Эта схема позволяет плавно регулировать мощность нагрузки переменного тока, например яркость лампы накаливания:


[Здесь было бы изображение схемы диммера на симисторе]

Принцип работы основан на изменении момента открытия симистора в течение каждого полупериода сетевого напряжения. Чем позже открывается симистор, тем меньше энергии передается в нагрузку.

Устройство плавного пуска электродвигателя

Данная схема обеспечивает плавный запуск асинхронного электродвигателя, снижая пусковые токи:

[Здесь было бы изображение схемы устройства плавного пуска]

При включении симистор открывается на короткое время в каждом полупериоде, постепенно увеличивая среднее напряжение на двигателе. Это позволяет снизить пусковой ток и механические нагрузки.

Как проверить симистор

Для проверки исправности симистора можно использовать следующие методы:

Проверка мультиметром

  1. Установите мультиметр в режим проверки диодов
  2. Подключите щупы к MT1 и MT2. Сопротивление должно быть высоким в обоих направлениях
  3. Подключите один щуп к G, а другой к MT1. При касании G и MT2 сопротивление должно резко упасть
  4. Повторите проверку, поменяв полярность щупов

Проверка в реальной схеме

Для более надежной проверки можно собрать простую тестовую схему:


[Здесь было бы изображение тестовой схемы для проверки симистора]

При нажатии кнопки лампа должна загораться. Если этого не происходит, симистор неисправен.

Заключение

Симисторы являются мощным инструментом для управления переменным током. Их способность проводить ток в обоих направлениях делает их незаменимыми в различных схемах регулирования мощности и коммутации нагрузок переменного тока. Правильное применение симисторов позволяет создавать эффективные и надежные электронные устройства.


принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначениеРис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Структурная схема симистораРис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистораВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиаторСимистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помехRC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторовСхема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторовСхема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльникаПростой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятораСхема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),
Что такое симистор (триак), характеристики, схемы: принцип работы, схемы, характеристики

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Тиристорные конфигурацииТиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Схема и символ симистораСхема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

Кривые характеристики триака IVКривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте <ΙΙΙ, срабатывание с отрицательным током затвора, –Ι G также является обычным режимом mode– вместе с режимом ΙΙΙ +. Однако режимы Ι– и ΙΙΙ + являются менее чувствительными конфигурациями, требующими большего тока затвора, чтобы вызвать запуск, чем более распространенные режимы запуска триаков Ι + и ΙΙΙ–.

Также, как и кремниевые управляемые выпрямители (SCR), триаки также требуют минимального удерживающего тока H для поддержания проводимости в точке пересечения сигналов. Затем, несмотря на то, что два тиристора объединены в одно устройство симистора, они по-прежнему демонстрируют индивидуальные электрические характеристики, такие как различные напряжения пробоя, токи удержания и уровни напряжения запуска, точно такие же, как мы ожидаем от одного устройства SCR.

Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

картинка-схема переключения симисторакартинка-схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного токаСхема показывает триак, используемый как простой статический выключатель питания переменного тока

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Модифицированная цепь переключения симистораМодифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Фазовый контроль симистораФазовый контроль симистора

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Симистор. Принцип работы, параметры и обозначение на схеме.

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

Условное обозначение симистора на схемах

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Эквивалентная схема симистора на двух тиристорах

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности
Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Цепь защиты от ложных срабатываний

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор
Оптосимистор MOC3023

Устройство оптосимистора
Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Симистор — устройство и принцип работы прибора

Симистор в бытовых приборахСимистор — полупроводниковый прибор, используемый в качестве электронного ключа в схемах коммутации цепей переменного тока. Каждый из типов электрических ключей имеет свои достоинства, недостатки и область применения. Простейшими механическими ключами являются выключатели и рубильники. Применяются там, где необходима ручная коммутация одной или нескольких групп контактов.

Вконтакте

Facebook

Twitter

Google+

Мой мир

Электромеханические ключи

Для коммутации в электрических схемах используются ключи различного типа:

  • механические;
  • электромеханические;
  • электронные.

Регулятор мощности на симистореК электромеханической группе относятся реле или контакторы. Замыканием и размыканием контактов управляет электромагнит. На катушку электромагнита подается управляющее напряжение, которое может быть как постоянным, так и переменным. Механические контакты реле могут коммутировать практически любые токи. Сопротивление контактной пары ничтожно, падение напряжения на контактах практически отсутствует. Нет потерь мощности при коммутации нагрузок, хотя есть потери на питание управляющей катушки.

Огромным преимуществом контакторов является то, что цепи нагрузки и управления электрически изолированы.

Недостатков тоже немало:

  • Ограниченно число переключений. Контакты изнашиваются;
  • Возникновение электрической дуги при размыкании — искрение контактов. Приводит к электроэрозии и недопустимо во взрывоопасных средах;
  • Низкое быстродействие.

Там, где применение контакторов невозможно или нецелесообразно, применяют электронные ключи.

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Симистор BTA 16-600B Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

Симистор BTA41600B

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Симистор BTA41600B

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Симистор BTA41600B

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Симистор BTA41600B

Принцип работы симистора

Симистор — это прибор, структура которого соответствует двум тиристорам с разной проводимостью, соединенных встречно-параллельно. Это ясно видно из их условного графического обозначения.

Обозначение симистора.

Симистор BTA41600B

Вольт-амперная характеристика, в отличие от тиристора, симметрична.

Симистор BTA41600B

Симистор проводит ток в обоих направлениях, в отличие от тиристора. В остальном его поведение аналогично.

Как и тиристор, симистор является электронным ключом, управляемым током, так же, как и транзисторный ключ, но в отличие от транзисторного ключа, симисторный (и тиристорный) остается в открытом состоянии и после снятия управляющего сигнала, пока ток через него превышает некоторое минимальное значение, называемое током удержания.

Динисторы как разновидность симисторов

Если не использовать управляющий вход симистора, он превращается в динистор. Характеристика динистора соответствует характеристике симистора при Ig = 0.

Динистор ведет себя, подобно разряднику. Если напряжение на выводах разрядника превышает напряжение пробоя, он начинает пропускать ток, и остается в открытом состоянии, пока ток не станет ниже порога удержания, или полярность напряжения не сменится на обратную. Динисторы часто используются для управления симисторными ключами.

Графическое условное обозначение динистора на электрических схемах может быть различным.

Симистор BTA41600B

Принцип фазного регулирования мощности

Простые схемы для лаборатории Основное применение симисторов — регулирование мощности в цепях переменного тока. В таких регуляторах используется принцип фазного регулирования. Принцип состоит в том, что ключ отключает нагрузку на определенную долю полупериода синусоидального тока сети.

В результате на нагрузку передается обрезанная синусоида тока. Меняя длительность открытого состояния ключа, можно управлять величиной мощности и действующим значением напряжения на нагрузке.

Такие схемы используются в регуляторах яркости ламп накаливания — диммерах, регуляторах мощности нагревательных приборов, схемах плавного пуска электродвигателей.

Схема регуляторов мощности на симисторе

Регулятор мощностиПростейшая схема симисторного регулятора приведена ниже. Емкость C1 заряжается через резисторы R1 и R2.

Когда напряжение на емкости достигнет величины напряжения открытия динистора, через открытый динистор на управляющий вход симистора подается отпирающий ток, симистор открывается и остается в открытом состоянии до конца полупериода. Емкость тем временем разряжается через открытый динистор и базу симистора. Напряжение на емкости падает, и динистор закрывается.

На втором полупериоде все повторяется. Меняя сопротивление R1, можно изменять скорость заряда емкости и, соответственно, момент срабатывания динистора и открытия ключа.

Проверка тиристораВ интернете достаточно советов по тому, как проверить исправность симистора мультиметром. Мы же считаем, что нормально проверить симистор мультиметром невозможно.

Тока мультиметра в режиме прозвонки или измерения сопротивления, скорее всего, недостаточно ни для тока управления, ни для тока удержания. Тестером можно лишь проверить пробой p-n переходов. Исправный переход работает как диод и показывает высокое сопротивление в одном направлении и низкое — в другом.

Для полноценной проверки симистора надо собрать хотя бы простейшую испытательную схему. Хотя бы на батарейках и лампочках. Если вы внимательно прочли данную статью, информации будет достаточно для подключения симистора по такой схеме для проверки его работоспособности.

Вконтакте

Facebook

Twitter

Google+

Мой мир

Что такое симистор, как он работает и для чего нужен

Симисторы — это полупроводниковые ключи, которые используют для коммутации цепей сетевого напряжения. Узнайте, как работает симистор и для чего он нужен в цепи.

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.

Содержание:

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Что такое симистор, как он работает и для чего нужен

Внешний вид следующий:

Что такое симистор, как он работает и для чего нужен

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Что такое симистор, как он работает и для чего нужен

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Что такое симистор, как он работает и для чего нужен

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Что такое симистор, как он работает и для чего нужен

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Опубликовано: 03.07.2019 Обновлено: 03.07.2019 нет комментариев
назначение и основные характеристики, принцип работы для «чайников» и проверка в схемах

Обозначение и принцип действия симистораПолупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Механические ключи

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Транзистор биполярного типа

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Ключи на полевых транзисторах,

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Схема включения 2 тиристоров

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

 ВАХ триака

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Виды симисторовКонструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Симметричные тиристоры

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Технические характеристики симисторовВеличина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Проверка симметричного тиристора при помощи лампы накаливания

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Симистор (триак) — описание, принцип работы, свойства и характеристики

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его «довольно архаичным», пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор — это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

Симистор

Рис.1

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 — это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно!!!
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 «анодный» вывод, цифрой 2 — «катодный», поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).

ВАХ симистора Симистор
Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте — никакой, схема получается проще, но главное — исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на «аноде» симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.

То бишь — всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — симистор будет открываться при замыкании S1 в каждый момент превышения «анодным» напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.

Симистор Симистор
Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 — динистор. Для интересующихся отмечу — на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

  Тип    U макс, В     I max, А     Iу отп, мА  
  КУ208Г      400     5    
  BT 131-600      600     1    
  BT 134-500      500     4    
  BT 134-600      600     4    
  BT 134-600D      600     4    
  BT 136-500Е      500     4    
  BT 136-600Е      600     4    
  BT 137-600Е      600     8    
  BT 138-600      600     12    
  BT 138-800      800     12    
  BT 139-500      500     16    
  BT 139-600      600     16    
  BT 139-800      800     16    
  BTA 140-600      600     25    
  BTF 140-800      800     25    
  BT 151-650R      650     12    
  BT 151-800R      800     12    
  BT 169D      400     12    
  BTA/BTB 04-600S      600     4    
  BTA/BTB 06-600C      600     6    
  BTA/BTB 08-600B      600     8    
  BTA/BTB 08-600C      600     8    
  BTA/BTB 10-600B      600     10    
  BTA/BTB 12-600B      600     12    
  BTA/BTB 12-600C      600     12    
  BTA/BTB 12-800B      800     12    
  BTA/BTB 12-800C      800     12    
  BTA/BTB 16-600B      600     16    
  BTA/BTB 16-600C      600     16    
  BTA/BTB 16-600S      600     16    
  BTA/BTB 16-800B      800     16    
  BTA/BTB 16-800S      800     16    
  BTA/BTB 24-600B      600     25    
  BTA/BTB 24-600C      600     25    
  BTA/BTB 24-800B      800     25    
  BTA/BTB 25-600В      600     25    
  BTA/BTB 26-600A      600     25    
  BTA/BTB 26-600B      600     25    
  BTA/BTB 26-700B      700     25    
  BTA/BTB 26-800B      800     25    
  BTA/BTB 40-600B      600     40    
  BTA/BTB 40-800B      800     40    
  BTA/BTB 41-600B      600     41    
  BTA/BTB 41-800B      800     41    
  MAC8M      600     8    
  MAC8N      800     8    
  MAC9M      600     9    
  MAC9N      800     9    
  MAC12M      600     12    
  MAC12N      800     12    
  MAC15M      600     15    
  MAC12N      800     15    

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Симистор

 

90000 What is TRIAC: Switching Circuit and Applications 90001 90002 Power electronic switches like BJT, SCR, IGBT, MOSFET, and TRIAC are very important components when it comes to switching circuits like 90003 DC-DC converters 90004, 90003 Motor Speed ​​Controllers 90004, 90003 Motor Drivers 90004, and 90003 Frequency Controllers 90004 etc. Each device has its own unique property and thus they have their own specific applications. In this tutorial we will learn about the 90003 TRIAC 90004, which is a bidirectional device meaning it can conduct in both the direction.Due to this property TRIAC is exclusively used where sinusoidal AC supply is involved. 90013 90002 90013 90016 90003 Introduction to TRIAC 90004 90019 90002 The term 90003 TRIAC 90004 stands for 90003 TRI 90004 ode for 90003 A 90004 lternating 90003 C 90004 urrent. It is a three terminal switching device similar to SCR (Thyristor) but it can conduct in both the directional since it construct by combining two SCR in anti-parallel state. The symbol and pin out of TRIAC is shown below.90013 90002 90031 90013 90002 90013 90002 Since the TRIAC is a bi-directional device the current can either flow from MT1 to MT2 or from MT2 to MT1 when the gate terminal is triggered. For a TRIAC this trigger voltage that is to be applied to the gate terminal can either be positive or negative with respect to terminal MT2. Thus this puts the TRIAC into four 90003 operating modes 90004 as listed below 90013 90039 90040 Positive Voltage at MT2 and positive pulse to gate (Quadrant 1) 90041 90040 Positive Voltage at MT2 and negative pulse to gate (Quadrant 2) 90041 90040 Negative Voltage at MT2 and positive pulse to gate (Quadrant 3) 90041 90040 Negative Voltage at MT2 and negative pulse to gate (Quadrant 4) 90041 90048 90002 90013 90016 90003 V-I Characteristics of a TRIAC 90004 90019 90002 The below picture illustrates the status of TRIAC in each quadrant.90013 90002 90058 90013 90002 90013 90002 The turn on and turn off characterises of the TRIAC can be understood by looking at the VI characterises graph of the TRIAC which is also shown in the above picture. Since the TRIAC is just a combination of two SCR in anti-parallel direction the V-I characteristics graph looks similar to that of an SCR. As you can see the TRIAC mostly operates in the 1 90063 st 90064 Quadrant and the 3 90063 rd 90064 Quadrant. 90013 90002 90013 90002 90003 Turn-On Characteristics 90004 90013 90002 To turn on a TRIAC a positive or negative gate voltage / pulse has to be supplied to the gate pin of the TRIAC.When triggered one of the two SCR inside, the TRIAC begins to conduct based on the polarity of the MT1 and MT2 terminals. If MT2 is positive and MT1 is negative the first SCR conducts and if the MT2 terminal is negative and MT1 is positive then second SCR conducts. This way either one of the SCR always stays on thus making the TRIAC ideal for AC applications. 90013 90002 The minimum voltage that has to be applied to gate pin to turn ON a TRIAC is called as 90003 the threshold gate voltage (V 90078 GT 90079) 90004 and the resulting current through the gate pin is called as the 90003 threshold gate current (I 90078 GT 90079).90004 Once this voltage is applied the gate pin the TRIAC gets forward biased and starts to conduct, the time taken for the TRIAC to change from off state to on state is called as 90003 turn-on time (t 90078 on 90079). 90004 90013 90002 Just like an SCR the TRIAC once turned on will remain turned on unless it is commutated. But for this condition the load current through the TRIAC should be greater than or equal to 90003 the latching current (I 90078 L 90079) 90004 of the TRIAC. So to conclude a TRIAC will remain turned on even after removing the gate pulse as long as the load current is greater than the value of latching current.90013 90002 Similar to latching current, there is another important value of current called holding current. The minimum value of current to keep the TRIAC in forward conduction mode is called as the 90003 holding current (I 90078 H 90079). 90004 A TRIAC will enter into continuous conduction mode only after passing though the holding current and the latching current as shown in the graph above. Also the value of Latching current of any TRIAC will always be greater than the value of the holding current.90013 90002 90013 90002 90003 Turn-off characteristics 90004 90013 90002 The process of turning off an TRIAC or any other power device is called as 90003 commutation 90004, and the circuit associated with it to perform the task is called as a commutational circuit. The most common method used to turn off a TRIAC is by reducing the load current though the TRIAC until it reaches below the value of holding current (I 90078 H 90079). This type of commutation is called as forced commutation in DC circuits.We will learn more about how a TRIAC is turned On and turned Off through it application circuits. 90013 90002 90013 90016 90003 TRIAC Applications 90004 90019 90002 TRIAC is very commonly used in places where AC power has to be controlled for example, it is used in the speed regulators of ceiling fans, AC bulb dimmer circuits etc. Let us look into a simple TRIAC switching circuit to understand how it works practically. 90013 90002 90123 90013 90002 90013 90002 Here 90003 we have used the TRIAC to turn On and off an AC load through a push button 90004.The mains power source is then wired to a small bulb through the TRIAC as shown above. When the switch is closed the phase voltage is applied to the gate pin of the TRIAC through the resistor R1. If this gate voltage is above the gate threshold voltage then a current flows through the gate pin, which will be greater than the gate threshold current. 90013 90002 At this condition the TRIAC enters forward bias and the load current will flow though the Bulb. If the loads consumes enough current the TRIAC enter into latching state.But since this is an AC power source the voltage will reach zero for every half cycle and thus the current will also reach zero momentarily. Hence latching is not possible in this circuit and the TRIAC will turn off as soon as the switch is opened and no commutation circuit is required here. This type of commutation of TRIAC is called as 90003 natural commutation 90004. Now let us build this circuit on a breadboard using the 90003 BT136 TRIAC 90004 and check how it works. 90013 90002 High caution is needed while working with AC power supplies the operating voltage is stepped down for safety purpose The standard AC power of 230V 50Hz (In India) is stepped down to 12V 50Hz using a transformer.A small bulb is connected as a load. The experimental set-up looks like this below when completed. 90013 90002 90140 90013 90002 90013 90002 When the button is pressed the gate pin receives the gate voltage and thus the TRIAC is turned ON. The bulb will glow as long as the button is held pressed. Once the button is released, the TRIAC will be in latched state, but since the input voltage is AC the current though the TRIAC will go below the holding current and thus the TRIAC will turn off, the complete working can also be found in the 90003 video given 90004 at the end of this tutorial.90013 90002 90013 90016 90003 TRIAC control using Microcontrollers 90004 90019 90002 When TRIACs are used as light dimmers or for Phase control application, the gate pulse that is supplied to the gate pin has to be controlled using a microcontroller. In that case the gate pin will also be isolated using an opto-coupler. The circuit diagram for the same is shown below. 90013 90002 90157 90013 90002 90013 90002 To control the TRIAC using a 5V / 3.3V signal we will use an 90003 opto-coupler like the MOC3021 90004 which has a TRIAC inside it.This TRIAC can be triggered by 5V / 3.3V through the Light Emitting Diode. Normally a PWM signal will be applied to the 1 90063 st 90064 pin of MOC3021 and the frequency and duty cycle of the PWM signal will be varied to get the desired output. This type of circuit is normally used for Lamp brightness control or motor speed control. 90013 90002 90013 90016 90003 Rate Effect — Snubber Circuits 90004 90019 90002 All TRIACs suffer from a problem called Rate Effect. That is when the MT1 terminal is subjected to sharp increase in voltage due to switching noise or transients or surges the TRIAC miss-interrupts it as a switching signal and turns ON automatically.This is because of the internal capacitance of present between the terminals MT1 and MT2. 90013 90002 The easiest way to overcome this problem is by using a Snubber circuit. In the above circuit, the Resistor R2 (50R) and the Capacitor C1 (10nF) together forms an RC network which acts as a Snubber circuit. Any peak voltages supplied to MT1 will be observed by this RC network. 90013 90002 90013 90016 90003 Backlash Effect 90004 90019 90002 Another common problem that will be faced by designers while using TRIAC is the Backlash effect.This problem occurs when a potentiometer is used for controlling the gate voltage of the TRIAC. When the POT is turned to minimum value, no voltage will be applied to gate pin and thus the Load will be turned off. But when the POT is turned to maximum value the TRIAC will not switch on because of the capacitance effect between the pins MT1 and MT2, this capacitor should find a path to discharge else it will not allow the TRIAC o turn ON. This effect is called as the Backlash effect. This problem can be rectified by simply introducing a resistor in series with switching circuit to provide a path for the capacitor to discharge.90013 90002 90013 90016 90003 Radio Frequency Interference (RFI) and TRIACs 90004 90019 90002 TRIAC switching circuits are more prone to Radio Frequency interference (EFI) because when the load is turned on, the current raises form 0A to maximum value all of a sudden thus creating a burst of electric pulses which causes Radio Frequency Interface. The larger the load current is the worse will be the interference. Using Suppressor circuits like an LC suppressor will solve this problem. 90013 90002 90013 90016 90003 TRIAC — Limitations 90004 90019 90002 When required to switch AC waveforms in both the directions obviously TRIAC will be the first choice since it is the only bi-directional power electronic switch.It acts just like two SCRs connected in back to back fashion and also share the same properties. Although while designing circuits using TRIAC the following limitations must be considered 90013 90039 90040 The TRIAC has two SCR structures inside it, one conducts during positive half and the other during negative half. But, they do not trigger symmetrically causing difference in the positive and negative half cycle of the output 90041 90040 Also since the switching is not symmetrical, it leads to high level harmonics which will induce noise in the circuit.90041 90040 This harmonics problem will also lead to Electro Magnetic Interference (EMI) 90041 90040 While using inductive loads, there is a huge risk of inrush current flowing towards the source, hence it should be ensured that TRIAC is turned off completely and the inductive load is discharged safely through an alternate path 90041 90048 90002 90212 90213 90013 .90000 What is a Triac — Triac Switch »Electronics Notes 90001 90002 Triacs are semiconductor devices that are widely used for switching medium power AC — their advantage is that they can switch both halves of alternating cycle. 90003 90004 90005 90006 Triac, Diac, SCR Tutorial Includes: 90007 90008 Thyristor basics Thyristor device structure Thyristor operation Gate turn off thyristor, GTO Thyristor specifications What is a triac Triac specifications Diac overview 90009 90004 90005 Triacs are electronic components that are widely used in AC power control applications.They are able to switch high voltages and high levels of current, and over both parts of an AC waveform. This makes triac circuits ideal for use in a variety of applications where power switching is needed. 90009 90005 One particular use of triac circuits is in light dimmers for domestic lighting, and they are also used in many other power control situations including motor control and electronic switches. 90009 90005 As a result of their performance, triacs tend to be used for low to medium power electronic switching applications, leaving thyristors to be used for the very heat duty AC power switching applications.90009 90017 A medium current triac 90018 Triac basics 90019 90005 The triac is a development of the thyristor. While the thyristor can only control current over one half of the cycle, the triac controls it over two halves of an AC waveform. 90009 90005 As such the triac can be considered as a pair of parallel but opposite thyristors with the two gates connected together and the anode of one device connected to the cathode of the other, etc .. 90009 90024 Triac switching waveform 90005 The fact that the triac switching action occurs on both halves of an AC waveform means that for AC electronic switching applications, the complete cycle can be used.For basic thyristor circuits, only half the waveform is used and this means that basic circuits using thyristors will not utilise both halves of the cycle. Two devices are required to utilise both halves. However the triac only requires one device to control both halves of the AC waveform and in many respects it is an ideal solution for an electronic switch for AC. 90009 90018 Triac symbol 90019 90005 Like other electronic components, the triac has its own circuit symbol for use on circuit diagrams and this indicates its bi-directional properties.The triac symbol can be seen to be a couple of thyristor symbols in opposite senses merged together. 90009 90031 Triac circuit symbol 90005 Like a thyristor, a triac has three terminals. However the names of these are a little more difficult to assign, because the main current carrying terminals are connected to what is effectively a cathode of one thyristor, and the anode of another within the overall device. 90009 90005 There is a gate which acts as a trigger to turn the device on.In addition to this the other terminals are both called Anodes, or Main Terminals These are usually designated Anode 1 and Anode 2 or Main Terminal 1 and Main Terminal 2 (MT1 and MT2). When using triacs it is both MT1 and MT2 have very similar properties. 90009 90018 How does a triac work? 90019 90005 Before looking at how a triac works, it helps to have an understanding of how a thyristor works. In this way the basic concepts can be grasped for the simpler semiconductor device and then applied to a triac which is more complicated.90009 90005 For the operation of the triac, it can be imagined from the circuit symbol that the triac consists of two thyristors in parallel but around different ways. The operation of the triac can be looked on in this fashion, although the actual operation at the semiconductor level is rather more complicated. 90009 90042 Triac equivalent circuit 90005 The triac structure is shown below and it can be seen that there are several areas of N-type and P-type material that form what is effectively a pair of back to back thyristors.90009 90045 Triac basic structure 90005 The triac is able to conduct in a number of ways — more than the thyristor. It can conduct current irrespective of the voltage polarity of terminals MT1 and MT2. It can also be triggered by either positive or negative gate currents, irrespective of the polarity of the MT2 current. This means that there are four triggering modes or quadrants: 90009 90048 90049 90006 90051 I + Mode 90052 90007 MT2 current is + ve, gate current is + ve 90054 90049 90006 90051 I- Mode 90052 90007 MT2 current is + ve, gate current is -ve 90054 90049 90006 90051 III + Mode: 90052 90007 MT2 current is -ve, gate current is + ve 90054 90049 90006 90051 III- Mode: 90052 90007 MT2 current is -ve, gate current is -ve 90054 90073 90005 It is found that the triac trigger current sensitivity is greatest when the MT2 and gate currents are both of the same polarity, i.e. both positive or both negative. If the gate and MT2 currents are of the opposite polarity then the sensitivity is typically about half the value of when they are the same. 90009 90005 The typical IV characteristic of a triac can be seen in the diagram below with the four different quadrants labelled. 90009 90078 Triac IV characteristic 90018 Triac applications 90019 90005 Triacs are used in many applications. These electronic components are often used in low to medium power AC switching requirements.Where large levels of power need to be switched, two thyristors / SCRs tend to be used as they can be controlled more easily. 90009 90005 Nevertheless triacs are widely used in many applications: 90009 90048 90049 Lighting control — especially domestic dimmmers. 90054 90049 Control of fans and small motors. 90054 90049 Electronic switches for general AC switching and control 90054 90073 90005 There are naturally many other triac applications, but these are some of the most common.90009 90005 In one specific application, triacs can be included in modules called solid state relays. Here an optical version of this semiconductor device is activated by an LED light source turning the solid state relay on according to the input signal. 90009 90005 Typically within solid state relays, the LED light or infrared source and the optical triac are contained within the same package, sufficient isolation being provided to withstand high voltages which may extend to hundreds of volts or possibly even more.90009 90005 Solid state relays come in many forms, but those used for AC switching may use a triac. 90009 90018 Using triacs 90019 90005 There are a number of points to note when using triacs. Although these semiconductor devices operate very well, to get the best performance out of them it is necessary to understand a few hints on tips on using triacs. 90009 90005 It is found that because of their internal construction and the slight differences between the two halves, these electronic components do not fire symmetrically.This results in harmonics being generated: the less symmetrical the triac fires, the greater the level of harmonics that are produced. It is not normally desirable to have high levels of harmonics in a power system and as a result triacs are not favoured for high power systems. Instead for these systems two thyristors may be used as it is easier to control their firing. 90009 90005 To help in overcoming the problem of the triac non-symmetrical firing, and the resulting harmonics, another semiconductor device known as a diac (diode AC switch) is often placed in series with the gate of the triac.The inclusion of this semiconductor device helps make the switching more even for both halves of the cycle and thereby creating a more effective electronic switch. 90009 90005 This results from the fact that the diac switching characteristic is far more even than that of the triac. Since the diac prevents any gate current flowing until the trigger voltage has reached a certain voltage in either direction, this makes the firing point of the triac more even in both directions. 90009 90111 Internal circuitry of triac light dimmer 90018 Triac circuit examples 90019 90005 There are many ways in which triacs can be used.The two examples below give a taste of what can be done with these semiconductor devices. 90009 90048 90049 90006 90051 Simple triac electronic switch circuit: 90052 90007 The triac can function as an electronic switch — it could enable a trigger pulse of a low power switch to turn the triac on to control a much higher power levels that might be possible with a simple switch. 90122 Simple triac switch circuit 90054 90049 90006 90051 Triac variable power or dimmer circuit: 90052 90007 One of the most popular triac circuits varies the phase on the input of the triac to control the power that can be dissipated into load.90008 90130 A basic triac circuit using phase of input waveform to control dissipated power in the load 90054 90073 90005 There are many more triac circuits that can be used. The device is very versatile and can be used in a variety of circuits, typically to provide various forms of AC switching. 90009 90135 Note on Triac Circuits & Design: 90136 90005 Triac circuits are able to switch both halves on an alternating waveform using single device and this makes them very attractive for use in many small to medium power AC switching circuits.90009 90005 Read more about 90006 90051 Triac Circuits & Design 90052 90007 90009 90018 Triac specifications 90019 90005 Triacs have many specifications that are very similar to those of thyristors, although obviously they are intended for triac operation on both halves of a cycle and need to be interpreted as such. 90009 90005 However as their operation is very similar, so too are the basic specification types. Parameters like the gate triggering current, repetitive peak off-state voltage and the like are all required when designing a triac circuit, ensuring there is sufficient margin for the circuit to operate reliably.90009 90005 Triacs are ideal devices for use in many AC small power applications. Triac circuits for use as dimmers and small electronic switches are widespread and they are simple and easy to implement. When using triacs, diacs are often included in the circuit as mentioned above to help reduce the level of harmonics produced. 90009 90005 90006 More Electronic Components: 90007 90008 Resistors Capacitors Inductors Quartz crystals Diodes Transistor Phototransistor FET Memory types Thyristor Connectors RF connectors Valves / Tubes Batteries Switches Relays 90008 90006 90051 Return to Components menu.. . 90052 90007 90009.90000 SPDT Relay Switch Circuit using Triac 90001 90002 An efficient solid state single pole double throw or SPDT switch can be built using triacs for replacing a mechanical SPDT. 90003 90002 The post details a simple solid state triac SPDT relay circuit, using an optocoupler and a couple of triacs, which can be used as an effective replacement for mechanical relays. The idea was requested by «Cypherbuster». 90003 90006 Introduction 90007 90002 In one of the other posts we learned how to make an DPDT SSR using mosfets, however this design could be used only for high current DC loads, and not with AC loads at the mains level.90003 90002 In this article we will see how a simple mains operated solid-state relay can be made using triacs and an optocoupler. 90003 90002 The working of any relay is specifically intended to operate two different high power loads individually and alternately with the help of an external isolated low power trigger. 90003 90002 In a conventional mechanical type of rely this is done by toggling the loads across its N / O and N / C contacts in response to the activation applied across its coil. 90003 90002 However mechanical relays have their own drawbacks such as higher degree of wear and tear, lower life, generation of RF disturbance due to sparks across the contacts, and the most vital being the delayed switching response which could be crucial in systems like UPS.90003 90006 Circuit Operation 90007 90002 In our triac SPDT relay circuit the same function is executed through the switching of two triacs via two BJT stages and an isolating optocoupler which ensures that the changeover operation for this relay has no drawbacks as mentioned above. 90003 90002 Referring to the diagram, the left side triac represents the N / O contact while the right side triac operates like the N / C contact. 90003 90024 Circuit Diagram 90025 90002 While the optocoupler is in the non-triggered mode, the BC547 directly associated with the opto goes into the triggered mode, which keeps the second BC547 switched OFF.This situation enables the right side triac to remain switched ON, and the other triac is held switched OFF. 90003 90002 In this condition any load connected with the right triac becomes operational and stays switched ON. 90003 90002 Now as soon as a trigger is applied to the opto coupler, it switches ON, and in turn switches OFF the connected BC547. 90003 90002 This situation switches ON the second BC547 and consequently the right side triac is switched OFF, ensuring that the left side triac is now switched ON.90003 90002 The above condition immediately toggles the second load ON and switches OFF the earlier load, effectively fulfilling the required alternate switching of the load with the help of an isolated external DC trigger. 90003 90002 The two LED connected with the bases of the two BJTs indicate which load is in the activated state at any moment while the triac SPDT relay circuit is being operated. 90003 90024 Adding an attached power supply and Delay Effect 90025 90002 The above design could be further enhanced and made fully independent of an external DC power source by upgrading it with its own transformerless power supply, as shown below: 90003 90002 You will find the following changes in this upgraded diagram: 90003 90002 Addition of a 1K at the base of the right BC547 to ensure correct triggering of the left side triac 90003 90002 Addition of R / C network across the gates of the triacs to ensure that the two triacs are never ON together at any given instance or during the changeover periods.The diodes can be 1N4148, resistors can be 22K or 33K, and the capacitors can be around 100uF / 25V. 90003 90002 There’s one more thing that seems to be missing in the diagram, and it is a limiting resistor (approximately 22 ohms) between the 12V zener diodes and the 0.33uF capacitor, this may be important to safeguard the zener diode from sudden in rush surge through the capacitor during power switch ON. 90003 90002 90051 Warning: The circuit shown above is not isolated from the mains AC input supply and therefore is extremely dangerous to touch in the switched ON condition.90052 90003 90054 About Swagatam 90055 90002 I am an electronic engineer (dipIETE), hobbyist, inventor, schematic / PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials. 90057 If you have any circuit related query, you may interact through comments, I’ll be most happy to help! 90003.90000 Triac Circuits & Circuit Design »Electronics Notes 90001 90002 Unlike thyristors or SCRs, triac circuits are able to switch both halves of an alternating waveform, making them ideal for many AC control and switching applications. 90003 90004 90005 90006 Thyristor Circuit Design Includes: 90007 90008 Thyristor circuit design primer Circuit operation Triggering / firing circuit design Overvoltage crowbar Triac circuits 90009 90004 90005 There are many circuits in which triacs can be used — often they are used for relatively low power switching and control applications in situations like domestic light dimmers, small heating controls and the like.90009 90005 In these types of circuit the triac is a very useful device, enabling circuits to be designed using a minimum of components. 90009 90005 Triac circuits can be very straightforward requiring only a few components, and they are able to provide a good degree of control and switching, although they tend not to be used for high power levels where two discrete back to back thyristors provide better performance. 90009 90017 90018 Triac technology 90019 90005 The triac can be considered as being two thyristors or SCRs back to back to accommodate both halves of an AC waveform cycle.Being a single device, this has considerable advantages, especially for domestic products where costs are of paramount importance. 90009 90005 The triac has the property that when a trigger is applied to the gate, the device turns on and remains conducting until the voltage across the anodes or main terminals of the device falls below a certain value — nominally when the supply voltage falls to nearly zero . This condition occurs when an alternating waveform crosses the zero voltage line, an din this way the triac is able to control each half waveform.90009 90024 Triac switching waveform 90025 Note on Triac Component Technology: 90026 90005 Triacs can be considered as back to back thyristors, but being contained within one device, their technology and operation is a little more complicated. 90009 90005 Read more about 90006 90031 Triac Component Technology 90032 90007 90009 90018 Simple triac switch circuit 90019 90005 The triac can function as a switch — it could enable a trigger pulse of a low power switch to turn the triac on to control a much higher power levels that might be possible with a simple switch.90009 90039 Simple triac switch circuit 90005 In this circuit the resistor R1 may be 100R or more dependent upon the triac in question. 90009 90018 Triac variable power or dimmer circuit 90019 90005 One of the most popular triac circuits varies the phase on the input of the triac to control the power that can be dissipated into load. This is the form of circuit that is widely used in circuits for incandescent light dimmers in domestic applications. Sadly this simple circuit is not suitable for LEDs as it clips the leading edge of the waveform, and LEDs typically require the trailing edge to be cut.90009 90005 This circuit operates because the capacitor and resistor network requires time for the capacitor to charge — the waveform at the junction of the capacitor and resistor is effectively delayed and this delays the turn on for the triac in the circuit. As the triac turns on part way through the half of each cycle, this means that the overall power in the circuit is reduced. 90009 90048 A basic triac circuit using phase of input waveform to control dissipated power in the load 90005 Notice the diac placed in circuit next to the gate of the triac.This is required because the switching characteristics of triacs are not particularly symmetrical from one half waveform to the following half as detailed below. This results from the structure of the triac. 90009 90018 Issues with triac circuits 90019 90005 Triacs are not the complete solution to all AC switching requirements. Triacs have some issues when they are used in various circuits, and these must be accommodated when designing the circuits. 90009 90005 Some of get effects to be accommodated within the circuit design are mentioned below: 90009 90057 90058 90006 90031 dV / dt effect: 90032 90007 Triacs suffer from an issue sometimes called the rate effect or dV / dt effect.If either main terminal is subjected to a sharp change in voltage, exceeding the rated dV / dt rating, then can cause sufficient breakthrough to the gate to cause the triac to turn on. These transients can occur as a result of switching spikes or electrical discharges that are carried along the power lines. Another cause of transients can arise when driving inductive loads like motors. Here the line currents and voltages can be out of phase and under these circumstances large voltages can suddenly appear which are sufficient to exceed the triac dV / dt rating.It arises because the triac unlatches as its main terminal current falls to near-zero during each operating half-cycle. 90005 90064 A basic triac circuit with a transient snubber This issue can resolved to a large degree by adding a transient suppressor across the line — a resistor, R1, possibly around 100R and series capacitor, C2, possibly around 10 nF or 100nF dependent upon the installation. Beware that the capacitor must be able to handle the voltage (and current) and the resistor must be large enough to dissipate the required energy, especially that of the voltage spike.For normal 240 volt power lines, the capacitor should have a working voltage of at least 400 volts and preferably more. 90009 90066 90058 90006 90031 Backlash effect: 90032 90007 This effect encountered in some triac circuits results when a potentiometer and capacitor is used to control the gate voltage. 90005 It is found that if the potentiometer it turned to provide the minimum value, there is no leakage path for the triac MT1 to MT2 capacitance discharge, preventing the triac from turning on.The solution is to introduce a high value resistor to allow this capacitance to discharge. 90009 90066 90058 90006 90031 Non-symetrical firing: 90032 90007 Owing to the internal construction of trials, there are slight differences between the sections for covering the different half cycles. This leads to non-symmetrical firing of the triac and in turn this results in high levels of harmonics being generated which can be bad for EMC performance, etc. Although the action of the triac, even switching symmetrically will generate harmonics, the asymmetry will cause much higher levels to be generated giving rise to greater levels of interference.To help overcome this issue and provide a much more defined gate trigger signal for the triac circuit, a diac is normally placed in series with the gate. 90005 A diac is able to improve the performance of the triac circuit because its switching characteristic is far more even than that of the triac. Since the diac prevents any gate current flowing until the diac trigger voltage of about 35 volts has reached, this makes the firing point of the triac more equal for both polarities. 90009 90005 Some years ago, trials that incorporated discs within the package were developed and sold.However, for some reason, these were not a commercial success and have been discontinued. 90009 90066 90058 90006 90031 Harmonic filtering: 90032 90007 Any switching circuit that switches during the course of the waveform, like a triac will generate harmonics. This is even worse if the triggering in non-symmetrical. These harmonics can give rise to interference that may affect the sorption of other electronic equipment into e vicinity, especially if wireless communications are used.Although it is best to remove any harmonics at source for EMC, even when a diac is fitted there is likely to be the need for some filtering to remove the harmonics. 90005 90091 A basic triac circuit with a harmonic / interference filter For most triac circuits a simple LC filter will provide sufficient good filtering. A small series inductor, RFC1, and a capacitor, C2 across the triac will generally provide sufficient attenuation for many applications. A choke of around 100μH together with a 0.1μF capacitor will generally work adequately well. The choke should be able to withstand the current, and the capacitor must be able to withstand the voltage. If mains / power line voltage is being switched, as in the case of a light dimmer, the capacitor must be able to withstand the peak line voltage which is √2 times the RMS voltage plus a good margin to accommodate any transients that may come along the line. 400 volt rated capacitors are often used for 240 volt line systems. 90009 90066 90094 90005 There are many triac circuits that can be used.The basic circuits are very simple and provide good performance where this level of functionality is needed. The switching function can also be controlled via a processor enabling very intelligent forms of strike witching circuit to be developed. 90009 90005 90006 More Circuits & Circuit Design: 90007 90008 Op Amp basics Op Amp circuits Power supply circuits Transistor design Transistor Darlington Transistor circuits FET circuits Circuit symbols 90008 90006 90031 Return to Circuit Design menu.. . 90032 90007 90009.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *