Что такое трехфазный ток и в чем его преимущества. Как устроена трехфазная система электроснабжения. Какие схемы соединения используются в трехфазных сетях. Почему трехфазная система получила широкое распространение в энергетике.
Что такое трехфазный ток и как он появился
Трехфазный ток — это разновидность системы переменного тока, в которой используются три синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе на 120 градусов относительно друг друга. Такая система была изобретена и запатентована Николой Теслой в конце 19 века.
Основные особенности трехфазного тока:
- Три переменных напряжения одинаковой частоты и амплитуды
- Сдвиг фаз между напряжениями составляет 120°
- Используется 3 или 4 провода для передачи энергии
- Создает вращающееся магнитное поле
Трехфазная система быстро получила распространение благодаря ряду существенных преимуществ по сравнению с однофазным током. Сегодня она является основой энергетических систем во всем мире.

Преимущества трехфазной системы электроснабжения
Почему трехфазный ток стал стандартом в энергетике? Он обладает рядом важных достоинств:
- Экономия проводникового материала при передаче энергии
- Меньшие потери в линиях электропередачи
- Простота и надежность трехфазных электродвигателей
- Равномерная нагрузка на генератор
- Возможность получения двух уровней напряжения
- Простота изменения направления вращения двигателей
Рассмотрим подробнее основные преимущества трехфазной системы.
Экономия проводникового материала
При передаче одинаковой мощности трехфазная линия требует меньшего сечения проводов по сравнению с однофазной. Это позволяет существенно сэкономить на дорогостоящих цветных металлах, используемых для изготовления проводов.
Снижение потерь при передаче энергии
Потери в линиях электропередачи пропорциональны квадрату тока. В трехфазной системе при той же передаваемой мощности ток в каждом проводе меньше, чем в однофазной. Это обеспечивает снижение потерь энергии при ее транспортировке на большие расстояния.

Простота конструкции трехфазных двигателей
Трехфазные асинхронные двигатели отличаются предельно простым устройством. Их ротор представляет собой «беличье колесо» без каких-либо обмоток и контактных колец. Это делает такие двигатели очень надежными и дешевыми в производстве.
Равномерность нагрузки на генератор
В трехфазной системе нагрузка на вал генератора распределяется равномерно в течение всего периода. Это снижает вибрации и увеличивает срок службы генерирующего оборудования.
Схемы соединения в трехфазных цепях
В трехфазных системах используются две основные схемы соединения обмоток генератора и нагрузки — «звезда» и «треугольник». Каждая имеет свои особенности и область применения.
Соединение «звезда»
При соединении «звездой» концы фазных обмоток объединяются в общую нейтральную точку. Основные характеристики:
- Используется 4 провода — 3 фазных и нейтральный
- Линейное напряжение в √3 раз больше фазного
- Линейный ток равен фазному
- Обеспечивает два уровня напряжения — фазное и линейное
Соединение «звезда» чаще применяется в сетях низкого напряжения для питания однофазных потребителей.

Соединение «треугольник»
В схеме «треугольник» фазные обмотки соединяются последовательно, образуя замкнутый контур. Особенности:
- Используется 3 провода
- Линейное напряжение равно фазному
- Линейный ток в √3 раз больше фазного
- Обеспечивает передачу большей мощности
Соединение «треугольником» применяется в мощных трехфазных электроустановках.
Как рассчитать мощность в трехфазной цепи
Для расчета мощности в трехфазных цепях используются специальные формулы, учитывающие схему соединения. Как рассчитать мощность трехфазной системы?
Расчет мощности при соединении «звезда»
Активная мощность трехфазной цепи при соединении «звезда» рассчитывается по формуле:
P = √3 * Uл * Iл * cosφ
Где:
- P — активная мощность, Вт
- Uл — линейное напряжение, В
- Iл — линейный ток, А
- cosφ — коэффициент мощности
Расчет мощности при соединении «треугольник»
Для схемы «треугольник» используется формула:
P = √3 * Uл * Iл * cosφ
Где обозначения аналогичны предыдущей формуле.
Зная эти формулы, можно легко рассчитать мощность трехфазной системы при известных значениях напряжения и тока.

Применение трехфазных систем
Где применяются трехфазные системы электроснабжения? Основные области их использования:
- Промышленность — питание мощных электродвигателей, станков, прессов
- Энергетика — передача электроэнергии на большие расстояния
- Транспорт — электропривод локомотивов, трамваев, метро
- Строительство — питание подъемных кранов, бетономешалок
- Сельское хозяйство — привод насосов, вентиляторов, транспортеров
Трехфазные системы обеспечивают эффективное электроснабжение крупных потребителей электроэнергии.
Особенности эксплуатации трехфазных сетей
При работе с трехфазными системами необходимо учитывать ряд важных моментов:
Симметричность нагрузки
Для нормальной работы трехфазной системы необходимо обеспечить симметричную нагрузку по фазам. Значительная несимметрия может привести к перегрузке отдельных фаз и нарушению работы оборудования.
Чередование фаз
При подключении трехфазных потребителей важно соблюдать правильное чередование фаз. Его нарушение может привести к неправильному направлению вращения электродвигателей.

Защита от перегрузки
Трехфазные сети должны быть оборудованы устройствами защиты от токов короткого замыкания и перегрузки по каждой фазе.
Перспективы развития трехфазных систем
Несмотря на более чем вековую историю, трехфазные системы продолжают развиваться. Основные направления совершенствования:
- Повышение эффективности передачи энергии на сверхдальние расстояния
- Развитие систем управления и защиты
- Интеграция с возобновляемыми источниками энергии
- Создание интеллектуальных сетей (Smart Grid)
Трехфазные системы остаются основой современной электроэнергетики и имеют большой потенциал для дальнейшего развития.
Трёхфазный ток, преимущества трёхфазного тока при использовании
28.02.2014
Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.
Трехфазный переменный ток
Большинство людей, за исключением специалистов — электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, — часто путаются.
Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.
Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.
Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.
Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.
Откуда вообще появилось понятие переменный ток?
Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом — по техническим причинам — мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.
В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.
Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.
Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?
Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.
Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.
(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).
Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх — и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.
По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.
Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе — А, В и С, у потребителя — L1, L2 и L3. Нулевой провод так и обозначается – 0.
Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.
Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.
Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» — между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.
Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.
Выводы: преимущества трёхфазной системы
В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?
- Экономия на количестве проводов, необходимых для передачи электроэнергии.
Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной. - Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
- Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок.
Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
- Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
- Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.
Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.
Всё о трёхфазной системе электроснабжения
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол.
Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.
Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.
В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами», как и передающие данные ЭДС проводники: первая фаза, вторая фаза, третья фаза. Фазы сдвинуты друг относительно друга на 120 градусов, а соответствующие проводники принято обозначать латинскими буквами L1, L2, L3 или A, B, C.
Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.
Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.
Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.
При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.
Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.
С трехфазной сетью в одной установке можно получить сразу два рабочих напряжения — линейное и фазное, что позволяет иметь два уровня мощности в зависимости от схемы соединения обмоток — «треугольник» (англоязычный вариант «дельта») или «звезда».
Что касается питания систем освещения, то присоединив три группы ламп — к различным фазам сети каждую, — можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.
Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.
Звезда
Соединение по схеме «звезда» предполагает соединение концов фазных обмоток генератора в одну общую «нейтральную» точку (нейтраль — N), как и концов фазных выводов потребителя.
Провода, соединяющие фазы потребителя с соответствующими фазами генератора называются в трехфазной сети линейными проводами. А провод, соединяющий между собой нейтрали генератора и потребителя — нейтральным проводом (обознаяается «N»).
При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.
При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.
Если сеть имеет схему соединения «звезда», то в условиях симметричной нагрузки соотношения между фазными и линейными токами и напряжениями могут быть описаны следующими соотношениями:
Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):
Мощность при соединении «звезда» в условиях симметричной нагрузки, с учетом известных фазных напряжений можно определить по формуле:
О важности нейтрали и «перекосе фаз»
Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.
Если же при несимметричной нагрузке нейтральный провод оборвется, либо его сопротивление по какой-то причине значительно возрастет, произойдет «перекос фаз», и тогда нагрузки на трех фазах могут оказаться под разными напряжениями — от нуля до линейного — в зависимости от распределения сопротивлений нагрузок по фазам в момент обрыва нейтрали.
А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.
Проблема гармоник кратных третьей
Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.
Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.
Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.
Треугольник
Соединение по схеме «треугольник» предполагает со стороны генератора соединение конца проводника первой фазы с началом проводника второй фазы, конца проводника второй фазы с началом проводника третьей фазы, конца проводника третьей фазы с началом проводника первой фазы — получается замкнутая фигура — треугольник.
Линейные и фазные напряжения и токи при симметричной нагрузке, применительно к соединению «треугольник», соотносятся следующим образом:
Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:
В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:
Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.
Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.
Ранее ЭлектроВести писали, что немецкая энергетическая компания E.ON подписала контракт с производителем автомобилей BMW на установку и эксплуатацию одной из крупнейших сетей зарядки электромобилей в Германии, которая будет включать более 4,1 тыс. новых зарядных станций.
По материалам: electrik.info.
Калькулятор однофазной и трехфазной мощности — Blackhawk Supply
Измерения должны быть точными при выборе электрооборудования или при работе с однофазными или трехфазными цепями. Если вам не нравится считать кВт и Амперы вручную — у нас есть решение! Наш онлайн-калькулятор мощности переменного тока может помочь вам преобразовать электрическую мощность в ток и наоборот для однофазной и трехфазной электроэнергии.
Ниже мы научим вас пользоваться нашим калькулятором мощности и расскажем о формулах, используемых для этих измерений. Давайте погрузимся!
Как пользоваться калькулятором мощности?Хотите перевести Ампер в кВт (или наоборот) без математических расчетов? Без проблем!
Наш калькулятор однофазной и трехфазной мощности прост в использовании. Просто заполните поля необходимыми данными, включая тип тока, напряжение и коэффициент мощности. Калькулятор все сделает автоматически.
Калькулятор полной мощности переменного тока — кВт в амперахТип тока
Ток в амперах
Тип напряжения
Линейный
Линия-нейтраль
Напряжение (в вольтах)
Введите коэффициент мощности
Результаты измерения мощности (милливатты)
Результаты мощности (Вт)
Результаты мощности (киловатт)
Ампер (А или Ампер) и киловатт (кВт) — это два разных параметра электричества. Давайте разберем, что они из себя представляют.
Ампер указывает количество токов, потребляемых нагрузкой. Киловатты – это количество энергии, потребляемой нагрузкой в любой момент времени. Короче говоря, ампер измеряет силу тока, а киловатты измеряют мощность.
Как можно преобразовать ампер в киловатты для трехфазного, однофазного переменного тока (AC) или постоянного тока (DC)?
Киловатты не могут быть преобразованы в ампер напрямую. Величина тока или мощности зависит от коэффициента мощности, типа тока и типа напряжения.
Однако вы можете получить точные измерения, преобразовав эти показатели с помощью формул. В качестве альтернативы вы можете использовать наш трехфазный преобразователь киловатт в ампер, а также калькулятор однофазной мощности и мощности постоянного тока.
Что такое однофазная электроэнергия?
Фаза означает распределение электрической нагрузки однофазным или трехфазным источником питания.
Однофазная электроэнергия обычно используется в бытовых целях, жилых домах и небольших офисах. Другими словами, он работает для приборов, которым требуется небольшое количество энергии (холодильники, светильники, обогреватели, телевизоры и тому подобное).
Стандарт для однофазного распределения электроэнергии в США составляет 120 вольт переменного тока с частотой 60 герц. Каждый герц означает количество изменений электричества, происходящих в проводе каждую секунду. Следует отметить, что мощность переменного тока может переключать полярность, в отличие от мощности постоянного напряжения.
Как рассчитать однофазную мощность?Вот формулы, которые можно использовать для расчета однофазной мощности.
Киловатты из амперкВт = PF × A × V / 1000
В этой формуле количество мощности (в кВт) равно коэффициенту мощности нагрузки (PF), умноженному на фазный ток, измеренный в амперах (А), умноженный на среднеквадратичное значение напряжения (В) и разделить на 1000.
A = 1000 × кВт / (PF × В)
A означает фазный ток, который равен кВт (мощности), умноженной на 1000, затем делится на коэффициент мощности (PF), умноженный на среднеквадратичное напряжение (В).
Что такое трехфазное питание переменного тока?Трехфазная электроэнергия является распространенным типом производства и распределения электроэнергии переменного тока, широко используемым для нагрузок более 1000 Вт. В отличие от однофазного источника питания, трехфазный источник питания требует меньше алюминия или меди, имеет более высокий КПД проводника и выдерживает большие силовые нагрузки. Это также обеспечивает большую общую плотность, оптимизируя тем самым потребление энергии.
Для более точного расчета мощности формула для 3-фазных приложений должна учитывать тип конфигурации мощности. Двумя наиболее распространенными конфигурациями являются «треугольник» (используются только три провода) и «вей» (имеет четвертый нейтральный провод).
Трехфазное электропитание обычно используется в коммерческих и промышленных объектах с большими двигателями, производственным оборудованием, мощными кондиционерами и другими приложениями с большой нагрузкой.
Теперь к основной теме. Как перевести амперы в киловатты в трехфазной цепи (и наоборот)?
Формула расчета трехфазной мощностиВот уравнения, которые можно использовать для расчета трехфазной мощности. Имейте в виду, что формула трехфазной мощности будет отличаться для линейного и нейтрального напряжений.
Киловатты из ампер (линейное напряжение)кВт = √3 × PF × A × V / 1000
Мощность (кВт) равна квадратному корню из трех (√3), умноженному на коэффициент мощности (PF), умноженный на ток (А), умноженный на линейное среднеквадратичное напряжение (В), деленное на 1000. = 3 × PF × A × V / 1000
Вы можете рассчитать трехфазную мощность из ампер в кВт с линейным напряжением так же, как и с линейным напряжением. Единственное отличие состоит в том, что квадратный корень из трех (√3) заменяется числом три (3), а межфазное среднеквадратичное значение заменяется линейным среднеквадратичным значением напряжения в уравнении.
A = 1000 × кВт / (√3 × PF × В)
Фазный ток (А) равен 1000-кратному количеству киловатт (кВт), деленное на квадратный корень из трех, умноженный на коэффициент мощности (PF), умноженный на межфазное среднеквадратичное напряжение (В).
Ампер из киловатт (линейное напряжение)A = 1000 × кВт / (3 × PF × В)
Для расчета трехфазного источника питания необходимо умножить 1000 на мощность (кВт), деленная на три умножения на коэффициент мощности, умноженный на среднеквадратичное напряжение фаза-нейтраль (В).
Что такое коэффициент мощности?
Мы несколько раз упоминали коэффициент мощности (PF) в формулах. Он относится к отношению между реальной и кажущейся мощностью, рассеиваемой цепью переменного тока, к изделию с электрическим питанием.
Реальная мощность означает электрическую мощность, используемую устройствами, а полная мощность (реактивная мощность) означает электроэнергию, подаваемую в цепь переменного тока.
Значение коэффициента мощности изменяется от нуля до единицы в зависимости от резистивной и реальной нагрузки.
Как рассчитать коэффициент мощности?Существует множество уравнений коэффициента мощности, основанных на типе мощности и тока. Давайте рассмотрим каждую формулу коэффициента мощности.
Коэффициент мощности для синусоидального тока равен абсолютному значению косинуса фазы полной мощности. Кажущийся фазовый угол мощности будет отмечен как φ в приведенных ниже формулах.
Для расчета реальной мощности в ваттах:Вт = |ВА| × ПФ = |ВА| × |cos ф|
Фактическая мощность равна полной мощности в вольт-амперах (ВА), умноженной на коэффициент мощности.
PF(резистивная нагрузка) = P / |S| = 1
Активная мощность резистивных импедансных нагрузок равна полной мощности (S) с коэффициентом мощности (PF), равным 1 (единице).
Вольт-ампер реактивная МОЩНОСТЬQ = |VA| × |sin φ|
Реактивная мощность (Q) в вольт-амперах реактивная равна полной мощности в вольт-амперах (ВА), умноженной на синус фазового угла.
Однофазная мощность ФОРМУЛАPF = |cos φ| = 1000 × кВт / (В × А)
Чтобы рассчитать коэффициент мощности однофазной цепи, необходимо умножить 1000 на мощность в киловаттах (кВт), разделить на среднеквадратичное напряжение (В), умноженное на фазный ток в Ампер (А).
3-фазная мощность ФОРМУЛА (линейная)PF = |cos φ| = 1000 × кВт / (√3 × В × A)
Расчет линейной трехфазной мощности для коэффициента мощности: 1000 умножается на мощность в киловаттах (кВт), затем делится на квадратный корень из трех, умноженный на линейное среднеквадратичное напряжение (В), умноженное на фазный ток в амперах (А).
PF = |cos φ| = 1000 × кВт / (3 × В × A)
Чтобы измерить коэффициент мощности для трехфазной мощности между фазой и нейтралью, умножьте 1000 на киловатты (кВт), а затем разделите среднеквадратичное значение напряжения между фазой и нейтралью в три раза. (V) умножить на ампер (A).
Преобразование кВт в АмперыВы хотите перевести киловатты в Амперы? Эти данные можно рассчитать по простой формуле (при условии, что вы знаете коэффициент мощности). Формула:
I = P / (√3 × PF × V)
В этом уравнении I обозначает силу тока (ампер), P обозначает относительную мощность (измеряется в ваттах), PF обозначает коэффициент мощности , а V — напряжение.
Если ваша мощность измеряется в тысячах ватт, вам будет проще преобразовать данные в ватты, умножив их на 1000. Вам также необходимо убедиться, что ваше напряжение измеряется в киловольтах (кВ).
Приведем пример, используя приведенную выше формулу. Если ваш коэффициент мощности 0,8, мощность 1,5 кВт (1500 Вт) и постоянное напряжение 220 (В), расчет будет:
I = 1500 / (√3 × 0,8 × 220) = 4,92 А
Вот так можно преобразовать ватты и киловатты в ампер.
Преобразование ампер в кВтТеперь давайте сделаем обратное. Для преобразования ампер в киловатт используйте следующую формулу:
P = √3 × PF × I × V
Маркировка здесь та же. P — мощность, коэффициент мощности — PF, I — ток (ампер), а V — напряжение.
В нашем следующем примере мы будем использовать то же напряжение (220 В) и коэффициент мощности (0,8) и иметь коэффициент мощности 4,9.2 А ток.
Теперь переведем ампер в киловатты:
P = √3 × 0,8 × 4,92 × 220 = 1500 Вт = 1,5 кВт
Вывод Как видите, расчет и перевод ампер в киловатты и наоборот -наоборот довольно легко. Однако использование формул для расчета 3-фазной полной мощности может занять немного времени.
Если вы хотите получить точные измерения без каких-либо хлопот, используйте наш онлайн-калькулятор мощности переменного тока, так как он поможет вам найти лучшие электрические источники для ваших однофазных и трехфазных систем.
Blackhawk Supply предлагает широкий ассортимент климатического, сантехнического и электрического оборудования. Выбирайте реле, корпуса, трансформаторы, блоки питания и другие устройства!
Блоки питания
Провода
Трансформаторы
Корпуса
Принципы трехфазных электрических систем
Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, трехфазные системы переменного тока почти повсеместно используются для распределения электроэнергии и подачи электроэнергии непосредственно на оборудование большей мощности.
В этой технической статье описываются основные принципы трехфазных систем и различия между различными возможными измерительными соединениями.
- Трехфазные системы
- Соединение звездой или звездой
- Соединение треугольником
- Сравнение звезд и треугольников
- Измерение мощности
- Подключение однофазного ваттметра
- Однофазное трехпроводное соединение
- Трехфазное трехпроводное подключение (метод двух ваттметров)
- Трехфазное трехпроводное соединение (метод трех ваттметров)
- Теорема Блонделя: необходимое количество ваттметров
- Трехфазное, четырехпроводное подключение
- Настройка измерительного оборудования
Трехфазные системы
Трехфазное электричество состоит из трех переменных напряжений одинаковой частоты и одинаковой амплитуды. Каждая «фаза» напряжения переменного тока отделена от другой на 120° (рис. 1).
Рисунок 1 – Трехфазная кривая напряжения
Это может быть представлено схематически как в виде сигналов, так и в виде векторной диаграммы (рис. 2).
Рисунок 2 – Векторы трехфазного напряжения
Зачем использовать трехфазные системы? По двум причинам:
- Три разнесенных по вектору напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
- Трехфазная система может быть подключена к нагрузке таким образом, что количество необходимых медных соединений (и, следовательно, потери при передаче) составляет половину того, что было бы в противном случае.
Рассмотрим три однофазные системы, каждая из которых подает на нагрузку по 100 Вт (рис. 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает по 6 проводам и, таким образом, потери составляют 6 единиц.
3 – Три однофазных источника питания – шесть единиц потерь
В качестве альтернативы, три источника питания могут быть подключены к общему возврату, как показано на рис. 4. Когда ток нагрузки в каждой фазе одинаков, говорят, что нагрузка сбалансирована. При сбалансированной нагрузке и смещении фаз трех токов друг от друга на 120° сумма токов в любой момент времени равна нулю, и ток в обратной линии отсутствует.
Рисунок 4 – Трехфазное питание, сбалансированная нагрузка – 3 единицы потерь
В трехфазной системе 120° требуется только 3 провода для передачи мощности, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводам уменьшатся вдвое.
Соединение звездой или звездой
Трехфазная система с общим соединением обычно изображается, как показано на рисунке 5, и известна как соединение «звезда» или «звезда».
Рисунок 5 – Соединение звездой или звездой – три фазы, четыре провода
Общая точка называется нейтральной точкой. Эта точка часто заземляется на источник питания из соображений безопасности. На практике нагрузки не идеально сбалансированы, и для передачи результирующего тока используется четвертый «нейтральный» провод.
Нейтральный проводник может быть значительно меньше трех основных проводников, если это разрешено местными нормами и стандартами.
Соединение треугольником
Три однофазных источника питания, рассмотренные ранее, также могут быть соединены последовательно. Сумма трех напряжений, сдвинутых по фазе на 120°, в любой момент времени равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.
Рисунок 6 – Сумма мгновенных напряжений в любой момент времени равна нулю
Соединение обычно рисуется, как показано на рисунке 7, и известно как соединение треугольником по форме греческой буквы дельта, Δ.
Рисунок 7 – Соединение треугольником – три фазы, три провода
Сравнение звездой и треугольником
Конфигурация «звезда» используется для распределения питания между повседневными однофазными приборами, которые можно найти дома и в офисе. Однофазные нагрузки подключаются к одной стороне тройника между линией и нейтралью. Общая нагрузка на каждую фазу максимально распределяется, чтобы обеспечить сбалансированную нагрузку на первичную трехфазную сеть.
Конфигурация звезда также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения представляют собой напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на рис. 8.
Рисунок 8 – Напряжение (фаза-фаза)
Конфигурация треугольника чаще всего используется для питания трехфазных промышленных нагрузок более высокой мощности. Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания треугольником путем выполнения соединений или «отводов» вдоль обмоток питающих трансформаторов.
В США, например, система треугольника 240 В может иметь обмотку с расщепленной фазой или с отводом от середины, чтобы обеспечить два источника питания 120 В (рис. 9).
Центральный ответвитель может быть заземлен на трансформаторе из соображений безопасности. 208 В также доступно между центральным отводом и третьей «высокой ветвью» соединения треугольником.
Рисунок 9. Схема «треугольник» с «расщепленной фазой» или обмоткой с отводом от середины
Мощность измеряется в системах переменного тока с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенной мощности, а затем берет среднее значение мгновенной мощности за один цикл для отображения истинной мощности.
Ваттметр обеспечит точные измерения истинной мощности, полной мощности, вольт-амперной реактивной мощности, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.
Чтобы анализатор мощности давал хорошие результаты, необходимо уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.
Подключение однофазного ваттметра
Требуется только один ваттметр, как показано на рис. 10. Системное подключение к клеммам напряжения и тока ваттметра не вызывает затруднений. Клеммы напряжения ваттметра подключены параллельно нагрузке, а ток проходит через клеммы тока, которые последовательно с нагрузкой.
Рисунок 10 – Измерения однофазного, двухпроводного и постоянного тока
Однофазное трехпроводное соединение
В этой системе, показанной на рисунке 11, напряжения создаются одной обмоткой трансформатора с отводом от середины, и все напряжения находятся в фазе. Это распространено в жилых домах в Северной Америке, где доступны один источник на 240 В и два источника на 120 В и могут иметь разные нагрузки на каждую ветвь.
Для измерения общей мощности и других величин подключите два ваттметра, как показано на рисунке 11 ниже.
Рисунок 11 – Однофазный трехпроводной метод ваттметра
Трехфазный трехпроводной метод (метод двух ваттметров)
При наличии трех проводов для измерения общей мощности требуется два ваттметра. Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены между фазами.
Рисунок 12 – Трехфазное, трехпроводное, метод двух ваттметров
Трехфазное трехпроводное соединение (метод трех ваттметров)
Хотя для измерения полной мощности в трехпроводной системе, как показано выше, требуется только два ваттметра, иногда удобно использовать три ваттметра. В соединении, показанном на рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.
Рисунок 13 – Трехфазный, трехпроводной (метод трех ваттметров – установите анализатор на трехфазный, четырехпроводный режим)
Преимущество трехпроводного подключения трех ваттметров заключается в индикации мощности в каждой отдельной фазе (невозможно при подключении двух ваттметров) и напряжения между фазой и нейтралью.
Теорема Блонделя: необходимое количество ваттметров
В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рис. 14.
В общем, необходимое количество ваттметров = количество проводов – 1
Рисунок 14 – Трехпроводная система «звезда»
Доказательство трехпроводной системы «звезда»
Мгновенная мощность, измеренная ваттметром, является произведением мгновенных отсчетов напряжения и тока.
- Показание ваттметра 1 = i1 (v1 – v3)
- Показания ваттметра 2 = i2 (v2 – v3)
Сумма показаний W1 + W2 = i1v1 – i1v3 + i2v2 – i2v3 = i1v1 + i2v2 – (i1 + i2) v3
(Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.
Трехфазное, четырехпроводное соединение
Для измерения общей мощности в четырехпроводной системе требуется три ваттметра. Измеренные напряжения являются истинными напряжениями между фазой и нейтралью. Напряжения фаза-фаза могут быть точно рассчитаны по амплитуде и фазе напряжения фаза-нейтраль с использованием векторной математики.
Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.
Настройка измерительного оборудования
Для заданного количества проводов требуется N, N-1 ваттметров для измерения общих величин, таких как мощность. Вы должны убедиться, что у вас достаточное количество каналов (метод 3 ваттметра), и правильно их подключить.
Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как мощность, вольт, ампер, вольт-ампер и коэффициент мощности, напрямую, используя соответствующие встроенные формулы.
Формулы выбираются на основе конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения хороших измерений общей мощности. Анализатор мощности с возможностями векторной математики также будет преобразовывать величины фаза-нейтраль (или звезда) в величины фаза-фаза (или дельта).