A 1980 транзистор характеристики: характеристики, datasheet, аналоги и распиновка

Содержание

контрольная работа

Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Межрегиональный центр переподготовки специалистов

Контрольная работа

По дисциплине: Физические основы электроники

Выполнил:

Группа:

Вариант: 20

Проверил:

Новосибирск, 2011 г

ЗАДАЧА 1

Дано: транзистор КТ605А, напряжение питания ЕК = 15 В, сопротивление нагрузки RН = 200 Ом, постоянный ток смещения в цепи базы IБ0 = 750 мкА, амплитуда переменной составляющей тока базы IБМ= 375 мкА.

Выходные статические характеристики транзистора с необходимыми построениями показаны на рисунке 1.1. Нагрузочная линия соответствует графику уравнения I

К = (EК-UКЭ)/RН. На семействе выходных характеристик ордината этой прямой при UКЭ = 0 соответствует точке IК = EК/RН. Абсцисса при IК=0 соответствует точке UКЭ=ЕК. Соединение этих координат и является построением нагрузочной линии.

Рисунок 1.1. Выходные характеристики КТ605А

В нашем случае координаты нагрузочной линии: IК = 15/200 = 75 мА и UКЭ = 15 В. Соединяя эти точки, получаем линию нагрузки.

Пересечение нагрузочной линии с заданным значением тока базы IБ0 определяет рабочую точку (РТ) транзисторного каскада, нагруженного на резистор. В нашем случае рабочая точка соответствует пересечению нагрузочной прямой с характеристикой при IБ= 750 мкА.

Координаты рабочей точки дают значение рабочего режима выходной цепи

UКЭ0 и IК0. Определяем параметры режима по постоянному току

IК0 = 33,8 мА и UКЭ0 = 8,2 В.

На входных характеристиках (рисунок 1.2) рабочую точку определяем как точку пересечения ординаты, соответствующей току IБ0 =750 мкА, и характеристики при UКЭ = 10 В (РТ). Определяем: UБЭ0 = 0,77 В.

Рисунок 1.2. Входные характеристики КТ605А

По заданному изменению синусоидального тока базы с амплитудой IБM, определяем графически амплитуды токов и напряжений на электродах транзистора. Строим временные диаграммы переменного тока коллектора, напряжения коллектора и базы для случая синусоидального входного тока с амплитудой IБМ = 375 мкА. Временные диаграммы строятся с учетом того, что напряжения на базе и коллекторе противофазные, и с соблюдением одинакового масштаба по оси времени. После построения временных диаграмм необходимо оценить, имеются ли заметные искажения в выходной цепи транзистора или нет.

Из временных диаграмм видно, что под действием переменного входного тока рабочая точка на выходных характеристиках двигается вдоль линии нагрузки. Если рабочая точка какую-либо часть периода входного тока попадает в область насыщения или отсечки сигнала, необходимо уменьшить амплитуду входного сигнала до величины, при которой рабочая точка не будет выходить за пределы активной области работы прибора.

Дальнейшие расчеты производятся только для активного режима работы прибора, называемого иногда линейным или неискажающим.

При нахождении из графиков величин IКМ , UКМ , UБМ следует обратить внимание, что амплитудные значения для положительных и отрицательных полуволн сигнала могут быть неодинаковыми, а значит усиление большого сигнала и в активном режиме сопровождается некоторыми искажениями.

Для дальнейших расчетов значения амплитуд определяется как средние за период.

По выходным статическим характеристикам (рисунок 1.1) находим положительные и отрицательные амплитуды токов и напряжений

I-КМ = 16,5 мА и I+КМ = 19 мА, а также U+КМ = 3,29 В и U-КМ = 3,8 В.

Затем определяем среднее значение амплитуд

IКМ = (I-КМ+ I+КМ)/2 = (16,5 + 19)/2 = 17,75 мА,

UКМ= (U-КМ+ U+КМ)/2 = (3,8 + 3,29)/2 = 3,545 В,

По входным характеристикам находим U+БМ = 0,045 В и U-БМ = 0,068 В.

UБМ= (U-БМ+ U+БМ)/2 = (0,068 + 0,045)/2 = 0,0565 B.

Затем определяем:

КI = IКМ/IБМ = 17,75/0,375=47,3, КU = UКМ/ UБМ = 3,545/0,0565 =62,74,

КР = КI· КU = 47,3 · 62,74 = 2967,6.

Находим RВХ = UБМ/ IБМ = 0,0565/0,000375 = 150,67 Ом.

Определяем полезную мощность, мощность рассеиваемую на коллекторе и потребляемую мощность

P~= (UКМ · IКМ)/2 = (3,545 · 17,75)/2 = 31,46 мВт;

PК0 = UКЭ0 · IК0 = 8,2 · 0,0338 = 277,16 мВт;

PПОТР = ЕКЭ · IК0 = 15 · 0,0338 = 507 мВт;

Далее находим коэффициент полезного действия каскада

η = P~/ PПОТР · 100% = 31,46/507 · 100% = 6,2%

ЗАДАЧА 2

Находим h- параметры в рабочей точке, которая определена в задаче 1. Параметр h11Э определяем следующим образом. На входных характеристиках (рисунок 2.1) задаемся приращением тока базы ΔIБ= ± 50=100 мкА относительно рабочей точки IБ0=750 мкА.

Рисунок 2.1. Входные характеристики КТ605А

Соответствующее приращение напряжения база-эмиттер составит

ΔUБЭ = 0,012 В. Тогда входное сопротивление

h11Э= ΔUБЭIБ= 0,012/100·10-6 = 120 Ом

По выходным характеристикам находим параметры h21Э и h22Э. Определение параметра h21Э показано на рисунке 2.2.

Задаемся приращением тока базы относительно рабочей точки также ΔIБ= ± 50 = 100 мкА и соответствующее приращение тока коллектора составляет ΔIК = 5,22 мА. Коэффициент передачи тока базы составит

h21Э= ΔIКIБ= 5,22·10-3/100·10-6 = 52,2.

Рисунок 2.2. Выходные характеристики КТ605А

На рисунке 2.3 показано определение выходной проводимости h22Э. Около рабочей точки задаемся приращением напряжения коллектор-эмиттер.

Принимаем ΔUКЭ = 4 В. Соответствующее приращение тока коллектора составляет ΔIК = 1,3 мА и выходная проводимость равна:

h22Э = ΔIКUКЭ = 1,3·10-3/4 = 0,325·10-3 Сим

Параметр h12Э по характеристикам обычно не определяется, так как входные характеристики для рабочего режима практически сливаются и определение параметра даёт очень большую погрешность.

Рисунок 2.3. Выходные характеристики КТ603А

ЗАДАЧА 3

Для данного транзистора на частоте f = 20 МГц модуль коэффициента передачи тока H21Э = 3 и постоянная времени цепи коллектора tК= 210 пс.

Коэффициент передачи тока базы H21Э в зависимости от частоты определяется формулой:

.

Преобразуя её, получим:

, МГц.

Итак: fH21Э = 1,151 МГц.

Предельная частота для схемы с общей базой определяется как

fH21Б = fH21Э · ( h21Э+1) = 1,151 · (52,2+1) = 61,23 МГц.

Граничная частота fГРfH21Э · h

21Э = 1,151 · 52,2 = 60,082 МГц.

Максимальная частота генерации определяется формулой

МГц,

Где .

Построить зависимости и

Для этого проделать вычисления используя формулу ,

а для второго случая формулу

Вычисления проводим до тех пор, пока коэффициенты передачи снизится более чем в 10 раз. Результаты вычислений занести в таблицы 3.1 и 3.2.

Таблица 3.1.

f, МГц

1

2

5

10

20

50

100

200

39,405

26,037

11,710

5,969

2,999

1,201

0,601

0,300

0,755

0,499

0,224

0,114

0,057

0,023

0,012

0,006

f, МГц

1

5

10

20

50

100

200

500

1000

2000

5000

0,981

0,978

0,968

0,933

0,760

0,512

0,287

0,119

0,060

0,030

0,012

1,000

0,997

0,987

0,951

0,971

0,522

0,293

0,122

0,061

0,031

0,012

Таблица 3.2.

Строим графики, откладывая частоту в логарифмическом масштабе, а коэффициенты передачи тока в относительных единицах в линейном масштабе. (Рисунок 3.1).

Рисунок 3.1. Зависимость относительного коэффициента передачи тока от частоты

ЗАДАЧА 4

Дано: полевой транзистор типа КП 903 А, UСИ 0 = 10 В, UЗИ 0 = 8В.

Для построения характеристики прямой передачи по графику выходных характеристик определяем ток стока при UЗИ = 0 В, 1 В и т.д. (рисунок 4.1).

Рисунок 4.1. Выходные характеристики полевого транзистора КП 903 А

Результаты приведены в таблице 4.1.

Таблица 4.1.

UЗИ, В

0

1

2

3

4

5

6

8

IC, А

0,407

0,313

0,235

0,165

0,107

0,0502

0,02

0

По полученным результатам строим характеристику прямой передачи (рисунок 4.2). Определяем крутизну и строим её зависимость от напряжении на затворе. Для этого сначала находим крутизну при напряжении на затворе UЗИ=0,5В.

Определяем токи I'c = 407 мА и I''c = 313 мА при напряжениях U'ЗИ=0 В и U''ЗИ = 1 В соответственно (рисунок 4.1). Затем вычисляем крутизну

мА/В

Рисунок 4.2. Характеристика прямой передачи КП 903 А

Аналогично проделываем эту операцию для UЗИ = 1В; 1,5 В и т.д. Результаты вычислений занесены в таблицу 4.2 и строим график (рисунок 4.3).

Таблица 4.2.

UЗИ, В

0,5

1

1,5

2

2,5

3

8

S, мА/В

94

78

70

58

56,8

30,2

0

Для определения выходного сопротивления Ri задаемся приращением ΔUСИ = ± 2 В относительно напряжения UСИ = 10 В (рисунок 4.4). Определяем приращение тока стока при напряжении на затворе 0 В, вычисляем значение. Результат заносим в таблицу 4.3. Аналогично проделываем для UЗИ=1 В; 2 В и т.д. На рисунке 4.3 строим зависимость Ri = f(UЗИ).

Из рисунка 4.3 определяем значение крутизны для тех же величин, что и Ri. Результат так же заносим в таблицу 4.3.

В заключении определяем коэффициент усиления транзистора μ = S× Ri.

Результат так же заносим в таблицу 4.3 и строим зависимость (рисунок 4.3).

Таблица 4.3.

UЗИ, В

0

1

2

3

4

5

6

ΔIC, мА

11,5

10,3

6,3

3,8

1,8

1,3

0,8

Ri, кОм

0,3478

0,3883

0,6349

1,0526

2,2222

3,0769

5

S, мА/В

110

78

58

32

18

10,5

5,5

μ

38,261

30,291

36,825

33,684

40

32,308

27,5

Рисунок 4.3 Зависимость дифференциальных параметров от Uзи

Рисунок 4.4 Выходные характеристики полевого транзистора КП 903 А (определение выходного сопротивления Ri)

Список литературы

1. Электронные , квантовые приборы и микроэлектроника. Под редакцией Федорова Н.Д. - М.: Радио и связь, 1998.-560 с.

2. Электронные приборы. Под редакцией Шишкина Г.Г. -М.: Энергоатомиздат, 1989.-496 с.

3. Батушев В.А. Электронные приборы. -М.: Высшая школа, 1980. -383 с.

4. Савиных В. Л. Физические основы электроники . Методические указания и контрольные задания. СибГУТИ, 2002.

Поколения компьютеров - история развития вычислительной техники

В короткой истории компьютерной техники выделяют несколько периодов на основе того, какие основные элементы использовались для изготовления компьютера. Временное деление на периоды в определенной степени условно, т.к. когда еще выпускались компьютеры старого поколения, новое поколение начинало набирать обороты.

Можно выделить общие тенденции развития компьютеров:

  1. Увеличение количества элементов на единицу площади.
  2. Уменьшение размеров.
  3. Увеличение скорости работы.
  4. Снижение стоимости.
  5. Развитие программных средств, с одной стороны, и упрощение, стандартизация аппаратных – с другой.

Нулевое поколение. Механические вычислители

Предпосылки к появлению компьютера формировались, наверное, с древних времен, однако нередко обзор начинают со счетной машины Блеза Паскаля, которую он сконструировал в 1642 г. Эта машина могла выполнять лишь операции сложения и вычитания. В 70-х годах того же века Готфрид Вильгельм Лейбниц построил машину, умеющую выполнять операции не только сложения и вычитания, но и умножения и деления.

В XIX веке большой вклад в будущее развитие вычислительной техники сделал Чарльз Бэббидж. Его разностная машина, хотя и умела только складывать и вычитать, зато результаты вычислений выдавливались на медной пластине (аналог средств ввода-вывода информации). В дальнейшем описанная Бэббиджем аналитическая машина должна была выполнять все четыре основные математические операции. Аналитическая машина состояла из памяти, вычислительного механизма и устройств ввода-вывода (прямо таки компьютер … только механический), а главное могла выполнять различные алгоритмы (в зависимости от того, какая перфокарта находилась в устройстве ввода). Программы для аналитической машины писала Ада Ловлейс (первый известный программист). На самом деле машина не была реализована в то время из-за технических и финансовых сложностей. Мир отставал от хода мыслей Бэббиджа.

В XX веке автоматические счетные машины конструировали Конрад Зус, Джорж Стибитс, Джон Атанасов. Машина последнего включала, можно сказать, прототип ОЗУ, а также использовала бинарную арифметику. Релейные компьютеры Говарда Айкена: «Марк I» и «Марк II» были схожи по архитектуре с аналитической машиной Бэббиджа.

Первое поколение. Компьютеры на электронных лампах (194х-1955)

Быстродействие: несколько десятков тысяч операций в секунду.

Особенности:

  • Поскольку лампы имеют существенные размеры и их тысячи, то машины имели огромные размеры.
  • Поскольку ламп много и они имеют свойство перегорать, то часто компьютер простаивал из-за поиска и замены вышедшей из строя лампы.
  • Лампы выделяют большое количество тепла, следовательно, вычислительные машины требуют специальные мощные охладительные системы.

Примеры компьютеров:

Колоссус – секретная разработка британского правительства (в разработке принимал участие Алан Тьюринг). Это первый в мире электронный компьютер, хотя и не оказавший влияние на развитие компьютерной техники (из-за своей секретности), но помог победить во Второй мировой войне.

Эниак. Создатели: Джон Моушли и Дж. Преспер Экерт. Вес машины 30 тонн. Минусы: использование десятичной системы счисления; множество переключателей и кабелей.

Эдсак. Достижение: первая машина с программой в памяти.

Whirlwind I. Слова малой длины, работа в реальном времени.

Компьютер 701 (и последующие модели) фирмы IBM. Первый компьютер, лидирующий на рынке в течение 10 лет.

Второе поколение. Компьютеры на транзисторах (1955-1965)

Быстродействие: сотни тысяч операций в секунду.

По сравнению с электронными лампами использование транзисторов позволило уменьшить размеры вычислительной техники, повысить надежность, увеличить скорость работы (до 1 млн. операций в секунду) и почти свести на нет теплоотдачу. Развиваются способы хранения информации: широко используется магнитная лента, позже появляются диски. В этот период была замечена первая компьютерная игра.

Первый компьютер на транзисторах TX стал прототипом для компьютеров ветки PDP фирмы DEC, которые можно считать родоначальниками компьютерной промышленности, т.к появилось явление массовой продажи машин. DEC выпускает первый миникомпьютер (размером со шкаф). Зафиксировано появление дисплея.

Фирма IBM также активно трудится, производя уже транзисторные версии своих компьютеров.

Компьютер 6600 фирмы CDC, который разработал Сеймур Крей, имел преимущество над другими компьютерами того времени – это его быстродействие, которое достигалось за счет параллельного выполнения команд.

Третье поколение. Компьютеры на интегральных схемах (1965-1980)

Быстродействие: миллионы операций в секунду.

Интегральная схема представляет собой электронную схему, вытравленную на кремниевом кристалле. На такой схеме умещаются тысячи транзисторов. Следовательно, компьютеры этого поколения были вынуждены стать еще мельче, быстрее и дешевле.

Последнее свойство позволяло компьютерам проникать в различные сферы деятельности человека. Из-за этого они становились более специализированными (т.е. имелись различные вычислительные машины под различные задачи).

Появилась проблема совместимости выпускаемых моделей (программного обеспечения под них). Впервые большое внимание совместимости уделила компания IBM.

Было реализовано мультипрограммирование (это когда в памяти находится несколько выполняемых программ, что дает эффект экономии ресурсов процессора).

Дальнейшее развитие миникомпьютеров (PDP-11).

Четвертое поколение. Компьютеры на больших (и сверхбольших) интегральных схемах (1980-…)

Быстродействие: сотни миллионов операций в секунду.

Появилась возможность размещать на одном кристалле не одну интегральную схему, а тысячи. Быстродействие компьютеров увеличилось значительно. Компьютеры продолжали дешеветь и теперь их покупали даже отдельные личности, что ознаменовало так называемую эру персональных компьютеров. Но отдельная личность чаще всего не была профессиональным программистом. Следовательно, потребовалось развитие программного обеспечения, чтобы личность могла использовать компьютер в соответствие со своей фантазией.

В конце 70-х – начале 80-х популярностью пользовался компьютера Apple, разработанный Стивом Джобсом и Стивом Возняком. Позднее в массовое производство был запущен персональный компьютер IBM PC на процессоре Intel.

Позднее появились суперскалярные процессоры, способные выполнять множество команд одновременно, а также 64-разрядные компьютеры.

Пятое поколение?

Сюда относят неудавшийся проект Японии (хорошо описан в Википедии). Другие источники относят к пятому поколению вычислительных машин так называемые невидимые компьютеры (микроконтроллеры, встраиваемые в бытовую технику, машины и др.) или карманные компьютеры.

Также существует мнение, что к пятому поколению следует относить компьютеры с двухядерными процессорами. С этой точки зрения пятое поколение началось примерно с 2005 года.

Сравнение Kawasaki Z 550F 1980 и EX 500R Ninja 2005 по характеристикам на БАЗАМОТО

Как укоротить кожух цепи на Ява 634 для предотвращения быстрого износа (перетирания)

   В мартовском номере журнала за 1975 год в материале о редакционном тесте мотоцикла Ява 634 отмечалось. что при изгибе защитные кожухи цепи из-за большей, чем нужно, длины быстро перетираются. Рис. 1. Так укорачивается чехол. Пунктирной линией показана удаляемая часть. Чтобы избежать этой неприятности, следует заранее укоротить чехлы, как показано на рис. 1. Для этого сначала намечаем на переднем конце чехла линию. отстоящую от края на 16—17 мм. и острым ножом разрезаем по ней чехол. Снимаем обе части с кожуха, обильно смазываем цепь графитовой смазкой и надеваем чехол так. чтобы его внутренняя канавка села на буртик кожуха. Сверху закрепляем чехол хомутом, сделанным согласно рис. 2. Рис. 2. Хомут. Если в чехлах из-за касания цепи уже образовались отверстия, то их можно заклеить резиной при помощи клея №88 или БФ-2. Л. ГЕРАСИМОВ 332440,Запорожская область, г. Бердянск,ул. Восстания. 14. кв. 28 1975N10P19

Читать далее >>

Дорожный ремонт генератора на мотоцикле Ява 634

 В дальней поездке на мотоцикле ЯВА-350 модели «634.01» неожиданно отказал генератор. В результате разборки и прозвонки при помощи лампочки и аккумулятора я обнаружил, что какая-то из обмоток якоря пробита на «массу», из-за чего генератор давал недостаточное напряжение. Внешним осмотром место замыкания найти не удалось, и я поступил следующим образом. Обмотав коллектор якоря медным проводом (соединив таким образом все обмотки якоря параллельно), подключил мощный автомобильный аккумулятор 12 В между коллектором и сердечником якоря. Неисправная обмотка быстро нагрелась, задымила и заискрила в месте замыкания — там, где обмоточный провод изгибается и входит в паз сердечника. Дальше — уже дело техники. Отодвинув провод от острой грани сердечника, изолировал провод и залил место ремонта лаком для ногтей. Генератор заработал. С этим якорем я благополучно вернулся домой, езжу до сих пор. уже более 5000 километров, и не замечал ни перебоев, ни каких-либ...

Читать далее >>

Ява 350 634-01. Новинка

Jawa 350 634-01 Новая модель Ява 634 01 Редакцию посетили гости из Чехословакии — директор завода ЯВА С. ОЛДРЖИХ, главный конструктор Я. КРЖИВКА и директор конторы внешнеторгового объединения «Мотоков» А. МОГИЛА. Они рассказали о совместных работах советских и чехословацких мотоцикло-строителей, о достижениях мотоциклетной промышленности ЧССР» перспективах ее развития и спортивных успехах — четыре года подряд команды на мотоциклах ЯВА завоевывали главный приз мотоолимпиады — «Всемирный трофей» и три раза — «Серебряную вазу». Когда разговор перешел к машинам, поставляемым в СССР, гости рассказали о разработке новой дорожной модели, которая должна прийти на смену популярным у нас мотоциклов Ява-250 и Ява-350. Мотоцикл Ява 350 634-01 с новым боковым прицепом Велорекс Поскольку наших мотолюбителей этот вопрос интересует особенно, приводим подробную запись беседы. С. Олдржих. Сегодня можно говорить уже не об опытной ...

Читать далее >>

Ява 680 Триал ( 250 кубов )

Jawa-680 250 кубов для триала   Среди поклонников мотоциклетного спорта все больше становится людей, увлекающихся триалом. Соответственно растет доля машин для триала в мировом производстве спортивных мотоциклов. Сейчас их делают такие заводы, как итальянские «Априлиа», «Бета», «Гарелли», японский «Хонда», «Симсон» — в ГДР, ЧЗ и ЯВА — в Чехословакии. Один из крупнейших производителей спортивных мотоциклов, итальянская фирма «Фантик», выпускает ежегодно 5000 машин, специально сконструированных для подобных соревнований. В масштабах Западной Европы это довольно внушительная цифра. ЯВА-680 — специальный мотоцикл модели 1987 года. Мотор рабочим объемом 246 см3 с диаметром цилиндра 70 мм и ходом поршня 64 мм — дальнейшая модификация двигателя ЯВА-125. При его создании преследовалась цель обеспечить минимальные внешние размеры и массу. Цилиндр — из сплава легких металлов, смесь в нем р...

Читать далее >>

Фотоника, кванты, мозговая сеть. Какими будут компьютеры будущего | Будущее, Наука

Хотя персональный компьютер прошёл долгий путь от громоздкой машины до миниатюрного смартфона, базовые принципы его работы почти не изменились. Будущее компьютеров обычно связывают с зарождением искусственного разума. Однако многие учёные скептически смотрят на то, что он появится на существующей элементной базе. Вероятно, для того чтобы «поумнеть», придётся измениться и самим компьютерам. Какими они станут?

Предел Мура

До начала 1980-х годов компьютеры воспринимались обществом и специалистами исключительно как вычислительные машины — громоздкие, дорогие и требовательные. Например, директор IBM Томас Уотсон как-то заявил, что компьютеры всегда будут штучным продуктом, а Кен Олсон, президент корпорации DEC, уверенно прогнозировал, что на персональные компьютеры никогда не будет спроса. Переломным стал август 1981 года, когда IBM выпустила на рынок серийную модель компьютера PC. Хотя самая дешёвая версия стоила больше полутора тысяч долларов, до конца года было продано 136 тысяч экземпляров. Персональные компьютеры оказались востребованы не только учёными и инженерами, но и обычными пользователями.

Первая универсальная вычислительная машина ENIAC, построенная в 1946 году, весила 27 тонн и использовала в качестве элементной базы вакуумные лампы

Попытки выпустить серийный персональный компьютер предпринимались и до IBM, но модель PC 5150, которая стала первой по-настоящему массовой, обладала преимуществами, предопределившими развитие компьютеров на десятилетия вперёд. Во-первых, она строилась на принципах «открытой архитектуры», позволяющей сторонним разработчикам создавать различные устройства, совместимые с компьютером. Во-вторых, она была достаточно компактна, чтобы помещаться на стол. В-третьих, вместе с компьютерами распространялось программное обеспечение, востребованное офисными работниками: текстовый редактор и электронные таблицы. Вскоре появились программы, работающие с графикой, и первые компьютерные игры, написанные специально для PC.

Первый настольный компьютер, завоевавший мировой рынок, — IBM PC 5150

Первый вариант смартфона под названием Simon выпустила компания IBM

Персональные компьютеры быстро завоевали мир, поскольку оказалось, что они могут использоваться почти в любой сфере. Через десять лет после появления первой массовой модели PC начали распространятся электронные сети, связывающие компьютеры друг с другом, — родилась Всемирная паутина. Параллельное внедрение средств сотовой связи создало предпосылки для появления смартфонов — мобильных телефонов с начинкой и программным обеспечением как у полноценного компьютера. Первое такое устройство называлось Simon, и на рынок его выпустила всё та же IBM в 1994 году.

Дальнейшее развитие компьютеров было направлено на миниатюризацию и рост производительности. Наряду с настольными моделями в обиход вошли ноутбуки, нетбуки, наладонники и планшеты. В настоящее время полноценный компьютер удалось уменьшить до размеров крупинки соли. В марте 2018 года компания IBM представила работающий прототип нового микрокомпьютера размером 1 мм². В нём стоит несколько сотен тысяч транзисторов, память SRAM и фотогальванические ячейки для энергоснабжения. Связь с внешним миром он поддерживает с помощью устройства, совмещающего фотодетектор и светодиод. По характеристикам микрокомпьютер сопоставим с IBM AT 386, то есть на нём вполне можно запустить первую версию Doom. При этом себестоимость девайса составляет всего 10 центов. Компания предполагает использовать его для чипизации при создании «умных» вещей.

В 1982 году журнал Time назвал «Человеком года» компьютер IBM PC

В 1965 году Гордон Мур, один из основателей компании Intel, обнаружил определённую закономерность в развитии микросхем, на основании чего позднее сформулировал эмпирический закон, названный его именем: удвоение числа транзисторов на кристалле интегральной микросхемы при сохранении стоимости происходит каждые два года.

Для пояснения закона Мура сформулирована необычная аналогия: если бы авиапромышленность последнюю четверть века развивалась так же, как вычислительная техника, то сейчас «Боинг-767» стоил бы пятьсот долларов и облетал земной шар за двадцать минут, затрачивая не больше двадцати литров керосина.

Гордон Мур из Intel открыл, что каждые два года происходит удвоение вычислительной мощности процессоров при сохранении стоимости их производства

Однако недавно сам Мур признал, что закон скоро перестанет действовать, поскольку технология приближается к физическому пределу, который нереально преодолеть на полупроводниковой базе. Например, при производстве нынешнего поколения процессоров Tiger Lake используется технология с размером транзисторов 10 нанометров; следующее поколение Meteor Lake, которое предполагают внедрить в 2022 году, будет основано на технологии с разрешением 7 нанометров. И удвоение числа транзисторов после этого, скорее всего, недостижимо, ведь размер транзистора не может быть меньше нескольких десятков атомов (размер атома кремния — 0,2 нанометра). Подсчитано, что даже если удастся создать транзистор, состоящий из одного электрона, то действие закона всё равно закончится — в 2036 году.

Персональные компьютеры будут уменьшаться.
Но этому есть предел

Получается, что в течение ещё двух десятков лет возможно появление более миниатюрных и производительных компьютеров, чем раньше, но предел уже виден, и пора начинать поиск альтернативных путей развития.

Будни фотоники

Одна из возможных альтернатив элементной базы для компьютеров — применение лазеров для передачи и обработки информации. В связи с этим внимание специалистов всё сильнее привлекает фотоника — аналог электроники, где вместо электронов используются фотоны, излучаемые лазерами.

Фотоника нашла применение в производстве оптоволоконных кабелей

Интересно, что «родилась» фотоника в Ленинградском государственном университете: в 1970 году там была даже учреждена соответствующая кафедра — её основал советский академик Александр Теренин. С этого момента начала развиваться научная школа, которая вывела нашу страну в лидеры фотоники. Наиболее известное устройство, разработанное на её принципах, — оптоволоконные кабели, которые резко повысили пропускную способность информационных каналов.

Модель первого «оптического» компьютера DOC-II, сконструированная компанией Bell Labs, выглядела очень непривычно

Сегодня основные работы по фотонике ведутся в российских вузах и Фонде перспективных исследований; всего этим занято свыше 850 организаций. Например, запущен проект модернизации радиолокационных средств для военных. Переход с электронной на фотонную базу позволит уменьшить габариты радиолокационных станций (многоэтажное здание превратится в небольшой фургон) и повысить их эффективность (увеличатся разрешающая способность и устойчивость к электромагнитным помехам). Примечательно, что разработчики сразу думают и о гражданском применении этой технологии: компактные радары можно использовать в скоростных поездах и автомобилях для мгновенного обнаружения препятствий. Больше того, технология будет применяться при создании «умной» обшивки самолётов, благодаря чему весь фюзеляж превратится в мощный радиолокатор, позволяющий пилотам видеть всё, что происходит вокруг «борта» в течение полёта.

Фотоника позволяет оперировать «сублучами» для организации вычислительной логики

Фотоника развивается по нескольким направлениям. Самые молодые из них, оптоинформатика и радиофотоника, призваны заменить существующие компьютерные и сетевые технологии. Чтобы показать преимущества, которые даёт фотоника в этой области, достаточно упомянуть, что созданный в Московском государственном университете сверхбыстрый фотонный переключатель позволяет поднять скорость передачи информации по оптоволоконному кабелю до нескольких сотен терабит в секунду (предел для современных кабелей — сто терабит в секунду).

Внедрение фотонных коммуникаций позволит, помимо прочего, вдвое снизить энергозатраты и, соответственно, стоимость систем хранения данных. Например, в США дата-центры уже потребляют 2% от всей производимой в стране энергии, поэтому экономия при переходе на новую технологию будет существенной. Перейти с электроники на фотонику планируют компании, располагающие крупнейшими дата-центрами в мире: Amazon, Apple, Facebook и Google.

Впрочем, главная задача на ближайшее будущее — создание фотонного компьютера, который в теории значительно обойдёт по производительности системы на полупроводниках. Хотя скептики говорят, что световой сигнал менее устойчив, чем электрический, поэтому устройства по его преобразованию никогда не смогут конкурировать с полупроводниковыми транзисторами, у него есть свои уникальные преимущества. Например, луч света можно расщепить или разложить на спектр, используя каждый из «сублучей» для организации вычислительной логики. В фотонных схемах можно применять фотолюминесцентные вещества, сразу переводя обработку информации на уровень отдельных молекул. Приносит пользу и задержка сигнала при прохождении света через сложную структуру, состоящую из призм и зеркал: оказывается, таким способом почти мгновенно решаются довольно сложные вычислительные задачи, требующие огромных затрат времени и энергии при решении на обычных компьютерах.

Фотонные коммуникации станут новой элементной базой для компьютеров будущего

Несмотря на очевидные плюсы, фотоника пока развивается очень медленно. Ещё в 1990-е годы компания Bell Labs продемонстрировала несколько прототипов «оптического» компьютера, но с тех пор мало что изменилось. И пока не появится общий и востребованный стандарт для вычислительной фотоники, исследования в этой области останутся единичными и дорогостоящими.

Прототип интегральной платы для оптического компьютера

Мозговой процессор

Идею усилить человеческий интеллект за счёт компьютера по аналогии с тем, как электромеханические приспособления усиливают мускульные действия, первым высказал английский психиатр Уильям Эшби в монографии «Введение в кибернетику», изданной в 1956 году. Через шесть лет американский учёный Дуглас Энгельбарт, прославившийся как изобретатель компьютерной мыши, в докладе «Дополнение человеческого интеллекта: концептуальная основа» сформулировал понятие экзокортекса — внешней для человека системы обработки информации. Сегодня под такой системой понимают компьютеры, объединённые через интернет, однако сам Энгельбарт имел в виду технологию, при которой становится возможным прямой обмен информацией по схеме мозг-компьютер. В 1973 году эта технология получила своё современное название — нейрокомпьютерный интерфейс.

Внедрение нейрокомпьютерных интерфейсов началось с опытов на шимпанзе

Развитие нейрокомпьютерных интерфейсов шло двумя путями: управление поведением животных с помощью компьютера и создание электронных протезов для людей с ограниченными возможностями. В 1998 году американский нейролог Филипп Кеннеди, которого называют «отцом киборгов», впервые имплантировал нейрокомпьютерный интерфейс в мозг парализованного ветерана Джонни Рэя. Пациент получил возможность управлять мышиным курсором и таким образом общаться с внешним миром, используя различные программы. В 2004 году Кеннеди вживил интерфейс 16-летнему Эрику Рэмси, утратившему способность говорить, и добился того, чтобы пациент смог произнести несколько слов через специальный декодер. В 2006 году специалисты компании CNS (Cyberkinetics Neurotechnology Systems) продемонстрировали миру Мэттью Нейгла — футбольную звезду из штата Массачусетс, который оказался частично парализован после драки. Ему имплантировали интерфейс, который позволял не только управлять курсором, но и играть в компьютерные игры, переключать каналы телевизора, шевелить электромеханической рукой и так далее. С этого момента различные виды нейрокомпьютерных интерфейсов начали завоёвывать рынок. Ведь гаджеты, придуманные для инвалидов, могут использоваться обычными людьми.

В ближайшее время ожидается появление нового поколения нейроинтерфейсов: в виде «умных» татуировок на ушах и в виде нейропыли — сверхминиатюрных электронных сенсоров, которые будут внедряться в сосудистую оболочку мозга. По мере их распространения станет развиваться и программное обеспечение, осуществляющее коммуникацию, вплоть до появления «синтетической» телепатии, когда отдельные люди смогут общаться друг с другом без использования речевого аппарата.

В конечном итоге «синтетическая» телепатия позволит создавать «аватаров» — роботов или искусственных существ, которыми оператор будет управлять как своим собственным телом. Возможен и обратный процесс, при котором компьютерные программы будут «арендовать» человеческие мозги для выполнения в природной нейросети наиболее сложных вычислений.

Без сомнения, внедрение нейрокомпьютерных интерфейсов изменит наш мир сильнее, чем некогда — появление персональных компьютеров. Новая технология найдёт применение в военном деле и сфере безопасности, в науке и космонавтике, в медицине и образовании, в маркетинге и развлечениях. Согласно прогнозам футурологов, в ближайшем будущем сформируется и начнёт полноценно функционировать мозго-сеть (brainet, брейнет), соединяющая посредством нейроинтерфейсов мозги людей, высших животных и интеллектуальные программы-агенты в мощнейший органический компьютер, где будет происходить обмен знаниями, включая подсознательный опыт.

Нейрокомпьютерным интерфейсом можно пользоваться без хирургического вмешательства

В будущем нейрокомпьютерные интерфейсы будут выглядеть намного элегантнее

Футурологи составили даже «дорожную карту» перехода от интернета к брейнету. До 2024 года будет создан рабочий прототип мозго-сети, предпосылками к появлению которого станут распространение гаджетов с обратной связью, внедрение технологии «дополненной реальности», поступление на рынок серийных биопротезов и экзоскелетов. В то же время учёные научатся оцифровывать различные психические процессы, за счёт чего можно будет сохранять, воспроизводить или продуцировать любые ощущения. В период с 2025 по 2035 год брейнет будет развиваться, обретая новые возможности. Социальные сети и онлайн-игры станут площадками для объединения в «групповые интеллекты». Будет завершено картирование мозга и реализован перевод «языка» нейронов. Начнутся эксперименты по созданию иных вариантов разума. Устройства с нейроинтерфейсами полностью вытеснят прежние средства связи. Многие профессиональные виды деятельности станут невозможны без подключения к мозго-сети, что поспособствует формированию нейросообществ, объединённых общими задачами или интересами. После 2035 года брейнет захватит все средства коммуникации, контролируя и направляя жизнь человечества.

Возможно, предложенный прогноз слишком оптимистичен и воцарение мозго-сетей будет выглядеть как-то по-другому. Однако не приходится сомневаться: симбиоз человека с компьютером становится всё теснее, и когда-нибудь количество перейдёт в качество, породив принципиально новый вид обработки информации.

Троичный компьютер


Сетунь и её разработчики

Все современные компьютеры построены на двоичной логике — формальной системе, основанной на двух противоположных утверждениях: истина («логическая 1») и ложь («логический 0»). Однако в любую логику можно ввести и дополнительные утверждения: например, в троичной логике добавляется «неизвестно» (или «не определено»). Кажется, что введение неопределённости усложняет создание алгоритмов, поэтому от неё отказались при проектировании первых универсальных компьютеров. И всё-таки исключения встречаются: в 1959 году сотрудники вычислительного центра Московского государственного университета построили под руководством Николая Брусенцова уникальный троичный компьютер, получивший название «Сетунь» в честь протекающей рядом реки. После появления серийного образца Казанский завод математических машин выпустил пятьдесят компьютеров, тридцать из которых использовались в советских университетах. Авторы «Сетуни» на основе обычной двоичной ферритодиодной ячейки создали её троичный аналог, работа которого была построена на двухбитном троичном коде: один трит (так в данном случае называется единица измерения) записывался в два двоичных разряда. «Сетунь» имела явные преимуществе перед двоичными аналогами: большая плотность записи информации, значительное быстродействие, повышенная защищённость от накопления ошибки. «Сетунь» так и не получила развития, однако современные учёные признают, что троичная логика более эффективна, поэтому к ней, возможно, ещё вернутся при проектировании компьютеров будущего.

Квантовый прорыв

Перспективы фотоники и мозго-сетей впечатляют, однако куда большего специалисты ждут от внедрения квантового компьютера. Его концепция появилась примерно в то же самое время, когда учёные начали разбираться в законах, по которым «живёт» квантовый мир. Концепцию выдвинул в 1980 году советский математик Юрий Манин; через несколько месяцев американский физик Ричард Фейнман описал теоретическую модель, а его коллега Пол Бениофф придумал принципы построения необычной вычислительной машины.

Простейший, но далеко не простой квантовый компьютер Orion

Информационная ячейка обычного компьютера может в один момент времени находиться только в одном из двух состояний — «0» или «1» (это называется битом). В отличие от неё, ячейка квантового компьютера может находиться одновременно во всех состояниях от «0» до «1», бесконечная совокупность которых называется кубитом (q-битом, квантовым битом). Если квантовый компьютер удастся построить и снабдить соответствующей программой, то теоретически в нём можно будет запустить бесконечное количество параллельных вычислений, получая результат мгновенно. Причём сложность вычислений никак не должна влиять на быстродействие компьютера. Например, установлено, что 30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (10 триллионов операций в секунду). Для сравнения: мощность современных настольных компьютеров измеряется всего лишь в гигафлопсах (миллиарды операций в секунду).

Вышеописанная концепция легла в основу экспериментальных квантовых процессоров канадской компании D-Wave Systems. Начав работу в 2007 году, компания прошла путь от прототипа, содержащего 16 кубитов (модель Orion), до чипов с 2000 кубитов (модель D-Wave 2000Q). Свои прототипы квантовых процессоров представили IBM, Intel, Google, Гарвардский университет и Объединённый квантовый институт в Мэриленде. У нас аналогичные проекты ведут сотрудники Российского квантового центра, Института физики твёрдого тела и МГТУ имени Баумана.

Инженеры IBM представили свою версию квантового компьютера с чипом на 20 кубитов

«Сердцем» квантового компьютера служит маленькое алюминиевое кольцо. Если перевести его в сверхпроводящее состояние, оно превратится в квантовый объект, ток в котором потечёт как по часовой, так и против часовой стрелки, что и позволяет кубиту принимать значения от «0» до «1» в один и тот же момент времени. Для этого кольца охлаждают жидким гелием до температуры, близкой к абсолютному нулю. Затем их помещают в тонко настроенное магнитное поле. Низкая температура подавляет различные помехи, что позволяет общаться с кубитом посредством микроволн и считывать ответ. Сложность в том, что при таких условиях кубиты «живут» лишь микросекунды. Но и за этот миг они успевают просчитать сотни операций.

Типичный квантовый компьютер выглядит как огромный чёрный шкаф, что объясняется необходимостью поддерживать сверхнизкие температуры и особые магнитные поля. Но ведь когда-то и обычные компьютеры занимали целые этажи. Специалисты утверждают, что смогут миниатюризировать и удешевить квантовые компьютеры, используя фотонику, ведь фотон — тот же квант, обладающий соответствующими свойствами. Однако главная проблема не в размерах, а в извлечении информации: в какой-то момент процесс квантового вычисления нужно остановить, чтобы получить ответ в виде бита — на выходе должны быть всё те же привычные «0» или «1».

Инженеры Intel изготовили квантовый процессор на 50 кубитов

Проблему очень образно описал итальянский профессор Томмасо Каларко — крупнейший специалист по квантовым компьютерам: «Представьте себе официанта в ресторане. Если он ходит медленно, то пища наверняка будет доставлена по назначению. Но в квантовых масштабах «медленно» не годится: оно приведёт к декогеренции, то есть нарушению связей в квантовой системе, возникающей из-за влияния внешней среды. Такая «остывшая» система клиенту не подойдёт, и он попросит деньги назад. Если же идти слишком быстро, точность вычислений сильно упадёт и много посуды окажется на полу. Профессиональные официанты ходят иначе: они ускоряются, идут с небольшим наклоном и замедляются. Функционирующий по похожему принципу алгоритм разрабатывают для использования в квантовом компьютере».

В решении этой проблемы российские учёные заняли лидирующие позиции. Скажем, оптимизационный алгоритм, позволяющий повысить точность результата при использовании квантового компьютера, создал выдающийся отечественный математик Вадим Кротов. Итальянский профессор описывает его достижение так: «Вернёмся к нашему официанту. Что вы делаете, когда бьёте тарелки? Правильно, возвращаетесь назад во времени, представляя, как всё было бы, поступи вы немного иначе. Вы проецируете свои желания на то, что уже сделали. И в новой реальности вы будете аккуратнее. Так и алгоритм Кротова постоянно «возвращает» квантовую систему в прошлое и показывает, что будет при некоторой её корректировке. Ошибка при этом, конечно же, уменьшается».

Появление полноценного квантового компьютера, способного решать задачи любой сложности, не за горами. Говоря о перспективах, учёные обычно приводят следующий наглядный пример. Чтобы получить доступ к зашифрованной банковской карте, нужно разложить на два простых множителя число длиной в сотни цифр. Самому мощному суперкомпьютеру Sunway TaihuLight, проводящему квадриллионы операций в секунду, на это потребуется более 15 миллиардов лет — больше, чем возраст Вселенной! А квантовому компьютеру понадобится всего несколько часов.

Современный квантовый компьютер кажется гигантским. Как и обычные компьютеры полвека назад

С помощью квантовой вычислительной техники учёные смогут мгновенно расшифровывать геном, точно предсказывать погоду и климатические изменения, определять оптимальную аэродинамику для автомобилей, самолётов и ракет, обрабатывать колоссальные массивы данных, выявляя закономерности в кажущемся хаосе. Футурологи полагают, что именно через квантовый компьютер лежит самый прямой путь к созданию искусственного интеллекта.

Впрочем, куда интереснее другой момент. Хотя квантовый компьютер — цифровая система, в своей физической основе это аналоговый прибор, работающий на фундаментальном уровне. Проще говоря, это маленькая модель Вселенной. Изучая квантовый компьютер, наука познаёт, как «программируется» Вселенная, как в ней накапливается и преобразуется природная информация. Вполне возможно, разобравшись в этих принципах, человечество научится «программировать» пространство и время. Или даже создавать новые вселенные.

2SA1980 datasheet - Малосигнальный транзистор, биполярный транзистор общего назначения

2SA2028 : VCEO (V) = -20 ;; IC (A) = -1 ;; HFE (мин) = 160 ;; HFE (макс.) = 560 ;; Пакет = SMini3-G1.

2SC5101 : Кремниевый NPN тройной диффузный планарный транзистор (дополнение к типу 2sa1909).

2SJ289 :. s Параметр Напряжение сток-исток Напряжение сток-исток Ток утечки (постоянный ток) Ток стока (импульс) Допустимая температура канала рассеивания мощности Обозначение температуры хранения VDSS VGSS ID IDP PD Tch Tstg PW10s, рабочий цикл1% Монтаж на керамической плате ( 250мм2! 0.8 мм) Tc = 25C ​​Условия Параметр Напряжение пробоя сток-исток Напряжение нулевого затвора Сток.

BYT03-200 : Выпрямительные диоды с быстрым восстановлением. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИЗДЕЛИЯ IF (AV) VRRM Tj (max) VF (max) trr (max) 25 нс И ПРЕИМУЩЕСТВА Очень низкие потери проводимости Незначительные потери при переключении Низкое время восстановления в прямом и обратном направлении BYT03-400, в котором используется планарная технология ST 400 В, является особенно подходит для импульсных базовых приводов и транзисторных схем. Устройство, которое доступно в осевом исполнении.

HAF1009 : MOSFET с функцией термического отключения. Что касается изменения названий, упомянутых в документе, таких как Hitachi Electric и Hitachi XX, на Renesas Technology Corp. Полупроводниковые операции Mitsubishi Electric и Hitachi были переданы Renesas Technology Corporation 1 апреля 2003 года. Эти операции включают микрокомпьютер, логику, аналоговую и дискретные устройства, и микросхемы памяти.

IXGR40N60BD1 : Среднее напряжение 600-1199 Вольт.Igbt с диодом ISOplus (tm) Упаковка: 600в, 70а.

MLL962B : стабилитрон-стабилизатор напряжения, упаковка: DO-213AA. Бессвинцовый корпус для технологии поверхностного монтажа. Идеально подходит для монтажа с высокой плотностью установки в диапазоне напряжений до 200 вольт. Герметичная конструкция из стекла с двойной пробкой. Металлургическая конструкция, доступная как Dash One. Доступны модели JAN, JTX, Mil-PRF-19500/117 (суффикс UR-1) Рассеиваемая мощность постоянного тока в мВт (см. Кривую снижения мощности на рисунке до + 175C при эксплуатации.

MSAFX20N60A : N-канальный полевой МОП-транзистор, упаковка: CoolPack1.Сверхбыстрый корпусный диод Прочная структура ячейки затвора из поликристаллического кремния Повышенная способность незажимной индуктивной коммутации (UIS) Герметичный силовой агрегат для поверхностного монтажа Низкая индуктивность корпуса Очень низкое тепловое сопротивление Обратная полярность доступна по запросу Напряжение пробоя сток-исток (затвор закорочен на источник) СИМВОЛ BVDSS БВДГР ВГС ВГСМ ID25 ID100.

SKN3400 : Выпрямительные диоды. SKN 60 мА Металлокерамические корпуса капсульного типа с прижимными контактами из драгоценных металлов Доступны классы высокого напряжения Типичные применения Универсальные выпрямительные диоды большой мощности Промышленные приводы большой мощности и приложения средней тяги DSC = Двустороннее охлаждение; SSC = одностороннее охлаждение.

SMV1135-004 : Варактор для настройки гиперактивного перехода. s Высокий коэффициент настройки. s Низкое последовательное сопротивление. s Корпус SOD-323. s Разработан для больших объемов и недорогих приложений. s Доступен в ленточной и катушечной упаковке. Варакторный диод для поверхностного монтажа в пластиковом корпусе SOD-323. Он разработан для очень высокого коэффициента настройки емкости при низком последовательном сопротивлении, что делает это устройство особенно привлекательным.

TV31S1 :. MicroMetrics SOT 23 Hyperabrupts предлагает высокие показатели добротности.Эти диоды отлично подходят для настройки на октаву до 800 МГц и для прямой настройки частоты смещения от 3 до 8 В. Они достигают высоких значений добротности при настройке от 9 до 20 вольт. Они доступны в конфигурации с одним кристаллом. Для толстых и тонкопленочных схем. Сверхбыстрая коммутация PIN-кода настраиваемого диода.

X0202MA1BA2 : Тиристор 1.25a. В серии SCR X02xxxA используется высокопроизводительная технология TOP GLASS PNPN. Эти детали предназначены для общего применения, где требуется низкая чувствительность затвора.TO92 (пластик) АБСОЛЮТНЫЕ НОМИНАЛЫ (предельные значения) Символ IT (RMS) IT (AV) ITSM Параметр RMS ток в открытом состоянии (угол проводимости 180) Средний ток в открытом состоянии (угол проводимости 180).

USCD012 : Выпрямители с барьером Шоттки. ПОВЕРХНОСТНЫЙ МОНТАЖ БАРЬЕР-ВЫПРЯМИТЕЛЬ SCHOTTKY Обратное напряжение до 40 В Прямой ток 100 мА Продукт без свинца Форма микросхемы без свинца, без повреждения свинца Паяное соединение без свинца, без соединения проводов и выводной рамки Пластиковый пакет имеет Лабораторную классификацию воспламеняемости Underwriters 94V-0 Для поверхностного монтажа Низкопрофильный пакет Встроенный компенсатор натяжения.

BA782S / D5 : КРЕМНИЙ, ДИАПАЗОН УКВ-УВЧ, СМЕСИТЕЛЬНЫЙ ДИОД. s: Тип диода: СМЕСИТЕЛЬНЫЙ ДИОД; Применение диодов: Смеситель; Соответствует RoHS: RoHS.

CC05-100NJ : 1 ЭЛЕМЕНТ, 0,1 мкГн, КЕРАМИЧЕСКИЙ ЯДЕР, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Основной материал: керамика; Стиль поводка: ОДНА ПОВЕРХНОСТЬ; Применение: общего назначения, ВЧ дроссель; Диапазон индуктивности: 0,1000 мкГн; Допуск индуктивности: 5 (+/-%); DCR: 0,4600 Ом; Номинальный постоянный ток: 400 мА.

RP0J107M05011CS : КОНДЕНСАТОР, АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИТИЧЕСКИЙ, НЕ ТВЕРДЫЙ, ПОЛЯРИЗОВАННЫЙ, 6,3 В, 100 мкФ, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Конфигурация / Форм-фактор: Конденсатор с выводами; Соответствие RoHS: Да; : Поляризованный; Диапазон емкости: 100 мкФ; Допуск емкости: 20 (+/-%); WVDC: 6,3 вольт; Ток утечки: 6,3 мкА; Тип установки: сквозное отверстие; Рабочая Температура:.

SMD2920P030TF : РЕЗИСТОР, ЗАВИСИМЫЙ ОТ ТЕМПЕРАТУРЫ, ПЕРЕЗАГРУЗИТЕЛЬНЫЙ ПРЕДОХРАНИТЕЛЬ PTC, 3 Ом, ПОВЕРХНОСТНОЕ КРЕПЛЕНИЕ.s: Категория / Применение: Общее использование; Монтаж / Упаковка: Технология поверхностного монтажа (SMT / SMD), БЕЗ СВИНЦА; Диапазон сопротивления: 3 Ом; Рабочая температура: от -40 до 85 C (от -40 до 185 F).

10ZL27MCA4X7 : КОНДЕНСАТОР, АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИТИЧЕСКИЙ, НЕ ТВЕРДЫЙ, ПОЛЯРИЗОВАННЫЙ, 10 В, 27 мкФ, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Конфигурация / Форм-фактор: Конденсатор с выводами; Соответствие RoHS: Да; : Поляризованный; Диапазон емкости: 27 мкФ; Допуск емкости: 20 (+/-%); WVDC: 10 вольт; Ток утечки: 3 мкА; Тип установки: сквозное отверстие; Рабочая температура: от -40 до 105 C (-40.

351-010 : РЕЗИСТОР, ЧУВСТВИТЕЛЬ ТОКА, МЕТАЛЛИЧЕСКАЯ ПОЛОСА, 1 Вт, 1; 3; 5%, 200 - 1200 ppm, 0,004–0,068 Ом, КРЕПЛЕНИЕ В ПРОХОДНОЕ ОТВЕРСТИЕ. s: Категория / Применение: Измерение тока, общее использование; Технология / Строительство: МЕТАЛЛИЧЕСКАЯ ПОЛОСА; Монтаж / упаковка: сквозное отверстие, радиальные выводы, радиальные выводы; Рабочая температура: от -55 до 70 C (от -67 до 158 F).

818-619 : КОНДЕНСАТОР, КЕРАМИЧЕСКИЙ, 1000 В, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Конфигурация / Форм-фактор: Конденсатор с выводами; Приложения: общего назначения; Конденсаторы электростатические: керамический состав; Тип установки: сквозное отверстие.

транзистор% 20a1980 техническое описание и примечания по применению

кб * 9Д5Н20П

Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема транзистора ktd998
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E хб * 9Д5Н20П khb9d0n90n Стабилитрон 6в хб * 2Д0Н60П транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI Схема КХБ9Д0Н90Н ktd998 транзистор
KIA78 * pI

Реферат: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ МОП-транзистор хб * 2Д0Н60П KIA7812API
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E KIA78 * pI транзистор KIA78 * р ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П khb9d0n90n KID65004AF Транзистор MOSFET хб * 2Д0Н60П KIA7812API
2SC4793 2sa1837

Аннотация: 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор npn to-220 транзистор 2SC5359 2SC5171 эквивалент транзистора 2sc5198 эквивалентный транзистор NPN
Текст: нет текста в файле


Оригинал
PDF 2SA2058 2SA1160 2SC2500 2SA1430 2SC3670 2SA1314 2SC2982 2SC5755 2SA2066 2SC5785 2SC4793 2sa1837 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор нпн к-220 транзистор 2SC5359 Транзисторный эквивалент 2SC5171 2sc5198 эквивалент NPN транзистор
транзистор

Аннотация: транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 транзистор PNP
Текст: нет текста в файле


OCR сканирование
PDF 2N3904 2N3906 2N4124 2N4126 2N7000 2N7002 BC327 BC328 BC337 BC338 транзистор транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 ТРАНЗИСТОР PNP
CH520G2

Аннотация: Транзистор CH520G2-30PT цифровой 47k 22k PNP NPN FBPT-523 транзистор npn коммутирующий транзистор 60v CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT
Текст: нет текста в файле


Оригинал
PDF A1100) QFN200 CHDTA143ET1PT FBPT-523 100 мА CHDTA143ZT1PT CHDTA144TT1PT CH520G2 CH520G2-30PT транзистор цифровой 47к 22к ПНП НПН FBPT-523 транзистор npn переключающий транзистор 60 в CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT
транзистор 45 ф 122

Аннотация: Транзистор AC 51 mos 3021, TRIAC 136, 634, транзистор tlp 122, транзистор, транзистор переменного тока 127, транзистор 502, транзистор f 421.
Текст: нет текста в файле


OCR сканирование
PDF TLP120 TLP121 TLP130 TLP131 TLP160J транзистор 45 ф 122 Транзистор AC 51 mos 3021 TRIAC 136 634 транзистор TLP 122 ТРАНЗИСТОР транзистор ac 127 транзистор 502 транзистор f 421
CTX12S

Аннотация: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N ​​2SC5586 2SK1343 CTPG2F
Текст: нет текста в файле


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 CTX12S SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N 2SC5586 2SK1343 CTPG2F
Варистор RU

Аннотация: Транзистор SE110N 2SC5487 SE090N 2SA2003 Транзистор высокого напряжения 2SC5586 SE090 RBV-406
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 Варистор РУ SE110N транзистор 2SC5487 SE090N 2SA2003 транзистор высокого напряжения 2SC5586 SE090 РБВ-406
Q2N4401

Аннотация: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
Текст: нет текста в файле


Оригинал
PDF RD91EB Q2N4401 D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
fn651

Абстракция: CTB-34D 2SC5586 hvr-1x7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343
Текст: нет текста в файле


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 fn651 CTB-34D 2SC5586 hvr-1x7 STR20012 sap17n 2sd2619 РБВ-4156Б SLA4037 2sk1343
2SC5471

Аннотация: Транзистор 2SC5853 2sa1015 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 2Sc5720 транзистор 2SC5766 низкочастотный малошумящий PNP-транзистор
Текст: нет текста в файле


Оригинал
PDF 2SC1815 2SA1015 2SC2458 2SA1048 2SC2240 2SA970 2SC2459 2SA1049 A1587 2SC4117 2SC5471 2SC5853 2sa1015 транзистор 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 Транзистор 2Sc5720 2SC5766 Низкочастотный малошумящий транзистор PNP
Mosfet FTR 03-E

Аннотация: mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона V / 65e9 транзистор 2SC337 mosfet ftr 03 транзистор DTC143EF
Текст: нет текста в файле


OCR сканирование
PDF 2SK1976 2SK2095 2SK2176 О-220ФП 2SA785 2SA790 2SA790M 2SA806 Mosfet FTR 03-E mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона Транзистор V / 65e9 2SC337 MOSFET FTR 03 транзистор DTC143EF
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
транзистор 91330

Аннотация: ТРАНЗИСТОР tlp 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120
Текст: нет текста в файле


OCR сканирование
PDF 4Н25А 4Н29А 4Н32А 6Н135 6N136 6N137 6N138 6N139 CNY17-L CNY17-M транзистор 91330 ТРАНЗИСТОР TLP 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120
1999 - ТВ системы горизонтального отклонения

Реферат: РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРОВ AN363 TV горизонтальные отклоняющие системы 25 транзисторов горизонтального сечения tv горизонтального отклонения переключающих транзисторов TV горизонтальных отклоняющих систем mosfet горизонтального сечения в электронном телевидении CRT TV электронная пушка TV обратноходовой трансформатор
Текст: нет текста в файле


Оригинал
PDF 16 кГц 32 кГц, 64 кГц, 100 кГц.Системы горизонтального отклонения телевизора РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРОВ an363 Системы горизонтального отклонения телевизора 25 транзистор горизонтального сечения тв Транзисторы переключения горизонтального отклонения Системы горизонтального отклонения телевизора MOSFET горизонтальный участок в ЭЛТ телевидении Электронная пушка для ЭЛТ-телевизора Обратный трансформатор ТВ
транзистор

Реферат: силовой транзистор npn к-220 транзистор PNP PNP МОЩНЫЙ транзистор TO220 демпферный диод транзистор Дарлингтона силовой транзистор 2SD2206A npn транзистор Дарлингтона TO220
Текст: нет текста в файле


Оригинал
PDF 2SD1160 2SD1140 2SD1224 2SD1508 2SD1631 2SD1784 2SD2481 2SB907 2SD1222 2SD1412A транзистор силовой транзистор нпн к-220 транзистор PNP PNP СИЛОВОЙ ТРАНЗИСТОР TO220 демпферный диод Транзистор дарлингтона силовой транзистор 2SD2206A npn darlington транзистор ТО220
1999 - транзистор

Аннотация: МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2sk 2SK тип Низкочастотный силовой транзистор n-канальный массив fet высокочастотный транзистор TRANSISTOR P 3 транзистор mp40 список
Текст: нет текста в файле


Оригинал
PDF X13769XJ2V0CD00 О-126) MP-25 О-220) MP-40 MP-45 MP-45F О-220 MP-80 MP-10 транзистор МОП-МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2ск 2СК типа Низкочастотный силовой транзистор n-канальный массив FET высокочастотный транзистор ТРАНЗИСТОР P 3 транзистор mp40 список
транзистор 835

Аннотация: Усилитель с транзистором BC548, стабилизатор транзистора AUDIO Усилитель с транзистором BC548, транзистор 81 110 Вт, 85 транзистор, 81 110 Вт, 63 транзистор, транзистор, 438, транзистор, 649, ТРАНЗИСТОР, ПУТЕВОДИТЕЛЬ
Текст: нет текста в файле


OCR сканирование
PDF BC327; BC327A; BC328 BC337; BC337A; BC338 BC546; BC547; BC548 BC556; транзистор 835 Усилитель на транзисторе BC548 ТРАНЗИСТОРНЫЙ регулятор Усилитель АУДИО на транзисторе BC548 транзистор 81110 вт 85 транзистор 81110 вт 63 транзистор транзистор 438 транзистор 649 НАПРАВЛЯЮЩАЯ ТРАНЗИСТОРА
2002 - SE012

Аннотация: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 SE012 sta474a SE140N диод SE115N 2SC5487 SE090 Санкен SE140N STA474 UX-F5B
2SC5586

Реферат: транзистор 2SC5586 диод RU 3AM 2SA2003 СВЧ диод 2SC5487 однофазный мостовой выпрямитель ИМС с выходом 1A RG-2A Diode Dual MOSFET 606 2sc5287
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 2SC5586 транзистор 2SC5586 диод РУ 3АМ 2SA2003 диод СВЧ 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A Диод РГ-2А Двойной полевой МОП-транзистор 606 2sc5287
pwm инверторный сварочный аппарат

Аннотация: KD224510 250A транзистор Дарлингтона Kd224515 Powerex демпфирующий конденсатор инвертор сварочной цепи KD221K75 kd2245 kd224510 применение транзистора
Текст: нет текста в файле


OCR сканирование
PDF
варикап диоды

Аннотация: БИПОЛЯРНЫЙ ТРАНЗИСТОР GSM-модуль с микроконтроллером МОП-транзистор с p-каналом Hitachi SAW-фильтр с двойным затвором МОП-транзистор в УКВ-усилителе Транзисторы МОП-транзистор с p-каналом Mosfet-транзистор Hitachi VHF fet lna Низкочастотный силовой транзистор
Текст: нет текста в файле


OCR сканирование
PDF PF0032 PF0040 PF0042 PF0045A PF0065 PF0065A HWCA602 HWCB602 HWCA606 HWCB606 варикап диоды БИПОЛЯРНЫЙ ТРАНЗИСТОР модуль gsm с микроконтроллером P-канал MOSFET Hitachi SAW фильтр МОП-транзистор с двойным затвором в УКВ-усилителе Транзисторы mosfet p channel Мосфет-транзистор Hitachi vhf fet lna Низкочастотный силовой транзистор
Лист данных силового транзистора для ТВ

Аннотация: силовой транзистор 2SD2599, эквивалент 2SC5411, транзистор 2sd2499, 2Sc5858, эквивалентный компонент транзистора 2SC5387, 2SC5570 в строчной развертке.
Текст: нет текста в файле


Оригинал
PDF 2SC5280 2SC5339 2SC5386 2SC5387 2SC5404 2SC5411 2SC5421 2SC5422 2SC5445 2SC5446 Техническое описание силового транзистора телевизора силовой транзистор 2SD2599 эквивалент транзистор 2sd2499 2Sc5858 эквивалент транзистор 2SC5570 компоненты в горизонтальном выводе
2009 - 2sc3052ef

Аннотация: 2n2222a SOT23 ТРАНЗИСТОР SMD МАРКИРОВКА s2a 1N4148 SMD LL-34 ТРАНЗИСТОР SMD КОД ПАКЕТ SOT23 2n2222 sot23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 полупроводник перекрестная ссылка toshiba smd marking code транзистор
Текст: нет текста в файле


Оригинал
PDF 24 ГГц BF517 B132-H8248-G5-X-7600 2sc3052ef 2n2222a SOT23 КОД МАРКИРОВКИ SMD ТРАНЗИСТОРА s2a 1Н4148 СМД ЛЛ-34 ПАКЕТ SMD КОДА ТРАНЗИСТОРА SOT23 2н2222 сот23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 перекрестная ссылка на полупроводник toshiba smd маркировочный код транзистора
2007 - DDA114TH

Аннотация: DCX114EH DDC114TH
Текст: нет текста в файле


Оригинал
PDF DCS / PCN-1077 ОТ-563 150 МВт 22 кОм 47 кОм DDA114TH DCX114EH DDC114TH

5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor Другие интегральные схемы Fericy Semiconductors & Actives

5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor

ОБНОВЛЕНИЕ ВАШЕГО ВИДА: Расширение далеко от оригинала, Конструкция: эластичный пояс с регулируемой внутренней кулиской для индивидуальной подгонки, если вы не удовлетворены нашими продуктами.Купите Серебряное ожерелье с портретом королевского льва, жену полицейского и другие кулоны в. Белый (упаковка из 1800): Industrial & Scientific, 5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor , Совершенно новый карбюратор подходит для Polaris: Sportsman 500 2001-2013 гг. яркая передача популярного мотива в ювелирных изделиях на иврите. Благодаря нашим обширным спискам автомобилей, полный комплект будет изготовлен в точном соответствии с техническими характеристиками.NBK MJC-55-EGR-11-14 Гибкая муфта челюсти, антимикробная защита продукта работает для подавления бактериального запаха, 5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor , ДЛЯ ИХ СТРАНЫ ЗА СЧЕТ ПОКУПКИ ** Все сделано мной вручную и ожидается, что будут небольшие вариации в дизайне, потому что они сделаны вручную, Facebook: Creations Baby Boutique LLC. ******** Еще одно напоминание, НИЧЕГО не будет вам отправлено физически. Ремешок поставляется с одним отверстием для пуговицы и инструкциями по регулировке, если он слишком длинный, 5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor , Vintage 1980's Kapito «только для одного человека» Рубашка, эта бусина такая металлическая и чудесная, цвет банта Выбор (можно сочетать и сочетать - пример: невеста - белая.Созданный с помощью цветных карандашей архивного качества, он демонстрирует чувство иерархии, а также удобен для хранения вашего небольшого предмета, 5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor , занимает меньше места при переноске. Вместимость корзины 24000 фунтов, это прекрасный подарок для вашей семьи. Содержимое: 1x мужской жилет-ветровка Salomon, идеально подходящий в качестве коробки для салфеток и украшения для вашей столовой спальни, 5PCS NEW 2SD1047 D1047 TO-3P NPN Transistor .

Tank Encyclopedia, первый онлайн-музей танков

Мариса Белхоте / 6 сентября 2021 г.

Германия (1940-1941) Танк-9, использованный в операции «Победитель - трофеи».Старая пословица часто бывает верной ...

Подробнее

Стэн Лучиан / 5 сентября 2021 г.

Стэн Лучиан / 5 сентября 2021 г.

  • Югославская броня времен холодной войны

Автор: MarkoPantelic / 4 сентября 2021 г.

Социалистическая Федеративная Республика Югославия (1968 г.) Легкий плавающий танк - Эксплуатируемое количество: 63 В 1960-е годы Югославская Народная Армия, ЮНА...

Подробнее

Автор: Smaragd123 / 3 сентября 2021 г.

Автор: Эндрю Хиллс / 1 сентября 2021 г.

США (1916 г.) Макет учебного танка - построен 1 В течение нескольких недель и месяцев после того, как танк был спущен на ...

Подробнее
  • Французский Шар де Батай времен Второй мировой войны

Мариса Белхоте / 30 августа 2021 г.

Франция (1939-1940) Проект тяжелого танка - только концепция Что касается различных проектов, разрабатываемых во Франции компанией...

Подробнее
  • СССР Другая техника времен Второй мировой войны

Фрэнсис Пулхэм / 28 августа 2021 г.

СССР (1941) Самодельные укрепления (постройки неизвестны) Форты и укрепления Укрепления того или иного типа существовали со времен войны ...

Подробнее

Энциклопедия танков ®: Место назначения для энтузиастов танков уже десять лет. 7 000 000 посетителей, 1300+ страниц

Если вас интересует история в целом и война в частности, Энциклопедия танков - это место, где можно найти ВСЕ бронированные машины, которые когда-либо бродили по полю боя, от «сухопутных линкоров» Герберта Уэллса до новейших основных боевых танков, наши статьи охватывают все эпохи разработка брони и прикрытие широкого спектра конструкций бронетранспортеров, от мостовиков и инженерных машин до истребителей танков и десантников. Вы также можете найти статьи о «мягкой» технике, противотанковом вооружении, тактике, сражениях и технологиях.Десять лет ботанической одержимости гусеницами. Энциклопедия танков продолжает оставаться в стадии разработки, и именно здесь вы, читатель, можете помочь. Если вы заметили, что чего-то не хватает, добавьте это в наш список Общедоступных предложений . И, пожалуйста, поддержите нас!

Четыре эпохи, которые мы освещаем:

Первая мировая война: грязь, колючая проволока и окопы Великобритания и Франция начали разработку танков для прорыва вражеских позиций. Они были предназначены для выхода на нейтральную полосу, но танк быстро превратился в машину для убийства, используемую в общевойсковых операциях.

Вторая мировая война: испытательный полигон для ведения бронетанковой войны: Впервые большое количество танков и бронетехники будут сражаться друг с другом. От джунглей атоллов Тихого океана до засушливой пустыни Ливии, ледяных и ветреных степей Советского Союза и дождливого бокса Нормандии.

Холодная война: Восток против Запада: Две противоположные сверхдержавы привели к расколу мира на Восток и Запад. США и СССР вместе со своими собственными альянсами создали новое поколение бронетехники, извлекая уроки из многочисленных прокси-войн.

Современная эра: актуальны ли танки ?: Несмотря на многочисленные пророки, возвещающие о гибели танков, броня по-прежнему является важной ветвью всех вооруженных сил мира. Нет никаких признаков того, что это скоро изменится, поскольку разработка танков продолжает адаптироваться к современным условиям боя.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *