Асинхронный двигатель конструкция: Конструкция асинхронного электродвигателя — 160 фото, схемы, чертежи и примеры использования

Содержание

Двигатель Однофазный Переменного Тока: Принцип Работы

Простое и крайне надежное устройство

Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.

Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.

Основная информация

Синхронный однофазный двигатель переменного тока работает от общественной сети

Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

  • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
  • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
  • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.

Электрический двигатель в разрезе

  • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
  • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
  • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
  • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
  • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
  • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.

Асинхронный двигатель переменного тока

  • Если сопоставить все эти моменты, то можно понять следующее.
  • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
  • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
  • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

Принцип действия однофазного двигателя

Однофазный синхронный двигатель переменного тока

Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

Как работает асинхронный электродвигатель однофазный

  • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
  • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
  • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
  • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.

Однофазный коллекторный электродвигатель переменного тока – принцип работы

  • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
  • Эта обмотка требует включения только при пуске мотора.

Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

  • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
  • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
  • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
  • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
  • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
  • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

Подключение двигателя

Как подключается коллекторный однофазный электродвигатель переменного тока

Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

Различные варианты подключения

  • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
  • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
  • Во втором она подключена через конденсатор постоянно.
  • В третьем вместо конденсатора используется сопротивление.

Коллекторный однофазный двигатель переменного тока от стиральной машины

  • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
  • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
  • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

Конденсаторный пуск имеет следующие особенности:

  • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
  • Конденсатор необходимо подбирать по потребляемому току.

Конденсатор и переменный ток

Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

Строение асинхронного однофазного двигателя

Однофазный коллекторный двигатель переменного тока

Итак, мы  вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

Асинхронный двигатель

Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

  • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
  • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
  • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.

Коллекторные электродвигатели переменного тока однофазные

  • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
  • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
  • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.

Трехфазный асинхронный двигатель: особенности, принцип действия, подключение

То, что асинхронные двигатели сегодня используются во всех отраслях промышленности и сельского хозяйства, необходимо поклониться русскому инженеру М.О. Доливо-Добровольскому.

Именно он в 1889 году (а точнее 8 марта) изобрел трехфазный асинхронный двигатель, который преобразовывает электроэнергию в энергию механическую (вращения).

Это, по сути, стало прорывом в технике и началом новой эры.

Самое главное, что электрические моторы данного типа оказались очень надежными, их производство достаточно простое, что влияет на небольшую себестоимость изделия.

Плюс несложная конструкция, которая легко поддается не только производству, но и ремонту. Если обратиться к статистическим данным, то по ним можно сделать вывод, что асинхронные двигатели являются самыми производимыми в мире.

На их счет приходится до 90% выпуска. Так что цифры говорят сами за себя.

Но почему эти приборы названы асинхронными? Все дело в том, что частота вращения магнитного поля статора всегда больше вращения ротора. Кстати, у электродвигателей этого типа принцип работы основан именно на вращении магнитного поля.

Принцип работы двигателя

Чтобы понять, как работают электродвигатели асинхронные трехфазные, необходимо провести один несложный эксперимент. Для этого вам понадобиться обычный магнит подковообразного типа и медный стержень.

При этом магнит надо хорошо закрепить к рукоятке, с помощью которой его можно крутить на одном месте вокруг своей оси. Медный стержень закрепляется в подшипниках и устанавливается в пространство между концами (полюсами) магнита-подковы.

То есть, стержень оказывается как бы внутри магнита, а, точнее сказать, внутри его плоскости вращении.

Принцип работы трехфазного асинхронного двигателя

Теперь надо просто вращать магнитное устройство за ручку. Лучше по часовой стрелке. Так как между полюсами есть магнитное поле, то оно также будет вращаться.

При этом поле будет пересекать или рассекать своими силовыми линиями медный стержень-цилиндр. И тут включается закон электромагнитной индукции. То есть, внутри медного стержня начнут возникать вихревые токи.

Они, в свою очередь, начнут образовывать свое собственное магнитное поле, которое будет взаимодействовать с основным магнитным полем.

При этом стержень начнет вращаться в ту же сторону, что и магнит. И вот тут возникает один момент, который также лежит в принципе работы электродвигателя. О нем было уже упомянуто. Если скорость вращения стержня будет такое же, как у магнита, то их силовые линии пересекаться не будут. То есть, вращения не будет в виду отсутствия вихревых токов.

И еще пару нюансов:

  • Магнитное поле вращается с той же скоростью, что и сам магнит, поэтому скорость называют синхронной.
  • А вот стержень вращается с меньшей скоростью, поэтому ее и называют асинхронной. Отсюда, в принципе, название и самого электрического мотора.

Внимание! Разница скоростей вращения магнитных полей не очень большая. Эту величину называют скольжением.

Кстати, определить величину скольжения несложно, для этого необходимо воспользоваться формулой:

S=n-n1/n, где

  • S – это величина скольжения;
  • n – скорость вращения магнита;
  • n1 – скорость вращения ротора.

Устройство двигателя

Конечно, показанное выше устройство назвать электродвигателем никак нельзя, потому что для примера был использован магнит, которого в моторе просто нет. Поэтому необходимо создать такую конструкцию, в которой электрический ток создавал бы это самое магнитное поле. К тому же оно должно еще и вращаться. Русскому ученому это оказалось под силу с помощью трехфазного переменного тока.

Поэтому в конструкции трехфазного асинхронного двигателя установлены три обмотки, расположенные относительно друг друга под углом в 120º. Каждая обмотка подсоединена к фазному контуру трехфазной сети переменного тока. Обмотки закрепляются к статору, который собой представляет металлический сердечник в виде полого корпуса. Они же закрепляются к полюсам сердечника.

Внимание! У каждой обмотки два свободных конца. Один соединяется с фазой сети, второй с двумя другими концами двух других обмоток, то есть, в единый контур.

Внутри полого сердечника на подшипниках закрепляется ротор. По сути, это тот же стержень-цилиндр. Ниже показана схема подключения обмоток и расположение ротора.

Как только электрический ток начинает подаваться на обмотки, образуется вращающееся магнитное поле, которое воздействует на ротор, заставляя его вращаться тоже.

Как работает

Чтобы понять принцип действия трехфазного асинхронного двигателя, необходимо рассмотреть график его работы. Чтобы облегчить данную задачу, предлагаем рассмотреть схему, расположенную ниже.

  • Итак, позиция «А». В ней на первом полюсе фаза равна нулю, второй полюс является северным, то есть, отрицательным, в третьей фазе положительный заряд. Поэтому ток движется по стрелкам, указанным на рисунке. Тот, кто забыл школьную программу физики, напоминаем, что движение магнитного поля действует по правилу правой руки. Значит, вращение его будет направлено от севера к югу, то есть, от второй катушки (обмотки) к третьей.
  • Позиция «Б». Теперь ноль расположен на второй обмотке, на первой юг (плюс), на третьей север (минус). То есть, магнитный поток будет теперь направлен от катушки №3 на катушку №1. Получается так, что полюсы сместились на 120º.
  • В позициях «В» и «Г» произошли точно такие же сдвиги полюсов на 120º.

Смена полярности создает вращение магнитного потока, который в свою очередь увлекает за собой ротор. Последний начинает вращаться. Как было сказано выше, из энергии электрической получается энергия вращения (механическая).

Внимание! Если поменять местами вторую и третью обмотку, то вращение электродвигателя начнется в противоположную сторону. Конечно, сами обмотки не переставляются, а просто производится смена подключения к разным фазам сети.

Нами была рассмотрена конструкция электродвигателя асинхронного трехфазного с тремя обмотками на статоре, в котором используется двухполюсная схема магнитного поля. Число его оборотов вращения равна числу колебаний электрического тока в минуту. Если в сети переменного тока число колебания в секунду равно 50 Гц, то за минуту это значение станет 3000 (об/мин).

Но в статор можно заложить не три обмотки. К примеру, можно установить шесть или десять. При этом магнитное поле станет четырехполюсным и шестиполюсным соответственно. При этом измениться и скорость вращения ротора. В первом случае она будет равна: (50X60)/2=1500 об/мин. Во втором: (50X60)/3=1000 об/мин.

Выше нами уже упоминалось, что существует определенное отставание вращения ротора от вращения магнитного поля. Правда, это значение незначительно. К примеру, в холостом режиме работы данный показатель будет всего лишь 3%, при действующих нагрузках 5-7%. Даже 7% – значение небольшое, что и является одним из достоинств асинхронного двигателя.

Как использовать

К сожалению, не во всех частных домах есть трехфазное напряжение. Поэтому подключение трехфазного асинхронного двигателя к однофазной сети производится через конденсаторы определенной емкости.

Обычно расчет ведется в соответствии: на 1 кВт мощности 70 мкФ емкости. Но есть в этом деле еще одна проблема – невозможность регулировать скорость вращения ротора.

Поэтому специалисты рекомендуют подключить к мотору регулятор частоты вращения трехфазных асинхронных двигателей.

Подключение трехфазного двигателя к однофазной сети

  • Во-первых, установив его, отпадает необходимость устанавливать конденсаторы.
  • Во-вторых, с помощью данного устройства выравнивается мощность электродвигателя до номинальной.
  • В-третьих, можно регулировать частоту вращения, а также повышать ее больше номинала.
  • В-четвертых, можно регулировать пусковой момент.

Эти устройства сегодня продаются в специализированных магазинах, но нет проблем их сделать и своими руками.

Ротор

По конструкции ротора электродвигатели асинхронные делятся на две группы:

  1. С фазным ротором.
  2. Короткозамкнутым.

Первый вариант – это двигатели с большой мощностью, которым необходим большой пусковой момент. В конструкции их ротора установлены контактные кольца. Второй вариант – это конструкция, в пазы которой заложены медные стержни. Это типичные электродвигатели, простые и дешевые. Но у них есть пара недостатков: большой пусковой ток и слабое усилие при начале вращения.

Технические характеристики

На что обычно надо обратить внимание, выбирая электродвигатели? Технических характеристик, в принципе, немного. Это мощность, измеряемая в кВт, скорость вращения ротора в об/мин. Все остальные технические характеристики не столь важны именно для выбора. Хотя, к примеру, масса изделия может помочь рассчитать нагрузку на подставку или монтажную раму.

Заключение по теме

Итак, были рассмотрены асинхронные электродвигатели – электрическое оборудование, которое нередко используется в частных домах для бытовых нужд. Устройство и принцип работы мотора вам теперь понятно, а вот как правильно подключить двигатель к однофазной сети, читайте в другой статье.

Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/ustrojstvo-i-princip-raboty-trexfaznogo-asinxronnogo-dvigatelya.html

Как работает трехфазный асинхронный двигатель?

В асинхронном двигателе роль клочка сена играет магнитное поле, которое «бежит» по кругу, вырабатываемое совершенно неподвижными катушками статора. А роль ишачка играет ротор, который гонится за этим полем.

Ну а как только ишачок побежал, главная задача — научиться им управлять. И задача эта не из легких.

Бегущее магнитное поле

Статор асинхронных двигателей, подключаемых к трехфазной сети, состоит из трех электромагнитов. На них подается напряжение разных фаз сети.

А так как разные фазы работают — нарастают и уменьшаются — со сдвигом во времени друг от друга, аналогично будет нарастать и уменьшаться магнитное поле в катушках.

Сначала поле возникнет и будет расти в катушке 1 фазы, через одну треть периода точно так же возникнет и будет возрастать поле во второй фазе, а поле в первой при этом постепенно и плавно, по синусоиде, сначала перестанет нарастать, а потом начнет уменьшаться.

Все повторится и для катушки третьей фазы — поле появится, будет возрастать, тогда как поле во второй сначала остановит свой рост, потом пойдет на спад. А в это время поле в первой фазе уже дойдет до нуля и будет возрастать в отрицательную сторону.


Структура трехфазного двигателя

Если в статоре сделать только три обмотки, по числу фаз в питающем напряжении, то магнитное поле будет вращаться с той же частотой, что и напряжение, то есть 50 раз за одну секунду. Но на практике их делают гораздо больше.


Поле в статоре

Тогда бегающее по кругу поле будет иметь частоту вращения меньше, но вращение при этом станет более плавным.   

Поведение ротора в бегущем магнитном поле

 «Обмотки» ротора представляют собой проводники, расположенные «почти» параллельно валу ротора и набранные по кругу в виде «беличьей клетки». Это не обмотки, так как там ничего не намотано, а проводники, воткнутые в два металлических круга. То есть через эти металлические круги, накоротко замкнутые.


Ротор асинхронных двигателей

«Беличья клетка» является замкнутой накоротко обмоткой, которая заполнена пакетом-сердечником, набранным из поперечных тонких пластин из электротехнической стали

Когда на ротор воздействует внешнее изменяющееся магнитное поле статора, в роторе наводятся кольцевые токи, которые, в свою очередь, создают магнитное поле. Это поле, усиленное сердечником, направлено так, что ротор начинает вращаться вслед за бегущим магнитным полем статора.

Вращение направлено в направлении «догнать» убегающую волну. Ротор разгоняется, но, по мере того, как он будет догонять волну статора, наводки в нем будут все меньше и меньше.

Он начнет «приотставать» (от силы трения или от силы сопротивления механической нагрузки на вал ротора), но усиливающаяся от этого в нем индукция снова толкает ротор к вращению.

Такой принцип порождает некоторое рассогласование частот: частота напряжения, которая является причиной движения ротора, не изменяется во времени — стабильно 50 герц, а частота вращения то догоняет, то отстает. Такие несоответствия могут быть незаметны там, где частота не очень важна, но из-за них двигатель и называется асинхронным.

Все мы это прекрасно видели и слышали, когда включали вентилятор. Он сначала набирает скорость, хорошо «берется за дело». Только потом как-то слегка «проваливается» — крутится по инерции, но опять «спохватывается» и «поддает газу».

Идеальный случай вращения в таком двигателе — это когда совсем нет трения и сопротивления, это холостой ход такого мотора. Тогда скорость определяется формулой вращения самого бегущего поля от статора

Формула

Здесь  nr – скорость вращения в оборотах в минуту, fu – частота питающего напряжения, p – число катушек статора в каждой фазе.

   Например, если, как нарисовано на картинке с красной стрелочкой вращения поля статора, в статоре три катушки, то есть по одной на каждую фазу, то получим

  nr = 60 50/1 = 3000 (об./мин) или 50 об./с. То есть скорость вращения равна частоте напряжения в сети. Увеличением количества обмоток в статоре можно добиться снижения скорости вращения

Во многих случаях точная частота вращения двигателя действительно не так важна, поэтому электродвигатели асинхронные трехфазные находят широкое применение.

Трехфазные электродвигатели имеют и другой недостаток: циклические токи ротора вызывают его непрерывный разогрев, поэтому и делают кольцевые металлические пластины с ребрами для охлаждения воздухом при вращении.

Схемы и способы подключения

Так как есть несколько обмоток внутри двигателя — обмотки статора, — и сеть переменного тока бывает однофазной, а бывает трехфазной, то и схема включения всего этого хозяйства допускает вариации.

Обмоток на статоре обычно три. Ну а если их больше, то все равно обмотки каждой фазы внутри уже соединены последовательно. То есть в качестве выходных клемм максимум может быть 6. И их подсоединить к сети можно по-разному.

Систем обозначений клемм две. На старых обозначались буквами С и цифрами 1,2,3 — начала обмоток; цифрами 4,5,6 — концы обмоток.

В новых обозначениях для разных обмоток употребляются буквы U, V, W, а для начал и концов цифры 1 и 2 соответственно.


Клеммы обмоток могут быть на двигателе выведены наружу, и можно самостоятельно подключить трехфазный двигатель к сети переменного тока

Как подключить двигатель по схеме «звезда»

При соединении обмоток по типу «звезда» концы обмоток нужно объединить, а на клеммы начала обмоток подать напряжения фаз из сети.


Подключение трехфазного электродвигателя по схеме «Звезда»

Здесь использованы обозначения клемм электродвигателей трехфазных, применяемые на схемах, старые и новые

При подключении типа «звезда» нулевой провод из сети желательно подавать на общую клемму двигателя. Это защитит его от порчи в случае перекоса фаз в сети.

Как подключить электромотор по схеме «треугольник»

Подключить трехфазный двигатель обмотками в «треугольник» в сеть переменного тока не сложнее. Надо начало одной обмотки соединять с концом следующей. И еще все начала подключить к фазным проводам переменного тока.


Подключение асинхронного двигателя по схеме «треугольник»


Клеммник для подключения асинхронного электродвигателя по типу «Звезда»

Два эти подключения — «звезда» и «треугольник» — в сети дают разные результаты по токам и мощностям. В «звезде» на каждую обмотку подано фазное напряжение 220 В, а две обмотки вместе нагружены линейным напряжением в 380 В.

Протекающие в обмотках токи при этом меньше, чем при конфигурации «треугольник». Отсюда и работа отличается: «звезда» дает мягкий запуск, но при работе развивает меньшую мощность, чем «треугольник».

Зато «треугольник» при запуске дает большие стартовые токи, превышающие номинал раз в 7–8.

Чтобы сочетать преимущества обеих конфигураций, коммутацию делает особая схема. Она при запуске двигателя коммутирована как «звезда», а при достижении определенной мощности переключается в вариант «треугольник».

В этом случае (и в других случаях с постоянными подключениями обмоток), на входном клеммнике оставляют только 3 или 4 клеммы, и вариантов по переключению обмоток по своему усмотрению не остается.

В этом случае просто подключаются фазы в нужном порядке.

Подключение трехфазного двигателя в однофазную сеть

Трехфазное напряжение нашей сети можно представить как одну и ту же фазу, только повторенную еще два раза со сдвигом, сначала на 120°, потом плюс еще на столько же, то есть в результате на 240°. И такое напряжение вполне схематически посильно «добыть» из одной выделенной фазы.

Однако когда мы запускаем «бегущее поле» статора, совсем не обязательно делать его именно с таким сдвигом между поданными на обмотки фазами. Потому что увеличение количества полюсов в обмотках проявляется как уменьшение скорости вращения, но механизм работает.

Поэтому разработаны простые схемы получения сдвинутых фаз из однофазной линии не под таким углом, а под 90°. Это можно сделать простой схемой, дающей подключение трехфазного двигателя в однофазную сеть с применением одного конденсатора. Результатом является снижение мощности двигателя.

При маркировке двигателей, которые можно использовать в однофазной сети 220 В и в сети 380 В трехфазной, так и пишется — двигатель 220/380, а который предназначен для работы только в трехфазной — двигатель 380.

Подключение трехфазного двигателя в однофазную сеть 220 В типа «Треугольник» и «Звезда»

Схема подключения «звезда» в этом случае дает потерю мощности, поэтому для более полного использования двигателя при подключении к однофазному напряжению чаще применяют «треугольник».       

Источник: https://domelectrik.ru/oborudovanie/dvigatel/trekhfaznaya-asinhronnaya-mashina

Трехфазный асинхронный двигатель

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет пр

Асинхронные электродвигатели с короткозамкнутым ротором. Конструктивные особенности и области применения | Полезные статьи

Асинхронный электродвигатель с короткозамкнутым ротором состоит из двух основных элементов: статора (представляет собой неподвижную, внешнюю часть электродвигателя) и ротора (подвижная, расположенная внутри статора часть электрической машины). Каждый из этих элементов состоит, в свою очередь, из сердечника и обмотки. Обмотку статора, которую подключают к сети, можно считать первичной, а обмотку ротора — вторичной.

Сердечник статора собирается из совокупности листов, изготовленных из электротехнической стали и покрытых специальным лаком. Так уменьшаются потери на вихревые токи. В открытых пазах сердечника укладываются трехфазные обмотки, расположенные симметрично под углом 120 градусов.

Рис. 1. Короткозамкнутый ротор

Ротор представляет собой вал, опирающийся на подшипники, на котором укреплены сердечник и обмотки. Сердечник ротора также выполнен из набора штампованных листов. Обмотка ротора изготовлена из медных или алюминиевых стержней (размещенных в пазах его сердечника), концы которых соединены накоротко с кольцами. Это и есть короткозамкнутая роторная обмотка, внешний вид которой напоминает беличье колесо (рис. 1).

Рис. 2. Электродвигатель серии АИР

Принцип работы двигателя данного типа состоит в следующем. После подачи напряжения на обмотку статора появляется магнитный поток. Он изменяется с частотой, равной частоте используемого переменного тока. Из-за сдвига потоков в обмотках по времени и в пространстве результирующее поле получается вращающимся. Оно индуцирует ЭДС в проводниках ротора. В результате чего возникают токи, которые взаимодействуют с этим полем. Их взаимодействие создает пусковой момент. Ротор начинает вращаться в направлении вращающегося поля, но с другой частотой. Величину, характеризующуюся относительную разность этих частот, называют скольжением.

Трехфазный асинхронный короткозамкнутый электродвигатель получил наибольшее распространение среди машин подобного типа благодаря своим качествам и конструктивным особенностям:

  • простоте конструкции;
  • высокой надежности и долговечности;
  • отсутствию подвижных контактов;
  • низкой стоимости и универсальности.

Вместе с тем асинхронный двигатель с короткозамкнутым контуром имеет и существенные недостатки:

  • ток, возникающий при пуске, по своему значению превышает номинальный почти в 5–7 раз, что приводит к значительному снижению напряжения в сети;
  • затруднено регулирование числа оборотов ротора;
  • сравнительно небольшой пусковой момент.

Асинхронные электродвигатели бывают различного технологического и конструктивного исполнения. В частности, электродвигатели АИР являются унифицированными для общепромышленных целей. Электродвигатель асинхронный трехфазный АИР имеет разные модификации. АИР представляет собой электродвигатель асинхронный трехфазный, характеристики которого аналогичны параметрам двигателей типа 5АМ, 5АИ, АМУ, 7АИ. Его устанавливают на вентиляторах, насосах, компрессорах и других электромеханических установках.

принцип работы, устройство и конструкция

Жизнь в наше время невозможно представить без электрических двигателей. Широкое применение нашли эти агрегаты не только в промышленности, но и в быту — ведь электроприборы, которые призваны облегчить жизнь человека, в 95% случаев не обходятся без применения электродвигателей. И если даже сильно постараться, то представить себе жизнь без них вряд ли удастся.

Хотя первый опытный асинхронный двигатель был произведен Николой Тесла еще в конце 1880-х годов, в то время распространения он так и не получил ввиду слишком больших потерь электроэнергии при его работе. Да и показатели того двигателя в момент запуска были очень низкими.

Что же представляет собой асинхронный двигатель? По своей сути это устройство, преобразующее электрический ток в механическую энергию посредством магнитных полей, которые вращают ротор внутри статора. При этом частота вращения магнитных полей, которые создаются на обмотках статора, не равна тому же параметру сердечника. Именно поэтому они названы «двигатели асинхронные», т.е. «неодновременного вращения».

Что же касается видов этих агрегатов, то их различают несколько, но об этом чуть позже. Для начала имеет смысл разобрать достоинства и недостатки подобных двигателей, т.е. самого распространенного из них вида — устройства с короткозамкнутым ротором, обозначаемым как АДКЗ (асинхронный двигатель короткозамкнутого типа).

Асинхронный двигатель с короткозамкнутым ротором в разборе

Достоинства и недостатки

В первую очередь асинхронные электродвигатели достаточно просты в части устройства и изготовления, что не может не влиять на их стоимость, ведь в частности из-за невысокой цены этот мотор завоевал большую популярность среди покупателей. Так же важную роль играет и надежность АД, и их экономичность в области эксплуатационных затрат — они практически не требуют обслуживания. Конечно, это не говорит о том, что асинхронный электродвигатель можно установить и совсем забыть о периодических ревизиях, но все же их требуется достаточно мало, схема его достаточно неприхотлива.

Ну и конечно не стоит забывать о том, что для включения в сеть, т.е. для запуска и эксплуатации, не требуется каких-либо дополнительных устройств, таких как разнообразные преобразователи и т.п.

Но, при такой простоте и невысокой стоимости, естественно, не обошлось и без недостатков, которые нельзя назвать мелкими. Из них можно выделить следующие:

  • сравнительно небольшой пусковой момент;
  • значительные пусковые токи, а значит и энергозатраты при включении;
  • довольно низкий коэффициент полезного действия;
  • необходимую точность скорости довольно тяжело отрегулировать;
  • у асинхронного двигателя, имеющего короткозамкнутый привод (при включении в трехфазную сеть 50 Гц), скорость вращения не превышает 3000 об/мин;
  • большая зависимость крутящего момента от напряжения сети. К примеру, при понижении входного тока в 2 раза, скорость крутящего момента может упасть в 4 раза.

Но все вышеперечисленное относится только к моторам, имеющим строение на основе короткозамкнутого ротора, производство двигателей которыми не ограничивается. Попробуем рассмотреть более подробно асинхронные электродвигатели с короткозамкнутым ротором, а также другие типы подобных агрегатов, которые представлены на прилавках магазинов электротехники.

Короткозамкнутый ротор

АДКЗ

Ротор асинхронного двигателя, обмотка которого короткозамкнута, так же называют и «беличьим колесом» по причине того, что она похожа на цилиндрическую сетку, прутья которой замыкаются посредством двух колец с одного и другого торца.

Структура, как ротора, так и асинхронного статора является зубчатой. В АД небольших мощностей обмотка изготавливается простейшим способом — алюминиевый сплав в расплавленном состоянии заливается в углубления на роторе. Тем же способом, одновременно, заливаются и оба кольца, замыкающие «колесо», а также торцевой синхронизатор, осуществляющий вентиляционное охлаждение агрегата, т.е. с его помощью обеспечивается нормальная рабочая температура. При необходимости изготовления более мощных двигателей вместо алюминиевого сплава используют медь.

Асинхронные двигатели переменного тока с т.н. «двойной беличьей клеткой» для модернизации пусковой характеристики в настоящее время практически ушли в прошлое. Сейчас применяется схема, при которой пазы для проводников делаются глубже, причем внутренняя часть каждого из них имеет большее сечение, нежели внешняя. В результате подобной технологии изготовления ротора увеличивается пусковой момент и уменьшается ток, за счет более сильного активного сопротивления обмотки.

Области применения АДКЗ довольно обширны. К тому же, в последние годы все больше начали применяться частотные преобразователи, при помощи которых стало возможно плавное наращивание скорости, вследствие чего достигается больший пусковой момент и снижение тока, тем самым увеличивается коэффициент полезного действия асинхронного двигателя с короткозамкнутым ротором.

Так же очень интересна схема исполнения АДКЗ, в которой используется возможность изменения числа пар обмоток статора. Принцип работы асинхронного двигателя подразумевает, что подобным действием возможно изменение скорости его вращения.

На сегодняшний день подобные конструкции двигателей, несмотря на их недостатки, являются наиболее распространенными и востребованными. А вот остальные виды асинхронных двигателей уже более узконаправленны, и их применение не так значительно.

Фазный ротор

Массивный ротор в АД

Короткозамкнутый двигатель, принцип работы которого заключается в отсутствии обмотки как таковой. Ротор здесь состоит целиком из стали и одновременно является и проводником, и магнитопроводом. Вихревые токи, инициирующиеся вращающимся магнитным полем, взаимодействуют с потоками, создаваемыми статором, посредством чего и создается крутящий момент. Попробуем разобрать, какие же плюсы и минусы имеются у этих асинхронных двигателей.

Из преимуществ можно отметить низкую стоимость и простоту изготовления, довольно высокую механическую прочность (что очень важно для агрегатов с высокими скоростями вращения), а также наличие высокого пускового момента. Но при этом есть очень существенный недостаток —довольно большие энергопотери ротора при работе.

Интересны также и некоторые особенности, которые имеют подобные асинхронные двигатели, — это пологая механическая характеристика и сильный нагрев агрегата, независимо от нагрузки, что является довольно существенным минусом по причине резкого падения коэффициента полезного действия. Получается, что основная энергия тратится на нагрев, т.е. выработку тепла.

Конечно, разрабатываются и улучшения для подобных типов двигателей, такие как омеднение роторов или добавление с торцов колец из меди, но помогает подобная модернизация незначительно.

Также сюда можно отнести и пустотелые стальные роторы, которые изготавливаются для работы с меньшим нагревом.

Фазный ротор в асинхронном двигателе

Действия магнитных полей в статоре

Подобное устройство асинхронного электродвигателя является более сложным, т.к. их роторы имеют трехфазную обмотку, которая соединяется в «звезду». Подобные двигатели обладают возможностью плавной регулировки скорости, причем диапазон вращения достаточно широк. Внешняя цепь соединяется с вращающимся валом посредством специальных щеток, которые могут быть графитовыми или медно-графитовыми. Обмотка ротора выполняется из меди.

Подобный асинхронный электродвигатель подходит для использования с инверторами, реостатами для изменения скорости вращения и даже может работать в качестве синхронного двигателя при подаче на него прямого напряжения.

Возможности, которые имеют асинхронные двигатели с фазным ротором, довольно широки, но сложность при их изготовлении, а также довольно высокая стоимость не дали подобным устройствам более широкого распространения.

Двигатель Шраге-Рихтера

Этот тип является трехфазным коллекторным асинхронным двигателем, при этом питание на него поступает через ротор. Таким образом, подобные агрегаты называют также обращенными.

Асинхронный электродвигатель, у которого подобная схема, уже стал историей и практического применения на сегодняшний день не имеет.

Скорость вращения в них регулировалась специальным штурвалом, который перемещал щетки, в результате чего изменялась индуктивность. Подобная система довольно экономично изменяет скорость вращения ротора, но более подробно на таких агрегатах останавливаться не стоит.

Куда интереснее понять устройство асинхронного двигателя и принцип его работы.

Устройство и принцип действия

Как уже говорилось ранее, конструкция асинхронного двигателя достаточно проста — это ротор, или вращающаяся часть, и статор — неподвижная обмотка, внутри которой и создаются электромагнитные импульсы. Снаружи статор может иметь цельную либо сваренную оболочку из чугуна, алюминия, или его сплава, которая работает как радиатор охлаждения в процессе эксплуатации.

Асинхронный двигатель в разрезе

Принцип действия АД таков: напряжение, поступая на обмотки, создает магнитное поле. И т.к. угол сдвига фаз в асинхронном двигателе составляет 120 градусов, то поле, вырабатываемое ими, является вращающимся. Оно-то и создает крутящий момент, проходя через обмотки ротора. По сути, смысл работы тот же, что и у синхронных агрегатов, но тут не требуется создания на статоре дополнительного поля в виде магнитов.

Подключение асинхронных двигателей

Разобравшись, каков же принцип действия АД, можно переходить к подключению.

Существует две разновидности подключения асинхронного двигателя к сети 380 В, хотя от этого принцип его действия не меняется. Это может быть «звезда» либо «треугольник». Сейчас имеет смысл разобрать каждый из этих видов подробнее.

Подключение «звездой» происходит следующим образом: напряжение по фазным проводам подается к началу, а каждая обмотка асинхронного двигателя концом соединена с началом следующей таким образом, что создается некое подобие треугольника.

Нулевой провод при подключении трехфазных двигателей не требуется, им вполне хватает защитного заземления корпуса.

Подключение «звездой» немного отличается от предыдущего. Здесь концы всех обмоток соединены вместе, а напряжение подается также на начало. Интересно, что при подобном подключении в месте соединения всех трех обмоток по причине разности потенциалов возникает так называемый «технический ноль». Подобное физическое явление можно наблюдать и в жилах высоковольтного провода, где ноль находится точно по центру, в то время как по проводнику течет ток высокого напряжения.

Схемы подключений в «треугольник» и «звезда»

Есть ли альтернатива

Уже не секрет, что устройство трехфазного асинхронного двигателя предполагает затраты большого количества электроэнергии на вырабатывание тепла, а значит и коэффициент его полезного действия достаточно низок. Но на сегодняшний день альтернативы подобным агрегатам нет, а потому продолжается их использование, как в промышленности, так и в быту.

Конечно, с появлением инверторов, КПД их значительно возрос. Сейчас двигатели инверторного типа прекрасно работают в стиральных машинах, холодильниках и прочей технике, позволяя получить максимум результата при меньшем расходе электроэнергии.

Возможно, в будущем и появится что-то новое, что сможет заменить асинхронные двигатели, но пока это остается единственным в своем роде агрегатом, без которого различные производства невозможны. Именно этим и объясняется его востребованность и распространенность.

Похожие статьи:

Устройство асинхронной машины — Студопедия

Конструктивные формы исполнения электрических машин.

Основные сведения о серийных асинхронных двигателях.

Режимы работы асинхронной машины.

Принцип действия асинхронной машины.

Устройство асинхронной машины.

СОДЕРЖАНИЕ

Лекция № 2

Навигационных комплексов

Иркутский филиал МГТУ ГА

Иркутск, 2007 г.

Асинхронные электрические машины

Электрические машины

ЛЕКЦИЯ № 9

И ПИЛОТАЖНО-НАВИГАЦИОННЫХ КОМПЛЕКСОВ

КАФЕДРА АВИАЦИОННЫХ ЭЛЕКТРОСИСТЕМ

ИРКУТСКИЙ ФИЛИАЛ

ГРАЖДАНСКОЙ АВИАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

по дисциплине

для студентов специальности 160903

ТЕМА № 2

Кафедра Авиационных электросистем и пилотажно-

УТВЕРЖДАЮ

Заведующий кафедрой АЭС и ПНК

к.т.н., доцент Мишин С.В.

«14» марта 2008 г.

По дисциплине: Электрические машины

Тема лекции: Асинхронные электрические машины (2 часа)

ЛИТЕРАТУРА

1. Копылов Б.В. Электрические машины. М., 1988 г.


НАГЛЯДНЫЕ ПОСОБИЯ, ПРИЛОЖЕНИЯ, ТСО

1. Мультимедийная установка

Обсуждено на заседании кафедры

«14» марта 2008 г., протокол №8/07

Асинхронная машина состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.1). Двигатели этого вида имеют наиболее широкое применение.

Рис.1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором:

1, 11 — подшипники; 2 — вал; 3, 9 — подшипниковые щиты; 4 — коробка выводов; 5 — сердечник ротора с короткозамкнутой обмоткой; 6 — сердечник статора с обмоткой; 7 — корпус; 8 — обмотка статора; 10 — вентилятор; 12 — кожух вентилятора; 13 – наружная оребренная поверхность корпуса; 14 – лапы; 15 – болт заземления


Неподвижная часть двигателя — статор — состоит из корпуса 7 и сердечника 6 с трехфазной обмоткой 8. Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 6, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.

В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала 2 и сердечника 5 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных) стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис.2, а). Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеют на своей поверхности тонкую пленку окисла. Это является достаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора. Например, при частоте сети 50 Гц и номинальном скольжении 6% частота перемагничивания сердечника ротора составляет 3 Гц.

Рис.2. Короткозамкнутый ротор:

а – обмотка «беличья клетка»; б – ротор с обмоткой, выполненной литьем под давлением;

Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис.2, б).

Вал ротора вращается в подшипниках качения 1 и 11, расположенных в подшипниковых щитах 3 и 9.

Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса 13. Поток воздуха создается центробежным вентилятором 10 прикрытым кожухом 12. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.

Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних (рис.3). В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

Рис.3. Расположение выводов обмотки статора (а) и положение перемычек

при соединении обмотки статора звездой и треугольником (б)

Монтаж двигателя в месте его установки осуществляется либо посредством лап 14 (см. рис.1), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления 15 (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис.4, а.

Рис.4. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором

Другая разновидность трехфазных асинхронных двигателей — двигатели с фазным ротором — конструктивно отличается от рассмотренного двигателя главным образом устройством ротора (рис.5). Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с трехфазной обмоткой. У него имеются подшипниковые щиты 2 и 6 с подшипниками качения 1 и 7. К корпусу 3 прикреплены лапы 10 и коробка выводов 9. Однако ротор имеет более сложную конструкцию. На валу 8 закреплен шихтованный сердечник 5с трехфазной обмоткой, выполненной аналогично обмотке статора. Эту обмотку соединяют звездой, а ее концы присоединяют к трем контактным кольцам 11, расположенным на валу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 (рис.6) накладывают обычно две щетки 2, располагаемые в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.

Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.

На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).

Рис.5. Устройство трехфазного асинхронного двигателя с фазным ротором:

1, 7 — подшипники; 2, 6 – подшипниковые щиты; 3 — корпус; 4 – сердечник статора с обмоткой; 5 – сердечник ротора; 8 — вал; 9 – коробка выводов; 10 — лапы; 11 – контактные кольца

Общие сведения, конструкция асинхронного двигателя — Студопедия

Основными частями любого электродвигателя переменного тока являются: неподвижная часть, называемая статором, вращающаяся часть, называемая ротором. Статор и ротор разделены воздушным зазором, величина которого колеблется от 0,1 мм до 1,5 мм в зависимости о т мощности двигателя. В статоре расположены обмотки, к которым подводится электрическая энергия переменного тока от внешнего источника. Обмотки создают в статоре магнитное поле вращающееся с частотой кратной частоте источника. Магнитное поле статора заставляет вращаться ротор двигателя. Если частота вращения ротора в установившемся номинальном режиме точно равна частоте вращения магнитного поля статора, то двигатель называется синхронным, в противном случае – асинхронным.

Асинхронные электродвигатели в настоящее время являются самыми распространенными в мире электродвигателями. На их долю приходится не менее 80% из общего числа выпускаемых промышленность электродвигателей. Это объясняется простотой конструкции, невысокой стоимостью, долговечностью и надежностью в эксплуатации.

Существуют две схемы исполнения асинхронных двигателе: прямая и обратная. В двигателях, выполненных по прямой схеме (рис. 3.1), ротор 1 жестко связан с валом двигателя и вращается вместе с ним. Статор 2 кольцом охватывает ротор и закрепляется на корпусе двигателя 3, который имеет вид трубы, выполненной из алюминия или стали. В двигателях, выполненных по обратной схеме (рис. 3.2) статор 2 жестко закрепляется на неподвижном валу двигателя, а ротор 1 вращается относительно вала на подшипниках и кольцом охватывает статор. Двигатели обратной схемы используются сравнительно редко, в основном, в качестве гиромоторов [], поэтому далее будем рассматривать только двигатели прямого исполнения.


Рис. 3.1. Конструкция трехфазного асинхронного двигателя серии АОЛ

Рис. 3.2. Конструкция гиромотора

а – закрытый несимметричный гиромотор, б – закрытый симметричный гиромотор, в – открытый симметричный гиромотор

Для уменьшения потерь на вихревые токи сердечник статора набирают из штампованных листов электротехнической стали толщиной 0,35÷0,5 мм. Листы штампуются в виде колец 1 (рис. 3.3). На внутренней стороне колец 2 имеются углубления – пазы, в которые укладываются провода обмотки статора. Листы перед сборкой изолируют, покрывая слоем лака.


Рис. 3.3. Листы стали статора и ротора

Пазы статора могут быть полузакрытыми или полуоткрытыми. В машинах переменного тока малой и средней мощности применяют полузакрытые пазы (рис. 3.4). Каждый паз изолируют 1, а затем заполняют проводниками обмотки 2. Обмотку статора закрепляют в пазах с помощью деревянных или пластиковых клиньев 3. В трехфазныз двигателях обмотка трехфазная; фазы сдвинуты в пространстве относительно друг друга на 120 эл. град.

Рис. 3.4. Полузакрытый паз статора

Концы фаз выводят на зажимы коробки выводов. Трехфазную обмотку статора можно собирать в треугольник или звезду в зависимости от напряжения сети.

Ротор 1 (рис. 3.1) асинхронного двигателя обычно представляет собой набранный из штампованных листов электротехнической стали сердечник с пазами, насаженный на вал. Сердечник ротора имеет форму цилиндра, на поверхности которого имеются пазы для обмотки. Листы сердечника ротора 2 (рис. 3.3) специально не изолируют, так как в большинстве случаев вполне достаточной изоляцией оказывается пленка окалины, имеющаяся на поверхности листов.

В зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные.

В машинах малой и средней мощности чаще всего применяются короткозамкнутые роторы. В пазах таких роторов располагаются медные или алюминиевые стержни, соединяющиеся с торцов короткозамыкающими кольцами. Таким образом, обмотка короткозамкнутого ротора имеет вид беличьей клетки (рис. 3.5, а). Чаще всего корткозамкнутая обмотка получается в результате заливки пакета стали алюминием. В этом случае короткозамыкающие кольца снабжают выступами – вентиляционными лопастями, которые при вращении ротора перемешивают воздух и способствуют лучшему охлаждению машины (рис. 3.5, б).

Рис. 3.5. Короткозамкнутая клетка и ротор с обмоткой из алюминия

В асинхронных машинах большой мощности и в некоторых специальных машинах малой мощности для получения большого пускового момента и широкого диапазона регулирования частоты вращения применяются фазные роторы. В пазах такого ротора укладывают не стержни, а изолированные проводники катушек (секций) трехфазной обмотки, выполненной аналогично обмотки статора и соединенной в звезду. Концы фаз обмотки ротора присоединяют к изолированным друг от друга и вала двигателя контактным кольцам, по которым при вращении ротора скользят укрепленные в щеткодержателях щетки. С помощью контактных колец и щеток обмотка ротора соединяется с пусковыми (ПР) или регулировочными реостатами (рис. 3.6).

Вал двигателя вращается в подшипниках, укрепленных в подшипниковых щитах – крышках (рис. 3.1), которые выполнены из того же материала, что и корпус машины.

Рис. 3.6. Принципиальные схемы асинхронных двигателей

Конструкция, работа, различия и применение

В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье описан обзор асинхронного двигателя, конструкция, принцип работы и т. Д.

Что такое асинхронный двигатель?

Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.


Асинхронный двигатель

Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого двигателя в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты, а также от ном.полюсов.

Конструкция асинхронного двигателя

В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован посредством индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой по времени. Таким образом, задержка между двумя магнитными полями может быть известна как «скольжение».

Конструкция асинхронного двигателя

Работа асинхронного двигателя

Принцип работы этого двигателя почти такой же, как у синхронного двигателя, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии через проводимость, как в случае двигателей постоянного тока.У этих двигателей нет никаких внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.

Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.


Разница между синхронным и асинхронным двигателем

Разница между синхронным и асинхронным двигателем указана в следующей таблице.

Функция Синхронный двигатель

Асинхронный двигатель

Определение Это один из видов машин, в котором скорость ротора и статора скорость эквивалентна.

N = NS = 120f / P

Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью.

Н меньше NS

Тип Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. Асинхронный двигатель переменного тока также известен как асинхронный двигатель.
Скольжение Значение скольжения этого двигателя равно нулю Значение скольжения этого двигателя не равно нулю
Стоимость Это дорого Это дешевле
КПД Высокий КПД Низкий КПД
Скорость Скорость двигателя не зависит от неравенства нагрузки. Скорость двигателя уменьшается при увеличении нагрузки.
Электропитание Электропитание может подаваться на ротор в двигателе Ротор в этом двигателе не нуждается в токе.
Самозапуск Этот двигатель не самозапускается Этот двигатель самозапускается
Влияние крутящего момента Если приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя Как только приложенное напряжение изменится, это повлияет на крутящий момент этого двигателя.
Коэффициент мощности Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. Он просто работает с отстающим коэффициентом мощности.
Приложения Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве контроллера напряжения. Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах. и текстильные фабрики и т.д.

Преимущества

Асинхронный двигатель имеет следующие преимущества.

  • Меньше затрат
  • Простота обслуживания
  • Высокая эффективность при работе с частичной нагрузкой
  • Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.

    • Центробежные насосы
    • Воздуходувки
    • Вентиляторы
    • Конвейеры
    • Компрессоры
    • Тяжелые краны
    • Лифты
    • Токарные станки
    • Бумажные фабрики 9017
    • Масляные мельницы Почему асинхронный двигатель еще называют асинхронным?

      Асинхронный двигатель зависит от индуцированного тока в роторе от вращающегося магнитного поля в статоре.

      2). Какие бывают типы асинхронных двигателей?

      Это однофазные и трехфазные двигатели

      3). В чем главная особенность асинхронного двигателя?

      Основная особенность этого двигателя — скорость не может изменяться.

      4). Каков коэффициент мощности асинхронного двигателя?

      Этот мотор работает просто на отстающей п.ф.

      Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру по таким причинам, как высокая прочность и надежность.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?

      Асинхронный двигатель: конструкция, работа и различия

      Асинхронный двигатель является наиболее широко используемым двигателем в отрасли. Практически невозможно представить себе отрасль без использования этого двигателя из-за его работы на субсинхронной скорости. известен как асинхронный двигатель. Взяв на себя такую ​​важную роль, становится необходимо изучить ее подробно.В этой статье обсуждается обзор асинхронного двигателя, такой как его определение, работа, конструкция, различия и применения.

      Что такое асинхронный двигатель?

      Определение: Двигатель переменного тока, в котором статор не синхронизирован с ротором и может вращаться со скоростью, меньшей, чем синхронная скорость, из-за скольжения. Это связано с тем, что вращающееся магнитное поле не взаимодействует с индуцированным полем ротора. В этом двигателе крутящий момент создается, когда ротор не совпадает по фазе со статором, а ток, индуцируемый в роторе, следует закону Ленца.

      асинхронный двигатель

      Однако, если ротор каким-либо образом выровняется со статором, это приведет к блокировке ротора и крутящего момента не будет. Этот двигатель всегда работает с запаздывающим коэффициентом мощности, так как ротор отстает от статора. Коэффициент мощности этого двигателя в основном зависит от конструкции и тока нагрузки, в отличие от синхронного двигателя, где его можно легко изменить, изменив ток возбуждения.

      Работа асинхронного двигателя

      Этот двигатель работает по принципу закона Ленца, который гласит, что направление тока, индуцируемого в проводнике путем изменения магнитного поля, таково, что магнитное поле, создаваемое индуцированным током, противодействует изменяющемуся магнитному полю, которое создает Это.

      Изменяющееся магнитное поле создается трехфазным или разделенным фазным током, подаваемым на обмотку статора, и поскольку это магнитное поле разрезает проводники ротора, создавая индуцированный ток в роторе, который противодействует изменяющемуся магнитному полю статора. И таким образом создавая вращательное движение.
      Работа этого двигателя будет продолжена по мере обсуждения конструкции и дизайна.

      Конструкция асинхронного двигателя / Конструкция асинхронного двигателя

      Трехфазный асинхронный двигатель доступен в двух типах

      • Скользящий кольцевой тип или ротор с обмоткой
      • Тип с короткозамкнутым ротором или с короткозамкнутым ротором

      асинхронный -motor-construction

      Первый тип, т.е. контактные кольца, состоит из реальной обмотки в пазах ротора, которая соединена с контактными кольцами.В этом двигателе мы можем создавать сопротивление ротора через контактные кольца и щетки. Это позволяет нам изменять пусковые характеристики двигателя.

      Тип с короткозамкнутым ротором имеет стержни ротора на роторе, которые закорочены кольцами с обеих сторон. Этот тип двигателя имеет фиксированные пусковые характеристики, которые нельзя изменить путем добавления дополнительного сопротивления.

      Тип контактных колец требует технического обслуживания, так как дополнительно имеет контактные кольца и щетки, которые подвержены износу.Остальные основные части, такие как

      • Статор
      • Ротор
      • Обмотки статора
      • Обмотки ротора (для типа ротора с фазным ротором) и стержни клетки с закорачивающими короткими замыканиями (для двигателей с короткозамкнутым ротором)
      • Кроме того, этот двигатель также имеет :
      • Подшипники
      • Торцевые крышки
      • Вентилятор двигателя с крышкой.
      • Клеммная коробка

      Статор и ротор изготовлены из штамповки из кремнистой стали. Это сделано для уменьшения потерь из-за вихревых токов и гистерезиса. Статор может быть подключен к трехфазному источнику питания по схеме треугольника или треугольника. звезда.

      Когда мы подаем питание на статор, потребляемый ток делится на две составляющие, одна из которых является составляющей возбуждения, а другая составляющей нагрузки. Создаваемое таким образом циркулирующее магнитное поле вызывает циркуляционное движение в роторе. Все перечисленные выше детали облегчают вращательное движение ротора.

      Разница между асинхронным двигателем и синхронным двигателем

      Основным различием между ними является скорость, синхронный двигатель вращается со скоростью, которая является скоростью вращающегося магнитного поля и определяется как 120 f / p, где ‘f’ — частота питания, а p — число полюсов.

      В то время как асинхронный двигатель имеет скорость, которая всегда меньше синхронной скорости из-за скольжения. Можно сказать, что Nas = 120f / p-скольжение. Где Nas означает асинхронную скорость, или мы также можем сказать Nas

      Разницу можно увидеть в различных аспектах:

      Технические характеристики Синхронный двигатель

      Асинхронный двигатель

      Тип

      Щеточные двигатели двигатели и двигатели статического возбудителя — это типы двигателей, доступные в синхронном диапазоне. Асинхронный двигатель переменного тока с ротором в клетке или с ротором представляет собой асинхронный двигатель

      Скольжение

      В синхронном двигателе скольжение равно нулю В этом двигателе контактное кольцо не нулевое

      Требование дополнительного источника питания

      В синхронном двигателе требуется дополнительный источник питания для возбуждения двигателя В случае асинхронного двигателя дополнительный источник питания не требуется

      Контактное кольцо и щетки

      В синхронном двигателе обычно требуются токосъемные кольца и щетки. В этом двигателе контактные кольца и щетки не требуются.

      Стоимость

      Стоимость синхронного двигателя выше

      Стоимость асинхронного двигателя ниже.

      КПД

      КПД синхронного двигателя выше КПД этого двигателя ниже.

      Коэффициент мощности

      В этом двигателе коэффициент мощности можно изменить, изменив ток возбуждения. Этот двигатель всегда работает с запаздывающими коэффициентами мощности, которые нельзя изменить.

      Скорость

      В этом двигателе скорость не зависит от нагрузки В этом двигателе скорость уменьшается с нагрузкой.

      Пуск

      Синхронный двигатель не запускается автоматически, однако его можно запустить как трехфазный асинхронный двигатель, и после достижения почти синхронной скорости он может работать как синхронный двигатель.

      Этот двигатель самозапускается и может быть легко запущен с помощью подходящего распределительного устройства.

      Техническое обслуживание

      Синхронный двигатель требует высокого технического обслуживания Асинхронный двигатель требует низкого технического обслуживания

      Крутящий момент

      Изменение напряжения не влияет на крутящий момент синхронного двигателя Крутящий момент этого двигателя пропорционален квадрату напряжения.

      Применения

      Синхронный двигатель используется там, где потребность в мощности высока, например, на металлургических заводах / электростанциях и т. Д. Эти двигатели очень широко используются во всех небольших приложениях. Этот двигатель также используется в качестве синхронного конденсатора для повышения коэффициента мощности.

      Области применения

      • Этот двигатель находит самое широкое применение в промышленности, поскольку он очень надежен, не требует обслуживания и экономичен. Эти двигатели используют почти 70% энергии в промышленности.
      • Трудно представить себе отрасль, в которой не используются эти двигатели,
      • А именно: бумага, металл, пищевая, перерабатывающая промышленность, такая как цемент, удобрения, перекачка, транспортировка и т. Д. принципиальная разница между синхронным и асинхронным двигателем?

        Основное различие заключается в том, что асинхронный двигатель — это двигатель с фиксированной скоростью (синхронный), тогда как скорость асинхронного двигателя всегда меньше, чем синхронная скорость.

        2) Почему асинхронный двигатель находит очень широкое применение в промышленности, а синхронный — нет?

        Этот двигатель практически не требует обслуживания и экономичен.

        3) Можно ли изменить коэффициент мощности асинхронного двигателя?

        Нет, коэффициент мощности этого двигателя не может быть изменен, он немного изменится только в зависимости от нагрузки.

        4) Может ли асинхронный двигатель когда-либо работать с опережающим коэффициентом мощности, как у синхронного двигателя?

        Нет, этот двигатель никогда не может работать с опережающим коэффициентом мощности.

        5). Что произойдет с крутящим моментом в асинхронном двигателе, если напряжение питания изменится?

        В этом двигателе крутящий момент прямо пропорционален квадрату напряжения

        6). каково будет влияние изменения частоты на асинхронный двигатель?

        Изменение частоты в некоторой степени влияет на частоту вращения двигателя.

        7). Можем ли мы каким-либо образом изменить скорость вращения асинхронного двигателя?

        Да, мы можем изменить частоту вращения этого двигателя, если мы изменим частоту и напряжение одновременно, сохраняя постоянное соотношение.

        8). Что произойдет, если асинхронный двигатель будет работать в условиях перегрузки?

        Если этот двигатель работает в условиях перегрузки, он потребляет чрезмерный ток и вызовет перегорание двигателя.

        Таким образом, мы можем сделать вывод из вышеизложенного, что асинхронные двигатели широко используются в промышленности, и они предлагают много преимуществ по сравнению с другими типами двигателей, с появлением технологии переменного напряжения и частоты их роль еще больше возросла. Эти двигатели эволюционировали от низкого КПД до очень высокого КПД.Вот вам вопрос, что такое асинхронный двигатель?

        Синхронный и асинхронный двигатель: различия, принцип действия, применение

        Классификация двигателей основана на разных параметрах. По одному из них различают синхронный и асинхронный двигатель. Отличия инструментов, общие характеристики и принцип действия описаны в статье.

        Синхронный двигатель

        Этот тип двигателя способен одновременно работать и как генератор, и как, собственно, двигатель.По устройству он похож на синхронный генератор. Характерной особенностью двигателя является неизменная частота вращения от нагрузки.

        Эти типы двигателей широко используются во многих областях, например, для электрических проводов, которым требуется постоянная скорость.

        Принцип работы синхронного двигателя

        В основе его работы лежит взаимодействие вращающегося магнитного поля якоря и магнитных полей полюсов индуктора. Обычно якорь располагается в статоре, а индуктор — в роторе.У мощных двигателей в качестве полюсов используются электромагниты, а у слабых — постоянные магниты.

        Принцип работы синхронного двигателя включает в себя (кратко) и асинхронный режим, который обычно используется для разгона до необходимой (то есть номинальной) скорости вращения. В это время обмотки индуктора замкнуты накоротко или с помощью реостата. После достижения необходимой скорости на индуктор начинает подаваться постоянный ток.

        Достоинства и недостатки

        Основными недостатками данного типа двигателя являются:

        • необходимость питания обмотки постоянного тока;
        • сложность спуска;
        • скользящий контакт.

        Большинство генераторов, где бы они ни использовались, являются синхронными. Преимущества таких двигателей в целом:

        • высочайшая надежность;
        • самый высокий коэффициент полезного действия;
        • простота обслуживания.

        Двигатель асинхронный

        Данный тип устройства представляет собой механизм, направленный на преобразование электрической энергии переменного тока в механическую. Из самого названия «асинхронный» можно сделать вывод, что это неодновременный процесс.Действительно, частота вращения магнитного поля статора всегда выше, чем поле ротора.
        Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от типа асинхронных короткозамкнутых двигателей с фазным ротором.

        Принцип работы

        Двигатель работает на основе взаимодействия магнитного поля статора и токов, индуцированных этим же полем в роторе. Поворотный момент возникает при разнице частоты вращения полей.

        Давайте теперь резюмируем, чем синхронный двигатель отличается от асинхронного. Чем объясняется широкое применение одного типа и ограниченное — другого?

        Синхронный и асинхронный двигатель: отличия

        Разница между работой двигателей заключается в роторе. В синхронном типе он состоит из постоянного или электрического магнита. Из-за притяжения противоположных полюсов вращающееся поле статора притягивает магнитный ротор. Скорость у них такая же.Отсюда и название — синхронный.

        В нем можно добиться, в отличие от асинхронного, даже опережения напряжения по фазам. Тогда устройство, как и конденсаторные батареи, можно использовать для увеличения мощности. Асинхронные двигатели

        , в свою очередь, просты и надежны, но их недостатком является сложность регулировки скорости вращения. Чтобы реверсировать трехфазный асинхронный двигатель (т. Е. Изменить направление его вращения в противоположном направлении), меняют расположение двух фаз или двух линейных проводов, подходящих к обмотке статора.

        Если рассматривать частоту вращения, то здесь различия синхронного и асинхронного двигателей. В синхронном типе этот показатель постоянный, в отличие от асинхронного типа. Поэтому первый используется там, где требуется постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.

        Выявить по наличию того или иного прибора рассматриваемые типы приборов очень просто. На асинхронном двигателе не будет круглого числа оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном двигателе будет круглое число (например, тысяча оборотов в минуту).

        И те, и другие двигатели управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой переменной нагрузке на вал двигателя скорость вращения будет одинаковой. При этом нагрузка, конечно же, должна измениться с учетом того, что двигатель способен ее выдержать, иначе это приведет к поломке механизма.

        Так устроен синхронно-асинхронный двигатель. Отличия обоих типов определяют сферу их использования, когда один вид справится с задачей оптимальным образом, для другого это будет проблематично.В то же время встречаются и комбинированные механизмы.

        Конструкция синхронной машины

        Конструкция синхронной машины , т.е. генератор или двигатель, состоит из двух основных частей, а именно статора и ротора. Статор — это неподвижная часть машины. Он несет обмотку якоря, в которой генерируется напряжение. Мощность машины снимается со статора. Ротор — это вращающаяся часть машины. Ротор создает поток основного поля.

        Важные части синхронной машины приведены ниже.

        • Статор
        • Ротор
        • Разное

        Конструкция статора

        Стационарная часть машины называется статором. Он включает в себя различные детали, такие как рама статора, сердечник статора, обмотки статора и устройство охлаждения. Они подробно описаны ниже.

        Рама статора

        Это внешний корпус станка из чугуна, который защищает внутренние части станка.

        Сердечник статора

        Сердечник статора изготовлен из кремнистой стали. Он сделан из ряда штампов, изолированных друг от друга. Его функция состоит в том, чтобы обеспечить легкий путь для магнитных силовых линий и разместить обмотку статора.

        Обмотка статора

        На внутренней периферии сердечника статора прорезаны прорези, в которые помещается трехфазная или однофазная обмотка. В качестве обмоточного материала используется эмалированная медь. Обмотка соединена звездой. Обмотка каждой фазы распределена по нескольким пазам.Когда ток течет в распределенной обмотке, он создает по существу синусоидальное пространственное распределение ЭДС.

        Конструкция ротора

        Вращающаяся часть машины называется ротором. Существует два типа конструкции ротора, а именно с явнополюсным ротором и с цилиндрическим ротором.

        Ротор с явным полюсом

        Термин «выступ» означает «выступающий». Таким образом, ротор с явнополюсным ротором состоит из полюсов, выступающих из поверхности сердечника ротора. Вид с торца типичного 6-полюсного ротора с явными полюсами показан на рисунке ниже.

        Поскольку ротор подвергается воздействию изменяющихся магнитных полей, он изготовлен из листовой стали для уменьшения потерь на вихревые токи. Опоры одинаковых размеров собираются путем укладки пластин на необходимую длину. Синхронная машина с явнополюсной синхронизацией имеет неоднородный воздушный зазор. Воздушный зазор минимален под центрами полюсов и максимален между полюсами.

        Они сконструированы для средних и низких скоростей, так как имеют большое количество полюсов. Генератор с явным полюсом имеет большой диаметр.Ротор явнополюсного ротора состоит из следующих важных частей.

        Паук

        Он сделан из чугуна, чтобы обеспечить легкий путь для магнитного потока. Он прикреплен к валу шпонкой, а на внешней поверхности к нему прикреплены стержень полюса и полюсный башмак.

        Стержень полюса и башмак

        Изготовлен из многослойной листовой стали. Полюсный сердечник обеспечивает наименьшее сопротивление магнитному полю, а полюсный наконечник равномерно распределяет поле по всей периферии, создавая синусоидальную волну.

        Обмотка возбуждения или обмотка возбуждения

        Он наматывается на каркас и затем помещается вокруг сердечника полюса. Питание постоянного тока на него подается через контактные кольца. Когда через обмотку возбуждения протекает постоянный ток, создается необходимое магнитное поле.

        Обмотка демпфера

        На самой внешней периферии предусмотрены отверстия, в которые вставляются медные шины и закорачиваются с обеих сторон кольцами, образующими демпферную обмотку.

        Ротор с невыпадающими полюсами или цилиндрический ротор

        В этом типе ротора нет выступающих полюсов, но полюса формируются током, протекающим через обмотку возбуждения ротора.Цилиндрические роторы изготавливаются из цельных поковок из высококачественной никель-хромомолибденовой стали. Он имеет сравнительно небольшой диаметр и большую осевую длину.

        Они используются в высокоскоростных машинах. Генератор переменного тока с цилиндрическим ротором имеет два или четыре полюса на роторе. Такая конструкция обеспечивает большую механическую прочность и позволяет более точную динамическую балансировку. Гладкий ротор машины снижает потери на парусность и снижает шум при работе благодаря равномерному воздушному зазору.

        На рисунке ниже показан вид с торца 2-полюсного и 4-полюсного цилиндрических роторов.

        Они приводятся в действие паровыми или газовыми турбинами. Синхронные генераторы с цилиндрическим синхронным ротором называются турбогенераторами и турбогенераторами. Машины выпускаются в диапазоне номиналов от 10 МВА до более 1500 МВА. Самый большой типоразмер, используемый в Индии, имеет рейтинг 500 МВА, установленный на супертепловой электростанции.

        Роторы без явнополюсного типа состоят из следующих частей.Они следующие

        Сердечник ротора

        Сердечник ротора изготовлен из штампованной кремнистой стали. Он размещен на валу. На внешней периферии прорезаны прорези, в которые помещаются катушки возбуждения.

        Обмотка ротора или возбуждающая обмотка

        Он помещается в пазы ротора, и ток пропускается через обмотку таким образом, что полюса формируются в соответствии с требованиями.

        Контактные кольца

        Контактные кольца обеспечивают подачу постоянного тока на обмотки ротора.

        Разные детали

        Прочие детали приведены ниже.

        Кисти

        Щетки изготовлены из карбона и скользят по контактным кольцам. На щетки подается постоянный ток. Ток течет от щеток к контактным кольцам, а затем к возбуждающим обмоткам.

        Подшипники

        Подшипники установлены между валом и внешним неподвижным корпусом для уменьшения трения. Изготовлены из высокоуглеродистой стали.

        Вал

        Вал изготовлен из мягкой стали.Механическая энергия передается или передается машине через вал.

        Конструкция асинхронного двигателя — Circuit Globe

        Трехфазный асинхронный двигатель является предпочтительным типом двигателя. Он в основном используется в промышленных приводах, потому что он очень разумный и мощный, экономичный и надежный. Его также называют асинхронным двигателем, потому что он не работает с синхронной скоростью. Асинхронный двигатель требует минимального обслуживания, а также обладает высокой перегрузочной способностью.

        В комплекте:

        Трехфазный асинхронный двигатель в основном состоит из двух частей, которые называются статором и ротором . Статор — это неподвижная часть асинхронного двигателя, а ротор — это вращающаяся часть. Конструкция статора аналогична трехфазному синхронному двигателю, а конструкция ротора отличается для разных машин. Конструкция асинхронного двигателя подробно описывается ниже.

        Конструкция статора

        Статор изготовлен из пластин из высококачественной легированной стали для уменьшения потерь на вихревые токи. Он состоит из трех основных частей, а именно внешней рамы, сердечника статора и обмотки статора.

        Наружная рама

        Внешний корпус мотора. Его основная функция — поддерживать сердечник статора и защищать внутренние части машины. Для небольших машин внешняя рама отлита, а для больших — изготовлена. На рисунке ниже показана конструкция статора.

        Сердечник статора

        Сердечник статора изготовлен из штампованной высококачественной кремнистой стали. Его основная функция — переносить переменное магнитное поле, которое вызывает гистерезисные и вихретоковые потери. Штамповки закреплены на раме статора. Каждая штамповка изолирована от другой тонким слоем лака. Толщина штамповки обычно составляет от 0,3 до 0,5 мм. На внутренней стороне штамповок сделаны прорези, как показано на рисунке ниже.

        Обмотки статора

        Сердечник статора имеет трехфазные обмотки, которые обычно получают питание от трехфазной сети.Шесть выводов обмоток (по две каждой фазы) соединены в клеммной коробке машины. Статор двигателя намотан на определенное количество полюсов в зависимости от скорости двигателя. Если количество полюсов больше, скорость двигателя будет меньше, а если количество полюсов меньше, скорость будет высокой.

        Поскольку соотношение между скоростью и полюсом двигателя задается как

        Обмотки могут быть соединены пуском и треугольником.

        Конструкция ротора

        Ротор также состоит из тонких пластин того же материала, что и статор. Ламинированный цилиндрический сердечник установлен непосредственно на валу. Эти листы имеют прорези на внешней стороне для размещения проводников. Есть два типа ротора.

        Ротор с беличьей клеткой

        Ротор с короткозамкнутым ротором состоит из многослойного цилиндрического сердечника. Круглые прорези на внешней периферии полузакрыты. Каждый слот содержит неизолированный стержневой провод из алюминия или меди.На конце ротора проводники закорочены тяжелым кольцом из меди или алюминия. Схема ротора сепаратора показана ниже.

        Пазы ротора обычно не параллельны валу, а перекошены. Перекос проводников ротора имеет следующие преимущества, указанные ниже.

        • Уменьшает гудение и обеспечивает плавную и бесшумную работу.
        • Это приводит к равномерной кривой крутящего момента для различных положений ротора.
        • Тенденция к блокировке ротора снижена.Поскольку зубья ротора и статора притягиваются друг к другу и блокируются.
        • Увеличивает сопротивление ротора из-за увеличенной длины проводников стержня ротора.

        Преимущества ротора с короткозамкнутым ротором

        Ниже приведены следующие преимущества сепаратора ротора.

        • Ротор с сепаратором дешевле, а конструкция прочна.
        • Отсутствие щеток снижает риск искрения.
        • Его содержание меньше.
        • Коэффициент мощности больше
        • КПД ротора сепаратора выше.

        Ротор с фазовой обмоткой

        Ротор с фазовой обмоткой также называется ротором с контактным кольцом. Он состоит из ламинированного цилиндрического сердечника. На внешней периферии ротора имеется полузамкнутая прорезь, в которой размещены 3-фазные изолированные обмотки. Обмотки ротора соединены звездой.

        Асинхронный двигатель с контактным кольцом показан на рисунке ниже.

        Контактные кольца установлены на валу с опирающимися на них щетками. Щетки подключены к переменному резистору.Функция контактных колец и щеток заключается в обеспечении средств подключения внешних резисторов в цепи ротора. Резистор позволяет изменять сопротивление каждой фазы ротора для следующих целей.

        • Увеличивает пусковой момент и снижает пусковой ток.
        • Используется для управления скоростью двигателя.

        Ротор этого типа также перекос. Вал из низкоуглеродистой стали проходит через центр ротора и крепится к нему.Назначение вала — передача механической энергии.

        Преимущества ротора с фазовой обмоткой

        Ниже приведены преимущества ротора с фазовой обмоткой.

        • Высокий пусковой момент и низкий пусковой ток.
        • Для управления скоростью двигателя в цепь можно добавить внешнее сопротивление.

        Асинхронный двигатель | КСБ

        Асинхронный двигатель имеет пассивный ротор, который закорочен постоянно (короткозамкнутый ротор) или временно (см. Ротор с контактным кольцом).Он может производить до нескольких мегаватт и чаще всего используется в качестве стандартного трехфазного двигателя в промышленных приложениях.

        Магнитное поле в асинхронном двигателе создается током намагничивания, передаваемым через предоставленную электрическую энергию. Асинхронные двигатели характеризуются скольжением, т.е. е. зависящая от нагрузки разница между скоростью вращения ротора и скоростью вращающегося поля питающего напряжения.

        Ротор представляет собой металлическую клетку с осевыми стержнями, расположенными симметрично по кругу и прикрепленными к кольцу короткого замыкания (концевому кольцу) на каждом конце.

        Статор состоит из распределенных катушек, которые индуцируют напряжение на стержнях ротора (см. Индукция) посредством вращающегося магнитного поля. Это приводит к сильному протеканию тока в короткозамкнутых стержнях, который создает силу между ротором и статором в магнитном поле и приводит к электромагнитному взаимодействию, ответственному за асинхронизм. Асинхронные двигатели подвержены значительным потерям в статоре и роторе.

        В двигателях с контактным ротором трехфазная обмотка ротора подключается к переменным резисторам, обычно используемым в качестве жидкостных пускателей, через контактные кольца.Такая конструкция обеспечивает плавный процесс запуска, который не создает ударной нагрузки на сеть электропитания и позволяет в определенной степени изменять скорость. Однако это также приводит к значительным потерям мощности.

        Обмотки ротора с короткозамкнутым ротором обычно состоят из одно- или двухпроводных шин, закороченных на концах кольцевым проводником. Роторы с короткозамкнутым ротором очень просты по конструкции, надежны и не требуют обслуживания. См. Рис.1 Асинхронный двигатель

        Инжир.1 Асинхронный двигатель: вид асинхронного двигателя в разрезе

        Различают двигатели с сухим ротором, погружные двигатели и двигатели с мокрым ротором в отношении контакта с водой. См. Рис.2 Асинхронный двигатель

        Внутреннее смачивание Внешнее смачивание
        Ротор Обмотка Сухой корпус Мокрый корпус (погружной двигатель) Сухой Сухой Сухой двигатель (с защитой от проникновения воды или без нее) Сухой (заполненный воздухом) погружной двигатель
        Влажный (двигатель с мокрым ротором) Сухой двигатель (герметичный двигатель) Двигатель с мокрым ротором насоса с мокрым ротором Полностью погружной (заполненный жидкостью) двигатель

        Рис.2 Асинхронный двигатель: Обозначение асинхронных двигателей в зависимости от влажности

        Сухой двигатель имеет разные типы защиты от проникновения воды (см. Тип защиты).

        Погружной электродвигатель частично или полностью погружен в воду и обычно устанавливается в вертикальном положении. Тепло, выделяемое двигателем, передается непосредственно окружающей обрабатываемой жидкости. Его отличительной особенностью является корпус двигателя, который смачивается снаружи (см. Погружной электронасос).Внутреннее смачивание и глубина погружения отличают погружные двигатели с масляным или воздушным наполнением для малых и средних глубин погружения (погружные насосы для сточных вод) от полностью погружных двигателей.
        См. Рис. 3, 4 Насос для сточных вод

        Полностью погружные двигатели смачиваются жидкостью, находящейся внутри и снаружи. Они рассчитаны на любую глубину погружения и, прежде всего, используются в скважинах (см. Погружные скважинные насосы), поэтому они имеют небольшой диаметр и относительно длинные.

Добавить комментарий

Ваш адрес email не будет опубликован.