Асинхронный двигатель с короткозамкнутым ротором принцип работы. Асинхронный двигатель с короткозамкнутым ротором: принцип работы, конструкция и применение

Как устроен асинхронный двигатель с короткозамкнутым ротором. Какой принцип работы лежит в основе его функционирования. Где применяются асинхронные двигатели с короткозамкнутым ротором. Каковы их преимущества и недостатки.

Содержание

Устройство асинхронного двигателя с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором состоит из двух основных частей:

  • Статор — неподвижная часть двигателя
  • Ротор — вращающаяся часть двигателя

Статор представляет собой полый цилиндр, собранный из тонких стальных листов. В пазах статора размещена трехфазная обмотка, выполненная из медного провода. Обмотка статора подключается к трехфазной сети переменного тока.

Ротор имеет форму цилиндра и также набран из стальных листов. В пазах ротора расположена обмотка типа «беличья клетка», состоящая из алюминиевых или медных стержней, замкнутых накоротко торцевыми кольцами.

Принцип работы асинхронного двигателя с короткозамкнутым ротором

Принцип работы асинхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и токов, индуцированных этим полем в обмотке ротора.


При подключении обмотки статора к трехфазной сети создается вращающееся магнитное поле. Это поле пересекает проводники обмотки ротора и индуцирует в них ЭДС. Под действием ЭДС в обмотке ротора возникают токи. Взаимодействие токов ротора с магнитным полем статора создает вращающий момент, приводящий ротор во вращение.

Частота вращения ротора всегда меньше частоты вращения магнитного поля статора. Эта разница называется скольжением. В номинальном режиме работы скольжение составляет 2-5%.

Преимущества асинхронных двигателей с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором имеют ряд важных преимуществ:

  • Простота конструкции
  • Высокая надежность
  • Низкая стоимость
  • Простота в обслуживании
  • Высокий КПД (до 95% и выше)
  • Возможность работы непосредственно от сети переменного тока

Благодаря этим достоинствам асинхронные двигатели с короткозамкнутым ротором получили очень широкое распространение.

Недостатки асинхронных двигателей с короткозамкнутым ротором

Основными недостатками асинхронных двигателей с короткозамкнутым ротором являются:


  • Сложность регулирования частоты вращения
  • Небольшой пусковой момент
  • Низкий коэффициент мощности при малых нагрузках
  • Большой пусковой ток (5-7 кратный по отношению к номинальному)

Однако современные системы управления на основе преобразователей частоты позволяют в значительной степени устранить эти недостатки.

Области применения асинхронных двигателей с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором широко применяются в различных отраслях:

  • Промышленные приводы (насосы, вентиляторы, компрессоры, конвейеры)
  • Станкостроение
  • Подъемно-транспортные механизмы
  • Бытовая техника (стиральные машины, холодильники)
  • Электроинструмент
  • Сельскохозяйственное оборудование

По некоторым оценкам, на долю асинхронных двигателей приходится до 90% всех электродвигателей, используемых в промышленности.

Конструктивные особенности асинхронных двигателей с короткозамкнутым ротором

Конструкция асинхронного двигателя с короткозамкнутым ротором имеет ряд характерных особенностей:

  • Статор собран из тонких электротехнических стальных листов для уменьшения потерь на вихревые токи
  • Обмотка статора обычно выполняется трехфазной и укладывается в пазы статора
  • Ротор также шихтованный, набран из стальных листов
  • «Беличья клетка» ротора часто выполняется путем заливки расплавленного алюминия в пазы ротора
  • Воздушный зазор между статором и ротором делается минимально возможным
  • Для охлаждения на валу ротора устанавливается вентилятор

Такая конструкция обеспечивает простоту изготовления и высокую надежность двигателя.


Способы пуска асинхронных двигателей с короткозамкнутым ротором

Существует несколько основных способов пуска асинхронных двигателей с короткозамкнутым ротором:

  1. Прямой пуск — самый простой способ, при котором обмотка статора напрямую подключается к сети. Применяется для двигателей небольшой мощности.
  2. Пуск переключением обмоток статора со звезды на треугольник. Позволяет снизить пусковой ток.
  3. Пуск с помощью автотрансформатора. Обеспечивает плавный пуск за счет пониженного напряжения.
  4. Частотный пуск с помощью преобразователя частоты. Обеспечивает плавный пуск и регулирование скорости.

Выбор способа пуска зависит от мощности двигателя и особенностей приводимого механизма.

Регулирование частоты вращения асинхронных двигателей

Основные способы регулирования частоты вращения асинхронных двигателей с короткозамкнутым ротором:

  • Изменение частоты питающего напряжения с помощью преобразователя частоты
  • Изменение числа пар полюсов обмотки статора
  • Изменение величины питающего напряжения
  • Введение добавочного сопротивления в цепь статора

Наиболее эффективным и широко применяемым в настоящее время является частотное регулирование с помощью преобразователей частоты. Оно позволяет плавно регулировать скорость в широком диапазоне.


Энергоэффективность асинхронных двигателей с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором обладают достаточно высоким КПД, который может достигать 95% и выше для двигателей большой мощности. Однако существуют пути дальнейшего повышения их энергоэффективности:

  • Применение медной беличьей клетки ротора вместо алюминиевой
  • Использование высококачественной электротехнической стали для магнитопроводов
  • Оптимизация геометрии активной части двигателя
  • Применение частотно-регулируемого привода

Повышение энергоэффективности асинхронных двигателей позволяет существенно снизить эксплуатационные расходы, особенно для мощных промышленных приводов.


§76. Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором (рис. 249 и 250) состоит из следующих основных частей: статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой и остов. Обмотка ротора выполнена бесконтактной (она не соединена ни с какой внешней цепью), что определяет высокую надежность такого двигателя.

Магнитная система. Асинхронная машина в отличие от машины постоянного тока не имеет явно выраженных полюсов. Такую магнитную систему называют неявнополюсной. Число полюсов в машине определяется числом катушек в обмотке статора и схемой их соединения. В четырехполюсной машине (рис. 251) магнитная система состоит из четырех одинаковых ветвей, по каждой из которых проходит половина магнитного потока Фп одного полюса, в двухполюсной машине таких ветвей две, в шестиполюсной — шесть и т. д. Так как через все элементы магнитной системы проходит переменный магнитный поток, то не только ротор 1, но

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис. 252. Листы ротора (а) и статора (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

и статор 2 выполняют из листов электротехнической стали (рис. 252), изолированных один от другого изоляционной лаковой пленкой, окалиной и пр. В результате этого уменьшается вредное действие вихревых токов, возникающих в стали статора и ротора при вращении магнитного поля. Листы статора и ротора имеют пазы открытой, полузакрытой или закрытой формы, в которых располагаются проводники соответствующих обмоток. В статоре чаще всего применяют полузакрытые пазы прямоугольной или овальной формы, в машинах большой мощности — открытые пазы прямоугольной формы.

Сердечник статора 1 (рис. 253, а) запрессовывают в литой остов 3 и укрепляют стопорными винтами. Сердечник ротора напрессовывают на вал ротора, который вращается в шариковых подшипниках, установленных в двух подшипниковых щитах. Воздушный зазор между статором и ротором имеет минимальный размер, допускаемый с точки зрения точности сборки и механической жесткости конструкции. В двигателях малой и средней мощности воздушный зазор обычно составляет несколько десятых миллиметра. Такой зазор обеспечивает уменьшение магнитного сопротивления магнитной цепи машины, а следовательно, и уменьшение намагничивающего тока, требуемого для создания в двигателе магнитного потока. Снижение намагничивающего тока позволяет повысить коэффициент мощности двигателя.

Обмотка статора. Она выполнена в виде ряда катушек из проволоки круглого или прямоугольного сечения. Проводники, находящиеся в пазах, соединяются, образуя ряд катушек 2 (рис. 253,б). Катушки разбивают на одинаковые группы по числу фаз, которые располагают симметрично вдоль окружности статора (рис. 254, а) или ротора. В каждой такой группе все катушки электрически соединяются, образуя одну фазу обмотки, т. е. отдельную электрическую цепь. При больших значениях фазного тока или при необходимости переключения отдельных катушек фазы могут иметь несколько параллельных ветвей. Простейшим элементом обмотки является виток (рис. 254,б), состоящий из двух проводников 1 и 2, размещенных в пазах, находящихся друг от друга на неко-

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

тором расстоянии у. Это расстояние приблизительно равно одному полюсному делению т, под которым понимают длину дуги, соответствующую одному полюсу.

Обычно витки, образованные проводниками, лежащими в одних и тех же пазах, объединяют в одну или две катушки. Иногда их называют секциями. Их укладывают таким образом, что в каждом пазу размещается одна сторона катушки или две стороны — одна над другой. В соответствии с этим различают одно- и двухслойные обмотки. Основным параметром, определяющим распределение обмотки по пазам, является число пазов q на полюс и фазу.

В обмотке статора двухполюсного двигателя (см. рис. 254, а) каждая фаза (А-Х; B-Y; C-Z) состоит из трех катушек, стороны которых расположены в трех смежных пазах, т. е. q = 3. Обычно q > 1, такая обмотка называется распределенной.

Наибольшее распространение получили двухслойные распределенные обмотки. Их секции 1 (рис. 255, а) укладывают в пазы 2 статора в два слоя. Проводники обмотки статора укрепляют в пазах текстолитовыми клиньями 5 (рис. 255,б), которые закладывают у головок зубцов.

Стенки паза покрывают листовым изоляционным материалом 4 (электрокартоном, лакотканью и пр.). Проводники, лежащие в пазах, соединяют друг с другом соответствующим образом с торцовых сторон машины. Соединяющие их провода называют лобовыми частями. Так как лобовые части не принимают участия в индуцировании э. д. с, их выполняют как можно короче.

Отдельные катушки обмотки статора могут соединяться «звездой» или «треугольником». Начала и концы обмоток каждой фазы выводят к шести зажимам двигателя.

Обмотка ротора. Обмотка ротора выполнена в виде беличьей клетки (рис. 256,а). Она сделана из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 256,б). Стержни этой обмотки вставляют в пазы ротора без какой-либо изоляции, так как напряжение в короткозамкну-

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

той обмотке ротора равно нулю. Пазы короткозамкнутого ротора обычно выполняют полузакрытыми, а в машинах малой мощности — закрытыми (паз имеет стальной ободок, отделяющий его от воздушного зазора). Такая форма паза позволяет хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивает ее индуктивное сопротивление.

В двигателях мощностью до 100 кВт стержни беличьей клетки обычно получают путем заливки расплавленного алюминия в пазы сердечника ротора (рис. 256, в). Вместе со стержнями беличьей клетки отливают и соединяющие их торцовые короткозамыкающие кольца.

Для этой цели пригоден алюминий, так как он обладает малой плотностью, достаточно высокой электропроводностью и легко плавится.

Обычно двигатели имеют вентиляторы, насаженные на вал ротора. Они осуществляют принудительную вентиляцию нагретых частей машины (обмоток и стали статора и ротора), позволяя получить от двигателя большую мощность. В двигателях с короткозамкнутым ротором лопасти вентилятора часто отливают совместно с боковыми кольцами беличьей клетки (см. рис. 256, в).

Асинхронные двигатели с короткозамкнутым ротором просты по конструкции, надежны в эксплуатации. Их широко применяют для привода металлообрабатывающих станков и других устройств, которые начинают работать без нагрузки. Однако сравнительно малый пусковой момент у этих двигателей и большой пусковой ток не позволяют использовать их для привода таких машин и механизмов, которые должны пускаться в ход сразу под большой нагрузкой (с большим пусковым моментом). К таким машинам относятся грузоподъемные устройства, компрессоры и др.

Увеличить пусковой момент и уменьшить пусковой ток можно при выполнении беличьей клетки с повышенным активным сопротивлением. При этом двигатель будет иметь увеличенное скольжение и большие потери мощности в обмотке ротора. Такие двигатели называют двигателями с повышенным скольжением (обозначаются АС). Их можно использовать для привода машин, работающих сравнительно небольшое время. На э. п. с. переменного тока эти двигатели (со скольжением до 10%) применяют для привода компрессоров, которые работают периодически в течение коротких промежутков времени при уменьшении давления в воздушных резервуарах ниже определенного предела.

Двигатели с повышенным пусковым моментом. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом имеют специальную конструкцию ротора (обозначаются АП). К ним относятся двигатели с двойной беличьей клеткой и двигатели с глубокими пазами.

Ротор 3 (рис. 257,а) двигателя с двойной беличьей клеткой имеет две короткозамкнутые обмотки. Наружная клетка 1 является пусковой. Она обладает большим активным и малым реактивным сопротивлениями. Внутренняя клетка 2 является основной обмоткой ротора; она, наоборот, обладает незначительным активным и большим реактивным сопротивлениями. В начальный момент пуска ток проходит, главным образом, по наружной клетке, которая создает значительный вращающий момент. По мере увеличения частоты вращения ток переходит во внутреннюю клетку, и по окончании процесса пуска машина работает как обычный короткозамкнутый двигатель с одной (внутренней) клеткой. Вытеснение тока в наружную клетку в начальный момент пуска объясняется действием, э. д. с. самоиндукции, индуцируемой в проводниках ротора. Чем ниже расположен в пазу проводник, тем большим магнитным потоком рассеяния 6 он охватывается и тем большая э. д. с. самоиндукции в нем индуцируется (рис. 257, в), следовательно, тем большее он будет иметь индуктивное сопротивление.

Вытеснение тока в верхние проводники ротора сильно сказывается при неподвижном роторе, когда частота тока, индуцируемого в обеих клетках ротора, велика. При этом индуктивные

Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)

сопротивления обеих клеток значительно больше активных и ток распределяется между ними обратно пропорционально их индуктивным сопротивлениям, т. е. проходит в основном по наружной клетке с большим активным сопротивлением. По мере возрастания частоты вращения ротора частота тока в нем будет уменьшаться (вращающееся магнитное поле будут пересекать проводники ротора с меньшей частотой), и ток начнет проходить по обеим клеткам в соответствии с их активными сопротивлениями, т. е., главным образом, через внутреннюю клетку.

Таким образом, процесс пуска двигателя с двойной беличьей клеткой имеет сходство с процессом пуска асинхронного двигателя с фазным ротором, когда в начале пуска в цепь обмотки ротора вводится добавочное активное сопротивление (пусковой реостат), а по мере разгона это сопротивление выводится. Точно так же и в рассматриваемом двигателе ток в начале пуска проходит по наружной клетке с большим активным сопротивлением, а затем по мере разгона постепенно переходит во внутреннюю клетку с малым активным сопротивлением.

Для повышения активного сопротивления пусковой клетки стержни ее изготовляют из маргацовистой латуни или бронзы. Стержни рабочей клетки выполняют из меди, обладающей малым удельным сопротивлением, причем площадь поперечного сечения их больше, чем у пусковой клетки. В результате этого активное сопротивление пусковой клетки увеличивается в 4—5 раз по сравнению с рабочей. Между стержнями обеих клеток имеется узкая щель 5, размеры которой определяют индуктивность рабочей клетки. Двухклеточный двигатель на 20—30% дороже коротко-замкнутого двигателя обычной конструкции. Для упрощения технологии изготовления ротора двухклеточные двигатели небольшой и средней мощности выполняют с литой алюминиевой клеткой.

Действие двигателей с глубокими пазами (рис. 257, б) также основано на использовании явления вытеснения тока. В этих двигателях стержни 4 беличьей клетки выполнены в виде узких медных шин, заложенных в глубокие пазы ротора 3 (высота паза в 10— 12 раз больше его ширины). Нижние слои стержней, расположенные дальше от поверхности ротора, охватываются значительно большим числом магнитных линий потока рассеяния 6, чем верхние (рис. 257,г), поэтому они имеют во много раз большую индуктивность. В начале пуска в результате увеличенного индуктивного сопротивления нижних частей стержней ток проходит, главным образом, по их верхним частям. При этом используется только небольшая часть поперечного сечения каждого стержня, что приводит к увеличению его активного сопротивления, а следовательно, и к возрастанию активного сопротивления всей обмотки ротора.

При увеличении частоты вращения ротора вытеснение тока в верхние части стержней уменьшается (по той же причине, что и в двигателе с двойной беличьей клеткой), и после окончания пуска ток равномерно распределяется по площади их поперечного сечения.

Асинхронный двигатель с короткозамкнутым ротором принцип работы

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигательэто асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье – асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр – критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

В промышленности наибольшее распространение получили асинхронные двигатели трехфазного тока. Рассмотрим устройство и принцип действия этих двигателей.

Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля.

Для уяснения работы такого двигателя проделаем следующий опыт.

Укрепим подковообразный магнит на оси таким образом, чтобы его можно было вращать за ручку. Между полюсами магнита расположим на оси медный цилиндр, могущий свободно вращаться.

Рисунок 1. Простейшая модель для получения вращающегося магнитного поля

Начнем вращать магнит за ручку по часовой стрелке. Поле магнита также начнет вращаться и при вращении будет пересекать своими силовыми линиями медный цилиндр. В цилиндре, по закону электромагнитной индукции, возникнут вихревые токи, которые создадут свое собственное магнитное поле — поле цилиндра. Это поле будет взаимодействовать с магнитным полем постоянного магнита, в результате чего цилиндр начнет вращаться в ту же сторону, что и магнит.

Установлено, что скорость вращения цилиндра несколько меньше скорости вращения поля магнита.

Действительно, если цилиндр вращается с той же скоростью, что и магнитное поле, то магнитные силовые линии не пересекают его, а следовательно, в нем не возникают вихревые токи, вызывающие вращение цилиндра.

Скорость вращения магнитного поля принято называть синхронной , так как она равна скорости вращения магнита, а скорость вращения цилиндра — асинхронной (несинхронной). Поэтому сам двигатель получил название асинхронного двигателя . Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на небольшую величину, называемую скольжением.

Обозначив скорость вращения ротора через n1 и скорость вращения поля через n мы можем подсчитать величину скольжения в процентах по формуле:

В приведенном выше опыте вращающееся магнитное поле и вызванное им вращение цилиндра мы получали благодаря вращению постоянного магнита, поэтому такое устройство еще не является электродвигателем . Надо заставить электрический ток создавать вращающееся магнитное поле и использовать его для вращения ротора. Задачу эту в свое время блестяще разрешил М. О. Доливо-Добровольский. Он предложил использовать для этой цели трехфазный ток.

Устройство асинхронного электродвигателя М. О. Доливо-Добровольского

Рисунок 2. Схема асинхронного электродвигателя Доливо-Добровольского

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя , помещены три обмотки, сети трехфазного тока 0 расположенные одна относительно другой под углом 120°.

Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя.

Если обмотки соединить между собой так, как показано на рисунке, и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся.

На рисунке 3 показан график изменения токов в обмотках двигателя и процесс возникновения вращающегося магнитного поля.

Рассмотрим – подробнее этот процесс.

Рисунок 3. Получение вращающегося магнитного поля

В положении «А» на графике ток в первой фазе равен нулю, во второй фазе он отрицателен, а в третьей положителен. Ток по катушкам полюсов потечет в направлении, указанном на рисунке стрелками.

Определив по правилу правой руки направление созданного током магнитного потока, мы убедимся, что на внутреннем конце полюса (обращенном к ротору) третьей катушки будет создан южный полюс (Ю), а на полюсе второй катушки — северный полюс (С). Суммарный магнитный поток будет направлен от полюса второй катушки через ротор к полюсу третьей катушки.

В положении «Б» на графике ток во второй фазе равен нулю, в первой фазе он положителен, а в третьей отрицателен. Ток, протекая по катушкам полюсов, создает на конце первой катушки южный полюс (Ю), на конце третьей катушки северный полюс (С). Суммарный магнитный поток теперь будет направлен от третьего полюса через ротор к первому полюсу, т. е. полюсы при этом переместятся на 120°.

В положении «В» на графике ток в третьей фазе равен нулю, во второй фазе он положителен, а в первой отрицателен. Теперь ток, протекая по первой и второй катушкам, создаст на конце полюса первой катушки — северный полюс (С), а на конце полюса второй катушки — южный полюс (Ю), т. е. полярность суммарного магнитного поля переместится еще на 120°. В положении «Г» на графике магнитное поле переместится еще на 120°.

Таким образом, суммарный магнитный поток будет менять свое направление с изменением направления тока в обмотках статора (полюсов).

При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим таким образом асинхронный электродвигатель.

Напомним, что на рисунке 3 обмотки статора соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником».

Если мы поменяем местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное.

Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора.

Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.

Мы рассмотрели устройство асинхронного двигателя, имеющего на статоре три обмотки . В этом случае вращающееся магнитное поле двухполюсное и число его оборотов в одну секунду равно числу периодов изменения тока в одну секунду.

Если на статоре разместить по окружности шесть обмоток, то будет создано четырехполюсное вращающееся магнитное поле . При девяти обмотках поле будет шестиполюсным.

При частоте трехфазного тока f , равной 50 периодам в секунду, или 3000 в минуту, число оборотов n вращающегося поля в минуту будет:

при двухполюсном статоре n = (50 х 60 ) / 1 = 3000 об/мин,

при четырехполюсном статоре n = (50 х 60 ) / 2 = 1500 об/мин,

при шестиполюсном статоре n = (50 х 60 ) / 3 = 1000 об/мин,

при числе пар полюсов статора, равном p : n = (f х 60 ) / p ,

Итак, мы установили скорость вращения магнитного поля и зависимость ее от числа обмоток на статоре двигателя.

Ротор же двигателя будет, как нам известно, несколько отставать в своем вращении.

Однако отставание ротора очень небольшое. Так, например, при холостом ходе двигателя разность скоростей составляет всего 3%, а при нагрузке 5 – 7%. Следовательно, обороты асинхронного двигателя при изменении нагрузки изменяются в очень небольших пределах, что является одним из его достоинств.

Рассмотрим теперь устройство асинхронных электродвигателей

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора сделана совершенно гладкой.

Чтобы уменьшить потери на вихревые токи, сердечник статора набирают из тонких штампованных стальных листов. Собранный сердечник статора закрепляют в стальном корпусе.

В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником», для чего все начала и концы обмоток выводятся на корпус — на специальный изоляционный щиток. Такое устройство статора очень удобно, так как позволяет включать его обмотки на разные стандартные напряжения.

Ротор асинхронного двигателя , подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

В зависимости от конструкции ротора асинхронные электродвигатели делятся на двигатели с короткозамкнутым ротором и фазным ротором .

Обмотка короткозамкнутого ротора сделана из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены при помощи медного кольца. Такая обмотка называется обмоткой типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются.

В некоторых двигателях «беличью клетку» заменяют литым ротором.

Асинхронный двигатель с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда необходимо, чтобы электродвигатель создавал большое усилие при трогании с места. Достигается это тем, что в обмотки фазного двигателя включается пусковой реостат.

Короткозамкнутые асинхронные двигатели пускаются в ход двумя способами:

1) Непосредственным подключением трехфазного напряжения сети к статору двигателя. Этот способ самый простой и наиболее популярный.

2) Снижением напряжения, подводимого к обмоткам статора. Напряжение снижают, например, переключая обмотки статора со «звезды» на «треугольник».

Пуск двигателя в ход происходит при соединении обмоток статора «звездой», а когда ротор достигнет нормального числа оборотов, обмотки статора переключаются на соединение «треугольником».

Ток в подводящих проводах при этом способе пуска двигателя уменьшается в 3 раза по сравнению с тем током, который возник бы при пуске двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Однако этот способ пригоден лишь в том случае, если статор рассчитан для нормальной работы при соединении его обмоток «треугольником».

Наиболее простым, дешевым и надежным является асинхронный электродвигатель с короткозамкнутым ротором , но этот двигатель обладает некоторыми недостатками — малым усилием при трогании с места и большим пусковым током. Эти недостатки в значительной мере устраняются применением фазного ротора, но применение такого ротора значительно удорожает двигатель и требует пускового реостата.

Типы асинхронных электродвигателей

Основной тип асинхронных машин — трехфазный асинхронный двигатель . Он имеет три обмотки на статоре, смещенные в пространстве на 120°. Обмотки соединяются в звезду или треугольник и питаются трехфазным переменным током.

Двигатели малой мощности в большинстве случаев выполняются как двухфазные . В отличие от трехфазных двигателей они имеют на статоре две обмотки, токи в которых для создания вращающегося магнитного поля должны быть сдвинуты на угол π /2.

Если токи в обмотках равны по модулю и сдвинуты по фазе на 90°, то работа подобного двигателя ничем не будет отличаться от работы трехфазного. Однако такие двигатели с двумя обмотками на статоре в большинстве случаев питаются от однофазной сети и сдвиг, приближающийся к 90°, создается искусственным путем, обычно за счет конденсаторов.

Однофазный двигатель , имеющий только одну обмотку на статоре, практически неработоспособен. При неподвижном роторе в двигателе создается только пульсирующее магнитное поле и вращающий момент равен нулю. Правда, если ротор такой машины раскрутить до некоторой скорости, то далее она может выполнять функции двигателя.

В этом случае, хотя и будет только пульсирующее поле, но оно слагается из двух симметричных — прямого и обратного, которые создают неравные моменты — больший двигательный и меньший тормозной, возникающий за счет токов ротора повышенной частоты (скольжение относительно обратносинхронного поля больше 1).

В связи с изложенным однофазные двигатели снабжаются второй обмоткой, которая используется как пусковая. В цепь этой обмотки для создания фазового сдвига тока включают конденсаторы, емкость которых может быть достаточно велика (десятки микрофарад при мощности двигателя менее 1 кВт).

В системах управления используются двухфазные двигатели, которые иногда называют исполнительными . Они имеют две обмотки на статоре, сдвинутые в пространстве на 90°. Одна из обмоток, называемая обмоткой возбуждения, непосредственно подключается к сети 50 или 400 Гц. Вторая используется как обмотка управления.

Для создания вращающегося магнитного поля и соответствующего момента ток в обмотке управления должен быть сдвинут на угол, близкий к 90°. Регулирование скорости двигателя, как будет показано ниже, осуществляется изменением значения или фазы тока в этой обмотке. Реверс обеспечивается изменением фазы тока в управляющей обмотке на 180° (переключением обмотки).

Двухфазные двигатели изготовляются в нескольких исполнениях:

с короткозамкнутым ротором,

с полым немагнитным ротором,

с полым магнитным ротором.

Преобразование вращательного движения двигателя в поступательное движение органов рабочей машины всегда связано с необходимостью использования каких-либо механических узлов: зубчатых реек, винта и др. Поэтому иногда целесообразно выполнение двигателя с линейным перемещением ротора-бегунка (название ’’ротор” при этом может быть принято только условно — как движущегося органа).

В этом случае двигатель, как говорят, может быть развернут. Обмотка статора линейного двигателя выполняется так же, как и у объемного двигателя, но только должна быть заложена в пазы на всю длину максимального возможного перемещения ротора-бегунка. Ротор-бегунок обычно короткозамкнутый, с ним сочленяется рабочий орган механизма. На концах статора, естественно, должны находиться ограничители, препятствующие уходу ротора за рабочие пределы пути.

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат. Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы. У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства. Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение. Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.

Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети. Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам. В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Что такое мотор с короткозамкнутым ротором и как он работает?

Электродвигатели — это машины, преобразующие электрическую энергию в механическую, и в настоящее время они доминируют в современной промышленности. Они просты в использовании, просты в дизайне и бывают разных форм, что позволяет им добиться успеха практически в любой ситуации. Электродвигатели могут питаться от постоянного тока (DC) или переменного тока (AC), и в этой статье будет рассмотрен конкретный двигатель переменного тока, известный как двигатель с короткозамкнутым ротором. Эти двигатели представляют собой особый вид асинхронных двигателей, в которых используется эффект электромагнитной индукции для преобразования электрического тока в энергию вращения (дополнительную информацию можно найти в нашей статье об асинхронных двигателях). В этой статье объясняются принципы работы двигателей с короткозамкнутым ротором, принцип их работы и области применения. Таким образом, конструкторы могут сделать осознанный выбор при выборе подходящего двигателя.

Что такое двигатели с короткозамкнутым ротором?

Электродвигатели с короткозамкнутым ротором

— это подкласс асинхронных двигателей, которые используют электромагнетизм для создания движения. Это так называемые двигатели с «беличьей клеткой», потому что форма их ротора — внутреннего компонента, соединенного с выходным валом, — выглядит как клетка. Две круглые торцевые крышки соединены стержнями ротора, на которые воздействует электромагнитное поле (ЭМП), создаваемое статором, или внешним корпусом, состоящим из ламинированных металлических листов и намотанной проволоки. Статор и ротор — две основные части любого асинхронного двигателя, а беличья клетка — это просто один из способов использования эффекта электромагнитной индукции. Переменный ток, проходящий через статор, создает ЭДС, которая колеблется с частотой переменного тока, которая «вращается» вокруг ротора, индуцируя противоположные магнитные поля в стержнях ротора, тем самым вызывая движение.

Как работают двигатели с короткозамкнутым ротором?

По сути, двигатели с короткозамкнутым ротором работают так же, как и большинство других асинхронных двигателей, и отличаются только специфическим взаимодействием между ротором и статором. Наша статья об асинхронных двигателях содержит обсуждение основных законов всех асинхронных двигателей и дает представление о том, как движение создается с помощью магнетизма.

Электродвигатели с короткозамкнутым ротором

максимизируют электромагнитную индукцию за счет использования стержней ротора для взаимодействия с ЭДС статора. Статор обычно содержит проволочные обмотки, по которым течет переменный ток; этот ток изменяется синхронно с синусоидальной кривой (или «чередуется»), которая изменяет направление тока в проволочных обмотках. Когда ток колеблется, генерируемая ЭДС будет следовать этому примеру и в некоторых случаях заставит его «вращаться» с частотой, аналогичной частоте переменного тока. Эта вращающаяся ЭДС создает противоположное напряжение и ЭДС в стержнях ротора, таким образом толкая ротор, создавая вращательное движение.

Этот ротор не вращается с точной частотой переменного тока, поэтому двигатели с короткозамкнутым ротором (как и другие асинхронные двигатели) считаются асинхронными. Всегда есть некоторая потеря или «проскальзывание» между частотой переменного тока и частотой вращения вала, и это в первую очередь следствие того, почему ротор вращается. Если бы ротор вращался с той же частотой, то величина силы, действующей на стержни ротора, была бы равна нулю, что не создавало бы движения. Ротор всегда должен двигаться медленнее, чтобы почувствовать эффект электромагнитной индукции, как если бы ротор играл в постоянную игру в магнитное «догонялки». Чтобы узнать больше, не стесняйтесь посетить нашу статью о типах двигателей переменного тока.

Технические характеристики двигателя с короткозамкнутым ротором

В нашей статье об асинхронных двигателях объясняются технические характеристики всех типов асинхронных двигателей, и это хорошее место, чтобы ознакомиться со всеми различными характеристиками асинхронных двигателей. В этой статье основное внимание будет уделено тому, что необходимо указать для асинхронных двигателей с короткозамкнутым ротором, включая фазу, скорость, крутящий момент и ток. Поскольку эти двигатели очень популярны, NEMA и IEC создали стандартизированные классы двигателей с короткозамкнутым ротором на основе их характеристик скорости и крутящего момента. Это позволяет использовать взаимозаменяемые двигатели разных производителей и упрощает замену двигателей. Эти принципы, а также различные классы стандартных двигателей с короткозамкнутым ротором будут кратко описаны ниже.

Тип фазы

Асинхронные двигатели могут приводиться в действие однофазным (одна частота переменного тока) или многофазным (несколько частот переменного тока) в зависимости от входного источника питания. Некоторые из наиболее распространенных типов двигателей с короткозамкнутым ротором используют три фазы, что означает, что входной ток представляет собой три одинаковые частоты переменного тока, разделенные на 120 градусов по фазе. Трехфазные двигатели запускаются автоматически, а это означает, что единственным необходимым входом является пусковое напряжение, что делает эти двигатели практически автоматическими. Однофазные двигатели также распространены, но они не запускаются самостоятельно и требуют некоторого начального «толчка». Это связано с тем, что одной частоты переменного тока недостаточно для создания действительно «вращающейся» ЭДС, и необходимо выполнить некоторую компенсацию для имитации вращающегося поля. Это можно сделать с помощью стартеров, которые могут быть конденсаторами, расщепленными фазами или другими компонентами. Подробнее о пускателях можно прочитать в нашей статье о типах пускателей двигателей.

Момент двигателя и кривая момент-скорость

Несмотря на то, что двигатели с короткозамкнутым ротором работают на базовых скоростях и крутящих моментах, они должны достичь этого установившегося состояния через некоторый переходный пуск. Этот пуск, обычно визуализируемый с помощью кривой крутящий момент-скорость, очень важно знать, потому что он определяет, с какими условиями работы может работать двигатель. На рисунке 1 ниже показаны важные участки кривой крутящий момент-скорость для любого асинхронного двигателя.

Рис. 1: Кривая крутящий момент-скорость для асинхронных двигателей с обозначенными важными участками.

Пусковой крутящий момент — это крутящий момент при пуске двигателя. Вырывной или разрывной крутящий момент представляет собой пиковый крутящий момент, достигаемый до достижения максимальной скорости. Номинальный крутящий момент — это выходной крутящий момент в установившемся режиме, который обычно указывается на паспортной табличке двигателя. Разница между синхронной скоростью и скоростью, достигаемой при номинальном крутящем моменте, определяет скольжение двигателя.

Классы NEMA для многофазных асинхронных двигателей с короткозамкнутым ротором

 

Рисунок 2: Кривые крутящий момент-скорость для стандартных классов двигателей NEMA.
Таблица 1: Сводные характеристики стандартных двигателей NEMA с короткозамкнутым ротором.

Стандарт NEMA

S.C.I.M.

Пусковой момент

Пусковой ток

Слип

Класс А

Обычный

Обычный

Обычный

Класс Б

Обычный

Низкий

Обычный

Класс С

Высокий

Низкий

Обычный

Класс D

Высокий

Низкий

Высокий

 

На рис. 2 показаны кривые для двигателей с короткозамкнутым ротором различных классов NEMA. Существует четыре основных класса (A, B, C и D), хотя в зависимости от специфики их может быть больше. Эти четыре класса сведены в Таблицу 1 с точки зрения их пускового крутящего момента, тока и величины проскальзывания. Существуют и другие нестандартные двигатели с короткозамкнутым ротором, но обычно они изготавливаются в соответствии со спецификациями покупателя.

Двигатели

класса А являются наиболее популярным типом двигателей с короткозамкнутым ротором. Они имеют нормальный пусковой момент и ток, а также пробуксовку менее 5% от синхронной скорости. Обычными приложениями являются вентиляторы, компрессоры, конвейеры или что-либо с низкими инерционными нагрузками, что позволяет быстро разгонять двигатель.

Двигатели

класса B можно запускать при полной нагрузке, что делает их пригодными для использования в условиях высокой инерции (большие вентиляторы, центробежные насосы и т. д.). У них нормальный пусковой момент, меньший пусковой ток, чем у двигателей класса А, и скольжение менее 5% при полной нагрузке. Эти двигатели иногда взаимозаменяемы с двигателями класса А, особенно когда требуется пониженное пусковое напряжение.

Двигатели

класса C имеют высокий пусковой крутящий момент и низкий пусковой ток благодаря конструкции ротора с двойной клеткой. Из-за этого улучшения они дороже, чем двигатели классов A и B, но также обладают способностью выдерживать высокие пусковые крутящие моменты, такие как те, которые встречаются в нагруженных насосах, компрессорах, дробилках и т. д. Их скольжение также обычно составляет менее 5%.

Двигатели

класса D обладают самым высоким пусковым моментом, низким пусковым током и большим проскальзыванием при полной нагрузке (от 5% до 20% в зависимости от применения). Их крутящий момент возникает при гораздо более низкой скорости, чем у двигателей других классов, что можно увидеть, сравнивая расположение пиков каждой кривой на рисунке 2. Высокое сопротивление ротора, которое делает двигатели класса D такими прочными, также является причиной более низкого пикового крутящего момента. скорости, что иногда приводит к возникновению пикового крутящего момента при нулевой скорости (100% проскальзывание). Общие области применения двигателей класса D включают бульдозеры, литейные машины, штамповочные прессы и т. д.

Применение и критерии выбора

Асинхронные двигатели с короткозамкнутым ротором

являются популярным выбором в промышленности, отчасти из-за их низкой стоимости, простоты обслуживания, высокой эффективности, хорошей терморегуляции и безопасности. Их самым большим недостатком является отсутствие контроля скорости, поэтому для решения этих задач были разработаны другие двигатели (двигатели с фазным ротором). Стандартные рамы NEMA упрощают выбор правильного двигателя, требуя только рабочие характеристики проекта.

Так, например, если кузнечное предприятие создает новый силовой молот, который должен наносить быстрые и сильные удары, им следует изучить двигатели класса D, поскольку они обеспечивают чрезвычайно высокий пусковой крутящий момент. Точно так же, если двигатель необходим для простого вентилятора HVAC, отлично подойдут двигатели классов A и B. Определите необходимые крутящий момент, скорость и напряжение для работы, и на рынке обязательно появится подходящая беличья клетка.

Резюме

В этой статье представлено понимание того, что такое асинхронные двигатели с короткозамкнутым ротором и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

Источники:

  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://www.controleng.com/articles/what-to-consider-when-choosing-an-ac-induction-motor/
  5. http://ocw.uniovi. es
  6. http://people.ece.umn.edu/users/riaz/animations/sqmovies.html

Другие товары для двигателей

  • Все о бесщеточных двигателях постоянного тока — что это такое и как они работают
  • Все о двигателях с постоянными магнитами — что это такое и как они работают
  • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
  • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
  • Все о шаговых двигателях — что это такое и как они работают
  • Шаговые двигатели
  • и серводвигатели — в чем разница?
  • Все о контроллерах двигателей переменного тока — что это такое и как они работают
  • Синхронные двигатели и асинхронные двигатели — в чем разница?
  • Бесщеточные двигатели
  • и щеточные двигатели — в чем разница?
  • Кто изобрел паровой двигатель? Урок промышленной истории
  • Все о двигателях с электронным управлением — что это такое и как они работают
  • Двигатели постоянного тока
  • и серводвигатели — в чем разница?
  • Шаговые двигатели
  • и двигатели постоянного тока — в чем разница?
  • Все о контроллерах серводвигателей — что это такое и как они работают
  • Что такое трехфазный двигатель и как он работает?
  • ECM Motors и PSC Motors — в чем разница?
  • Все о устройствах плавного пуска двигателей: что это такое и как они работают
  • Все о контроллерах двигателей постоянного тока — что это такое и как они работают
  • Основы тестирования двигателя (и ротора)
  • Что такое штамповка двигателя и как это работает?
  • Все о двигателях с дробной мощностью

Больше из Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Принцип работы трехфазного асинхронного двигателя с короткозамкнутым ротором

  • 1: история асинхронного двигателя
  • 2: Как работает трехфазный асинхронный двигатель с короткозамкнутым ротором?
  • 3: Части 3 -фазовой камеры для белки. 7: Дальнейшее чтение, чтобы узнать больше об асинхронном двигателе

3-фазный асинхронный двигатель с короткозамкнутым ротором является одним из самых популярных типов электродвигателей переменного тока, которые обеспечивают электромеханическое преобразование энергии через статор и ротор с короткозамкнутым ротором за счет электромагнитной индукции.

Вот почему он называется асинхронным двигателем с короткозамкнутым ротором.
Обычно мы используем двигатели в промышленных приводах, потому что они прочные, надежные и экономичные.
Кстати, асинхронный двигатель также называют асинхронным двигателем, потому что он работает со скоростью ниже, чем его синхронная скорость.
В этой статье я сосредоточусь на принципе работы асинхронного двигателя.
Однако, прежде чем я это сделаю, важно знать различные части асинхронного двигателя.

История

Никола Тесла (10 июля 1856 — 7 января 1943), сербско-американский изобретатель, инженер-механик, инженер-электрик.

Он считается одним из важных сторонников коммерциализации электроэнергии из-за дизайна современных систем переменного тока.

На основе теории электромагнитного поля, открытой Майклом Фарадеем, Тесла изобрел асинхронный двигатель в 1887 году, а его теория электромагнетизма стала краеугольным камнем современной беспроводной связи и радио.

Как работает трехфазный асинхронный двигатель с короткозамкнутым ротором?

На самом деле, когда мы даем обмотке статора питание переменного тока, ток в катушке будет создавать магнитный поток в катушке.

Теперь установите обмотки ротора на короткое замыкание.

Поток от статора перережет катушки в роторе, и закон электромагнитной индукции Фарадея вызовет протекание тока в катушке ротора из-за короткого замыкания катушки ротора.

Поток тока статора и ротора создает два потока: поток статора и поток ротора, и поток ротора будет отставать от потока статора.

Таким образом, ротор будет ощущать крутящий момент, который вращает ротор в направлении вращающегося магнитного потока.

Таким образом, скорость ротора будет зависеть от мощности переменного тока, и скорость можно регулировать, изменяя входную мощность.

Собственное скольжение – неравная частота вращения поля статора и ротора

Трехфазный источник питания создает вращающееся магнитное поле в асинхронном двигателе

Детали трехфазного асинхронного двигателя с короткозамкнутым ротором

Ротор состоит из сердечника ротора, обмотки ротора и вращающегося вала.

Сердечник ротора также является частью основной магнитной цепи, как правило, толщиной 0,5 мм из кремнистой стали, сердечник закреплен на валу или кронштейне ротора.

Весь ротор цилиндрический. Обмотки ротора делятся на клеточные и намоточные.
В нормальных условиях скорость ротора асинхронного двигателя всегда немного ниже или немного выше, чем скорость вращения магнитного поля (синхронная скорость), поэтому асинхронный двигатель также известен как «асинхронный двигатель».
Когда нагрузка асинхронного двигателя изменяется, скорость вращения ротора и коэффициент скольжения будут изменяться, так что проводник ротора в соответствующих электродвижущей силе, токе и электромагнитном крутящем моменте изменяется в соответствии с потребностями нагрузки.

В соответствии с положительным и отрицательным и размером скольжения, асинхронный двигатель с двигателем, генератором и электромагнитным тормозом три режима работы.

Что такое короткозамкнутый ротор?
Ротор с короткозамкнутым ротором представляет собой вращающуюся часть обычного асинхронного двигателя с короткозамкнутым ротором.

Состоит из цилиндра из стальных пластин с алюминиевыми или медными проводниками, встроенными в его поверхность.

При эксплуатации невращающаяся обмотка «статора» подключается к источнику питания переменного тока; переменный ток в статоре создает вращающееся магнитное поле.

В обмотке ротора ток индуцируется полем статора и создается собственное магнитное поле.

Взаимодействие двух источников магнитного поля создает крутящий момент на роторе.

Детали трехфазного асинхронного двигателя переменного тока в разобранном виде

Характеристики трехфазного асинхронного двигателя

1, начальный крутящий момент небольшой, но его структура проста, высокая надежность, высокая эффективность.
2, может работать в непрерывном режиме.
3, номинальная скорость двигателя изменяется в зависимости от величины нагрузки.
4, используется в случае отсутствия необходимости прерывать скорость.
5, есть двухфазный асинхронный двигатель и трехфазный асинхронный двигатель.
6, мощность трехфазного асинхронного двигателя U (200В 50/60Гц), T (220В 50/60Гц), S (380-440В 50/60Гц) и так далее.
7. Ротор асинхронного двигателя не находится под напряжением

Трехфазный асинхронный двигатель переменного тока, фото Hordu Motor

Преимущества трехфазного асинхронного двигателя с короткозамкнутым ротором

Некоторые из основных преимуществ, почему вы должны выбрать это двигатель включает в себя следующее:
1) маленький и легкий;
2) высокая скорость и эффективность работы с низким крутящим моментом;
3) высокий крутящий момент на низкой скорости и широкий диапазон регулирования скорости;
4) высокая надежность
5) низкие эксплуатационные расходы;

Заключение

Короче говоря, принцип работы любого асинхронного двигателя включает поток статора и ротора с короткозамкнутым ротором.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *