Автоматическое устройство – Автомат (механизм) — Википедия

Автомат (механизм) — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Автомат.

Автома́т — машина, самостоятельно действующее устройство (или совокупность устройств), выполняющее по жёстко заданной программе, без непосредственного участия человека, процессы получения, преобразования, передачи и использования энергии, материала и информации. Автоматы применяются для обеспечения комфортных условий жизни человека, повышения производительности, облегчения и обеспечения безопасности его труда.

Автоматы известны с древности, первые автоматы представляли собой движущиеся фигуры людей и животных.

Автоматические устройства XVIII—XIX веков основывались на принципах и методах классической механики. Развитие электротехники, практическое использование электричества в военном деле, связи и на транспорте привели к ряду открытий и изобретений, послуживших научной и технической базой для новых типов автоматов, действующих при помощи электричества. Важное значение имели работы русских учёных: изобретение П. Л. Шиллингом магнитоэлектрического реле (1830) — одного из основных элементов электроавтоматики, разработка Ф. М. Балюкевичем, В. М. Тагайчиковым и др. в 80-х годах XIX века ряда устройств автоматической сигнализации на железнодорожном транспорте, создание С. М. Апостоловым-Бердичевским совместно с М. Ф. Фрейденбергом первой в мире автоматической телефонной станции (1893—1895), и многие другие.

Начало промышленного использования автоматов относится к периоду промышленной революции XVIII века. К автоматическим устройствам этого времени, имевшим в основном экспериментальный характер, относятся: в России — автоматический суппорт Андрея Нартова для токарно-копировальных станков (1820-е годы), поплавковый регулятор уровня воды в котле И. И. Ползунова (1765), в Англии — центробежный регулятор Дж. Уатта (1784), во Франции — ткацкий станок с программным управлением от перфокарт для выработки крупноузорчатых тканей Ж. Жаккара (1808) и др.

Возникновение электроники привело к появлению принципиально новых электронных автоматических устройств и целых комплексов — от электронного реле до управляющих вычислительных машин.

По мере развития автоматов расширялись их возможности и области применения, они превратились в сложные автоматические устройства, успешно выполняющие функции контроля, регулирования и управления. Вместо отдельных автоматов стали применяться автоматические комплексы с использованием ЭВМ.

ru.wikipedia.org

Автоматические устройства от древнего мира до начала промышленной революции

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

На самой заре своего развития человек пытался использовать различные приспособления, действующие без его участия, то есть самостоятельно. Древнегреческое слово «автоматика» и обозначает «самодействие». Такие самодействующие машины в виде ловушек и капканов широко использовались, к примеру, на охоте. Описание многих интересных автоматов оставил нам смотритель библиотеки знаменитого Александрийского маяка Герон Александрийский (Ἥρωνὁ Ἀλεξανδρεύς) в книге «Пневматика», написанной в I в. н. э. В ней показаны известные автоматы Древнего Египта, начиная со II в. до н. э., в том числе для продажи воды или вина, открывания дверей храма, зажигания священного огня и т. д. [1].


Рис. 1. Автомат для продажи святой воды

На рис. 1 показано устройство автомата для продажи святой воды. Вода из резервуара 1 отпускается при открытии клапана 2 рычагом 3, на который опускается монета 4. Более сложный механизм приводил в движение двери храма (рис. 2).

Двери 1 раздвигаются двумя воротами 2, поворот которых осуществляется грузом 3 и бадьей с водой 4.
Наполнение бадьи начинается при разжигании священного огня 5, металлическая чаша которого через стержень нагревает воду в баке 6. При этом образуется пар, вытесняющий воду из бака 6 в бадью 4. После того как огонь гаснет, вода из бадьи всасывается обратно в бак и двери закрываются.

С изобретением Христианом Гюйгенсом (Christiaan Huygens) в 1673 г. часового механизма с маятником большой популярностью стали пользоваться диковинные механические игрушки, имитирующие внешний облик и поведение животных и человека («автоматоны» или «андроиды»). Примером может послужить утка, принимающая пищу (рис. 3), созданная механиком Жаком де Вокансоном (Jacques de Vaucanson) в 1739 г. [2]. Сохранился также железный рыцарь Леонардо да Винчи (Leonardo di ser Piero da Vinci), двигающий головой и руками.

Особенность всех этих механических автоматов в том, что они работают по жесткому алгоритму или программе. Первым примером применения обратной связи в автоматических устройствах является поплавковый регулятор уровня, известный уже во II в. до н. э., который до сих пор исправно действует, например в нашем бытовом оборудовании [3].

Рис. 2. Автомат для открывания дверей храма

Поплавковый регулятор был применен в водяных часах александрийского ученого Ктезибия (Κτησίβιος), построенных в II веке до н. э. [4, 5]. Рис. 4а иллюстрирует их принцип действия, а рис. 4б — внешний вид. Вода из верхнего резервуара через сопло 1, прикрываемое поплавком 2, поступает в резервуар 3, откуда и вытекает через мерное отверстие 4 в накопитель (нижний бак) 5. По мере наполнения накопителя поплавок 6 поднимает указатель, отмечающий время, по циферблату 7.

В данном случае использовано два автоматических устройства:

  • поплавковый регулятор уровня воды в баке;
  • водяной интегратор, отмеряющий уровень воды в накопителе, пропорциональный времени.

Поплавковый регулятор уровня обеспечивает постоянный напор воды в баке 3, а следовательно, и стабильную скорость подъема воды в накопителе, реализуя важнейший принцип регулирования — обратную связь. В данном случае поплавок соединяет функции чувствительного (измерительного) элемента и исполнительного механизма.

Рис. 3. Автомат Вокансона

Фактически часы Ктезибия имели более сложное устройство. Дело в том, что в Древнем Риме сутки имели 12 дневных и 12 ночных часов, продолжительность которых была разная, так как определялась длиной светового дня, зависящей от времени года. Поэтому в этих часах циферблат был нанесен на вращающийся барабан 8 (рис. 4б), поворачивающийся на один оборот в год с помощью не показанного на рисунке дополнительного водяного механизма в основании. Часы Ктезибия были единственной альтернативой солнечным или песочным часам вплоть до XIV в., когда им на смену пришли механические часы без маятника, а затем, с XVII в., и с маятником.

После падения Западной Римской империи развитие науки и техники в Европе приостановилось, и только на Арабском Востоке известно применение поплавковых регуляторов и водяных часов в VIII—XII вв. [3, 6].

Начиная с XVII в., в связи с развитием техники, в Европе появляются новые регуляторы с обратной связью:

  • регулятор температуры Дреббеля;
  • регулятор давления Папена;
  • регуляторы ветряных и водяных мельниц.

Рис. 4. Водяные часы Ктезибия: а) принцип действия; б) внешний вид

Знаменитый голландский ученый Корнелиус Дреббель (Cornelius Jacobszoon Drebbel) изобрел в начале XVII в. инкубатор для цыплят, который оснастил ртутным термостатом. Его чертежи не сохранились, однако по описаниям можно составить следующее представление об устройстве (рис. 5) [3, 4, 6].

Внутри камеры инкубатора 1, нагреваемой, например, спиртовкой 2, размещен чувствительный элемент — сосуд со спиртом 3, соединенный с U-образной трубкой 4, заполненной ртутью и закрытой поршнем 5, воздействующим на рычаг клапана 6 вентиляционного отверстия. Таким образом, перегрев камеры приводит к расширению спирта и открытию вентиляции. Регулятор был снабжен винтовым устройством выставки температуры. В данном случае чувствительный элемент и исполнительный механизм с U-образной трубкой и поршнем разделены, однако усилие на поршне создается, в конечном счете, чувствительным элементом.

Дреббель известен также как создатель одной из первых подводных лодок и изобретатель мощного микроскопа. Совершенствование термостатов инкубаторов продолжил французский ученый Рене-Антуан Реомюр (Ren? Antoine de R?aumur), предложивший также температурную «шкалу Реомюра» [7].

Рис. 5. Термостат Дреббеля

В 1707 г. французский физик и математик Дени Папен (Denis Papin), ассистент Гюйгенса, построил одну из первых паровых машин, паровой котел 1 которой, показанный на рис. 6, был оснащен предохранительным клапаном 2 с грузом 3 [3].

Регулируя положения груза, можно было задавать предельное давление сброса пара из котла. До сих пор все паровые котлы оснащаются подобными клапанами. Более совершенным автоматическим устройством был механизм разворота ветряной мельницы. В Средние века такие мельницы широко распространились по всей Европе. Башня ветряной мельницы сначала была неподвижной, затем ее стали разворачивать по ветру и, наконец, были созданы башни с ветровым колесом на поворотной крыше. Сейчас ветровые колеса ветрогенераторов поворачиваются вертикальными рулями на хвосте, но в Средние века несовершенство опор требовало настолько больших усилий, что плоскости на хвосте не могли с этим справиться, поэтому разворот крыши выполнялся обычно вручную.

Рис. 6. Паровой котел с клапаном Папена

В ветряке английского кузнеца Эдмунда Ли (Edmund Li), первый патент на который был получен в 1745 г., для разворота крыши использовано дополнительное ветровое колесо [3, 6, 8]. Принцип действия механизма показан на рис. 7а, где: 1— основное рабочее ветряное колесо мельницы; 2 — дополнительное ветряное колесо, ось вращения которого перпендикулярна оси рабочего колеса; 3 — неподвижная азимутальная шестерня, установленная на башне; 4 — червячный редуктор привода. Оба ветряных колеса установлены на вращающейся крыше. Когда направление ветра не совпадает с осью вращения рабочего колеса 1, дополнительное ветряное колесо 2 через редуктор 4 поворачивает всю крышу до такого положения, когда плоскость дополнительного колеса будет совпадать с направлением ветра, и поворот крыши прекратится.

На рис. 7б показан современный вид голландской мельницы с таким механизмом разворота [8]. Нетрудно заметить, что дополнительное ветряное колесо является одним из первых примеров сервомотора, скорость вращения которого увеличивается с увеличением угла рассогласования между направлением ветра и осью рабочего ветряного колеса. Дополнительное ветряное колесо играет также роль чувствительного элемента и источника энергии регулятора.

Рис. 7. Ветряк Эдмунда Ли

* * *
Таким образом, ранний этап развития автоматизации вплоть до широкого внедрения паровых машин отличается следующими особенностями:

  • Первые самодействующие устройства (автоматы), появившиеся задолго до новой эры, как правило, работали по жесткому алгоритму и использовались не для утилитарных или производственных целей, а для бого­служения или развлечений.
  • Изобретение в конце XVII в. часового механизма привело к созданию весьма совершенных программируемых механических автоматов-игрушек (андроидов), имитирующих внешние черты и поведение животных или человека.
  • Первым автоматическим устройством с обратной связью был поплавковый регулятор уровня, примененный в водяных часах Ктезибия (II в. до н. э.), в котором чувствительный элемент был совмещен с исполнительным механизмом в форме поплавка.
  • Развитие промышленности привело к созданию более совершенных регуляторов с обратной связью: температуры (Дреббеля), давления (Папена), ветряной мельницы (Эдмунда Ли). Во всех случаях энергия, необходимая для работы регулятора, вырабатывалась самим чувствительным элементом, который в регуляторе Дреббеля был отделен от исполнительного механизма.
  • Во всех регуляторах этого периода проблема устойчивости замкнутой системы, по существу, не возникала вследствие их низкой точности и малого быстродействия. Как следствие, не было ни специальной науки, ни отдельной отрасли производства автоматических устройств. Тем не менее для изготовления и подбора параметров таких регуляторов требовались весьма умелые механики.

Первые регуляторы не нашли широкого распространения, поскольку с задачами, которые они решали, легко справлялся и человек, труд которого был дешев, что делало применение сложных автоматических механизмов нерентабельным. Дальнейшее развитие регуляторы получили в XVIII в. в связи с началом широкого применения паровых машин, стабильная работа которых без регуляторов практически невозможна.

Facebook

Twitter

Вконтакте

Google+

controlengrussia.com

Урок «Простые автоматические устройства»

Цель: Познакомить учащихся с автоматическими устройствами и их структурой. Научить выполнять простые автоматические устройства. Анализировать работу выполненных устройств.

Задачи урока:

  • Образовательные
: Разобрать структуру простых автоматических устройств. Составить формулу автоматического устройства и собрать его на макетной плате. Проанализировать работу созданного на уроке устройства.
  • Развивающие
  • : Продолжить развитие умений навыков учащихся по конструированию макетных и монтажных плат; настройку и проверку работоспособности автоматических устройств.
  • Воспитательные
  • : Продолжить воспитание личностных качеств каждого ученика и формирование дружного коллектива.

    Дидактический материал к уроку. Макетные платы, набор радиодеталей, монтажный нож, для зачистки проводов, принципиальные схемы автоматических устройств, схема автоматического устройства, компьютер, проектор.

    Методы обучения:

    – Словесные: вопросы, лекция, беседа.
    – наглядные: макетные платы, подборка принципиальных схем, слайд-шоу с ранее выполненными работами по теме.
    – практические: создание усилителя фототока, являющегося простым автоматическим устройством.

    Тип урока: комбинированный.

    Методы проверки ключевых компетенций учащихся:

    – устный опрос;
    – выполнение и анализ самостоятельной работы.

    Объект труда: Фотореле на основе двухкаскадного усилителя фототока.

    План урока.

    1. Организационная часть.
    2. Актуализация знаний учащихся.
    3. Формирование новых знаний.
    4. Практическая работа.
    5. Закрепление материала.
    6. Подведение итогов урока.
    7. Домашнее задание.

    Ход урока

    1. Организационная часть.

    а) Проверка готовности к уроку.
    б) Назначение дежурных, проверка отсутствующих.
    в) Выдача тетрадей.

    2. Актуализация знаний учащихся.

    На прошлом уроке мы с Вами познакомились с основными понятиями, необходимыми для разбора принципиальных электрических схем. Помимо этого разобрались с принципом сборки простых схем на макетной плате. Повторим их: (сопровождается презентацией к уроку).

    А) Что называется узлом?
    (Узлом называется место соединения двух и более элементов.)

    Б) Как нумеруются узлы?
    (Последовательно от “минуса” источника питания до “плюса”.)

    В) Каким образом нумеруем выводы элементов цепи?
    (Если элемент на схеме изображен вертикально – то верхний вывод первый, нижний – второй. Если элемент на схеме изображен горизонтально, то слева первый, справа – второй. У транзистора: база – первый, коллектор второй, эмиттер третий.)

    Г) Каким образом записывается формула принципиальной схемы?
    (Последовательно через все узлы, начиная от “минуса” источника питания, до “плюса”, учитывая номера узлов.)

    Д) Каким образом производим монтаж устройства на макетной плате?
    (Выбираем на макетной плате столько клемм сколько получилось узлов в формуле. Каждая клемма определенный – узел, в котором соединяются определенные элементы. Зная формулу – соединяем элементы согласно ее.)

    3. Формирование новых знаний.

    Сегодня на уроке мы познакомимся с автоматическими устройствами.

    А) Автоматы появились в глубокой древности. Они, например, использовались египетскими жрецами для укрепления веры в божественные “чудеса”. Сейчас нет необходимости быть умным жрецом что бы построить простой и полезный автомат такой, как электронное сторожевое устройство. Первые автоматы были механическими. Большую известность получили куклы – автоматы, искусно имитировавшие довольно сложные человеческие действия. Известны, например, механические писец и музыкант. Внутри этих автоматов находится хитроумный часовой механизм со множеством шестеренок, рычагов, пружин и других механических деталей. Интересным автоматом являются часы-ходики с “кукушкой”. В них каждый час открывается дверца домика, из которого появляется “кукушка”. Механическое устройство моделирует звуки “ку-ку”, которые являются звуковым индикатором показаний часов.

    Механические автоматы и сейчас широко применяются в технике. Например, в кастрюле-скороварке клапан, выполненный виде стальной пробки, автоматически открывается, если давление превысит определенное значение. Как только оно понизиться до определенного значения, клапан закрывается автоматически регулировка давления паров в кастрюле осуществляется просто – путем подбора массы клапана.

    Широкое применение имеют и электромеханические устройства автоматики, например, регулятор температуры (терморегулятор) в утюге. Чувствительным органом, реагирующим на температуру, является специальная пластинка, имеющая два слоя металла, по-разному расширяющихся при нагревании. С ростом температуры пластинка, которая называется биметаллической, начинается изгибаться так, что металл который расширяется больше, оказывается на внешней стороне дуги.

    Нагреватель утюга включается в сеть через контакты, находящиеся на биметаллической пластине. По мере нагревания пластинка изгибается и при определенной температуре цепь спирали нагревателя разрывается. При охлаждении пластинка выпрямляется и замыкает цепь нагревателя. Далее процессы повторяются. Регулировка температуры заключается в предварительном изгибе пластинки, который осуществляется при повороте ручки регулятора.

    Такие терморегуляторы используются в некоторых типах электрорадиаторах и электроплиток.

    Б) Сравним теперь два регулятора: механический в “скороварке” и электромеханический в электроутюге. Что у них общего, В каждом есть чувствительный орган, реагирующий на регулируемую величину (датчик), задающий орган, определяющий значение регулируемой величины, и объект управления – давление пара в кастрюле и температура рабочей поверхности утюга. Подобные по назначению блоки имеются и в электронных автоматических устройствах.

    Простейшие электронные автоматы – различные реле, реагирующие на освещенность, температуру, влажность, давление и другие физические величины, – состоят из трех основных частей : датчика, усилителя и исполнительного устройства. Более сложные электронные устройства, предназначенные для автоматического регулирования, содержат дополнительно следующие узлы и цепи: задающий орган, элемент сравнения, объект управления и цепь обратной связи.

    Обратите внимание на схему (слайд в презентации) его. Важной частью является цепь обратной связи, благодаря которой автомат “узнает” о результатах своей “деятельности”, и, если надо, вносит коррективы.

    В) Рассмотрим в качестве примера усилитель фототока.

    Усилители постоянного тока (УПТ), предназначены для усиления медленно меняющих сигналов с частотой от 0 Гц и выше. Их используют для усиления сигналов от различных датчиков. Нагрузкой этих усилителей могут быть электромагнитные реле, лампы накаливания или электроизмерительные приборы.

    Важнейшей характеристикой каждого усилителя являются его коэффициенты усиления по напряжению, току и мощности.

    Основным элементом усилителя является транзистор.

    Рассмотрим работу простейшего усилителя постоянного тока(фототока), собранного по схеме, показанной на рис 1 (доска).

    Фоторезистор, включенный в цепь базы, определяет ток базы(Iб), который и является управляющим сигналом для транзистора. Изменение тока базы приводит к изменению значительно большего тока коллектора Iк в выходной цепи. В этом и состоит усиление транзистора. Оно характеризуется статическим коэффициентом передачи тока базы В. Для данной схемы включения транзистора B=Ik/Iб.

    Статический коэффициент В у разных типах транзисторов может меняться от 10 до 100. Этот коэффициент не является постоянной величиной, он зависит от выбранного тока базы. Если нужно увеличить коллекторный ток, то используют второй транзисторный усилитель. В двухкаскадном усилителе постоянного тока транзистор VT2 включен по схеме, показанной на рис 2. Нагрузка – лампа накаливания – включена в цепь коллектора, ток базы.

    Работает усилитель фототока следующим образом. С увеличением освещенности возрастает ток базы транзистора VT1, соответственно, увеличивается значительно большие токи коллектора и эмиттера, что приводит к возрастанию токов во втором транзисторе. Увеличение коллекторного тока транзистораVT2 приводит к постепенному нагреву нити лампы. Возможен также релейный, или ключевой режим работы усилителя, когда, начиная с какого-то определенного значения входного тока происходит резкое изменение выходного тока. В результате лампа или ярко загорается, или гаснет; промежуточных состояний, когда нить постепенно нагревается нет. Подобный режим обеспечивается введением положительной обратной связи, когда часть напряжения с выхода подается на вход, так, что происходит возрастание коэффициента усиления. Положительную обратную связь мы изучим позднее.

    3. Практическая работа.

    Практическая работа выполняется учащимися попарно.

    Вам необходимо собрать двухкаскадный усилитель фототока на макетной плате. Скажите, с чего начнем выполнение (сопровождается демонстрацией презентации).

    1. Вначале расставим узлы (делаем это прямо на карточках, которые раздает дежурный каждому учащемуся), затем пронумеруем их и выводы каждого элемента.

    2. Затем запишем формулу принципиальной схемы.

    3. По полученным данным определим на макетной плате количество клемм, необходимых для сборки устройства (рис 3).

    Формула схемы:

    1Б2К •1К1Л1R31R1 •2R11R2Б1 •Кл12R3Б2 •Кл22Л •2R2Э1Э22Б+

    (Читается следующим образом: “”минус” первый вывод батареи соединяется в первом узле со вторым выводом ключа; во втором узле соединяются первыми выводами резисторы R1 и R3, лампа накаливания и ключ; в третьем узле соединяются второй вывод резистора R1, первый вывод резистора R2 и первый (база) вывод транзистора VT1; в четвертом узле – второй вывод резистора R3, второй (коллектор) вывод транзистора VT1, и первый вывод (база) транзистора VT2; в пятом узле – второй вывод лампы и второй вывод (коллектор) транзистора VT2; в последнем (шестом) узле соединяются второй вывод резистора R2, третьи выводы (эмиттеры) обоих транзисторов VT1 и VT2, а так же второй вывод батареи “плюс”.)

    4. Предупреждаю учащихся о том, что сборку необходимо выполнять не спеша, сверяясь со схемой, стараться не допускать пересечения проводов,

    5. Из набора учащиеся выбирают необходимые для сборки детали (два транзистора КТ209, два резистора сопротивлением 2 кОм, фоторезистор, ключ, миниатюрную лампу, ключ, батарею элементов).

    6. Выбирают на макетной плате клеммы-узлы к которым будут присоединять детали.

    7. Собирают устройство парами, помогая друг другу, согласно формуле схемы (сборка цепи на макетной плате показана в презентации).

    8. Учитель совместно с учениками проверяет работоспособность собранных устройств.

    9. В процессе работы учащиеся и учитель консультируют тех, у которых устройство не работает по тем или иным причинам.

    10. Учащиеся делают вывод: фотореле срабатывает при затемнении фоторезистора. При затемнении сопротивление фоторезистора увеличивается, сила тока через делитель напряжения R1, R2 уменьшается, что приводит к уменьшению напряжения на базе транзистора VT1. Транзистор VT1 закрывается, сопротивление его эмиттерно-коллекторного участка возрастает. Это и приводит к уменьшению силы тока, проходящего данный участок и резистор R3. Напряжение на базе транзистора VT2 увеличивается, и он о

    urok.1sept.ru

    Электрические уровнемеры

    В них измеряемые значения уровня жидкости преобразуются в соответствующие электрические сигналы. Наиболее распространены емкостные и омические приборы.

    Рис. 49. Схема электрических уровнемеров: а — емкостный; б — омический

    Уровнемеры для сыпучих материалов

    Уровнемеры для сыпучих тел имеют свои особенности. Характерным отличием сыпучих материалов от жидкостей является непропорциональность передачи давления на дно и стенки емкости в зависимости от уровня в ней контролируемого вещества. Простейшие уровнемеры для сыпучих материалов выполняются с чувствительными элементами, соприкасающимися с поверхностью вещества. Изменение уровня дистанционно передается на вторичный измерительный прибор.

    В лотовых уровнемерах зонд (лот) 5 и груз 7 подвешены на блоке храпового колеса 4. Зонд периодически приподнимается с помощью управляемого пневматического мембранного привода 2 (воздействующего на колесо через собачку 3) и опускается на поверхность сыпучего материала 6 под действием силы тяжести.

    Рис. 50. Схема лотового уровнемера

    1- пневматический генератор импульсов,

    2 – мембранный привод, 3 – собачка,

    4 – храповое колесо, 5 – зонд (лот),

    6 – сыпучий материал, 7 – груз,

    8 — пневмопреобразователь, 9 – манометр.

    Если уровень не изменяется, зонд поднимается и опускается на одно и то же расстояние. При понижении уровня материала зонд опускается на большее расстояние, чем поднимается, и наоборот. Уровнемер должен работать так, чтобы при изменении уровня в заданных пределах давление сжатого воздуха на выходе прибора изменялось от 20 до 100 кПа. С выхода пневмопреобразователя 8 воздух подается на вторичный прибор. Лотовые уровнемеры позволяют измерять уровень до 20 м.

    Модуль 3 автоматическое регулирование и регуляторы

    Тема 3.1 Основные понятия и определения

    Регулирование автоматическое (от нем. regulieren — регулировать, от лат. regula — норма, правило) — это поддержание постоянства (стабилизация) некоторой регулируемой величины, характеризующей технический процесс, либо её изменение по заданному закону (программное регулирование) или в соответствии с некоторым измеряемым внешним процессом (следящее регулирование).

    Автомат (от греческого autómatos — самодействующий):

    Автоматическое устройство – это самостоятельно действующее устройство (или совокупность устройств), выполняющее по заданной программе без непосредственного участия человека процессы получения, преобразования, передачи и использования энергии, материала и информации, которое применяется для повышения производительности и облегчения труда человека, для освобождения его от работы в труднодоступных или опасных для жизни условиях.

    Существенно повлияло на развитие автоматики изобретение часов с пружинным приводом (П. Хенлейн в Германии, 16 век) и особенно маятниковых часов (Х. Гюйгенс в Голландии, 1657 год), в которых впервые использовались принципы и отдельные механизмы, получившие впоследствии широкое применение в автоматике.

    Важное значение имели работы русских учёных: изобретение П. Л. Шиллингом магнитоэлектрического реле (1830 год) — одного из основных элементов автоматики, разработка Ф. М. Балюкевичем, В. М. Тагайчиковым и др. в 80-х гг. 19 века ряда устройств автоматической сигнализации на железнодорожном транспорте, создание С. М. Апостоловым-Бердичевским совместно с М. Ф. Фрейденбергом первой в мире автоматической телефонной станции (1893 год).

    Последовательность всех рабочих и вспомогательных операций, выполняемых автоматизированных устройств, называется рабочим циклом.

    Автоматизированные устройства, у которых рабочий цикл прерывается и для его повторения требуется обязательное вмешательство человека, называются полуавтоматами. В общем случае рабочий цикл определяется программой, которая задаётся в конструкции. Например, программа действия наручных часов определяется конструкцией спускового механизма и маятника, получающих в большинстве случаев энергию от заводной пружины. 

    Автоматизация производства – это процесс в развитии производства, при котором функции управления и контроля, ранее выполнявшиеся человеком, передаются приборам и автоматическим устройствам.

    Частичная автоматизация отдельных производственных операций, осуществляется в тех случаях, когда управление процессами вследствие их сложности или скоротечности практически недоступно человеку и когда простые автоматические устройства эффективно заменяют его.

    Полная автоматизация — это высшая ступень автоматизации, которая предусматривает передачу всех функций управления и контроля комплексно-автоматизированным производством автоматическим системам. Она проводится тогда, когда автоматизируемое производство рентабельно, устойчиво, его режимы практически неизменны, а возможные отклонения заранее могут быть учтены, а также в условиях недоступных или опасных для жизни и здоровья человека.

    Автоматизация газового хозяйства – это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем.

    Автоматизация объектов, использующих газовое топливо, позволяет сократить количество обслуживающего персонала, улучшить работу агрегатов и обеспечить их безопасную эксплуатацию, ведет к экономии топливно-энергетических ресурсов.

    Автоматические устройства обеспечивают:

    — контроль и измерение;

    — сигнализацию;

    — управление;

    — регулирование.

    С помощью контрольно-измерительных приборов контролируют давление газа, наличие факела, полноту сжигания газа.

    Автоматическая сигнализация может быть:

    — предупредительная;

    — исполнительная;

    — аварийная.

    Автоматика безопасности отключает подачу газа при недопустимом отклонении давления газа, погасании пламени горелок, нарушении тяги и т.д.

    Под автоматическим управлением понимают импульсы, посылаемые датчиками, которые контролируют режим работы.

    В настоящее время – основное направление в автоматизации – это создание комплексных систем, включающих автоматику безопасности и регулирования.

    Датчик

    Датчик – это специальное устройство, которое преобразует контролируемую величину в выходной сигнал, удобный для передачи на расстояние и воздействия на последующие элементы автоматической системы.

    Датчик, сенсор (от англ.sensor) — термин систем управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

    studfile.net

    Автоматика (лекции)

    8

    ЛЕКЦИЯ 1.

    Основные понятия и определения

    В современном мире мы повсюду встречаемся с устройствами и системами, выполняющими различные простые и сложные операции без непосредственного участия человека. Такие устройства и системы называются – автоматическими системами. Для их правильного функционирования, обслуживания, управления, а также для разработки и проектирования таких систем требуются специальные знания. Все это изучает научная дисциплина, которая называется – автоматика.

    Автоматика – это область теоретических и прикладных знаний об автоматически действующих технических устройствах и системах. Таким образом, ясно, что автоматика включает в себя как теорию автоматического регулирования и управления, так и совокупность технических средств, необходимых для построения автоматических систем.

    В зависимости от функций, выполняемых автоматическими устройствами можно выделить три основных вида систем автоматики:

    • системы автоматического контроля;

    • системы автоматической защиты;

    • системы автоматического управления (САУ).

    Автоматический контроль предназначен для:

    • сигнализации;

    • автоматического измерения и индицирования;

    • сбора информации.

    Автоматическая сигнализация предназначена для оповещения о нормальных, предельных и аварийных значениях контролируемых параметров, а также для указания места и характера нарушений производственного процесса.

    Автоматическое измерение служит для измерения и передачи на указательные и регистрирующие приборы различных параметров производственного процесса.

    Автоматический сбор информации предназначен для получения общей информации о ходе производственного процесса, качестве выпускаемой продукции и т.п. Он предполагает возможность передачи, хранения и последующей обработки средствами вычислительной техники совокупности различных параметров производственного процесса.

    Автоматическая защита служит для предотвращения ненормальных или аварийных режимов работы. В случае возникновения таких аварийных режимов система автоматической защиты может либо прекратить контролируемый процесс, либо вывести его из аварийного режима.

    Автоматическое управление предназначено для целенаправленного изменения различных параметров производственного или технологического процесса. Разновидностью автоматического управления является автоматическое регулирование. Под этим понимается процесс поддержания или целенаправленного изменения какого-либо одного параметра. Автоматическое устройство, которое выполняет такую функцию, называется регулятором.

    Структура систем автоматического управления

    Автоматическая система управления любой сложности состоит из:

    В общем виде САУ можно изобразить следующим образом.

    Состояние объекта характеризуется выходной величиной Х. В общем случае выходных величин несколько, и тогда состояние объекта характеризуется вектором Х.

    От УУ на вход объекта поступает управляющее воздействие U.

    Помимо управляющего воздействия к объекту приложено также возмущающее воздействие (возмущение, помеха) F, которое изменяет состояние объекта, т.е. Х, препятствуя управлению.

    На вход управляющего устройства подается задающее воздействие (задание) G, содержащее информацию о требуемом значении Х, т.е. о цели управления. Переменные U,G,F в общем случае являются векторами.

    В технике под объектом управления подразумевается техническое устройство или технологический процесс, некоторые физические параметры которого подлежат стабилизации или целенаправленным изменениям. Объект управления взаимодействует с внешней средой. Воздействие окружающей среды на объект управления называется возмущающим воздействием. Для того чтобы объект управления мог реагировать на внешние воздействия, он должен иметь орган управления, или регулирующий орган. Например, если объектом регулирования является электрическая печь сопротивления, то регулирующим органом у нее может быть реостат, автотрансформатор, либо тиристорный блок.

    Автоматическим управляющим устройством называется устройство, осуществляющее воздействие на объект управления в соответствии с заложенным в нем законом (алгоритмом) управления. Обычно управляющее устройство действует на объект управления через орган управления.

    Связь между различными элементами автоматической системы управления (например, связь между регулятором и регулирующим органом объекта управления; или связь между объектом управления и его регулирующим органом) осуществляется с помощью сигналов. Дадим определение сигнала.

    Сигналами называются физические процессы, параметры которых содержат информацию. Например, в телефонной связи звук передается при помощи электрических сигналов. Параметры, содержащую информацию, называются информационными параметрами. Например, сигнал – электрический ток, информационный параметр – амплитуда тока или напряжения.

    Те физические величины объекта управления, которые требуется стабилизировать, либо изменять по заданному закону называются регулируемыми параметрами. В термическом процессе (электрическая печь) таким регулируемым параметром является температура.

    Рассмотрим, что из себя представляет УУ, которое перерабатывает получаемую информацию по определенному заложенному в нем алгоритму (правилу), в результате чего на его выходе возникает управляющее воздействие.

    Основными частями УУ являются: чувствительное устройство ЧУ, вычислительное устройство ВУ и исполнительное устройство ИУ.

    ЧУ служат для измерения переменных Х,G и F.

    ВУ реализует алгоритм работы управляющего устройства, соответствующим образом перерабатывая поступающую от чувствительных устройств входную информацию. В простейшем случае оно осуществляет простые математические операции, такие как операция сравнения, определяющая разность Х – G, операции интегрирования, дифференцирования, статического нелинейного преобразования и т.п. В более сложных случаях ВУ может представлять собой вычислительную машину и даже комплекс таких машин.

    ИУ предназначены для непосредственного управления объектом, т.е. изменения его состояния в соответствии с сигналом, выдаваемым вычислительным устройством, чтобы свести к нулю рассогласование.

    Помимо перечисленных частей, в состав УУ могут входить различные специальные устройства, например, преобразователи, служащие для согласования отдельных частей системы, устройств связи и т.п.

    studfile.net

    Сообщества › Гильдия Электриков › Блог › Модульные автоматические выключатели. Устройство и принцип работы

    Модульные автоматические выключатели (далее автоматы) нашли широкое применение в различных электроустановках, от промышленных до бытовых, благодаря своей компактности, простоте конструкции (следовательно надёжности) и невысокой стоимости. Производители выпускают достаточно широкую линейку модульных автоматов с различным числом полюсов (от 1-го до 4-х) на различные номинальные токи, до 125А включительно. Модульными их называют потому, что производятся они в виде одинаковых, по габаритным размерам и принципу устройства, однополюсных модулей, из которых собираются 2-х, 3-х и 4-х полюсные автоматы (т.е. многополюсные автоматы не имеют цельного корпуса, а состоят из соответствующего количества однополюсных модулей). Ширина модуля стандартизирована и равна 17,5 мм. Некоторые модели автоматов имеют ширину корпуса большую, чем ширина стандартного модуля, но, как правило, производители стремятся соблюдать кратность стандартной ширины, что облегчает проектирование внутренней компоновки щитов и шкафов. Кратность при этом может быть дробной с шагом 0,5, например, 1,5, что означает ширину корпуса равную 26,25 мм (на практике 26,5 мм, что несущественно):

    Полный размер

    Крайний правый автомат имеет более широкие модули

    Увеличенная ширина корпуса обусловлена, в первую очередь, повышенной отключающей способностью таких автоматов.
    Независимо от номинального тока, на который рассчитан автомат, от его отключающей способности, время-токовой характеристики, а так же рода тока (переменный или постоянный), принцип его работы и принцип устройства его узлов одинаков. Все вышеперечисленные параметры определяются конструктивными особенностями отдельных функциональных узлов автомата, которые не оказывают никакого влияния на сам принцип их работы. Фото ниже демонстрирует сказанное:

    Сверху вниз: AC -10А: DC — 2А; АС — 2А

    У представленных автоматов конструктивно отличаются лишь электромагниты (разное число витков и сечение провода), тепловая защита (биметаллическая пластина), устройство гашения дуги (форма дугогасительной камеры, дугогасительная решётка, взаимное расположение проводящих элементов). Остальные элементы конструкции автомата идентичны друг другу, что позволяет существенно упростить (удешевить) их производство за счёт унификации отдельных узлов и деталей.

    В модульных автоматах одновременно реализовано два вида защиты: тепловая и электромагнитная.

    Тепловая защита (её принято называть тепловым расцепителем) выполнена на биметаллической пластине:

    Полный размер

    Её свойства таковы, что при нагреве, за счёт разного коэффициента линейного расширения входящих в неё металлов, одна сторона пластины удлиняется больше чем другая. Как следствие, это приводит к её изгибу. Изгиб тем больше, чем выше степень нагрева пластины. Поскольку один конец пластины жёстко зафиксирован, то благодаря тому, что другой конец пластины свободен, при достаточной степени изгиба, она способна воздействовать посредством подвижной скобы на механизм

    www.drive2.ru

    автоматическое устройство (какое) — это… Что такое автоматическое устройство (какое)?

    
    автоматическое устройство (какое)

    регулятор.

    терморегулятор.

    уставка.

    исполнительный механизм.

    серво…

    сервомеханизм. сервомотор. сервокомпенсатор.

    сельсин.

    электроавтоматика. і термостат.

    пневмоавтоматика. пневмоника. і гомеостат.

    стабилизатор.

    робототехника. робот — автоматический манипулятор.

    автооператор. автопилот.

    станок — автомат. | автоматическая линия.

    блок — аппарат.

    реле — электрический замыкатель;

    переключающий элемент, преобразующий плавное изменение входной величины

    в скачкообразное изменение выходной. релейный.

    параметрон.

    магнитный пускатель. | биакс.

    коммутатор. | нумератор.

    пульт.

    Идеографический словарь русского языка. — М.: Издательство ЭТС. Баранов О.С.. 1995.

    • автоматика
    • сообщение (какое)

    Смотреть что такое «автоматическое устройство (какое)» в других словарях:

    • автоматический — прил., употр. сравн. часто Морфология: нар. автоматически 1. Автоматическое устройство работает по заложенной в него программе без непосредственного участия человека. Автоматический тормоз. | Автоматическая станция. 2. Когда в автомобиле… …   Толковый словарь Дмитриева

    • АЛГОРИТМИЧЕСКИЙ ЯЗЫК —     АЛГОРИТМИЧЕСКИЙ ЯЗЫК искусственная система языковых средств, обладающая выразительными возможностями, достаточными для того, чтобы с ее помощью можно было задать любое принадлежащее заранее очерченному классу детерминированное общепонятное… …   Философская энциклопедия

    • АЛГОРИТМИЧЕСКИЙ Я3ЫК — – искусственная система языковых средств, обладающая выразительными возможностями, достаточными для того, чтобы с ее помощью можно было задать любое принадлежащее заранее очерченному классу детерминированное общепонятное предписание, выполнение… …   Философская энциклопедия

    • ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… …   Словарь-справочник терминов нормативно-технической документации

    • Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться …   Википедия

    • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

    • Пистолет-пулемёт — ПП Uzi. Израиль, 1954  наст. время …   Википедия

    • высота — 3.4 высота (height): Размер самой короткой кромки карты. Источник: ГОСТ Р ИСО/МЭК 15457 1 2006: Карты идентификационные. Карты тонкие гибкие. Часть 1. Физические характеристики …   Словарь-справочник терминов нормативно-технической документации

    • Электричество — (Electricity) Понятие электричество, получение и применение электричества Информация о понятии электричество, получение и применение электричества Содержание — это понятие, выражающее свойства и явления, обусловленные структурой физических… …   Энциклопедия инвестора

    • Нанотехнология — (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… …   Энциклопедия инвестора

    ideographic.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *