Что делает катушка индуктивности: назначение и характеристики, методы расчёта для катушки и схемы, формулы для нахождения

Содержание

назначение, характеристики, виды. Примеры использования

Катушки  индуктивности  (КИ;  индуктивность;  индуктор;  катушка)  используются в  электронных  схемах нечасто: обычное их место в схемах  преобразователей питания. Так называемые,  высокочастотные катушки  применяют в фильтрации напряжений питания чувствительных (аналоговых) компонентов.

Общее назначение КИ  (представлена на рисунке 1.27)  –  запасать энергию магнитного поля 

Wм= L*I2/  2  при протекании электрического тока, где I  –  протекающий через катушку ток, а  L  -  основной параметр КИ  -  индуктивность.

Качественные рассуждения при анализе электрической схемы: «катушка индуктивности  хорошо  пропускает  постоянный  и  низкочастотные  токи  и  затрудняет прохождение высокочастотных токов  –  представляет собой разрыв цепи для таких токов».

Исторический образ  КИ –  катушка с проводом. Внешне она может не отличаться от проволочного резистора.  Чем больше витков, тем  выше  основной параметр  катушки  –  индуктивность.

Отличие  от  проволочного  резистора  заключается в том, что омическое сопротивление  провода в катушке индуктивности является паразитным параметром: чем оно больше, тем больше потери энергии в катушке индуктивности (это функция собственно резистора). Второе отличие заключается в наличие магнитного сердечника (показано на  рисунке  1.28): чем лучше магнитные свойства сердечника, тем выше индуктивность.

Точный расчёт индуктивности катушки зависит от особенностей её конструкции. Для относительно простого случая (показано на рисунке 1.29) индуктивность оценивается по формуле:

L ≈ µ0*µ*s*N2/ l ,  (1.11)

где   µ0 ≈1,26·10-6Гн/м магнитная постоянная,

µ - относительная магнитная проницаемость,

s – площадь поперечного сечения катушки [м2],

N- число витков провода, l – длина намотки [м].

Значения  проницаемости  некоторых  магнитных  материалов  представлены в таблице 1.11.

Таблица  1.11 – Значения свойств некоторых магнитных материалов

Материал

µ

Относительная проницаемость,

µ/ µ0

Пермаллой

1×10-2

до 50000

Электротехническая сталь

5×10-3

4000

Феррит (никель-цинк)

8,0×10-4 и более

до 640 и более

Никель

1,25×10-4

до 600

*Именно по этой характеристике оценивают магнитные качества магнитных материалов.

На  принципиальных  электрических  схемах  катушки индуктивности  обозначаются  графемой (показано на рисунке 1.30 слева):

Примечание   –   В  некоторых  случаях  общепринятую  в  принципиальных  схемах  графему  заменяют  более  сложной  моделью  (показано  на  рисунке  1.30  справа).  Такая  замена обоснована для КИ, которые имеют низкое значение добротности Q (см. определение далее).

Помимо индуктивности другими важными характеристиками катушек индуктивности являются:

  • номинальный  рабочий  ток  в  амперах.  Это  паспортное  значение  не должно превышаться во время эксплуатации КИ;
  • добротность. Это паспортное значение рассчитывают по формуле: Q = ω*L / RL ,  (1.12)

где  RL – сопротивление катушки на постоянном токе,

ω=2πf – актуальная круговая частота переменного тока, протекающего в КИ.

Чем больше  Q, тем меньше потери энергии на выбранной частоте, тем качественнее изготовлена катушка.

Катушки индуктивности  также  как  резисторы  и  конденсаторы,  выпускаются в  трёх  функциональных разновидностях:  постоянные,  переменные  и  подстроечные. Подстроечные широко используются в радиотехнике, но практически не используются в измерительной технике  –  их рассматривать не будем. Постоянные  катушки индуктивности  имеют разнообразные конструктивные решения (показано на рисунке 1.31).

Наиболее  широкое  применение  в  настоящее  время  находят  КИ  для  поверхностного  монтажа  (показано  на  рисунке  1.32).  Они  снижают  габаритные размеры электронных узлов, повышают надёжность работы схем и удешевляют продукцию.

Типовые характеристики современных КИ представлены в таблицах 1.12 и 1.13.

Таблица   1.12 –  Типовые характеристики высокочастотных чип-индуктивностей MURATA LQG18HN размера 0603

Типовые расчётные соотношения

  1. Последовательное соединение КИ: Lэ=L1+L2.

Пример:

L1 = 3,3 нГн/910 мА, L2= 6,8 нГн/680 мА; Lэ = 3,3 + 6,8 = 10,1 нГн.

При этом следует иметь в виду, что результат справедлив для токов, не превышающих 680 мА  –  это максимальный рабочий ток который может быть пропущен через L2.

  1. Параллельное соединение КИ возможно, но лучше не использовать, т.к. результат мало предсказуем: расположенные рядом КИ взаимодействуют через общее магнитное поле. Формула для расчёта в этом случае более сложная.

Пример использования катушек индуктивности

Катушки индуктивности широко применяются в преобразователях питания.  Схема подключения  понижающего  ключевого  преобразователя  показана  на    рисунке  1.33.  На его вход можно подавать постоянное напряжение в очень широком диапазоне значений  –  от  5до140 В,  на  выходе  поддерживается  стабильным  напряжение +5 В.

Указанные пассивные компоненты рекомендуются производителем в техническом описании. Особенно важно соблюдать рекомендации по выбору типа КИ.

 

для чего она нужна и как работает, параметры

Индукционная катушка — это дроссель или изолированный проводник. Используется электрический каркас, композитные вставки. При рассмотрении понятия необходимо изучить свойства, основные особенности катушки индуктивности.

Определение устройства

Катушка индуктивности — это устройство, которое обладает малой емкостью и значительным сопротивлением. Дроссель является отменным проводником электрического тока, учитывается высокий показатель инерционности. Устройства применяются в качестве свернутого изолированного проводника. Винтовые, спиральные модификации способны справляться с помехами, колебаниями в сети.

Индукционная катушка

Важно! Устройство работает в цепях переменного тока при низкой и высокой частоте.

Назначение и принцип действия

Специалисты задаются вопросом, зачем нужна токовая катушка индуктивности в цепи, и для этого необходимо разобраться в показателях. Коэффициент ЭДС (электродвижущая сила) показывает разницу между энергией и магнитным потоком. Устройства самоиндукции способны влиять на изменения в цепи. Чаще всего дроссели применяются в силовых установках. Они способны контролировать уровень напряжения, не допускают разрыва цепи.

Устройства самоиндукции

Также компоненты устанавливаются на пару с конденсаторами либо резисторами. Благодаря работе катушки фильтры находятся в безопасности. Теперь вызывает интерес, как включается индукционная катушка. Принцип работы построен на изоляции проводников. В конструкции используется электрический каркас с различным сечением. За счёт намоток обеспечивается распределение ёмкости на дросселе.

Интересно! Витки наматываются с определенным шагом, многое зависит от типа катушки.

Виды и типы

Различают низкочастотные, высокочастотные модели. В отдельную категорию выделяют винтовые, спиральные катушки. Также существуют модификации, которые используются в радиотехнике. Они подходят для защиты конденсатора либо резонансных контуров.

Устройства в радиотехнике

Для трансформаторов годятся катушки с усилителем каскадом. В последнюю категорию выделены вариометры, основное отличие — высокая частота колебательных контуров. Дроссели могут быть одинарными либо сдвоенными. От этого зависит показатель индуктивности и питания системы.

Низкочастотные

Для включения в электрическую цепь, применяется низкочастотная катушка индуктивности. Она предназначена для подавления переменного тока. В формуле учитывается циклическая частота и показатели индуктивности. За основу в устройствах берётся сердечник, который изготавливается из стали. Он может быть с фильтрами либо без них.

Чтобы влиять на частоту, происходит игра с сопротивлением. В цепи постоянного тока напряжение должно быть неизменным. С целью понижения частоты применяются фильтры. Основная проблема — это малая ёмкость. Чтобы детально ознакомиться с дросселем, стоит подробнее узнать о резонансной частоте, которая выделяется на контуре рабочего сигнала.

Когда в цепях повышается напряжение, на каркас оказывается нагрузка. В цепи постоянного тока задействуются непрозрачные проволочные резисторы. Также для этих целей подходят однослойные катушки типа «универсал». Их особенность — использование ферритовых стержней.

Низкочастотная катушка

Высокочастотные

Устройства изготавливаются с различными типами обмотки. Речь идет о наборе преимуществ, которые спасают в той или иной ситуации. Сфера применения элементов широка, учитывается значительная частота модуляции. Таким образом удается бороться с повышенным сопротивлением металлов. У катушек имеется сердечник.

Основная задача — это модуляция частоты генератора. Она происходит за счёт усиления сигнала, и за процессом можно проследить при подключении осциллографа. Многие высокочастотные катушки не отличаются стабильной работой, поскольку применяется керамический каркас. У него малый срок годности, плюс они восприимчивы к повышенной влажности.

Интересно! Современные товары изготавливаются из алюминия и являются компактными.

Электрикам известны контурные, безконтурные модификации высокой частоты. В зависимости от намотки учитывается стабильность электрических параметров. У моделей высокой частоты могут применяться магниты и провода. Речь идет о порошковых материалах, сделанных из диэлектриков.

Процесс изготовления связан с методом холодного прессования. Индуктивные датчики отличаются по защищенности. На предприятиях элементы могут погружать в раствор либо продевать в трубку. Это делается с целью избежания коротких замыканий. Мировые производители решают проблему путем использование вторичного витка.

Высокочастотная катушка

У моделей значительное сопротивление и есть проблема с концентрацией электролита. Таким образом изменяются свойства катушки индуктивности. Проводимость раствора падает и повышается частота электромагнитного поля.

Основные технические параметры

Катушки индуктивности имеют следующие характеристики:

  • добротность отклонения;
  • эффективность;
  • начальная индуктивность;
  • температура;
  • стабильность;
  • предельная емкость;
  • номинальная индуктивность.

Стабильность демонстрирует свойства устройства при изменении условий использования. Температура фиксируется вследствие различных причин. Многое зависит от размера каркаса. Когда температура уменьшается, индуктивность также снижается. Современные параметры — это цикличность, которая является отношением температуры к линейному расширению. Учитывается изменение в керамической основе плюс показатель плотности.

Температура отслеживается на горячей намотке. В этом плане хорошо себя показали многослойные дроссели с сердечником, которые сделаны из карбонильного железа. Ёмкость отображает количество витков катушки, берется в расчет количество секций и контуров. Высокочастотные модели считаются более емкостными и стабильными.

Емкостные катушки

Номинальная индуктивность — это параметр, который учитывает изменение размеров волны. Измерение происходит в микрогенрах. Если смотреть на формулу, учитывается количество витков, длина намотки, плюс диаметр катушки.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.

Маркировка

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку :), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению:
– магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз.
  • – площадь поперечного сечения катушки
  • – количество витков
  • – длина катушки
  • Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

    С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

    Катушка индуктивности в цепи постоянного тока.

    Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

    Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

    Что же произойдет в тот момент когда мы замкнем выключатель?

    Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

    Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

    На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

    Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

    После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

    Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

    На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

    Катушка индуктивности в цепи переменного тока.

    Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

    Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

    Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

    Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

    Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

    Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: 0″ title=»Rendered by QuickLaTeX.com» />, участок 3-4: 0″ title=»Rendered by QuickLaTeX.com» />,

    Где – круговая частота: . – это частота переменного тока.

    Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

    Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

    А следовательно:

    Построим на одном графике зависимости тока и напряжения в цепи от времени:

    Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

    При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

    Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

    На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

    В данной статье мы подробно рассмотрим индуктор. Отдельно разберем индуктор на схеме, обратную ЭДС генерируемую индуктором, постоянную времени индуктора, ток и напряжение в индукторе, а так же мощность и энергию в индукторе.

    Определение и принцип работы

    В наших уроках об электромагнетизме мы увидели, что когда электрический ток протекает через проводник, вокруг проводника возникает магнитный поток. Это создает взаимосвязь между направлением магнитного потока, который циркулирует вокруг проводника, и направлением тока, протекающего через тот же проводник, что приводит к хорошо известной взаимосвязи между током и направлением магнитного потока, называемой «Правило правой руки Флеминга».

    Но есть и другое важное свойство, относящееся к намотанной катушке, которая также существует, а именно то, что вторичное напряжение индуцируется в ту же катушку движением магнитного потока, поскольку оно противостоит любым изменениям электрического тока, протекающего по нему.

    Типичный индуктор

    В своей основной форме Индуктор — это не что иное, как катушка проволоки, намотанная вокруг центрального сердечника. Для большинства катушек токI, протекающий через катушку, создает магнитный поток вокруг нее, который пропорционален этому потоку электрического тока.

    Индуктор, называемый также дросселем, является еще одним типом пассивного электрического компонента, который является простой катушкой провода предназначенного, чтобы воспользоваться этой взаимосвязью путем индукции магнитного поля, сам по себе, или в активной зоне в результате тока, проходящем через катушки. Это приводит к гораздо более сильному магнитному полю, чем то, которое создавалось бы простой катушкой из проволоки.

    Индукторы образованы проволокой, плотно обернутой вокруг сплошного центрального сердечника, который может представлять собой либо прямой цилиндрический стержень, либо непрерывную петлю или кольцо для концентрации их магнитного потока.

    Схематическое обозначение индуктора — это катушка с проводом, поэтому катушку с проводом можно также назвать индуктором. Индукторы обычно классифицируются в соответствии с типом внутреннего сердечника, вокруг которого они намотаны, например, полый сердечник, твердый железный сердечник или мягкий ферритовый сердечник, причем различные типы сердечников различаются путем добавления непрерывных или пунктирных параллельных линий рядом с проволочная катушкой, как показано ниже.

    Индуктор на схеме

    Ток I, который протекает через катушку индуктивности производит магнитный поток, который пропорционален к нему. Но в отличие от конденсатора, который противодействует изменению напряжения на своих пластинах, индуктор противодействует скорости изменения тока, протекающего через него, из-за накопления самоиндуцированной энергии в его магнитном поле.

    Другими словами, катушки индуктивности сопротивляются или противостоят изменениям тока, но легко пропустят постоянный ток. Эта способность индуктора противостоять изменениям тока и которая также связывает ток I с его магнитным потоком как коэффициент пропорциональности, называется индуктивностью, которому присвоен символ L с единицами измерения ГенриH ).

    Поскольку Генри представляет собой относительно большую единицу индуктивности, для младших индукторов Генри используются для обозначения его значения. Например:

    Префиксы индуктивности

    Префикс Условное обозначение мультипликатор Степень десяти
    милли m 1/1 000 10 -3
    микро μ 1/1000000 10 -6
    нано n 1/1000000000 10 -9

    Таким образом, для отображения подразделов Генри мы будем использовать в качестве примера:

    • 1mH = 1 милли-Генри   — что равно одной тысячной (1/1000) Генри.
    • 100μH = 100 микро-Генри   — что равно одной 100-миллионной ( 1/1 000 000) Генри.

    Индукторы или катушки очень распространены в электрических цепях, и существует множество факторов, определяющих индуктивность катушки, таких как форма катушки, число витков изолированного провода, число слоев провода, расстояние между витками, проницаемость материала сердечника, размер или площадь поперечного сечения сердечника и т. д.

    Катушка индуктивности имеет площадь поперечного сечения сердечника ( A ) с постоянным числом витков провода на единицу длины ( l ). Таким образом, если катушка N витков связана на величину магнитного потока Φ то катушка имеет потокосцепление и любой ток I, который протекает через катушку будет производить индуцированный магнитный поток в противоположном направлении по отношению к потоку тока. Затем, согласно закону Фарадея, любое изменение в этой связи магнитного потока производит самоиндуцированное напряжение в одной катушке:

    Где:

    •    N — число витков
    •     А — площадь поперечного сечения в м 2
    •    Φ — количество потока в Веберах
    •     μ — проницаемость материала сердечника
    •     L — длина катушки в метрах
    •    di / dt — скорость изменения тока в Амперах в секунду

    Изменяющееся во времени магнитное поле индуцирует напряжение, которое пропорционально скорости изменения тока, создающего его, с положительным значением, указывающим на увеличение ЭДС, и отрицательным значением, указывающим на уменьшение ЭДС. Уравнение, связывающее это напряжение, ток и индуктивность с самоиндукцией, может быть найдено путем замены μN 2 A / l на L, обозначая постоянную пропорциональности, называемую индуктивностью катушки.

    Соотношение между потоком в катушке индуктивности и током, протекающим через катушку индуктивности, имеет вид: NΦ = Li . Поскольку катушка индуктивности состоит из катушки с проводящим проводом, это уменьшает приведенное выше уравнение, чтобы получить самоиндуцированную ЭДС, иногда называемую также обратной ЭДС, индуцированной в катушке.

    Обратная ЭДС генерируемая индуктором

    Таким образом, из этого уравнения мы можем сказать, что «самоиндуцированная ЭДС = индуктивность * скорость изменения тока» и цепь с индуктивностью один Генри будет иметь ЭДС 1 вольт, индуцированную в цепи, когда ток, протекающий через цепь, изменяется со скоростью 1 Ампер в секунду.

    Один важный момент, который нужно отметить относительно приведенного выше уравнения. Он только связывает ЭДС, создаваемую через индуктор, с изменениями тока, потому что, если ток индуктора постоянен и не изменяется, например, в постоянном токе, то индуцированное напряжение ЭДС будет равно нулю, поскольку мгновенная скорость изменения тока равна ноль di / dt = 0.

    При постоянном токе, протекающем через индуктор и, следовательно, нулевом индуцированном напряжении на нем, индуктор действует как короткое замыкание, равное куску провода, или, по крайней мере, очень низкое значение сопротивления. Другими словами, противодействие протеканию тока, предлагаемого индуктором, очень различно в цепях переменного и постоянного тока.

    Постоянная времени индуктора

    Теперь мы знаем, что ток не может изменяться мгновенно в индуктивности, потому что для этого ток должен измениться на конечную величину за нулевое время, что приведет к тому, что скорость изменения тока будет бесконечной di / dt =  ∞ , делая индуцированную ЭДС бесконечной, а бесконечного напряжения не существует. Однако, если ток, протекающий через индуктор, изменяется очень быстро, например, при работе переключателя, на катушке индуктивности могут возникать высокие напряжения.

    Рассмотрим схему индуктора выше. Когда переключатель ( S1 ) разомкнут, ток через катушку индуктивности не течет. Поскольку через индуктор ток не течет, скорость изменения тока ( di / dt ) в катушке будет равна нулю. Если скорость изменения тока равна нулю, то  в катушке индуктивности нет ЭДС самоиндукции ( V L= 0 ).

    Если мы теперь закроем переключатель (t = 0), ток будет проходить через цепь и медленно подниматься до своего максимального значения со скоростью, определяемой индуктивностью индуктора. Эта скорость тока, протекающего через катушку индуктивности, умноженная на индуктивность по Генри, приводит к тому, что на катушке образуется некоторая самоиндуцированная ЭДС с фиксированным значением, определенная уравнением Фарадея V L  = Ldi / dt.

    Эта самоиндуцированная ЭДС на катушке индуктивности ( V L ) борется с приложенным напряжением до тех пор, пока ток не достигнет своего максимального значения и не будет достигнуто устойчивое состояние. Ток, который сейчас течет через катушку, определяется только постоянным или «чистым» сопротивлением обмоток катушек, поскольку значение реактивного сопротивления катушки уменьшилось до нуля, поскольку скорость изменения тока (di / dt) равна нулю в устойчивом состоянии. Другими словами, теперь существует только сопротивление катушек постоянного тока, чтобы противостоять потоку тока.

    Аналогичным образом, если переключатель ( S1 ) разомкнут, ток, протекающий через катушку, начнет падать, но индуктор снова будет бороться с этим изменением и попытается удержать ток в своем прежнем значении, индуцируя напряжение в другом направлении. Наклон падения будет отрицательным и связан с индуктивностью катушки, как показано ниже.

    Ток и напряжение в индукторе

    Сколько индуктивного напряжения будет генерироваться индуктором, зависит от скорости изменения тока. В нашем уроке об электромагнитной индукции закон Ленца гласил: «Направление индуцированной ЭДС таково, что оно всегда будет противостоять изменению, которое его вызывает». Другими словами, индуцированная ЭДС всегда будет противопоставлять движение или изменение, которые изначально вызвали индуцированную ЭДС.

    Таким образом, при уменьшении тока полярность напряжения будет действовать как источник, а при увеличении тока полярность напряжения будет действовать как нагрузка. Таким образом, при одинаковой скорости изменения тока через катушку, увеличение или уменьшение величины индуцированной ЭДС будет одинаковым.

    Мощность в индукторе

    Мы знаем, что индуктор в цепи противостоит потоку тока I через него, потому что поток этого тока индуцирует ЭДС, которая противостоит ему, закон Ленца. Затем необходимо выполнить работу от внешнего источника батареи, чтобы ток протекал против этой индуцированной ЭДС. Мгновенная мощность, используемая для форсирования тока I по отношению к этой самоиндуцированной ЭДС (V L), определяется как:

    Мощность в цепи задается как P = V * I, поэтому:

    Идеальный индуктор не имеет сопротивления, только индуктивность, поэтому R = 0 Ом, и поэтому мощность в катушке не рассеивается, поэтому можно сказать, что идеальный индуктор имеет нулевую потерю мощности.

    Энергия в индукторе

    Когда мощность поступает в индуктор, энергия накапливается в его магнитном поле. Когда ток, протекающий через индуктор, увеличивается и di / dt становится больше нуля, мгновенная мощность в цепи также должна быть больше нуля, ( P> 0 ), т.е. положительная, что означает, что энергия накапливается в индукторе.

    Аналогичным образом, если ток через индуктор уменьшается и di / dt меньше нуля, то мгновенная мощность также должна быть меньше нуля ( P ), т.е. отрицательна, что означает, что индуктор возвращает энергию обратно в цепь. Затем, интегрируя приведенное выше уравнение для мощности, полная магнитная энергия, которая всегда положительна и сохраняется в индуктивности, определяется как:

    Энергия фактически накапливается в магнитном поле, которое окружает индуктор током, текущим через него. В идеальном индукторе, который не имеет сопротивления или емкости, поскольку ток увеличивает энергию, стекающую в индуктор и накапливающуюся там в его магнитном поле без потерь, он не высвобождается до тех пор, пока ток не уменьшится и магнитное поле не разрушится.

    Затем в переменном токе, переменного тока индуктор постоянно накапливает и доставляет энергию на каждом цикле. Если ток, протекающий через индуктор, является постоянным, как в цепи постоянного тока, то сохраненная энергия не изменяется, так как P = Li (di / dt) = 0 .

    Таким образом, индукторы могут быть определены как пассивные компоненты, так как они могут как накапливать, так и доставлять энергию в цепь, но они не могут генерировать энергию. Идеальный индуктор классифицируется как меньше потерь, что означает, что он может хранить энергию бесконечно, так как энергия не теряется.

    Однако, реальные катушки индуктивности всегда будут иметь некоторое сопротивление, связанное с обмотками катушки, и всякий раз, когда ток протекает через энергию сопротивления, теряется в виде тепла по закону Ома( P = I R ) независимо от того, является ли ток переменным или постоянный.

    Тогда основное использование индукторов — это в фильтрационных цепях, резонансных цепях и для ограничения тока. Индуктор может использоваться в цепях для блокировки или изменения переменного тока или диапазона синусоидальных частот, и в этой роли индуктор может использоваться для «настройки» простого радиоприемника или генераторов различных типов. Он также может защитить чувствительное оборудование от разрушительных скачков напряжения и высоких пусковых токов.

    В следующем уроке об индукторах мы увидим, что эффективное сопротивление катушки называется индуктивностью, а индуктивность, которая, как мы теперь знаем, является характеристикой электрического проводника, который «противодействует изменению тока», может быть как внутренней, индуцированный, называемый самоиндуктивностью или индуцированный извне, называемый взаимоиндуктивностью.

    comments powered by HyperComments

    Индукционная катушка (рисунок 1) представляет собой частный случай трансформатора. Она состоит из сердечника 1 (набранного из нарезанных кусков стальной проволоки), на который намотано несколько витков толстой изолированной проволоки 2. Эти витки являются первичной обмоткой индукционной катушки. Поверх первичной обмотки наматывается другая обмотка 3 из тонкой изолированной проволоки с большим числом витков (от 16 000 до 1 000 000 и более). Это – вторичная обмотка индукционной катушки.

    Рисунок 1. Схема устройства индукционной катушки

    Принцип работы индукционной катушки состоит в следующем. Первичная обмотка через механический прерыватель 4 присоединяется к источнику постоянного напряжения 5 (батарее элементов, аккумуляторов и так далее).

    При замыкании выключателя 6 ток батареи проходит по первичной обмотке катушки и намагничивает ее сердечник. Намагнитившийся сердечник притягивает к себе якорек прерывателя, чем разрывается цепь первичной обмотки. В следующее мгновение размагнитившийся сердечник отпускает якорек прерывателя. Последний под действием пружины возвращается на прежнее место, замыкает цепь первичной обмотки, и далее процесс повторяется вновь.

    В результате непрерывных замыканий и размыканий цепи в первичной обмотке катушки протекает прерывистый ток. Изменяющееся магнитное поле первичной обмотки, пересекая витки вторичной обмотки, индуктирует в ней электродвижущую силу (ЭДС). При замыкании первичной цепи ЭДС во вторичной обмотке имеет одно направление, при размыкании – другое. Большое число витков дает возможность получать на концах вторичной обмотки напряжение в несколько тысяч, а иногда и сотен тысяч вольт. Слой воздуха между выводами вторичной обмотки пробивается и проскакивает искра, длина которой в больших индукционных катушках достигает 1 метра.

    Для получения большой ЭДС во вторичной обмотке необходимо, чтобы ток в первичной цепи изменялся как можно быстрее. Однако искра в механическом прерывателе, появляющаяся при размыкании его контактов, не дает возможности току прекращаться сразу. Для быстрейшего исчезновения искры параллельно месту разрыва включают конденсатор 7.

    Первичную обмотку индукционной катушки можно питать также переменным током. Тогда надобность в прерывателе отпадает.

    При помощи индукционной катушки было сделано много важнейших физических открытий. Индукционные катушки широко применяются для зажигания рабочей смеси в автомобильных и авиационных двигателях и так далее.

    Рисунок 2. Внешний вид автомобильной индукционной катушки и механического прерывателя используемых для подачи искры в камеру сгорания двигателя (слева катушка, справа прерыватель)

    Видео 1. Катушка Румкорфа

    Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

    Катушка индуктивности характеризуется своими параметрами, главными из которых являются ее индуктивность, сопротивление обмоток и рабочий ток, с которым она может функционировать. При составлении схемы особую важность играют ее габариты, вес. К катушкам предъявляются особые требования, которые могут различными в зависимости от сферы ее применения. Для использования в преобразователях, фильтрах, катушки используются более мощные, чем это заложено схемой. Главное выбрать такую модель, которая не будет влиять на производительность всей схемы или цепи.

    В статье будет рассказано о том, что это такое, где используется такая катушка безопасности и из чего состоит. Также в статье содержится видеоролик и дополнительный материал, который поможет лучше разобраться в выбранной теме.

    Катушка индуктивности

    Обзор пассивных компонентов

    Современная радиоэлектронная аппаратура (РЭА) содержит огромное количество электрорадиокомпонентов, т.е. самостоятельных  изделий, выполняющих определенные функции. Электрорадиоэлементы подразделяют на активные и пассивные. К активным относятся транзисторы,  микросхемы ,электронные лампы и т.д., т. е. элементы, способные усиливать или преобразовывать электрические сигналы. К пассивным относятся резисторы, катушки индуктивности, конденсаторы, трансформаторы, коммутационные элементы, т. е. такие элементы, которые предназначены для перераспределения электрической энергии.

    Сетевая инфраструктура современного офиса состоит из множества составляющих, правильный выбор которых имеет существенное значение для успешной работы всей инфраструктуры в целом. Пассивные компоненты  играют при этом также немаловажную  роль, обеспечивают среде передачу данных, а также внешний вид, эстетику. Пассивным элементом схемы называется элемент, не имеющий внутренних источников энергии, и выполняющий либо накопление энергии (конденсатор, индуктивность), либо ее рассеяние (резистор).

    Пассивные компоненты по сути соответствует пассивному элементу схемы. Пассивные компоненты характеризуются малыми размерами, малым числом выводов (как правило, два-три), низкой стоимостью и, как правило, достаточно высокой стойкостью к воздействиям при сборке узлов. Пассивные элементы могут выступать как дискретные компоненты и как элементы интегральных микросхем. В РЭА интегральные микросхемы  имеют очень большой удельный вес, но пассивные компоненты являются все же самыми распространенными изделиями электронной промышленности. Это можно объяснить  тем, что некоторые элементы трудно выполнить в микросхемном исполнении. Практически невозможно в ИМС изготовить конденсаторы большой емкости, резисторы с большим сопротивлением, сложности в разработке интегральных катушек индуктивности и трансформаторов. Кроме того технические характеристики дискретных элементов лучше, чем интегральных.

    Катушки индуктивности разных размеровБудет интересно➡  Диодный мост – что это такое?Используемые источники:

    • https://rusenergetics.ru/oborudovanie/katushka-induktivnosti
    • https://microtechnics.ru/ustrojstvo-i-princip-raboty-katushki-induktivnosti/
    • https://meanders.ru/induktor.shtml
    • https://www.electromechanics.ru/electrical-engineering/640-induction-coil.html
    • https://electroinfo.net/radiodetali/chto-takoe-katushka-induktivnosti-i-pochemu-ee-inogda-nazyvajut-drossel.html

    Индуктивность катушки

    Весьма важное практическое значение имеет один частный случай явления электромагнитной индукции, получивший название самоиндукции. Так, когда индукционная катушка образует ток, то одновременно с ним возникает и магнитный поток, который растет с увеличением тока. С изменением магнитного потока катушка индуктирует электродвижущую силу (ЭДС), величина которой пропорциональна изменению скорости магнитного потока.

    Так как в данном случае проводник индуцирует электродвижущую силу в самом себе, то это явление называется самоиндукцией. Явление самоиндукции в электрических цепях иногда сравнивают с проявлением инертности в механике.

    Электродвижущая сила, индуктированная в индукционной катушке под влиянием изменения её собственного магнитного потока, называется электродвижущей силой самоиндукции.

    Согласно закону Ленца, во всё время роста магнитного потока, принизывающего витки катушки, ЭДС самоиндукции в катушке направлена против электродвижущей силы источника, включённого в данную цепь, и противодействует росту тока в цепи катушки.

    Когда ток в катушке достигает постоянной величины, магнитный поток прекращает изменение, и ЭДС самоиндукции в катушке становится равной нулю.
    При самоиндукции, как и при всяком процессе электромагнитной индукции, индуктированная электродвижущая сила пропорциональна скорости, с которой магнитный поток, сцепленный с контуром, по которому течёт ток, изменяется. Величина же магнитного потока при отсутствии в катушке железа пропорциональна скорости, с которой изменяется ток (∆I/∆t), создающий этот поток.

    Таким образом, величина электродвижущей силы самоиндукции, возникающей в проводнике, пропорциональна скорости, с которой изменяется ток в нем.
    Если брать проводники разной формы, то окажется, что имея одинаковую скорость изменения тока, электродвижущие силы самоиндукции, возникающие в них, будут различны.

    Так, если взять катушку, а затем растянуть в один виток, то при одинаковой скорости, с которой происходит изменение тока, ЭДС самоиндукции катушки будет больше. Это связанно с тем, что каждая силовая линия, принизывая витки катушки, сцепляется с ней большее число раз, чем с одним витком.

    Величина, характеризующая связь между скоростью, с которой ток изменяется в цепи, и возникающей при этом ЭДС самоиндукции - индуктивность цепи.

    Обозначим индуктивность катушки буквой L; тогда зависимость величины электродвижущей силы самоиндукции от скорости, с которой происходит изменение тока, можно выразить следующей формулой:

    E = - L (∆I/∆t)

    Отсюда

    ед. L = (ед.E ˖ ед. t)/(ед.I)

    Полагая, что в этой формуле ∆t = 1 сек, ∆I = 1 амперу и Е = 1 вольту, получим:

    ед. L = 1(в ˖ сек/а)

    Такую единицу называют генри (Гн).

    Следовательно,

    1 Гн = 1 (в ˖ сек/а)

    Итак, генри - это индуктивность катушки, в которой изменение тока на 1 ампер в секунду возбуждает электродвижущую силу самоиндукции, равную 1 вольту.
    Для измерения малых индуктивностей применяются тысячные доли генри – миллигенри (мГн) и миллионные доли генри – микрогенри (мкГн).

    Кроме того, часто применяется и другая единица – сантиметр индуктивности, причём 1 мкГн = 1000 см индуктивности.

    Таким образом,

    1 Гн = 1000 мГн = 1000000 мкГн = 1000000000 см

    Индуктивность катушки находится в зависимости от её числа витков, формы и размеров. Чем больше число витков в катушке самоиндукции, тем больше ее индуктивность.

    Также, самоиндукция, индуктивность катушки значительно увеличивается при внесении внутрь её сердечника из железа или какого-либо другого магнитного материала.
    Большой индуктивностью обладают обмотки электромагнитов у генераторов и двигателей, в момент размыкания цепи, когда скорость изменения электрического тока (∆I/∆t) очень велика, в этих обмотках может возникнуть большая ЭДС самоиндукции, которая, если не принять соответствующих мер, приведёт к пробою изоляции обмоток.

    Что такое индуктор?

    Конфиденциальность и файлы cookie

    Файлы cookie - это крошечные файлы данных, которые хранятся в вашем веб-браузере при посещении веб-сайта. На www.electromaker.io мы используем файлы cookie, чтобы персонализировать ваш опыт и помочь нам выявлять и устранять ошибки.

    Использование файлов cookie и аналогичных технологий в течение некоторого времени было обычным явлением, и файлы cookie, в частности, важны при предоставлении многих онлайн-услуг. Таким образом, использование таких технологий не запрещено Правилами, но они требуют, чтобы людям рассказывали о файлах cookie и им был предоставлен выбор относительно того, какие из их действий в Интернете будут отслеживаться таким образом.(Офис уполномоченных по информации)

    Наша политика в отношении файлов cookie

    Чтобы в полной мере использовать www.electromaker.io, пользоваться персонализированными функциями и гарантировать, что веб-сайты работают в полную силу, ваш компьютер, планшет или мобильный телефон должен будет принимать файлы cookie.

    Наши файлы cookie не хранят конфиденциальную информацию, такую ​​как ваше имя, адрес или платежные реквизиты: они просто содержат информацию о том, как вы используете наш сайт, чтобы мы могли улучшить ваш опыт и исправить любые ошибки.

    Если вы предпочитаете ограничивать, блокировать или удалять файлы cookie с www.electromaker.io или любого другого веб-сайта, вы можете использовать для этого свой браузер. Все браузеры индивидуальны, поэтому проверьте меню «Справка» в вашем конкретном браузере (или в руководстве к мобильному телефону), чтобы узнать, как изменить настройки файлов cookie.

    Вот список основных файлов cookie, которые мы используем, и для чего мы их используем:

    • Electromaker - сеанс входа в систему
    • Google Analytics - Аналитика
    • Twitter - лента Twitter

    Управление файлами cookie

    Каждый веб-браузер обрабатывает файлы cookie по-разному, следуйте инструкциям для выбранного браузера:

    "," parseFromString "," body "," children "," outerHTML "," getOwnPropertyDescriptor "," innerHTML "," set "," get "," defineProperty "," handleInterceptions ", '[data-ad -unit = "LEFT_RAIL_DYNAMIC"] {display: none! important} ', "head", "textContent",' [data-ad-unit = "LEFT_RAIL"] {display: none! important} ', "documentElement", " data-style "," data-css-selector "," display "," inherit! important "," initial! important "," visible! important "," target "," attributes "," createTextNode "," insertRule " , "{", "addRule", "лист", "cssRules", "cloneNode", "querySelector", ".= 'google_ads_iframe _'] "," / notify? "," bidt ", "uctionId", "pubId", "siteId", "placeId", "adRequestTime", "Winner", "bidderCode", "cpm", " size "," width "," height "," originUrl "," adm "," & code = "," adUnitCode "," & t = bidt-sra &uctionId = "," isPassback "," addEventListener "," message "," data »,« type »,« sra »,« success »,« обслужено »,« clearThrough »,« bidt-sra-bids »,« bidObjs »,« assign »,« apiHost »,« bid »,« bidt- sra-render "," https://mrb.upapi.net/org?o=5635927334453248&upapi=true "," https://mrb.upapi.net/org?o=5658536637890560&upapi=true "," https: // mrb.upapi.net/org?o=5721652430110720&upapi=true","https://mrb.upapi.net/org?o=6315858775244800&upapi=true","https://mrb.upapi.net/org?o=5660793657884672&upapi true "," https://mrb.upapi.net/org?o=5135749131272192&upapi=true "," https://mrb.upapi.net/org?o=4797599863275520&upapi=true "," https: // mrb. upapi.net/org?o=5688297061875712&upapi=true","https://mrb.upapi.net/org?o=5668060692217856&upapi=true","https://mrb.upapi.net/org?o=63168215144&upapi= true "," https: //mrb.upapi.net / org? o = 5698835837878272 & upapi = true "," https://mrb.upapi.net/org?o=5662751368151040&upapi=true "," https://mrb.upapi.net/org?o=5765527509139456&upapi=true " , "https://mrb.upapi.net/code?w=5644986611662848&upapi=true", "https://mrb.upapi.net/org?o=5655179321933824&upapi=true", "https: //mrb.upapi. net / org? o = 5663187464617984 & upapi = true "," https://mrb.upapi.net/org?o=5685540219256832&upapi=true "," https://mrb.upapi.net/org?o=5714333134749696&upapi=true " , "https://mrb.upapi.net/org?o=5691993753649152&upapi=true", "https: // mrb.upapi.net/org?o=5654206581047296&upapi=true","https://mrb.upapi.net/org?o=5199505043488768&upapi=true","https://mrb.upapi.net/org?o=4790682667450368&upapapi=4790682667450368 true "," https://mrb.upapi.net/org?o=5715313312137216&upapi=true "," https://mrb.upapi.net/org?o=5677018947518464&upapi=true "," https: // mrb. upapi.net/org?o=5762268746743808&upapi=true","https://mrb.upapi.net/org?o=5651736402329600&upapi=true","https://mrb.upapi.net/code?w=6355199652265984&upapi true "," https: //mrb.upapi.net / code? w = 5745809616273408 & upapi = true "," https://mrb.upapi.net/org?o=6551492758601728&upapi=true "," https://mrb.upapi.net/org?o=5657833865478144&upapi=true " , "https://mrb.upapi.net/org?o=5690537380151296&upapi=true", "https://mrb.upapi.net/code?w=5637561150078976&upapi=true", "https: //mrb.upapi. net / code? w = 5632833957658624 & upapi = true "," https://mrb.upapi.net/org?o=5067096939560960&upapi=true "," BT_REDIRECT_RULES "," classList "," value "," scrolling = 'no' allowtransparency = 'true' frameborder = '0' marginheight = '0' marginwidth = '0' наверх

    Что такое кодирование и как оно работает?

    Компьютерный код очень важен.Почти каждое электронное устройство, которое вы используете, использует код. То, как все работает, может показаться довольно запутанным, но если разобрать его, на самом деле все просто.

    Людей, создающих код, называют программистами, кодировщиками или разработчиками.Все они работают с компьютерами для создания веб-сайтов, приложений и даже игр! Сегодня вы узнаете, что это за код, для чего он нужен и как начать изучать код самостоятельно.

    Что такое код?

    У компьютеров есть собственный язык, называемый машинным кодом , который говорит им, что делать.Как видите, для людей это не имеет большого смысла!

    Каждая цифра или буква говорят компьютеру изменить что-то в его памяти .Это может быть число или слово, или небольшая часть изображения или видео. Сами по себе компьютеры ничего не умеют. Давать им инструкции - задача программиста.

    Выучить машинный код можно, но это займет много времени! К счастью, есть более простой способ общаться с компьютерами.

    Что такое язык программирования?

    Теперь это выглядит немного проще для понимания! На этом рисунке показано, как сказать компьютеру Привет, мир .Вместо машинного кода он использует язык программирования Python .

    Практически все языки программирования работают одинаково:

    1. Вы пишете код , чтобы сообщить ему, что делать: print ("Hello, world") .
    2. Код скомпилирован , что превращает его в машинный код, понятный компьютеру.
    3. Компьютер выполняет код и пишет нам Hello, world .

    Существуют сотни различных языков программирования, которые могут показаться запутанными, но все они делают одно и то же.Вы вводите то, что вы хотите, компилятор , превращает его в язык, который понимает компьютер, затем компьютер делает это, что называется , выполняя , который говорит код программирования!

    Что такое кодирование?

    Кодирование - это процесс использования языка программирования, чтобы заставить компьютер вести себя так, как вы хотите.Каждая строка кода говорит компьютеру что-то сделать, а документ, полный строк кода, называется сценарием .

    Каждый сценарий предназначен для выполнения определенной работы.Это задание может заключаться в том, чтобы сделать снимок и изменить его размер. Он может воспроизводить определенный звук или музыкальное произведение. Когда вы нажимаете , например, в чьем-либо сообщении в социальных сетях, это происходит благодаря сценарию.

    В отличие от людей, компьютеры будут делать именно то, что вы им скажете.Это может показаться отличным, но может вызвать проблемы. Если вы скажете компьютеру начать отсчет вверх и не остановите его, он будет продолжать отсчет вечно! Чтобы быть хорошим программистом, нужно знать, как заставить компьютер действовать.

    Что такое программа?

    Сами по себе скрипты могут делать что-то, только если они скомпилированы , а затем выполнены .Это полезно, пока вы все еще работаете над этим, но когда вы закончите, вы хотите, чтобы люди, не являющиеся программистами, могли использовать ваш сценарий. Вам нужно превратить ваш скрипт в программу .

    Когда вы довольны своим сценарием, вы можете скомпилировать его в программу.Как вы уже знаете, компиляция изменяет код вашего языка программирования на машинный код , который компьютер может понять. На этот раз машинный код хранится в программе , которую каждый может загрузить и использовать. Каждое приложение, игра или веб-сайт - это программа.

    Кодировать сложно?

    Кодирование может быть очень простым, и каждый может изучить основы.Хорошая аналогия - думать о кодировании как о книгах в библиотеке. В некоторых книгах используется простой язык, а рассказы легко понять. Другие используют очень сложные слова и рассказывают истории, которые кажутся бессмысленными. Независимо от того, просты они или трудны для чтения, все они книги.

    Чем больше книг вы прочитаете, тем лучше у вас получится.Сложный язык или запутанные истории становится легче понять, пока однажды вы не сможете читать то, о чем раньше даже не мечтали!

    Обучение программированию - то же самое.В первый раз, когда вы попытаетесь кодировать, вам будет сложно, но каждый раз, когда вы это делаете, вам становится лучше. Если вам сложно изучать язык программирования, вы все равно можете изучить важные идеи, лежащие в его основе, с помощью языка визуального кодирования. Вы даже можете создать свою собственную игру про Марио, вообще не вводя никакого кода!

    Как выглядит код

    На изображении выше показан сценарий с именем hello_name .Вы уже видели, что всего одна строка кода может заставить компьютер выводить на экран изображение. Допустим, вы хотите, чтобы вместо того, чтобы просто сказать «привет, мир», пользователь вводил свое имя, а компьютер приветствовал его по имени? Давайте разберемся, что здесь происходит.

    1. Когда сценарий запускается, компьютер выводит на экран вопрос.
    2. Затем компьютер ждет, пока пользователь введет свое имя, и сохраняет его.
    3. «Hello» выводит на экран вместе с сохраненным именем .
    4. В окне Cmder сценарий компилирует , а выполняет с использованием Python .
    5. Перед завершением сценарий работал так, как он был разработан.

    В этом примере показан простой фрагмент кода, написанный в редакторе кода и запущенный в Cmder, который является типом окна терминала . Не беспокойтесь сейчас слишком сильно о том, что это за вещи. Теперь вы знаете, как выглядит код Python и как работает этот скрипт.

    Как код становится программой

    Если вы новичок в программировании, вы все равно можете задаться вопросом, как сценарии, подобные приведенному выше, становятся типом программ, которые вы привыкли использовать.На изображении выше окно слева представляет собой инструмент для превращения скриптов Python в программы. В окне справа есть значок hello_name.exe . Я думаю, вы можете догадаться, что произойдет, если вы нажмете на нее!

    От отсутствия кода до готовой программы.Этот пример действительно прост, но именно так работает почти все кодирование. Каждый день люди используют языка программирования , которые они выучили, для написания скриптов , которые станут программами, которые мы все используем.

    Кодирование - это круто

    Сегодняшняя статья научила вас, что такое код и как работает некоторый код Python.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *