Как устроены солнечные батареи и какие виды существуют. Какой КПД имеют современные фотоэлементы. Из каких материалов изготавливают солнечные панели. Как правильно эксплуатировать и обслуживать солнечные батареи.
Что представляют собой солнечные батареи
Солнечная батарея (также называемая солнечной панелью или фотоэлектрическим модулем) — это устройство, преобразующее энергию солнечного излучения в электрическую энергию. Основой солнечной батареи являются фотоэлементы, изготовленные из полупроводниковых материалов, чаще всего из кремния.
Принцип работы солнечной батареи основан на фотоэлектрическом эффекте — явлении возникновения электрического тока в полупроводниковом материале при воздействии на него света. Когда солнечные лучи попадают на фотоэлемент, они выбивают электроны из атомов полупроводника, создавая разность потенциалов и электрический ток.
Основные виды солнечных батарей
Существует несколько основных типов солнечных батарей, различающихся по технологии изготовления и используемым материалам:

- Монокристаллические — изготавливаются из цельных кристаллов кремния высокой чистоты. Имеют наибольший КПД среди кремниевых батарей (до 22-25%).
- Поликристаллические — производятся из кремниевого расплава, имеют характерную неоднородную структуру. КПД несколько ниже (15-18%), но и стоимость меньше.
- Тонкопленочные — изготавливаются путем нанесения тонких слоев фотоактивных материалов на подложку. Имеют низкий КПД (7-13%), но дешевы в производстве.
- Многопереходные — состоят из нескольких слоев различных полупроводников. Обладают рекордным КПД до 40%, но очень дороги.
Как работает солнечная батарея: пошаговый процесс
Рассмотрим последовательность преобразования солнечной энергии в электричество:
- Солнечный свет попадает на поверхность фотоэлемента.
- Фотоны выбивают электроны из атомов полупроводника, создавая свободные носители заряда.
- Под действием встроенного электрического поля p-n-перехода электроны движутся к n-слою, а дырки — к p-слою.
- На контактах фотоэлемента возникает разность потенциалов.
- При подключении нагрузки в цепи начинает течь электрический ток.
Фотоэлементы соединяются последовательно и параллельно в модули для получения нужных значений тока и напряжения. Несколько модулей образуют солнечную батарею.

Из чего состоит солнечная батарея
Типичная солнечная батарея включает следующие основные компоненты:
- Фотоэлементы — основной рабочий элемент, преобразующий свет в электричество.
- Защитное стекло — предохраняет фотоэлементы от внешних воздействий.
- Герметизирующий слой — обеспечивает влагозащиту.
- Контактная сетка — собирает генерируемый ток.
- Задняя защитная пластина — обеспечивает жесткость конструкции.
- Распределительная коробка — для подключения кабелей.
- Алюминиевая рама — для монтажа и защиты краев модуля.
Эффективность и КПД солнечных батарей
КПД солнечной батареи — это отношение электрической мощности, вырабатываемой батареей, к мощности падающего на нее солнечного излучения. Какой КПД имеют современные солнечные батареи?
- Монокристаллические кремниевые: 17-25%
- Поликристаллические кремниевые: 15-18%
- Тонкопленочные: 7-13%
- Многопереходные: до 40%
Факторы, влияющие на эффективность солнечных батарей:
- Интенсивность солнечного излучения
- Угол падения лучей
- Температура батареи
- Чистота поверхности
- Спектральный состав излучения
Материалы для изготовления солнечных элементов
Для производства фотоэлементов используются различные полупроводниковые материалы:

- Кремний (Si) — наиболее распространенный материал. Используется в моно- и поликристаллических батареях.
- Арсенид галлия (GaAs) — применяется в высокоэффективных элементах для космических аппаратов.
- Теллурид кадмия (CdTe) — используется в тонкопленочных батареях.
- Селенид меди-индия-галлия (CIGS) — перспективный материал для гибких солнечных элементов.
- Перовскиты — новый класс материалов с высоким потенциалом эффективности.
Особенности эксплуатации и обслуживания солнечных батарей
Для обеспечения максимальной эффективности солнечных батарей важно соблюдать правила их эксплуатации и регулярного обслуживания:
- Очистка поверхности от пыли и загрязнений (не реже 1-2 раз в год)
- Проверка электрических соединений и контактов
- Контроль состояния защитного покрытия и рамы
- Оптимальная ориентация панелей относительно солнца
- Защита от затенения деревьями или постройками
- Своевременная замена вышедших из строя элементов
При правильном обслуживании срок службы качественных солнечных батарей может достигать 25-30 лет с сохранением до 80% первоначальной мощности.

Перспективы развития солнечной энергетики
Солнечная энергетика — одно из наиболее динамично развивающихся направлений возобновляемой энергетики. Каковы основные тенденции в этой области?
- Повышение эффективности фотоэлементов
- Снижение стоимости производства
- Разработка новых материалов (перовскиты, квантовые точки)
- Создание прозрачных солнечных элементов
- Интеграция солнечных батарей в строительные материалы
- Развитие технологий накопления энергии
Эксперты прогнозируют, что к 2030 году солнечная энергетика может обеспечивать до 20-25% мирового производства электроэнергии, став одним из ключевых факторов в борьбе с изменением климата.
Солнечные батареи: принцип работы, плюсы использования

Солнечные батареи: принцип работы
Содержание статьи
О том, что солнечные батареи являются источником энергии, обеспечивающим автономность питания многих систем, сегодня известно даже школьнику. Всё более широко применяется солнечное отопление, от солнечных батарей получают электропитание загородные дома и коттеджи.И дело вовсе не в удалённости от цивилизации. В условиях непрерывно возрастающей стоимости всех без исключения энергоносителей, альтернативные способы получения энергии становятся актуальными не только для малообеспеченных слоёв населения.
Не следует забывать и об экологическом аспекте проблемы энергообеспечения. Очевидно, что работа солнечной батареи, в отличие от подавляющего большинства иных способов получения энергии, не имеет никакого негативного воздействия на окружающую среду и здоровье человека.
Солнечные батареи: принцип работы
Изготовление осуществляется методом литья. Кроме кремния, в состав сплава входят незначительные доли бора и мышьяка. Полученный в результате сплав характеризуется гладкой синеватой поверхностью с неравномерными переливами.
В упрощённом виде солнечная батарея представляет собой пару тонких листов из кремниевого сплава, сложенных и соединённых с сохранением p-n-перехода. При этом сплав первого листа имеет в своём составе атомы бора, а сплав второго – атомы мышьяка. Кроме того, для наружной пластины характерен переизбыток электронов, а для внутренней – недостаток.
Как работает солнечная батарея
Под воздействием солнечных лучей на элемент, обе пластины солнечной батареи начинают взаимодействие, процесс идентичен происходящему в обычной батарейке. В результате взаимодействия, возникает электродвижущая сила (ЭДС). Образно выражаясь, лучи солнца «пробуждают» электроны, и по законам физики последние начинают перемещение из одной пластины в другую.
Принципиальное же отличие от обычных батарей состоит в том, что в солнечных, не происходит никаких химических реакций. То есть, солнечные батареи для дома способны исправно функционировать весьма долгий срок.
Говоря о сроке эксплуатации, точнее будет отметить, что его практически не существует. Однако сам принцип устройства может отличаться в некоторых деталях. Например, сплав, идущий на изготовление тонкослойных ячеек, может иметь в своём составе не только кремний, но и арсенид, галлий, селен, медь, теллурид, кадмий и другие металлы.
О том, что лучше, ветрогенератор или солнечные батареи, читайте в другой статье строительного журнала samastroyka.ru
Оценить статью и поделиться ссылкой:Принцип работы солнечной батареи: как устроена панель
О том, что с помощью солнечных батарей можно получать энергию и использовать ее в бытовых нуждах, известно не каждому. Такой способ получения электроэнергии не является особо распространенным, но с каждым годом набирает популярность. При наличии большого солнечного массива можно обеспечить током не только частный дом, но и промышленный объект. Принцип работы солнечной батареи довольно прост, поэтому нет никаких преград, чтобы воспользоваться такой возможностью получения экологичной энергии для личных целей.
Содержание статьи
Что такое солнечная батарея
Солнечными батареями можно обеспечить полное функционирование дома или другого объекта без привлечения дополнительного источника электроэнергии. Они считаются не только экологически чистыми, но и самыми эффективными при выработке энергии. Суть данного устройства заключается в специальных модулях-фотоэлементах, которые захватывают солнечную энергию и при помощи полупроводниковых устройств преобразовывают ее в ток.
Одна батарея содержит 36 элементов и представлена в виде прямоугольника размером с шифер. Есть, конечно, и другие вариации, но такой пример является наиболее популярным. Все модули покрываются пленкой или стеклом и между собой соединены, благодаря чему через эти дорожки ток поступает в инвертор, который на выходе дает нам привычную электроэнергию, которую можно использовать в любых целях.
Устройство батареи
Сегодня нет проблем, чтобы выбрать солнечную батарею. Товары в ассортименте отличаются устройством модуля, способом его работы и технологией производства.
Панели с кремниевыми фотоэлементами
Согласно названию, для таких панелей используется кремний, а если быть точнее, они изготавливаются на основе амфорного кремния. Этот вид модулей относится к тонкопленочным солнечным батареям. Это очень прочный и надежный материал, который может прослужить более 25 лет. Такой вид кремния образуется под раскаленным паром, благодаря чему кристаллам можно придать разную форму и размер. Однако процесс производства достаточно сложный, что не может не сказываться на цене изделия.
Батареи с кремниевым покрытием существуют в двух вариантах:
Монокристаллические
Относятся к дорогостоящим солнечным батареям, так как изготавливаются по особому принципу выращивания кристаллов, на что уходит много времени и сил. Монокристаллические панели представляют собой решетки из множества квадратов с немного подрезанными углами. Такие солнечные модули отличаются не только высоким качеством, но и максимальной производительностью. Они работают даже при сильно низкой температуре, занимают мало места и при этом их КПД не снижается. Владельцы кремниевых монокристаллических солнечных батарей отмечают длительность их использования – до 30 лет.
Поликристаллические
Главное отличие поликристаллических заключается в том, что они производятся с применением дешевого сырья, чаще всего это продукты переработки монокристаллических панелей. Для них не нужно выращивать кристаллы и сама технология более упрощенная. Но несмотря на это, они неплохо проявили себя в работе и могут использоваться даже при критически высоких и низких температурах.

Практически в 80% солнечных батарей установлены модули именно с кремниевыми пластинами.
Тонкопленочные панели
Суть тонкопленочных панелей заключается в особом производстве, где полупроводники наносятся непосредственно на пленку. В качестве полупроводников выступает сплавы меди-индия, теллурида кадмия и селенида. Они существенно отличаются от обычных солнечных батарей наличием панели-пленки, их можно скручивать и тем самым использовать на любой местности. Некоторые клеят их на внешнюю сторону окна, тем самым защищая дом от солнечных лучей и при этом получая небольшую порцию энергии. Ключевое слово здесь – небольшую. Тонкопленочные полупрозрачные панели отличаются низким КПД, то есть обеспечить электричеством весь дом не смогут даже при масштабном использовании. Из дополнительных преимуществ можно выделить маленький вес, простой способ монтажа и невысокую цену.
Концентраторные модули
Концентраторные солнечные батареи считаются самыми эффективными и наряду с этим самыми дорогими. У них наивысший процент фотоэлектрического преобразования, а все потому, что они состоят из многослойной структуры, которая отличается составом полупроводников. Самой успешной по действию признана трехслойная структура. Принципы работы ее в поглощении солнечного излучения по всей длине волн и во всем диапазоне. Подобного эффекта не имеют никакие другие солнечные батареи. Но они сложны в производстве и дороги, поэтому не особо популярны.

Покупка дорогих концентраторных модулей оправдана только для регионов с высокой солнечной радиацией, которая наблюдается на протяжении всего года.
Органические батареи
В батареи органического типа включены элементы, которые состоят из органических полимеров, отсюда и такое название. Это гибкая батарея, которая производится в любых размерах и печатается на пластике с помощью принтера. Суть технологии напрямую сказывается на производительности панели. Процент КПД у них достаточно низкий, зато они отличаются низкой ценой и экологической функцией. Они могут быть выполнены в любой удобной форме и размере, при этом с полным сохранением желаемой текстуры пластика. Некоторые такой вариант используют и как декор частного дома, и как подпитку электроэнергией.

Принцип работы солнечных панелей
Принцип работы
Теперь подробнее о работе солнечной батареи. Она состоит из двух пластин, изготовленных из кремния и покрытых с одной стороны бором, а с другой фосфором. Там, где батарея покрыта бором, частицы отсутствуют. Под действием солнечного света в пластине с фосфором появляются свободные электроны, которые начинаются перемещаться и создавать энергию. Чем больше солнечная радиация, тем больше энергии вырабатывается. Наибольшая эффективность зафиксирована при перпендикулярном попадании лучей.

Существенно снижают эффективность работы солнечных батарей не только пасмурные дни, но и пыль с грязью. Фотоэлементы не смогут вырабатывать заявленное количество свободных частиц, если пленка будет загрязненной.
Важным моментом является отведение заряженных частиц по назначению. Данная миссия возложена на тонкие жилы из меди, которые выступают своего рода соединяющим элементом. По этим медным путям энергия попадает в подсоединенный аккумулятор. Он собирает достаточное количество энергии и направляет его в инвертор, где постоянный ток от солнечного света преобразовывается в переменный с нужным напряжением для обеспечения бытовых потребностей (220В). С помощью одной пластины можно питать лампочку, но для поддержания всего дома потребуется купить не одну солнечную батарею с высокой мощностью.
Схема электропитания дома от солнца
Если вы хотите пользоваться солнечными батареями для обеспечения своего дома экологичным видом электроэнергии, то вы должны знать, как работает система и что от вас потребуется. Итак, схема электропитания включает в себя следующий набор обязательных устройств:
Суть солнечных батарей мы уже определили, а вот зачем нужно остальное оборудование? Аккумулятор позволяет собирать необходимое количество энергии и сохранять ее с целью использования в темное время суток или в пасмурные дни, когда солнечной радиации недостаточно для удовлетворения электрических потребностей. Контроллер не является обязательной частью, но с его помощью можно обезопасить батарею и аккумулятор от перепадов напряжения, а также полного разряжения. Такое решение позволяет сохранить срок службы солнечной системы.
Осталось разораться с инвертором. Без него вы не сможете использовать полученную энергию от солнца по назначению. Инвертор позволяет преобразовать постоянный солнечный ток в переменный с повышенным показателем напряжения сети. То есть, так как батареи выпускаются мощностью 12В, 24В и 48В, то инвертор путем трансформации «перерабатывает» его в привычные 220В. Лучше всего отдавать предпочтение трехфазным синусоидным инверторам. Они отличаются высокой надежностью и работой даже при самых низких температурах.
принцип работы панелей, КПД и устройство, виды для дома, как действуют кремниевые, из чего делают

Достаточно часто тем, кто проживает в своем собственном доме, приходится сталкиваться с тем, что отключают электроэнергию по техническим причинам или из-за чрезвычайной ситуации. Такие проблемы доставляют не только дискомфорт, но и множество проблем, например, портятся продукты, невозможно заниматься работой, если для этого требуется использование электроприборов. Что делать в такой ситуации? Стоит установить солнечные батареи, которые позволяют решить данную задачу максимально быстро и смогут доставить только пользу и ничего более.
Что такое солнечная батарея
Солнечная батарея (или панель) – это элемент питания (называется фотопластина), меняющий свою проводимость и выделяющий энергию при воздействии солнечных лучей. Именно такое преобразование позволят обогащать жилую конструкцию необходимым электричеством. Как правило, солнечные панели имеют различные виды.

В продажу поступают такие конструкции, как:
- Монокристаллическая;
- Поликристаллическая;
- Аморфная.
У каждой конструкции есть определенная производительность, от чего напрямую зависит принцип работы и цена. Пластиной с минимальной мощностью считается батарея, сделанная на основе монокристаллов, а также у них самая низкая цена. В основном, их стараются использовать в тех условиях, где постоянная подача электричества не является слишком важной.
А материалы для изготовления солнечной батареи можно купить в специализированном магазине. Собрать конструкцию достаточно легко. Подробности читайте на сайте: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/otoplenie/solnechnaya-batareya-svoimi-rukami
Принцип работы индивидуальной солнечной батареи
Владелец частного дома и непосредственно таких батарей должен тщательно следить за тем, чтобы фотоэлектрическая панель была чистой, так как если на ее покрытие будет попадать большое количество таких загрязнений, как снег, помет птиц и даже сухая листва, то это снизит эффективность работы и снизит уровень подаваемого напряжения. Солнечная батарейка для дома работает по особому принципу.

А именно:
- Происходит улавливание энергии солнца пластиной, сделанной на основе кремния.
- При нагревании происходит высвобождение энергии.
- Далее активизируются электроны, это способствует их передвижению по проводнику.
- Проводниками ток направляется в полость аккумулятора, это формирует своеобразную подзарядку.
- Посредством проводного подключения, ток поступает к бытовым приборам.
Принцип действия установки вполне понятен, но стоит ознакомиться с особенностями проведения обслуживания батарей и требуется ли оно вовсе. Первоначально нужно отметить тот факт, что в солнечной батареи полностью отсутствует движущая часть, так как это стационарные конструкции.
Как проводится обслуживание, чтобы работала солнечная батарея
Как правило, очищение покрытия стоит проводить раз в 7 дней. Специалисты считают, что этого вполне достаточно для поддержания оптимального состояния пластин в чистом виде. Также требуется осуществлять еще ряд процедур, это позволит эксплуатировать панели без проблем, а также исключить образование дефектов и неисправностей.

Обязательно проведение:
- Внешнего осмотра на предмет выявления расшатывания креплений и образования трещин в каркасе.
- Чистки панели.
- Проверки силового кабеля на отсутствие оголенных проводов, что может стать причиной возгорания.
- Контролирования и фиксирования состояния автоматики и показателей КИПа.
- Отслеживание уровня заряда аккумулятора.
- Контроля за состоянием конструктивными узлами блока на предмет выявления коррозийных образований.
- Осмотра прочности кожуха панели.
Также необходимы корректировки положения конструкции, это зависит от времени года и подтягивание каждого резьбового соединения. Помимо этого, можно проводить полив панелей из шланга самой обычной проточной водой, для чего достаточно 4 процедур в год.
Безопасный и эффективный ветрогенератор можно собрать своими руками. Все этапы работы описаны на следующей странице: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/elektrichestvo/vetrogenerator-svoimi-rukami
КПД солнечных батарей и другие параметры
Делают солнечные панели из такого материала, как кремний, и при покупке стоит обращать внимание на такие особенности, как наличие показателя КПД, который должен превышать 20%, высокого уровня сопротивления.
Наличие закаленного стекла, устойчивости к самым суровым погодным условиям, поликристаллического покрытия, если изделие устанавливается в регионе с жаркой температурой, необходимо.
Важно монокристаллическое покрытие для областей с неблагоприятными климатическими условиями. Современные кремниевые солнечные плиты обладают рядом преимуществ. Те, кто уже пользуются подобными установками, отзываются исключительно положительно.

Признают такие изделия:
- Автономными;
- Максимально экономичными по средствам, так как не требуется оплата электроэнергии;
- Очень удобными в эксплуатации, так как не нужна регулировка;
- Выгодными, так как ресурс пополняется автоматически;
- Экологическими;
- Безопасными;
- Практичными, так как они могут быть, как резерв или основной источник;
- Очень долговечными.
Есть и некоторые недостатки, но на фоне множества положительных качеств их можно назвать не существенными. К ним относят высокую стоимость, низкую устойчивость к погодным катаклизмам, надобность в подготовке места для расположения конструкции, в обслуживании, снижение производительности в зимний период времени, необходимость в модернизации, при необходимости увеличить мощность и, соответственно, производительность.
Виды солнечных батарей
Наиболее доступными по цене изделиями для улавливания солнечной энергии признаны монокристаллические, так как они сделаны по простейшей технологии и по мощности могут существенно уступить другим видам пластин. Каждый вид имеет свои особенности, за счет которых и происходит их выбор.
Солнечные плиты бывают трех видов:
- Монокристаллические;
- Поликристаллические;
- Аморфные.

Панели, сделанные на основе поликристаллического кремния – это самые дорогие изделия, так как они могут накапливать солнечную энергию даже в условиях повышенной облачности и пасмурную погоду. Особенность их состоит в высокой производительности, а также медленном остывании кремниевого расплава. После того как полотно полностью остынет, оно подвергается повторной термообработке.
Такие пластины выпускаются темно-синего цвета.
Если для изготовления плиты используется аморфный кремний, то это изделия, не выпускаемые большими партиями. Данные конструкции находятся на стадии совершенствования, модернизации, так как в продажу поступили некоторые тестовые модели.
Энергосберегающая система отопления частного дома очено востребована. И это не удивительно. Обо всех ее достоинствах читайте следующую статью: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/kanalizatsiya/energosberegayushchie-sistemy
Из чего в основном делают солнечные батареи
Многие владельцы думают, что если самостоятельно создал такое оборудование, то для этого нужно просто соблюдать технологию сбора системы, но следует и соответствовать поставленным высоким требованиям.

Состав элементов для улавливания солнечной энергии очень прост, так как все конструкции состоят из:
- Солнечного модуля;
- Контролера;
- Аккумулятора;
- Инвертора;
- Первичного преобразователя;
- Комплекта проводов;
- Приборов способных отслеживать заряд аккумулятора;
- Устройства забора мощности у батареи.
Помимо этого, на пластинах могут присутствовать полимерные пленочные рулонные покрытия, которые нужны для защиты от воздействия внешних факторов. Солнечная батарея предназначена для улавливания лучей солнца и преобразования их в электроэнергию.
Устройство солнечной батареи и нюансы проектирования
Как только приобретены все необходимые приспособления, а также материалы и инвентарь можно начинать непосредственное строительство. Тот, кто сам придумал и изобрел самостоятельно солнечную батарею, обязательно начинал с проектирования, в котором были учтены важные моменты.
А именно:
- Место расположения конструкции.
- Угол наклона изделия.
- Просчет несущей способности кровли, если монтаж будет проводиться на саму крышу, а не стены или фундамент дома.
Для каркаса используется алюминиевый уголок, толщина которого должна быть не меньше 35 мм. Объем ячеек должен полностью сходиться с количеством фотоэлементов. Например, 835х690 мм. В раме проделываются отверстия под метизы. На внутреннюю часть уголка наносится герметик в 2 слоя. Рама заполняется полотном оргстекла, поликарбоната, плексигласа или же любого другого материала.
Для того чтобы уплотнить швы между рамой и полотном материала, потребуется провести тщательное прижатие листа по всему периметру.

Изделие оставляется на открытом воздухе до полного высыхания. Стекло фиксируется в 10 точках, в заранее подготовленные отверстия, которые должны быть расположены в угловой части рамки и с каждой стороны. Перед тем как крепить фотоэлементы, нужно провести очищение поверхности от пыли. Далее припаивается провод к плитке, для чего предварительно протираются контакты спиртовым раствором, и укладываются под флюс. При работе с кристаллом, следует быть максимально осторожными, так как он обладает слишком хрупкой структурой.
Укладывается шина по всей длине контакта и медленно прогревается при помощи паяльника. Далее пластины нужно перевернуть, и осуществить те же самые действия. Затем происходит выкладывание фотоэлементов на поверхность оргстекла в рамку, а фиксируются они на монтажную ленту. В качестве фиксатора может быть применен обычный силиконовый клей, который наносится точечным способом. Вполне достаточно одной маленькой капли, так как он очень прочный.
Расположение кристаллов должно быть с зазорами между ними в 3-5 мм, чтобы при нагревании под воздействием лучей ультрафиолета не было деформирования поверхности. Обязательно нужно соединить проводник по краям фотоэлементов с полостью общих шин. Посредством специального устройства тестируется качество пайки. Для герметизации панели, наносится герметик между полотнами плит. Нужно сделать осторожное придавливание полотен, чтобы обеспечить максимальное приклеивание к стеклу. Края рамки также промазываются герметиком.
Боковая сторона каркаса снабжается соединительным разъемом, для подключения диодов Шоттки. Рама закрывается стеклом для защиты и также герметизируются стыки, чтобы избежать проникновение влаги внутрь конструкции. С лицевой стороны нужно обработать панель лаком. Панель устанавливается на крышу, стены или любое другое предназначенное для нее заранее место.
Эффективность панели солнечной батареи
Как уже было отмечено, существуют разные типы солнечных батарей и у каждых из них своя характеристика. Стоит заметить, что есть и гибридные конструкции для улавливания солнечной энергии, однако стоимость их гораздо выше, и в основном они применяются для промышленных зданий.
Естественно, качество и производительность любой солнечной батареи напрямую зависит от эффективности ее фотоэлементов, на что может повлиять такой фактор как:
- Климатические условия;
- Погода;
- Длительность дня и ночи;
- Равномерность освещения панели;
- Перепады температуры воздуха;
- Наличие грязи на пластике;
- Необратимые потери.
В основном, эффективность или, другими словами, производительность солнечных батарей напрямую зависит от равномерности освещения конструкции. К примеру, если один из фотоэлементов сооружения имеет малую интенсивность освещения в отличие от остальных, то это станет причиной неравномерного распределения лучей солнца при попадании на панель, а значит, будет происходить перегрузка и снижение общей энергоотдачи.

Для уменьшения влияния такого фактора в некоторых случаях попросту отключают тот фотоэлемент, который выходит из строя.
Чтобы обеспечить солнечной батареи максимальную производительность, следует направлять ее точно на солнце в зависимости от времени года. Некоторые владельцы таких конструкций предпочитают устанавливать специальные установки, посредством которых возможно дистанционно управлять или, другими словами, поворачивать сооружение в нужную сторону. Существуют системы с автоматическим поворотом в зависимости от расположения солнца, которые двигаются в течение дня самостоятельно без посторонней помощи по заданной программе.
Помимо этого, на эффективность изделия может повлиять наличие пыли и грязи на пластине, так как происходит затемнение некоторых фотоэлементов и таким образом начинается неравномерное распределение забора энергии солнца, что описано ранее. В продаже есть специальный состав, которым можно покрыть поверхность солнечной батареи и тем самым исключить скапливание на ней загрязнителей различного характера.
Как работает солнечная батарея (видео)
Солнечная батарея – дорогостоящее оборудование, независимо от того, будет оно собрано самостоятельно или же куплено в готовом виде, а надобность в постоянном обслуживании может доставить дискомфорт, но однажды вложившись в это изделие, можно на протяжении длительного времени довольствоваться постоянному присутствию электричества и отсутствию платы за него.
Оцените статью: Поделитесь с друзьями!Солнечные батареи принцип работы, подключение для частного дома
Одним из преимуществ загородного коттеджа и дачного домика является возможность их последующей модификации, включая полную или частичную модернизацию централизованной сети электроснабжения. Для этого широко используются автономные системы, работающие на альтернативных источниках энергии. И больше всего привлекает людей солнечная энергия. Технология, которая изначально разрабатывалась для нужд космической промышленности, доступна сегодня и в гражданском строительстве.
Эксперты в области мировой энергетики сходятся во мнении, что применение в быту стационарных электростанций, функционирующих на солнечных батареях, — самый «безболезненный» для экологии способ добычи природных ресурсов. Единственной проблемой, с которой сталкиваются владельцы частных домов, является выбор оптимальной конструкции и модели гелиосистемы с учетом экономической выгоды и прироста показателей КПД.
В этой статье мы затронем принцип действия солнечных панелей, рассмотрим популярные способы монтажа гелиоустановок и расскажем о важных аспектах эксплуатации оборудования, которые помогут определиться с выбором конфигурации электростанции для бытового использования.
Принцип работы «домашней» гелиосистемы
Рабочими элементами солнечной батареи для частного дома выступают фотоэлектрические пластины. Они поглощают инфракрасное излучение от солнца и генерируют бесплатные природные экоресурсы в постоянный электрический ток.
Чтобы фотопанели работали исправно и обеспечивали необходимую мощность, их соединяют между собой, чередуя параллельный и последовательный методы подключения. Постоянный электрический ток, в зависимости от конструкции, поступает на инвертор, где преобразуется в переменный ток 220 V, или временно «оседает» в аккумулирующих емкостях.
Второй вариант более практичный, так как накопление электроэнергии «на запас» позволяет:
- исключить резкие перепады напряжения в домашней сети;
- рационально использовать полученные ресурсы;
- автоматически или вручную регулировать интенсивность работы электростанции.
При правильном монтаже КПД современных гелиосистем держится на уровне 35–40%. Модульные солнечные батареи для дома демонстрируют максимальные показатели эффективности в южных регионах России, где хорошая погода стоит больше 200 дней в году.
При установке солнечных батарей для частного дома крайне важно учитывать не только район, но и географическую широту, поскольку ближе к полюсам излучение солнца менее интенсивно. Но даже в северных и восточных регионах использование альтернативной энергии позволит вам сэкономить на потреблении традиционно «домашних» ресурсов.
Варианты фотоэлектрических элементов
Как было сказано ранее, генерация электрического тока происходит в момент соприкосновения лучей солнца с поверхностью фотоэлементов. Воздействие инфракрасного излучения смещает электроны с их «родных» орбит, в результате чего создается направленное движение заряженных ионов. При грамотном монтаже одна солнечная панель площадью 10 кв. м способна вырабатывать порядка 1 кВт энергии. На мощность бытовых гелиосистем оказывают влияние характеристики фотоэлемента.
1) Монокристаллический кремний
Такие солнечные батареи для дома отличаются достаточно легким весом, компактными размерами, а также продолжительным сроком эксплуатации. Их очень удобно монтировать, вот только монокристаллические фотоэлементы требовательны к интенсивности солнечного излучения и направленности лучей. Даже небольшая облачность критична для солнечной батареи, поскольку практически всегда приводит к прекращению генерации электричества от солнца.
Толщина панелей колеблется в пределах 200–300 мкм, а КПД при хорошей погоде и правильном расположении конструкции держится на уровне 17–19%. Недостаток — высокая стоимость для частных домов.
2) Поликристаллический кремний
В среднем срок эксплуатации составляет 15-20 лет, КПД – 14%. По электрическим характеристикам поликристаллические фотоэлементы уступают монокристаллу.
Но благодаря тому, что кристаллы кремния направлены в разные стороны, пластины на солнечных батареях хорошо улавливают рассеянные световые пучки, а потому намного меньше «страдают» при отсутствии солнца.
3) Тонкопленочные панели
В данном случае используется светопоглощающая пленка, которая «впитывает» энергию солнца даже при пасмурной погоде. Вот только КПД у них держится на уровне 8–10%, но этот недостаток с лихвой компенсируется низкой стоимостью.
Тонкопленочные фотоэлементы можно установить в любом удобном месте кровли или стены здания. Они не притягивают пыль и даже работают при неблагоприятных условиях окружающей среды, но при малой интенсивности солнечного излучения КПД снижается на 15%. Недостаток — требуется большая площадь для монтажа.
Различают также фотоэлементы из аморфного кремния, которые представляют собой эконом-вариант для дачных домиков (КПД 7–8%), и панели из теллуида кадмия, изготовленные по пленочной технологии, — КПД в районе 9–11%.
Схемы подключения солнечных батарей
Выделяют несколько основных категорий фотоэлектрических систем энергоснабжения частного дома (ФСЭ), которые различаются между собой по техническим параметрам и функциональным характеристикам.
К первой группе относят полностью автономные (закрытые) системы, которые не интегрированы в централизованную сеть электроснабжения. Солнечные генераторы функционируют в собственном контуре, а бытовые приборы подключены напрямую. Показатели КПД возрастают после установки аккумуляторных батарей и контроллера заряда.
Вторую группу представляет система солнечных батарей открытого типа. По умолчанию аккумулирующие емкости в ней не предусмотрены. ФСЭ подключены к централизованной сети электроснабжения через инвертор. При допустимом значении потребляемой мощности работают только фотопанели, которые генерируют ток напрямую. Если нагрузка возрастает, потребление электричества производится из традиционных источников. Такие гелиосистемы стоят недорого, но и не отличаются высокой эффективностью.
К третьей категории относят комбинированные ФСЭ, которые обладают характеристиками гелиосистем открытого и закрытого типа. Такие конструкции отличаются высокой стоимостью, поскольку их работа связана с использованием аккумуляторных батарей повышенной емкости и сетевых многофункциональных преобразователей.
Обогрев дома при помощи солнечных панелей
Для автономного отопления частного дома стандартные гелиосистемы применяют в основном на юге России, где тепловая энергия является первоосновным источником электричества. Владельцам дачных домов и небольших коттеджей целесообразнее приобретать для нагрева воды бытовой коллектор.
Выбор конкретной схемы подключения напрямую зависит от условий эксплуатации оборудования и личных потребностей. Как показывает практика, использование солнечных батарей в зимний период дает возможность сэкономить на традиционных энергоносителях до 25% всех затрат, в зависимости от температуры окружающей среды.
Стандартный комплект оборудования
Чтобы обеспечить частный дом электроэнергией по «зеленым» тарифам, одних только солнечных панелей недостаточно. Базовая комплектация, помимо фотоэлементов, в обязательном порядке подразумевает применение вспомогательного оборудования:
- аккумулирующие емкости;
- сетевой инвертор;
- контроллер заряда АКБ.
Если вы решили самостоятельно сделать электростанцию, работающую от солнечных батарей, не выбирайте для накопления электроэнергии автомобильные аккумуляторы — их срок службы при интенсивной нагрузке составляет всего 2-3 года, поэтому такие «батарейки» придется регулярно менять.
Гелиосистемы на основе вакуумного коллектора или солнечного модуля для нагрева воды дополнительно комплектуются насосом для постоянной циркуляции теплоносителя, водяным котлом емкостью до 1000 л и электрическими тэнами.
Таким образом, солнечные энергоресурсы можно использовать для электроснабжения, горячего водоснабжения или отопления, включая систему «теплый пол». Чтобы подобрать наиболее подходящий вариант для автономного дома, надо предварительно рассчитать суммарную мощность потребления бытовых приборов, а также обязательно учесть уровень инсоляции, месторасположение и угол наклона фотопанелей, среднее количество солнечных дней в году.
Способы монтажа бытовых гелиоустановок
В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули. При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут. Для северо-восточных он составляет 180 градусов.
Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов. Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов. На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
- кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
- стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
- приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.
Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.
Окупаемость и срок эксплуатации
Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.
По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.
Сравнительный обзор различных видов солнечных батарей
Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, повышается их КПД.
При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца, необходимо предварительно узнать об отличиях оборудования, понять, какие солнечные панели подходят под климатические условия определенного региона.
Мы поможем разобраться в этом вопросе. В статье рассмотрен принцип работы фотоэлектрических преобразователей, приведен обзор разных видов солнечных батарей с указанием их характеристик, преимуществ и недостатков. Ознакомившись с материалом, вы сможете сделать правильный выбор для обустройства эффективной гелиосистемы.
Содержание статьи:
Принцип работы солнечных панелей
Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.


Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи
Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.
Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.
КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.


Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов (+)
Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов – при этом не изменяется.
Типы фотоэлектрических преобразователей
Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя.
Различают такие виды батарей по типу устройства:
- ;
- жесткие модули.
Гибкие тонкопленочные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.


Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект
По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:
- Кремниевые: монокристаллические, поликристаллические, аморфные.
- Теллурий-кадмиевые.
- На основе селенида индия- меди-галлия.
- Полимерные.
- Органические.
- На основе арсенида галлия.
- Комбинированные и многослойные.
Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида.
Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.
Галерея изображений
Фото из
Массив монокристаллических солнечных фотоэлементов
Солнечная панель на основе поликристаллов кремния
Солнечная панель в виде пленки
Фотогальванические элементы из селенида индия-меди-галлия
Фотоэлемент на основе арсенида галлия
Солнечные панели со слоем теллурида кадмия
Производство органических солнечных панелей
Солнечная батарея из полиэфира
Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25°C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.
Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.
Характеристики панелей на основе кремния
Кремний для солнечных батарей изготавливают из кварцевого порошка – размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны.
Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.
Монокристаллические кремниевые панели
Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.


Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности
Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.
Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.
Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.
К преимуществам монокристаллических кремниевых батарей относят:
- Высокий КПД со значением 17-25%.
- Компактность – меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
- Долговечность – достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.
Недостатков у таких батарей всего два:
- Высокая стоимость и длительная окупаемость.
- Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.
Из-за потребности в прямых солнечных лучах монокристаллические в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.
Поликристаллические солнечные батареи
Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.
Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.
Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы.
На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.
Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.


Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени (+)
К достоинствам солнечных батарей с разнонаправленными кристаллами относят:
- Высокая эффективность в условиях рассеянного света.
- Возможность стационарного монтажа на крышах зданий.
- Меньшая стоимость по сравнению с монокристаллическими панелями.
- Длительность эксплуатации – падение эффективности через 20 лет эксплуатации составляет всего 15-20%.
Недостатки у поликристаллических панелей также имеются:
- Пониженный КПД со значением 12-18%.
- Относительная громоздкость – требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.
Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.
Солнечные панели из аморфного кремния
Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку.
В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.


Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе
На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%.
Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.
За счет особенностей данной производственной технологии, создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.
Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями.
Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.


При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги (+)
Подытоживая, можно указать такие преимущества аморфных солнечных панелей:
- Универсальность – возможность изготовления гибких и тонких панелей, монтаж батарей на любые архитектурные формы.
- Высокий КПД при рассеянном свете.
- Стабильная работа при высоких температурах.
- Простота и надежность конструкции. Такие панели практически не ломаются.
- Сохранение работоспособности в сложных условиях – меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов
Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.
Обзор бескремниевых устройств
Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.
Солнечные панели из редких металлов
Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.
Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.


Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов
Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).
Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.
КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.
Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.
В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.
Полимерные и органические аналоги
Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.
Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.
При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.
Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.
Преимуществами органических солнечных панелей являются:
- возможность экологически безопасной утилизации;
- дешевизна производства;
- гибкая конструкция.
К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.
Какую солнечную панель выбрать?
Выбор солнечных панелей для загородных домов на широте 45-60° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели.
При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.


Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены
Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.
Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.
Некоторые мастера предпочитают собирать солнечные батареи собственноручно. На нашем сайте есть статьи с подробным описанием технологии изготовления таких панелей, их подключению и обустройству отопительных гелиосистем .
Советуем ознакомиться:
Выводы и полезное видео по теме
Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.
Правила выбора солнечных панелей и сопутствующего оборудования:
Виды солнечных панелей:
Тестирование монокристаллической и поликристаллической панелей:
Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что скоро энергия солнца станет главным источником электроэнергии во многих загородных домах.
Всем заинтересованным в вопросе выбора и использования солнечных батарей предлагаем оставлять комментарии, задавать вопросы и участвовать в обсуждениях. Форма для связи расположена в нижнем блоке.
особенности выбора, принцип работы, размещение
Сегодня человечество делает все возможное, чтобы как можно меньше зависеть от не восполняемых источников энергии, таких как нефть и природный газ. Наиболее популярной альтернативой им являются, конечно же, солнечные батареи. С каждым днем они становятся все более компактными и доступными. Поэтому уже сейчас никого не удивляет вид крыши с несколькими установленными на ней панелями.
Преимущества
Самым важным плюсом солнечных батарей является, конечно же, их экономичность. Установив несколько панелей, вы сможете снизить расходы не только на электроэнергию, но также на отопление помещений и водонагрев. При этом фотоэлементы имеют длительный срок службы. Правда, не стоит забывать и о постоянном уходе. Ведь пыль и всевозможные осадки могут не только заметно снизить КПД установки, но со временем вывести ее из строя.
Еще одном важным аспектом является автономность. Любая, даже самая дешевая и маломощная солнечная батарея абсолютно не зависит от каких-либо других источников энергии. Для отдалённых сельских районов, где еще нет нормальной инфраструктуры, такое решение будет настоящим спасением.
Не стоит переживать и по поводу неблагоприятных погодных условий. Современные солнечные батареи великолепно справляются со своими функциями даже в пасмурные зимние дни.
Как выбрать?
Каждая солнечная батарея состоит из нескольких фотоэлементов, которые объединены в единую систему. В процессе работы происходит преобразования солнечной энергии в электрическую, а также последующее накопление последней.
Прежде чем покупать указанное устройство, необходимо разобраться в существующих его разновидностях. Наиболее выгодным вариантом считаются поликристаллические кремниевые батареи. Их КПД составляет порядка 15 процентов, что в данном случае можно считать весьма высоким показателем. Вместе с тем, подобные батареи отличаются весьма демократичной стоимостью, что сделало их очень популярными не только среди частых потребителей, но и на производстве. Готовый блок имеет квадратную форму и синий цвет поверхности.
Следующий тип фотоэлементов, монокристаллический, превосходит предшественника по коэффициенту полезного действия, тут этот показатель может достигать 18 процентов, но стоит несколько дороже. Кроме того, такие батареи отличаются небольшим весом, гибкостью конструкции. Также важно заметить, что они практически не подвержены влиянию влаги и не выйдут из строя даже при постоянных перепадах температур. Другими словами, если вы один раз потратитесь на подобный товар, то сможете впоследствии пользоваться им еще очень долго.
Самой дешевой разновидностью солнечных батарей являются тонкопленочные. Они отличаются большой площадью, что с одной стороны существенно усложняет процесс монтажа, а с другой – гарантирует стабильную работу системы даже при неблагоприятных погодных условиях. КПД таких фотоэлементов едва достигает десяти процентов.
Относительно молодым типом батарей являются гибридные модели. Они изготавливаются на основе как кристаллического, так и аморфного кремния. Такой подход позволил заметно повысить эффективность работы при существенном снижении стоимости.
При выборе солнечной батареи необходимо учитывать такие факторы, как:
- тип местности;
- климат;
- желаемое количество потребляемой энергии.
К примеру, в лесистой местности солнечные лучи рассеиваются сильнее, поэтому панели лучше выбирать с как можно большей площадью. В горах и прибрежных районах, напротив, вполне можно обойтись и более компактными и удобными моделями. Если вы проживаете в северных широтах, где световой день отличается своей непродолжительностью, старайтесь подбирать батареи с высокой мощностью и емким аккумулятором. Жителям юга можно несколько сэкономить на этих показателях.
Обязательно тщательно просчитайте, какое именно количество энергии вам понадобится для комфортной жизни. Сложите вместе мощность все имеющихся в доме приборов, а также определитесь с тем, будете ли вы тратить электричество для отопления и нагрев воды. Выбранная вами батарея должна вырабатывать немного больше энергии, чтобы не работать постоянно на пределе своих возможностей.
К примеру, каждый месяц вы собираетесь расходовать порядка 300 кВт/час. Средняя мощность одной солнечной панели составляет 250 Вт. Это значит, что она будет выдавать приблизительно 25 кВт/час каждый месяц. Учитывая, что летом и в хорошую погоду номинальная мощность может быть получена в течение шести часов, несложно подсчитать, что для полного перекрытия ваших потребностей вам необходимо установить 12 таких панелей. Если приобрести весь комплект сразу вам будет проблематично, можете производить установку поэтапно.
Принцип действия
Конечно же, солнечная батарея устроена довольно сложно, а объяснить все происходящие в ней процессы непосвящённому человеку будет крайне сложно. Поэтому ниже будет изложена, возможно, и несколько примитивная, но зато понятная каждому схема.
Итак, представьте солнечную панель в виде пластин, расположенных параллельно друг другу, образуя два уровня. На первом из них находится некоторое количество воды. Частицы солнечного света попадают на панель и приводят жидкость в движение, разбрызгивая ее. Нечто подобное можно наблюдать, бросив пригоршню мелких шариков в наполненную доверху водой миску. В результате жидкость попадает на второй уровень, но в силу специальной конструкции батареи, не может там задерживаться и по желобу стекает на первый, параллельно приводя в движение колесо, которое и вырабатывает энергию.
Если общий принцип вам понятен, замените воду на негативно заряженные частицы, то есть электроны, которые приводятся в движение с помощью фотонов света. Затем под действием электромагнитного поля они скапливаются в одном месте и вновь попадают на первый уровень, параллельно вырабатывая некоторое количество энергии.
Советы по установке
Первое, что нужно решить перед монтажом – будете ли вы делать это самостоятельно, или обратитесь за помощью к профессионалам. Первый вариант имеет два важных преимущество, а именно существенную экономию денег и получение бесценного опыта. Но если вы все же решитесь на самостоятельный монтаж, то предварительно обязательно нужно изучить массу учебных материалов. Кроме того, рекомендуется приобретать полный комплект, включающий в себя не только панели, но также АКБ, инвертор и всю соединительную аппаратуру.
Если же вы не уверены в собственных силах, то лучше не рисковать и обратиться за помощью к профессионалам. Это, конечно же, повлечет за собой некоторые дополнительные затраты, но зато вы будете уверены в правильности монтажа.
Очень важно правильно выбрать место установки панели. При этом следует учитывать следующие особенности:
- затененность;
- ориентация;
- уклон;
- доступность для обслуживания.
Первый критерий самый важный. Если вашу батарею будут загораживать от солнечного света деревья, другие строения и так далее, ее продуктивность существенно снизится. А значит, сократится и количество вырабатываемой энергии. Кроме того, батарея, установленная в затененном месте, быстрее придет в негодность, и вы не успеете полностью окупить ее.
Старайтесь устанавливать панель таким образом, чтобы прямые солнечные лучи падали на нее как можно дольше на протяжении всего светового дня. Что касается угла наклона, то многие эксперты считают, что он должен соответствовать широте вашего проживания. Кроме того, для большей эффективности в зимнее и летнее время угол должен несколько отличаться. Поэтому старайтесь устанавливать панель на такое крепление, которого позволяет проводить подобные манипуляции.
Солнечные панели не нуждаются в особом уходе. Но иногда их обязательно нужно отчищать от пыли и грязи, а в зимнее время – от снега. Это делается для того, чтобы продуктивность системы всегда была на самом высоком уровне. Поэтому, устанавливая батареи, убедитесь в том, что у вас всегда будет доступ к ним.
Проще всего поставить панель на скат крыши, если она имеет подходящий угол. Если у вам плоская кровля, придется дополнительно соорудить металлический каркас. Нередко батареи монтируются на специальные столбы. Такое решение обеспечивает наиболее простой доступ к ним.
все про альтернативный источник энергии — solar-energ.ru. Как сделать солнечную батарею из простых подручных средств
Иногда сделать своими руками солнечную батарею бывает необходимо. Мы расскажем, как, из чего и для каких целей можно использовать самодельную СБ.
Людей, которые бы желали жить в экологически чистом месте, вдали от шума цивилизации, становится все больше. Развитая промышленность загрязняет воздух и окружающую среду и вызывает распространение многих болезней, ослабляя иммунитет. Но отъезд подальше от города имеет некоторые сложности, в первую очередь это связано с отсутствием электроснабжения некоторых участков. Жить же в наше время без электричества практически невозможно. На Западе данная проблема решается установкой ветрогенератора, но этот способ имеет свои сложности. В первую очередь дело в дороговизне оборудования. К тому же, чтоб обеспечить целый дом, потребуется не один, а как минимум несколько генераторов. Одним из самых эффективных способов обеспечения электроэнергии дома считается использование солнечных батарей. Небольшую солнечную батарею можно построить своими руками, ведь заводские варианты не дешевы.

Узнаем, как сделать солнечную батарею
Основные элементы: где достать
По сути, солнечная батарея представляет собой контейнер, в котором располагают массив элементов, преобразующих энергию Солнца в электричество. Мы не зря употребили слово «массив». Дело в том, что чтобы обеспечить даже самый маленький домик энергией, элементов должно быть достаточно много.
А так как эти элементы имеют весьма хрупкую структуру, контейнер должен обеспечить их механическую защиту. Кроме того, в контейнере все элементы объединяются в один. Принцип работы батареи не сложен. Поэтому сделать ее можно и самостоятельно.
Для этого все-таки надо изучить теоретическую часть, так как солнечные батареи мало кто делает самостоятельно. Отсюда, кстати, и мнение, что сделать их сложно. Но на самом деле это не так. Основные выводы, полученные после изучения материала о создании данного источника электроэнергии, следующие:
- Самое главное – приобрести солнечные элементы, и желательно по доступной цене.
- Можно использовать бывшие в употреблении запчасти, ввиду высокой стоимости новых.
- Купить пластины, которые обладают небольшими повреждениями, можно на аукционах или по рекламе.
Таким образом, на солнечных элементах вполне можно сэкономить. А уж сделать своими руками контейнер не составит трудности.

Солнечные элементы
Принцип работы
Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.
Как мы писали выше, солнечная батарея (СБ) — это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.
Преобразователи бывают трёх видов:
- монокристаллические;
- поликристаллические;
- аморфные или тонкопленочные.
Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.

схема преобразования солнечной энергии в элементах
Как правильно подобрать фотоэлемент
Так как фотоэлементы бывают аморфные, поликристаллические и монокристаллические, можно выбрать один из этих трех вариантов. Желательно это сделать до начала проектной работы. Рассмотрим основные характеристики каждого из видов.
- Монокристаллические имеют КПД 12-14%, но являются самыми чувствительными к лучам света. Если в вашей местности солнечных дней не так много, лучше этот вариант не рассматривать. Небольшая облачность способна существенно снизить КПД. Срок эксплуатации составляет 30 лет.
- Аморфные в своем составе имеют гибкий кремень. Их КПД составляет около 10%. Их производительность электричества не снижается даже в плохих погодных условиях. Однако они очень дороги, да и достать их бывает непросто.
- Поликристаллические имеют КПД до 9%. Они весьма доступны, их производительность не зависит от облачности, но срок эксплуатации меньше на треть – до 20 лет.
В специализированных магазинах можно найти любой из этих вариантов. Если же вы хотите немного сэкономить, выбирайте второй сорт. Эти элементы будут иметь небольшие дефекты, но на работе прибора это не скажется. Иногда цена на б. у. части ниже в 2-3 раза, что позволяет сэкономить должным образом, делая работу самостоятельно.
Как расположить для улучшения КПД
Так как КПД зависит в первую очередь от света, при выборе места под ваше устройство необходимо пользоваться следующим принципом: установку стоит проводить как можно выше. Именно поэтому устройства располагают чаще всего на крыше здания. Однако иногда бывает так, что дом при строительстве не рассчитан на больший вес, а данный способ получения электричества требует более крепких перекрытий. Тогда следует выбирать место на земле, которое в течение дня постоянно освещено.

Как расположить солнечную батарею
Что же касается угла падения лучей, то установку лучше ставить так, чтоб они падали перпендикулярно. В современных заводских установках владелец может корректировать угол наклона платформы. Сделать же это в самодельных вариантах не просто.
Угол наклона определяется как географическим месторасположением участка, так и уровнем солнцестояния на местности.
Самостоятельная работа

как сделать солнечную батарею
Сразу хочется сказать – не особо надейтесь, что сможете сами построить устройство, которое полностью покроет все расходы дома, и обеспечит здание электричеством в 220 Вольт. Размеры такой установки были бы огромны, ведь одна пластина генерирует электрический ток с напряжением всего 0,5 В. Оптимально для самоделки – номинальное напряжение в 18 вольт. На этот показатель мы и будем ориентироваться, рассчитывая необходимое количество фотоэлементов для батареи.
Важно: Корпус устройства представляет простой неглубокий ящик. Бортики лучше сделать как можно меньше, чтобы они не создавали тень. Материалом для него может быть фанера и рейки.
Бортики для лучшего крепления садим на клей и привинчиваем саморезами. Чтобы блоки было проще спаять, ящик делим на две части с помощью планки, зафиксированной по центру ящика.
Собираем каркас для фотоэлементов

каркас для фотоэлементов солнечной батареи из профиля
Защитная рамка или каркас – важнейшая часть устройства. Для ее создания в домашних условиях можно использовать алюминиевые уголки 30х30 мм или деревянные бруски.
Если вы решили использовать металлический профиль, фаска снимается напильником под углом 45 градусов. После того, как все части каркаса выпилены, они соединяются с помощью уголков. Защитное стекло приклеивается на готовый каркас с помощью силикона.
Важно: Функцию подложек могут выполнять два вырезанных куска ДВП. На них и будут крепиться солнечные элементы. Вместо ДВП можно использовать любой тонкий материал, обладающий жесткостью и не проводящий электрический ток.
Как соединять пластины
Чтобы правильно соединить пластины, надо знать некоторые принципы:
- Для увеличения напряжения в домашних условиях, при спаивании пластин нужно знать, что для увеличения напряжения соединять их надо последовательно, а для увеличения силы тока — параллельно.
- Промежуток между кремниевыми пластинами должен составлять 5 мм с каждой стороны. Это необходимо, так как при нагреве пластины могут расширяться.
- Каждый преобразователь имеют две дорожки: с одной стороны у них будет «плюс», с другой — «минус». Соединением все детали последовательно в единую цепь.
- Проводники с последних компонентов цепи надо вывести на общую шину.
Важно: чтобы избежать саморазряда устройства в ночное время или облачную погоду, можно сделать монтаж диода Шоттки 31DQ03 или другого аналога на контакт от «средней» точки.
Когда все работы по спайке закончены, с помощью мультиметра можно проверить выходное напряжение. Оно должно составлять 18–19В для обеспечения небольшого дома электроэнергией.
Как собрать панель

Устройство солнечной батареи
Итак, корпус у нас готов, и пора заняться панелью. В полученный ящик надо уложить спаянные преобразователи. В центре каждого фотоэлемента наносим силикон, и закрываем сверху подложкой из ДВП для их фиксации. Закрываем конструкцию крышкой, и для надежности все стыки герметизируем силиконом или герметиком. Полученная панель устанавливается на специальный держатель или каркас.
Важно: Чтобы защитить батарею от агрессивного воздействия среды и климата, применяют оргстекло, закрывающее лицевую сторону. Если батарея крупная, можно использовать два куска, но если позволяет ее размер – то можно вырезать один, тогда соединение будет без стыка.
Обычное стекло лучше не брать – оно слишком хрупкое, и в процессе эксплуатации может лопнуть.
Своими руками из того, что есть
Если цена на солнечные панели вас не устраивает, вы вполне можете создать свою установки из практически подручных материалов. Ниже мы рассмотрим, как сделать солнечную батарею своими руками из различных материалов – например, из транзисторов, диодов и фольги.

солнечная батарея своими руками из подручных средств
Транзисторы, как основа световых элементов
Транзисторы подходят под нашу цель, так как внутри у них располагается довольно большой кремневый полупроводниковый элемент, который и будет использоваться для производства электричества. Лучше всего остановить свой выбор на транзисторах типа КТ или П.
Важно: При сборке источника тока хорошим вариантом будет разработать монтажную плату из фольгированного стеклотекстолита. Плату, после распайки, нужно поместить в корпус подходящих размеров, а сверху закрыть пластиной из оргстекла. В результате мы можем получить источник тока из нескольких десятков транзисторов, который генерирует напряжение в несколько вольт при выходном токе в несколько миллиампер.
Начинаем работу. В первую очередь срезаем металлическую крышку с необходимого количества радиодеталей. Это сделать проще, если зажать транзистор в тисках и произвести срез аккуратно ножовкой по металлу. Внутри вы увидите пластину. Это и есть главная часть нашего будущего устройства. Он будет служить нам фотоэлементом.
Деталь будет иметь три контакта: база, эмиттер и коллектор. Во время сборки выбирайте коллекторный переход в связи с наибольшей разностью потенциалов.
Своими руками сборку лучше делать на ровной поверхности из любого диэлектрического материала.
Важно: Все транзисторы спаиваем в отдельные последовательные цепочки, которые, в свою очередь, необходимо соединять параллельно. Расчет источника тока делаем, основываясь на характеристиках радиодеталей. В среднем, один транзистор выдает напряжение 0,35 В при силе тока при КЗ в 0,25 мкА.
Те транзисторы, которые вы собираетесь использовать при создании солнечных батарей, перед работой следует проверить. Для этих целей берем простой мультиметр. Необходимо переключить прибор в режим измерения тока, включить его между базой и коллектором или эмиттером транзистора. Снимаем показатель – обычно прибор демонстрирует небольшой ток — доли миллиампера, реже чуть больше 1 мА. Далее переключаем прибор в режим измерения напряжения (предел 1-3 В), и получаем значение выходного напряжения (оно составит порядка нескольких десятых долей вольта). Транзисторы желательно группировать с близкими значениями выходных напряжений.
Используем диоды
Вторым популярным материалом для самодельного источника энергии считается диод. Диоды Д223Б могут стать действительно альтернативным источником электрического тока. Они имеют наибольший вольтаж, и заключены в стеклянном корпусе. Один диод может сгенерировать 350 мВ на солнце, исходя из этого, можно определить и напряжение на выходе готового изделия.
Произведя расчёты, подбираем нужное количество диодов. Их необходимо сложить в емкость и залить ацетоном. Можно использовать и другой растворитель. Это необходимо, чтобы снять краску со стекла.
Берем пластину из не металлического материала, и делаем на ней разметку, куда будут впаяны компоненты источника питания. Через несколько часов краска, как раз пока делается разметка, станет мягкой, и ее можно легко соскрести.

Солнечная панель на диодах
Далее необходимо определить плюсовой контакт – для этого используем мультиметр. Определяем контакт под лампочкой или на солнце. Впаиваем диоды параллельно, так как в данном случае кристалл лучше всего будет генерировать энергию от солнца. В результате на выходе будет максимальное напряжение.
Важно: для самостоятельной сборки можно выбрать диоды Д223Б. Они лучше всего подходят, так как имеют стеклянный и небольшой корпус, и их можно установить достаточно плотно. К тому же, напряжение в них одно из самых больших(целых 350 мВ под солнцем).
Как использовать фольгу
Фольгу также можно использовать для создания источника питания, однако энергии она будет давать немного. Подходит обычная фольга, размером 45 квадратных см. Ее необходимо промыть в мыльной воде, чтобы удалить любой жир. Вот пошаговая инструкция:
- Используя шкурку, удаляем любой вид коррозии.
- На электрическую плитку с мощностью от 1,1кВт кладем лист фольги, и нагреваем до тех пор, пока на ней не появятся оранжево-красные пятна. Если нагревать далее, пятна станут черные, что будет говорить об образовании оксида меди.
- Продолжаем нагревать еще минут 30, чтобы оксидная пленка стала нужной толщины. Выключаем горелку и даем листу остыть. Медленно остывая, оксид начинает отходить. Под проточной водой удаляем остатки оксида, не сгибая и не повреждая лист и тонкий слой окиси.
- Вновь вырезаем такой же кусок фольги – по размеру первого.
- Берем пластиковую бутылку, обрезаем горлышко и засовываем туда оба куска, закрепляя их зажимами. Они должны быть расположены так, чтобы не соединяться. К тому куску, который мы нагревали, проводим минусовую клемму, а ко второму – плюсовую.
В бутылку заливаем солевой раствор так, чтобы до кромки электродов оставалась примерно 2,5 см.

Схема солнечной батареи из фольги
Аккумулятор для дачи готов.
Конечно, такого самодельного прибора не хватит для обеспечения дома, но зато ее можно использовать для подзарядки мелких электроприборов или в виде питания радиоприемника.
Автор: Киселевская Юлия.
Зарядка аккумуляторов с помощью солнечной энергии или ветряной турбины
Узнайте, как заряжать аккумуляторы от возобновляемых источников и сколько это стоит.
Люди, заботящиеся об окружающей среде, склоняются к использованию возобновляемых источников энергии. Солнце обеспечивает пиковую мощность около 1000 Вт на квадратный метр (93 Вт / квадратный фут), а солнечная панель преобразует эту мощность примерно в 130 Вт на квадратный метр (12 Вт / квадратный фут). Этот сбор энергии соответствует ясному дню с солнечной панелью, обращенной к солнцу.Поверхностная пыль на солнечных батареях и высокая температура снижают общую эффективность.
Производство электричества солнечным светом восходит к 1839 году, когда Эдмон Беккерель (1820–1891) впервые обнаружил фотоэлектрический эффект. Прошло еще столетие, прежде чем исследователи поняли этот процесс на атомарном уровне, который работает аналогично твердотельному устройству с кремнием n-типа и p-типа, соединенными вместе.
Коммерческие фотоэлектрические системы имеют КПД от 10 до 20 процентов. Из них гибкие панели составляют только 10 процентов, а сплошные панели имеют эффективность около 20 процентов.Испытываются технологии многопереходных ячеек, эффективность которых достигает 40 процентов и выше.
Глобальное потепление отрицательно скажется на солнечных батареях. Исследование Массачусетского технологического института (MIT) показывает, что повышение температуры на один градус Цельсия снижает выходную фотоэлектрическую мощность на 0,45%. Как и батарея, тепло также сокращает срок службы солнечных элементов.
При 25 ° C (77 ° F) высококачественная монокристаллическая кремниевая солнечная панель вырабатывает около 0,60 В разомкнутой цепи (OCV).Как и батареи, солнечные элементы можно подключать последовательно и параллельно для получения более высоких напряжений и токов. (См. BU-302: последовательные и параллельные конфигурации батарей). Температура поверхности при полном солнечном свете, вероятно, вырастет до 45 ° C (113 ° F) и выше, что снизит напряжение холостого хода до 0,55 В на элемент из-за более низкой эффективности. Солнечные элементы становятся более эффективными при низких температурах, но при зарядке аккумуляторов при температурах ниже нуля необходимо соблюдать осторожность. (См. BU-410: Зарядка при высоких и низких температурах). Внутреннее сопротивление солнечного элемента относительно высокое: серийное сопротивление серийного элемента обычно составляет один Ом на квадратный сантиметр (1 Ом · см2).
Солнечная зарядная система не обходится без контроллера заряда. Контроллер заряда берет энергию от солнечных панелей или ветряной турбины и преобразует напряжение, чтобы оно подходило для зарядки аккумулятора. Напряжение питания для аккумуляторной батареи на 12 В составляет около 16 В. Это позволяет заряжать свинцово-кислотный до 14,40 В (6 x 2,40 В / элемент) и литий-ионный до 12,60 (3 x 4,20 В / элемент). Обратите внимание, что 2,40 В на элемент для свинцово-кислотных и 4,20 В на элемент для литий-ионных аккумуляторов являются пороговыми значениями напряжения полной зарядки.
Также доступны контроллеры заряда для литий-ионных аккумуляторов 10.Пакеты на 8 В (3 ячейки последовательно). Приобретая контроллер заряда, соблюдайте требования к напряжению. Стандартное семейство литий-ионных аккумуляторов имеет номинальное напряжение 3,6 В / элемент; фосфат железа лития составляет 3,20 В / элемент. Подключайте только те аккумуляторы, для которых предназначен контроллер заряда. Не подключайте свинцово-кислотный аккумулятор к контроллеру заряда, предназначенному для литий-ионных аккумуляторов, и наоборот. Это может поставить под угрозу безопасность и долговечность батарей, поскольку алгоритмы зарядки и настройки напряжения отличаются.
Более дешевый контроллер заряда выдает выходное напряжение только при наличии достаточного количества света.При уменьшающемся источнике света контроллер заряда просто отключается и возобновляет работу, когда восстанавливается достаточный уровень света. Большинство этих устройств не могут использовать дополнительную мощность на рассвете и в сумерках, и это ограничивает их применение в идеальных условиях освещения.
Усовершенствованный контроллер заряда отслеживает мощность, измеряя напряжение и регулируя ток, чтобы получить максимальную передачу мощности в преобладающих условиях освещения. Это стало возможным с помощью отслеживания точки максимальной мощности (MPPT) .На рис. 2-25 показаны источники напряжения и тока от солнечного элемента при переменном солнечном свете. Оптимальная мощность доступна при изломе напряжения, где линия падающего напряжения встречается с вертикальной линией электропередачи. MPPT определяет этот момент.
MPPT — Clean Energy Reviews
Размер контроллера(A)
В качестве основного руководства номинальная мощность контроллера (A) должна составлять от 10 до 20% от номинальной мощности батареи в ампер / час (Ач). Например, свинцово-кислотной батарее емкостью 100 Ач потребуется контроллер заряда от 10 А до 20 А и солнечная панель мощностью 150 Вт или больше, чтобы генерировать ток заряда 10 А *, необходимый для достижения аккумулятором напряжения адсорбции. * Примечание. Всегда обращайтесь к спецификациям производителя батарей.
Как упоминалось ранее, если номинальное значение MPPT Amp слишком мало, ток заряда будет слишком низким, чтобы батарея могла достичь требуемого напряжения заряда (поглощения), что сократит срок службы свинцово-кислотной батареи.
Фактический ток заряда, используемый для зарядки аккумулятора, будет определяться размером и количеством подключенных солнечных панелей, ориентацией панели и временем дня / года. Кроме того, не забудьте принять во внимание различные потери, которые могут составлять до 20%.Например, солнечная панель мощностью 300 Вт обычно производит от 240 Вт до 280 Вт на полном солнце из-за различных факторов потерь, включая потери преобразования, пыль, отражение и снижение температуры элемента (см. Температурный коэффициент мощности на солнечной панели спецификации для более подробной информации). Узнайте больше об эффективности солнечных батарей.
Размер солнечной батареи (Вт)
Как уже упоминалось, все солнечные контроллеры заряда рассчитаны на максимальное напряжение (В — Вольт) и максимальный ток заряда (А — А).Максимальное напряжение MPPT определяет, сколько панелей можно подключить (последовательно), а номинальный ток будет определять максимальный ток заряда и, в свою очередь, аккумулятор какого размера можно заряжать.
В качестве основного руководства солнечная панель должна быть способна генерировать ток, близкий к зарядному току контроллера, который должен иметь правильный размер, чтобы соответствовать батарее. Например, для батареи 12 В на 200 Ач требуется контроллер заряда солнечной энергии минимум на 20 А и солнечная панель на 250 Вт для выработки энергии, близкой к 20 А.(Используя формулу P / V = A, получаем 250 Вт / 12 В = 20 А). Однако из-за различных факторов потерь солнечные панели редко работают на максимальной номинальной мощности, поэтому в этом примере я бы порекомендовал панель 300 Вт (или 2 панели по 150 Вт).
.
| ![]() | ![]()
|
Complete Solar Battery Review — Clean Energy Reviews
Чтобы еще больше усложнить ситуацию в реальных условиях, существует множество переменных, включая температуру, скорость разряда и неполный заряд (частичное состояние заряда), поэтому производительность и срок службы аккумуляторной системы могут быть значительно изменено.
Как правило, литиевые батареи предназначены для разряда до 90% общей емкости, в то время как традиционные свинцово-кислотные (гелевые и AGM) батареи обычно не разряжаются ниже 50%, кроме случаев аварийного резервного копирования.Для тех, кто работает в отрасли, это относительно стандартное предположение. См. Нашу статью о батареях для получения более подробной информации.
Выходная мощность батареи
4. После этого у нас есть непрерывная и пиковая выходная мощность. Это может быть очень важно в зависимости от типа инвертора, который вы используете, и приложения, например, для автономных установок обычно требуется более высокая пиковая выходная мощность, поскольку у вас нет сети, доступной для помощи при высокой нагрузке (высокая мощность рисовать) ситуаций.
Эффективность туда и обратно
5. Далее идет эффективность туда и обратно , это эффективность зарядки и разрядки или потери во время использования цикла. К сожалению, по законам физики передача энергии из одной формы в другую (в случае батарей с электрической энергии на химическую) всегда приводит к некоторым потерям. Как правило, потери заряда / разряда свинцово-кислотных аккумуляторов составляют около 20%, в то время как большинство новых литиевых аккумуляторов могут составлять всего 2%, но обычно находятся в диапазоне 5-8%.
Размер и вес
6. Вы можете быть удивлены, но я поставил вес или плотность энергии в последнюю очередь. Это просто потому, что я считаю это довольно неуместным в стационарной ситуации, однако, если бы это сравнение проводилось для электромобилей, оно, вероятно, было бы первым в списке.
Устойчивое развитие — воздействие на окружающую среду
7. Конечно, есть и другие важные факторы, которые следует учитывать, такие как возможность вторичной переработки, температурный допуск и безопасность.Экологичность становится все более важной по мере того, как устанавливается все больше и больше аккумуляторных систем. Плюс возможность вторичной переработки со временем станет серьезной проблемой. Эта тема подробно рассматривается в конце обзора.
.