Что происходит при коротком замыкании в цепи – в чем причина, защита, определение для чайников

Что происходит при коротком замыкании в цепи – в чем причина, защита, определение для чайников

Короткое замыкание | Практическая электроника

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное  соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле. Короткое замыкание в электрической цепи: причины, виды, последствия и защита

Что такое короткое замыкание в электрической цепи. Какие бывают виды коротких замыканий. Почему происходит короткое замыкание и чем оно опасно. Как защитить электросеть от коротких замыканий. Какие меры предотвращения коротких замыканий существуют.

Содержание

Что такое короткое замыкание в электрической цепи

Короткое замыкание (КЗ) — это непредусмотренное нормальным режимом работы соединение точек электрической цепи с различными потенциалами через очень малое сопротивление. При коротком замыкании в цепи резко возрастает сила тока, многократно превышая допустимые значения.

Основные признаки короткого замыкания:

  • Резкое падение напряжения в сети
  • Многократное увеличение силы тока
  • Выделение большого количества тепла в месте КЗ
  • Возможное появление электрической дуги
  • Срабатывание защитных устройств (автоматов, предохранителей)

Таким образом, короткое замыкание — это аварийный режим работы электрической цепи, при котором происходит неконтролируемое протекание сверхтока.


Виды коротких замыканий

В зависимости от характера повреждения различают следующие основные виды коротких замыканий:

1. Трехфазное КЗ

Происходит одновременное соединение всех трех фаз между собой. Является симметричным КЗ и самым опасным по величине тока.

2. Двухфазное КЗ

Замыкание между двумя фазами. Относится к несимметричным КЗ.

3. Однофазное КЗ на землю

Замыкание одной из фаз на землю или нулевой провод. Наиболее частый вид КЗ в сетях с заземленной нейтралью.

4. Двухфазное КЗ на землю

Одновременное замыкание двух фаз на землю.

5. Межвитковое КЗ

Происходит при повреждении изоляции между витками обмоток электрических машин и аппаратов.

Статистика показывает, что наиболее часто (до 65% случаев) происходят однофазные КЗ на землю.

Причины возникновения коротких замыканий

Основными причинами коротких замыканий являются:

  • Нарушение или старение изоляции проводов и кабелей
  • Механические повреждения изоляции при монтаже
  • Пробой изоляции из-за перенапряжений (например, при ударе молнии)
  • Ошибки персонала при оперативных переключениях
  • Перекрытие изоляции из-за загрязнения, влаги, пыли
  • Неисправности электрооборудования
  • Обрывы и схлестывание проводов воздушных линий

Как правило, короткое замыкание возникает в результате совокупности нескольких неблагоприятных факторов.


Последствия коротких замыканий

Короткие замыкания могут приводить к следующим негативным последствиям:

  • Пожары и возгорания из-за термического действия тока КЗ
  • Механические повреждения оборудования от электродинамических сил
  • Нарушение устойчивости энергосистемы, отключение потребителей
  • Снижение напряжения в сети, нарушение работы электроприемников
  • Выход из строя электрооборудования
  • Разрушение изоляции кабельных линий

Поэтому защита от коротких замыканий является важнейшей задачей для обеспечения надежности и безопасности электроснабжения.

Защита от коротких замыканий

Для защиты электрических сетей и оборудования от токов КЗ применяются следующие основные виды защитных устройств:

  • Автоматические выключатели
  • Предохранители
  • Устройства защитного отключения (УЗО)
  • Дифференциальные автоматы
  • Релейная защита

Принцип действия защитных устройств основан на отключении поврежденного участка цепи при превышении током заданного порогового значения.

Меры по предотвращению коротких замыканий

Для снижения вероятности возникновения КЗ применяются следующие профилактические меры:


  • Своевременная замена изношенной электропроводки
  • Применение кабелей и проводов с усиленной изоляцией
  • Соблюдение правил монтажа электропроводки
  • Защита от перенапряжений и грозовых разрядов
  • Регулярные осмотры и испытания изоляции
  • Контроль за состоянием контактных соединений
  • Очистка изоляторов от загрязнений

Комплексное применение указанных мер позволяет значительно снизить риск возникновения аварийных коротких замыканий в электрических сетях и оборудовании.

Расчет токов короткого замыкания

Для правильного выбора защитной аппаратуры и проверки электрооборудования на устойчивость к токам КЗ выполняется расчет максимальных значений токов короткого замыкания. Расчет производится по следующей формуле:

Iкз = U / Zкз

где:

  • Iкз — ток короткого замыкания
  • U — напряжение сети
  • Zкз — полное сопротивление цепи короткого замыкания

При этом учитываются активные и индуктивные сопротивления всех элементов цепи КЗ — линий, трансформаторов, реакторов и др.

Особенности коротких замыканий в различных электроустановках

Характер протекания процесса короткого замыкания зависит от вида электроустановки:


В сетях до 1000 В:

  • Быстрое затухание тока КЗ
  • Значительное снижение напряжения
  • Термическое и электродинамическое воздействие на проводники

В сетях выше 1000 В:

  • Медленное затухание тока КЗ
  • Возможно нарушение устойчивости энергосистемы
  • Значительные электродинамические усилия в электрооборудовании

В электрических машинах:

  • Быстрое нарастание тока КЗ
  • Возможны повреждения обмоток и изоляции
  • Нарушение нормальной работы машины

Учет особенностей КЗ в конкретных электроустановках позволяет правильно выбрать способы защиты от аварийных режимов.


Короткое замыкание | Практическая электроника

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное  соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

где

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Что будет дальше, если мы замкнем контакты ключа SA?

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

где

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары. 

Существуют еще запланированные  и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

где

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС  в виде автомобильного аккумулятора с замкнутыми клеммами

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания  будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

Виды коротких замыканий

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока. Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель. Ниже на фото вы можете увидеть результат такого КЗ.

В цепях переменного тока

Трехфазное замыкание

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

Однофазное на ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю –  60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

вот такие плавкие предохранители вы можете увидеть в автомобилях

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

www.ruselectronic.com

Что такое короткое замыкание, его виды и причины возникновения

О таком нештатном режиме работы электрической цепи как короткое замыкание слышали практически все. Описание физики этого процесса входит в школьную программу 8-го класса. Предлагаем вспомнить, что представляет собой данное явление, какую опасность представляют токи КЗ и их вероятные причины возникновения. В статье мы рассмотрим виды короткого замыкания, а также способы защиты, позволяющие минимизировать негативные последствия.

Что такое короткое замыкание?

Под данным термином принято называть состояние сети, в которой имеет место непредусмотренный нормальной эксплуатацией электрический контакт между точками электроцепи с различными потенциалами. Низкое сопротивление в зоне контакта вызывает резкое увеличение силы тока, превышающее допустимое значение.

Для понимания процесса приведем наглядный пример. Допустим, имеется лампа накаливания мощностью 100 Вт, подключенная к бытовой сети 220 В. Применив Закон Ома, рассчитаем величину тока для нормального режима и короткого замыкания, игнорируя сопротивление источника и электрической проводки.

Электрическая схема нормального режима работы (а) и короткого замыкания (b)

При нормальном режиме работы приведенной выше цепи, электрический ток будет равен 0,45 А (I = P/U = 100/220 ≈ 0,45), а сопротивление нагрузки составит 489 Ом (R = U/A = 220/0,45 ≈ 489).

Теперь рассмотрим изменение параметров цепи при возникновении КЗ. Для этого замкнем цепь между точками А и В выполним соединение при помощи провода с сопротивлением 0,01 Ом. Учитывая свойства электрического тока, он выберет путь с наименьшим сопротивлением, соответственно, Iкз увеличится до 22000 А (I=U/R). Собственно, по этой причине замыкание называется коротким.

Данный пример сильно упрощен, в реальности ток замыкания не поднимется до 2,2 кА, поскольку произойдет падение напряжения на потребителе, согласно второму закону Киргофа: E = I * r + I * R , где I*r  – напряжение на источнике питания, а I * R, соответственно, на потребителе. Поскольку R при замыкании стремится к нулю, то вольтметр в изображенной выше схеме покажет падение напряжения.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания.

Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.

  1. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  2. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  3. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  4. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗПроцентное соотношение к общему числу (%)
К(З)5,0
K(2)10,0
K(1)65,0
K(1,1) и K(1+1)20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Причины возникновения короткого замыкания

Несмотря на случайность данного процесса, существует много причин, имеющих косвенное или прямое отношение к его происхождению. Перечислим наиболее распространенные причины, по данным аварийной статистики:

  • Износ электрохозяйства энергетических систем или бытовой электросети. Со временем изоляция проводов или токоведущих элементов теряет диэлектрические свойства, в результате на участке цепи возникает непредусмотренное электрическое соединение. Определить общее состояние проводки можно по проводам в электрических точках. Старение изоляции заметно на отводах к электрическим точкам
  • Превышение допустимой нагрузки на цепь питания. Это вызывает нагрев токоведущих элементов, что приводит к повреждению изоляции. Подробно о перегрузке электросети можно прочитать на нашем сайте. Перегрузка электросети может стать причиной короткого замыкания
  • Удар молнии в ВЛ. В этом случае происходит перенапряжение электросети, которое может вызвать КЗ. Обратим внимание, что молнии не обязательно попадать непосредственно в ЛЭП, близкий разряд может вызвать ионизацию воздуха, увеличивающую его электропроводимость. В результате увеличивается вероятность образования электрической дуги между линиями электропередач.
  • Физическое воздействие на провода, вызывающее механическое повреждение изоляции. В качестве примера достаточно вспомнить шутку, где перфоратор называют электрическим прибором для поиска скрытой проводки.
  • Попадание металлических предметов на токоведущие элементы. Собственно, это следствие, поскольку причина кроется в неудовлетворительном уходе за электрохозяйством.
  • Подключение к сети неисправного оборудования, например вызванного существенным снижением внутреннего сопротивления.
  • Человеческий фактор. Под это определение можно подвести практически все случаи так или иначе связанные с неправильными действиями человека. Например, ошибки при монтаже электропроводки, неудачные попытки ремонта электрооборудования, неправильные действия оперативного персонала подстанции и т.д.

Опасность и последствия

Чтобы понять, какую опасность представляет КЗ, достаточно узнать о возможных последствиях короткого замыкания. Для этого перейдем к краткому перечню, составленному по статистическим данным Ростехнадзора:

  • Возникновение возгорания в месте механического соприкосновения неизолированных элементов оборудования или электрической сети часто становится причиной пожара.
  • Понижение уровня напряжения электрического тока в зоне замыкания вызовет сбой в работе электрооборудования. О последствиях пониженного напряжения можно подробно узнать в одной из публикаций на нашем сайте.
  • Как видно из приведенной выше таблицы 1, на долю симметричных замыканий (К(З)) приходится не более 5%, это означает, что во всех остальных случаях придется иметь дело с сетевой асимметрией, более известной под названием «перекос фаз». Последствия такого режима мы уже рассматривали в более ранней публикации.
  • Возникновение различных системных аварий, вызывающих отключение потребителей энергосистемы до устранения короткого замыкания.

Как предотвратить КЗ и защита от него?

Нельзя полностью исключить вероятность КЗ, поскольку на природу его возникновения влияет случайная составляющая. Поэтому в данном случае может идти речь только о профилактике, понижающей вероятность возникновения аварийной ситуации. К таким мерам относятся:

  • Контроль состояния изоляции токоведущих элементов оборудования или линий электропередач. В частности, испытание изоляции электропроводки в производственных помещениях положено проводить не реже одного раза в три года. Для бытовых сетей нормируется только срок максимальной эксплуатации. Например, для скрытой проводки, выполненной медным проводом, допустимая эксплуатация – 40 лет.
  • Сверка с проектом бытовой электросети перед сверлением теоретически должна минимизировать вероятность механического повреждения скрытой проводки. Но, как показывает практика, в таких ситуациях надежней воспользоваться прибором, для поиска проводки. Обзор таких устройств и их принципиальные схемы, можно найти на нашем сайте. Детектор проводки
  • Отключение электроприборов при выходе из дома или квартиры.
  • В «сырых» помещениях (например, в ванной комнате) необходимо минимизировать количество электрооборудования. Если таковое нельзя исключить, оно должно иметь соответствующий класс защиты.
  • В случае повреждения электроприбора, требуется исключить возможность его подсоединения к сети питания.
  • Соблюдение норм потребления электроэнергии и т.д.

Не менее важным является организация защиты, она реализуется путем установки автоматических выключателей (или предохранителей) как на ввод, так и на каждую внутреннюю линию проводки. Если произойдет короткое замыкание, электромагнитная защита автоматического выключателя сработает под воздействием высокого уровня тока КЗ. Как подобрать автоматический выключатель, в зависимости от номинального тока, Вы можете прочитать на нашем сайте.

Если в щитах РУ используются плавкие электрические предохранители, то после их «расплавления» (срабатывания), замена должна проводиться на однотипные устройства. Установка предохранителя с током меньше номинального приведет к ложным срабатываниям, превышение допустимого тока срабатывания может вызвать повреждение электрооборудования.

Преднамеренное КЗ

Завершая данную тему нельзя не упомянуть, что большие токи короткого замыкания могут успешно использоваться. Ярким примером этому являются электросварочные аппараты с ручным или автоматическим ограничением по току КЗ. Принцип работы и примеры электрических схем различных видов сварочного оборудования мы уже ранее рассматривали на нашем сайте.

Помимо сварочных аппаратов особенности КЗ используются в короткозамыкателях.

Внешний вид короткозамыкателя

Короткозамыкатели представляют собой специальные электромеханические устройства, вызывающие преднамеренное короткое замыкание для оперативного отключения системой защиты определенного участка цепи.

Таким образом, можно констатировать, что в приведенных примерах короткое замыкание вызывается принудительно для выполнения конструктивных действий.

Несколько видео по теме:


www.asutpp.ru

Что такое короткое замыкание по-простому

КОРОТКОЕ ЗАМЫКАНИЕ – это электрическое соединение разных фаз или потенциалов электроустановки между собой или с землей, не предусмотренное в нормальном режиме работы, при котором в проводниках, в месте контакта, резко возрастает сила тока, превышая максимально допустимые величины.

Если же говорить простым языком, короткое замыкание – это любое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи.

Как вы заметили, акцент на том, что короткое замыкание в электрической цепи — это именно незапланированный, не предусмотренный процесс, сделан не зря, ведь, по большому счету, контролируемое замыкание (некоторые еще назывыают его по-аналогии длинным) запускает электроприборы. Все они включаются в розетку, и, так или иначе, фазный провод, посредством электроприбора соединяется с нулевым, но короткого замыкания при этом не происходит, давайте разберемся почему.


Почему происходит короткое замыкание

 

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:


I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.


Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.


Почему короткое замыкание так называется

 


Подключая какую-то нагрузку к сети, например, утюг, телевизор или любой другой электроприбор, мы создаём сопротивление для протекания электрического тока.
Если же мы умышленно или случайно соединим, например, фазу и ноль напрямую, без нагрузки, мы, в каком-то смысле, укорачиваем путь, делаем его коротким.

Поэтому, короткое замыкание и называют коротким, подразумевая движение электронов по кротчайшему пути, без сопротивления.


Чем опасно короткое замыкание


Самая значительная опасность при коротком замыкании – это большая вероятность возникновения пожара.

При значительном увеличении силы тока, которое происходит при КЗ, выделяется большое количество теплоты в проводниках, что вызывает разрушение изоляции и возгорание.
Кроме того, в быту, чаще всего происходит дуговое короткое замыкание, при котором, между проводниками в месте КЗ, возникает мощнейший электрический разряд, который нередко воспламеняет окружающие предметы.

Так же не стоит забывать про опасность поражения электрическим током или резким выделением тепла человека, которая так же достаточно высока.

Из менее опасных последствий, происходящих при КЗ, стоит отменить значительное снижение напряжения в электрической сети особенно в месте его возникновения, что негативно влияет на различные электроприборы, в частности оснащенные двигателями. Также, не стоит забывать про сильное электромагнитное воздействие на чувствительное к этому оборудование.

Как видите, последствия от возникновения короткого замыкания могут быть очень серьезными, поэтому, при проектировании любой электроустановки и монтаже электропроводки, необходимо предусмотреть защиту от короткого замыкания.


Защита от короткого замыкания

 


Большинство современных способов защиты от короткого замыкания основаны на принципе разрыва электрической цепи, при обнаружении КЗ.

Самые простые устройства, которые есть во многих электроприборах, защищающие от последствий коротких замыканий – это плавкие предохранители.

Чаще всего, плавкий предохранитель представляет собой проводник, рассчитанный на определенный предельный ток, который он сможет пропускать через себя, при превышении этого значения, проводник разрушается, тем самым разрывая электрическую цепь. Плавкий предохранитель — это самый слабый участок электрической цепи, который первый выходит из строя под действием высокого тока, тем самым защищает все остальные элементы.

Для защиты от коротких замыканий в квартире или доме, используются автоматические выключатели -АВ (чаще всего их называют просто автоматы), они устанавливаются на каждую группу электрической сети.

Каждый автоматический выключатель рассчитан на определенный рабочий ток, при превышении которого он разрывает цепь. Это происходит либо с помощью теплового расцепителя, который при нагреве, вследствие протекания высокого тока, механически разъединяет контакты, либо с помощью электромагнитного.

Принцип работы автоматических выключателей — это тема отдельной статьи, о них мы поговорим в другой раз. Сейчас же, хочу еще раз напомнить, что от короткого замыкания не спасает УЗО, его предназначение совсем в другом.

Для того, чтобы правильно выбрать защитный автоматический выключатель, делаются расчеты величины возможного тока короткого замыкания для конкретной электроустановки. Чтобы в случае, если КЗ произойдёт, автоматика сработала оперативно, не пропустив резко возросший ток и не сгорев от него, не успев разорвав цепь.

 

Причины короткого замыкания

 


Чаще всего в бытовых условиях квартиры или частного дома, короткое замыкание возникает по нескольким причинам, основные из которых:

— в следствии нарушения изоляции электрических проводов или мест их соединений. Факторов приводящих к этому достаточно много, здесь и банальное старение материалов, и механическое повреждение, и даже загрязнения изоляторов.

— из-за случайного или преднамеренного соединения проводников с различным потенциалом, чаще всего фазного и нулевого. Это может быть вызвано ошибками при работе с электропроводкой под напряжением, неисправностью электроприборов, случайным попаданием проводников на контактные группы и т.д.

Поэтому, очень важно ответственно относится как к монтажу электроустановки, так и к её эксплуатации и обслуживанию.

Будьте аккуратны и осмотрительны при обращении с электрическими приборами и оборудованием, не включайте их в сеть если они повреждены или открыты. Не хватайтесь за электрические провода, если точно не знаете, что они не под напряжением.

Ну и как всегда, если у вас есть что добавить, вы нашли неточности или ошибки – обязательно пишите в комментариях к статье, кроме того задавайте свои вопросы, делитесь полезным опытом.

rozetkaonline.ru

Ток короткого замыкания и его расчет. Ударный ток короткого замыкания :: SYL.ru

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет – она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I = U / R,

где:

I – величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? – спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U – та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R – электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников – малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P = U x I,

где:

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

I – ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) — это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки – страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки – емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

где:

I к.з. — величина тока короткого замыкания, А;

Uph – фазное напряжение, В;

Zn — полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt – полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина – соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

www.syl.ru

Короткое замыкание — урок. Физика, 8 класс.

Каждый раз, когда вы вставляете вилку электроприбора в розетку, вы замыкаете электрическую цепь, и по ней начинает течь электрический ток.

Потребитель электрического тока преобразует электрическую энергию, которая к нему поступает, в другие виды энергии — механическую (например, в электродвигателях), тепловую (в утюгах, нагревательных приборах), световую (в осветительных приборах).

Электрические цепи всегда рассчитаны на определённую силу тока. Если по той или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция — воспламениться.

 

Рассмотрим простейшую электрическую цепь, которая состоит из источника тока (1), выключателя (2) и потребителя электроэнергии (3), соединённых между собой проводами (рис. 1).

 

Рис. 1

 

Сила тока в этой цепи определяется по закону Ома:

 

I=UR, где

 

\(U\) — напряжение в сети;

\(R\) — сопротивление потребителя электроэнергии (электроприбора).

Сила тока прямо пропорциональна напряжению в сети и обратно пропорциональна сопротивлению, которое создаёт электроприбор.

Что произойдёт, если цепь замкнуть проводником так, как показано на рисунке 2, то есть между точками \(A\) и \(B\) напрямую?


Рис. 2

 

В этом случае основная часть электрического тока потечёт по проводнику \(AB\), минуя потребитель тока, так как сопротивление участка \(AB\) намного меньше, чем сопротивление электроприбора.

При этом общее сопротивление цепи сильно уменьшится, а в результате, согласно закону Ома для участка цепи, сила тока в ней резко возрастёт. Возникнет короткое замыкание.

Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи.

Как известно из закона Джоуля-Ленца, количество теплоты \(Q\), выделяемое на участке цепи \(R\), пропорционально квадрату силы тока \(I\) на этом участке:

 

Q=I2Rt, где

 

\(t\) — время протекания тока по цепи.

 

Согласно этому закону, если при коротком замыкании ток увеличится в \(10\) раз, то количество теплоты, выделяющейся при этом, возрастёт примерно в \(100\) раз (при прочих равных условиях)!

Вот почему короткое замыкание может вызвать расплавление проводов, воспламенение изоляции и в конечном итоге привести к возгоранию горючих предметов вокруг места короткого замыкания и к пожару.
 

Чаще всего причиной короткого замыкания является нарушение изоляции проводов (из-за их износа, неправильной эксплуатации и т.п.). Также причиной короткого замыкания могут быть механические повреждения в электрической цепи или в электроприборе, а также перегрузки сети.

www.yaklass.ru

Ток короткого замыкания. Виды и работа. Применение и особенности

Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Причины повреждения изоляции
  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.
Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.
Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2.  Двухфазное замыкание.
  3.  Однофазное замыкание на землю.
  4.  Однофазное замыкание на землю (Изолированная нейтраль).
  5.  Двухфазное замыкание на землю.
  6.  Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение iп. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения iк. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = iно. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током iу. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I уi пm + i аt=0’, где i пm является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть сварочный аппарат. Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка плавких предохранителей, которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют электрические автоматы. Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде дифференциальных автоматов. Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.
Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до трансформатора питания на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

Похожие темы:

electrosam.ru

что это такое, определение, причины, виды КЗ.

Ток короткого замыкания – это возрастающий электрический импульс ударного типа. Из-за его появления могут расплавиться провода, выйти из строя некоторые электрические приборы.

Почему происходит короткое замыкание?

Ток КЗ возникает в следующих случаях:

  1. При высоком уровне напряжения. Происходит резкий скачок, уровень напряжения начинает превышать допустимые нормы, возникает вероятность появления электрического пробоя изоляционного покрытия проводника или схемы электрического типа. Образуется утечка тока, повышается температура дуги. Напряжение короткого замыкания приводит к созданию кратковременного дугового разряда.
  2. При старом изоляционном покрытии. Такое замыкание возникает в жилых и промышленных зданиях, в которых не проводилась замена проводки. У любого изоляционного покрытия есть свой ресурс, который со временем истощается под воздействием факторов внешней среды. Несвоевременная замена изоляции может стать причиной КЗ.
  3. При внешнем воздействии механического типа. Перетирание защитной оболочки провода или снятие его изоляционного покрытия, а также повреждение проводки приводят к возгоранию и КЗ.
  4. При попадании посторонних предметов на цепь. Попавшие на проводник пыль, мусор или другие мелкие предметы способны вызвать замыкание в цепи механизма.
  5. Во время удара молнии. Повышается уровень напряжения, пробивается изоляционное покрытие провода или электрической схемы, из-за чего и возникает КЗ в электро цепи.

Почему КЗ так называется?

Рассмотрим определение КЗ, расшифровка – короткое замыкание. Это объединение 2 любых точек (обладающих различным потенциалом), которые находятся в электрической цепи. Соединение не предусмотрено нормальным режимом функционирования цепи, что приводит к критическим показателям силы тока на месте объединения этих точек.

Такое замыкание называется коротким, потому что образуется, минуя прибор, т.е. по короткому пути.

Простым языком: происходит соединение положительного и отрицательного проводника (короткий путь), что приводит к тому, что значение сопротивления становится равно 0. Для нормального функционирования механизма необходимо сопротивление, а его отсутствие вызывает сбой в работе источника напряжения, что приводит к замыканию.

КЗ – это любое соединение проводников с разным потенциалом между собой или с землей. КЗ возникает только в том случае, если такое объединение не запланировано конструкцией данного прибора или механизма. Например, соединение между любыми точками разных фаз или объединение фазы и 0, когда образуется разрушительный ток, превышающий все критические значения электрической схемы устройства.

В чем опасность?

Последствия короткого замыкания могут быть следующими:

  1. Падает уровень напряжения в электро цепи. Это может привести к выходу из строя и обгоранию электрического прибора или сбоям в функционировании устройства.
  2. Повреждения механического и термического типа: обрыв цепи, повреждение проводки или отдельных проводов, розеток и выключателей.
  3. В зависимости от мощности короткого замыкания возможно возгорание проводки и расположенных рядом с ней материалов и предметов.
  4. Деструктивное электромагнитное воздействие на телефонную линию связи, компьютер, телевизор и другие электроприборы.
  5. Опасность для жизни. Если в момент возникновения замыкания человек находится рядом с источником КЗ, то он может получить ожоги.
  6. Нарушается функционирование электропоставляющих систем.
  7. В зависимости от параметров КЗ возможны сбои в работе подземных коммуникаций при электромагнитном воздействии.

Многих людей интересует вопрос о том, как посчитать, чему равна сила тока при коротком замыкании. Для этого необходимо воспользоваться законом Ома: сила тока в цепи прямо пропорциональна напряжению на ее концах и обратно пропорциональна полному сопротивлению цепи.

Вычисление КЗ осуществляется по формуле: I= U/R (I – сила тока, U – напряжение, R – сопротивление).

Виды короткого замыкания и их причины

Существуют такие виды КЗ, как:

  1. Однофазное КЗ. Повреждение на линиях электропередачи, когда 1 из фаз электрической системы замыкается на землю или на элемент, который соединен с землей. Причиной замыкания может стать неправильное заземление.
  2. Двухфазное КЗ. Тип замыкания, возникающий между 2 фазами с различным потенциалом в электроэнергетической цепочке. Причина – нарушение изоляции проводов. Также это может быть одновременное соединение 2 фаз не между собой, а на землю.
  3. КЗ трехфазное (симметричное). Замыкание 3 фаз друг на друга. Причиной может стать механическое повреждение изоляционного покрытия, перегрев и пробой в изоляции или схлестывание проводов.
  4. Межвитковое. Такой тип замыкания характерен для электрических машин. В этом случае происходит замыкание витков механизма обмотки статора, трансформатора или ротного устройства между собой.
  5. Замыкание на металлический корпус прибора или системы. Такое короткое замыкание возникает при нарушении изоляции проводки на металлическом корпусе.

Варианты защиты от КЗ

В качестве защиты от возникновения короткого замыкания можно использовать:

  • реакторы электрического типа, которые будут ограничивать ток;
  • распараллеливание электрической цепи;
  • отключение секционных выключателей;
  • трансформаторы понижающего типа с расщепленной обмоткой с низким уровнем напряжения;
  • быстродействующие коммутационные аппараты, в которых есть опция ограничения поступления тока;
  • плавкие предохранительные элементы;
  • установку автоматических выключателей;
  • своевременную замену изоляционного покрытия проводов и регулярный осмотр проводки на наличие дефектов;
  • устройства релейной защиты, которые будут отключать поврежденные участки цепи.

Автоматы можно устанавливать только на всю систему, а не на отдельные фазы и цепь нуля. В противном случае во время замыкания выйдет из строя нулевой автомат, а вся электросеть окажется под напряжением, т.к. фазный автомат будет включен. По этой же причине не рекомендуется устанавливать провод меньшего сечения, чем может позволить автомат.

Использование этого явления

Данное явление нашло свое применение в дуговой сварке, принцип работы которой построен на взаимодействии стержня с металлической поверхностью. Поверхность нагревается до температуры плавки, благодаря чему появляется новое прочное соединение, т.е. сварочный электрод замыкается с заземляющим контуром.

Такие режимы короткого замыкания действуют непродолжительный промежуток времени. В момент сварки в месте соединения стержня и поверхности возникает нестандартный заряд тока, из-за чего выделяется большое количество теплоты. Ее достаточно для плавки металла и создания сварочного шва.

Также короткое замыкание используется в сфере промышленной автоматики, с его помощью создаются информационные системы, которые отражают параметры передачи токового сигнала.

Полезное КЗ применяется в электродинамических датчиках. Например, в индукционных виброметрах, сейсмических приемниках. Короткое замыкание дает возможность дополнительно уменьшить количество колебаний подвижной системы.

Режим КЗ может использоваться при объединении каскадов в электронике, когда выход первого активного компонента работает в режиме КЗ.

odinelectric.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *